ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
604void inline_speed 638void inline_speed
605upheap (WT *heap, int k) 639upheap (WT *heap, int k)
606{ 640{
607 WT w = heap [k]; 641 WT w = heap [k];
608 642
609 while (k && heap [k >> 1]->at > w->at) 643 while (k)
610 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
611 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
613 k >>= 1; 652 k = p;
614 } 653 }
615 654
616 heap [k] = w; 655 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
618
619} 657}
620 658
621void inline_speed 659void inline_speed
622downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
623{ 661{
624 WT w = heap [k]; 662 WT w = heap [k];
625 663
626 while (k < (N >> 1)) 664 for (;;)
627 { 665 {
628 int j = k << 1; 666 int c = (k << 1) + 1;
629 667
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 669 break;
635 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
636 heap [k] = heap [j]; 677 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
638 k = j; 680 k = c;
639 } 681 }
640 682
641 heap [k] = w; 683 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
643} 685}
725 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
728} 770}
729 771
730void inline_size 772void inline_speed
731fd_intern (int fd) 773fd_intern (int fd)
732{ 774{
733#ifdef _WIN32 775#ifdef _WIN32
734 int arg = 1; 776 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
764 ev_child *w; 806 ev_child *w;
765 807
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 809 if (w->pid == pid || !w->pid)
768 { 810 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 812 w->rpid = pid;
771 w->rstatus = status; 813 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 815 }
774} 816}
775 817
776#ifndef WCONTINUED 818#ifndef WCONTINUED
886ev_backend (EV_P) 928ev_backend (EV_P)
887{ 929{
888 return backend; 930 return backend;
889} 931}
890 932
933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
891static void noinline 939static void noinline
892loop_init (EV_P_ unsigned int flags) 940loop_init (EV_P_ unsigned int flags)
893{ 941{
894 if (!backend) 942 if (!backend)
895 { 943 {
904 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 953 mn_now = get_clock ();
906 now_floor = mn_now; 954 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
908 956
957 /* pid check not overridable via env */
958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
909 if (!(flags & EVFLAG_NOENV) 963 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 964 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 965 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
913 967
969#if EV_USE_SELECT 1023#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1025#endif
972 1026
973 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
974 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
975 1034
976 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0); 1036 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1037 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1038#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1039 array_free (periodic, EMPTY);
981#endif 1040#endif
982 array_free (idle, EMPTY0);
983 array_free (prepare, EMPTY0); 1041 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1042 array_free (check, EMPTY);
985 1043
986 backend = 0; 1044 backend = 0;
987} 1045}
988 1046
989void inline_size infy_fork (EV_P); 1047void inline_size infy_fork (EV_P);
1125 postfork = 1; 1183 postfork = 1;
1126} 1184}
1127 1185
1128/*****************************************************************************/ 1186/*****************************************************************************/
1129 1187
1130int inline_size 1188void
1131any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
1132{ 1190{
1133 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1192}
1141 1193
1142void inline_speed 1194void inline_speed
1143call_pending (EV_P) 1195call_pending (EV_P)
1144{ 1196{
1162void inline_size 1214void inline_size
1163timers_reify (EV_P) 1215timers_reify (EV_P)
1164{ 1216{
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1166 { 1218 {
1167 ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1168 1220
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170 1222
1171 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1172 if (w->repeat) 1224 if (w->repeat)
1175 1227
1176 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1177 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1179 1231
1180 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1181 } 1233 }
1182 else 1234 else
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1236
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1190void inline_size 1242void inline_size
1191periodics_reify (EV_P) 1243periodics_reify (EV_P)
1192{ 1244{
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1194 { 1246 {
1195 ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1196 1248
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1198 1250
1199 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1200 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1201 { 1253 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1204 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1205 } 1257 }
1206 else if (w->interval) 1258 else if (w->interval)
1207 { 1259 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1211 } 1264 }
1212 else 1265 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1267
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 int i; 1275 int i;
1223 1276
1224 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1226 { 1279 {
1227 ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1228 1281
1229 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 1284 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1233 } 1286 }
1234 1287
1235 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1238} 1291}
1239#endif 1292#endif
1240 1293
1294#if EV_IDLE_ENABLE
1241int inline_size 1295void inline_size
1242time_update_monotonic (EV_P) 1296idle_reify (EV_P)
1243{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1244 mn_now = get_clock (); 1327 mn_now = get_clock ();
1245 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1332 {
1248 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1334 return;
1250 } 1335 }
1251 else 1336
1252 {
1253 now_floor = mn_now; 1337 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1339
1259void inline_size 1340 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1261{ 1342 * in case we get preempted during the calls to
1262 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1263 1344 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1266 { 1347 */
1267 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1268 { 1349 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1282 1351
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1284 return; /* all is well */ 1353 return; /* all is well */
1285 1354
1286 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 1356 mn_now = get_clock ();
1288 now_floor = mn_now; 1357 now_floor = mn_now;
1289 } 1358 }
1290 1359
1291# if EV_PERIODIC_ENABLE 1360# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 1361 periodics_reschedule (EV_A);
1293# endif 1362# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */ 1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 1365 }
1298 else 1366 else
1299#endif 1367#endif
1300 { 1368 {
1301 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1302 1370
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 1372 {
1305#if EV_PERIODIC_ENABLE 1373#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1307#endif 1375#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1311 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1312 } 1379 }
1313 1380
1334{ 1401{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1336 ? EVUNLOOP_ONE 1403 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL; 1404 : EVUNLOOP_CANCEL;
1338 1405
1339 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1340 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1341#if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 1420 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 1421 if (expect_false (postfork))
1344 if (forkcnt) 1422 if (forkcnt)
1345 { 1423 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 1425 call_pending (EV_A);
1348 } 1426 }
1349#endif 1427#endif
1350 1428
1351 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1353 { 1431 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 1433 call_pending (EV_A);
1356 } 1434 }
1357 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1358 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1360 loop_fork (EV_A); 1441 loop_fork (EV_A);
1361 1442
1362 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1364 1445
1365 /* calculate blocking time */ 1446 /* calculate blocking time */
1366 { 1447 {
1367 ev_tstamp block; 1448 ev_tstamp block;
1368 1449
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1370 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1371 else 1452 else
1372 { 1453 {
1373 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 1455 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 1456
1384 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1385 1458
1386 if (timercnt) 1459 if (timercnt)
1387 { 1460 {
1398#endif 1471#endif
1399 1472
1400 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1401 } 1474 }
1402 1475
1476 ++loop_count;
1403 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1478
1479 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block);
1404 } 1481 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 1482
1409 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 1485#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 1487#endif
1414 1488
1489#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 1490 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1418 1493
1419 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 1495 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 1497
1423 call_pending (EV_A); 1498 call_pending (EV_A);
1424 1499
1425 if (expect_false (loop_done))
1426 break;
1427 } 1500 }
1501 while (expect_true (activecnt && !loop_done));
1428 1502
1429 if (loop_done == EVUNLOOP_ONE) 1503 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 1504 loop_done = EVUNLOOP_CANCEL;
1431} 1505}
1432 1506
1459 head = &(*head)->next; 1533 head = &(*head)->next;
1460 } 1534 }
1461} 1535}
1462 1536
1463void inline_speed 1537void inline_speed
1464ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1465{ 1539{
1466 if (w->pending) 1540 if (w->pending)
1467 { 1541 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1469 w->pending = 0; 1543 w->pending = 0;
1470 } 1544 }
1471} 1545}
1472 1546
1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1473void inline_speed 1573void inline_speed
1474ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1475{ 1575{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 1577 w->active = active;
1480 ev_ref (EV_A); 1578 ev_ref (EV_A);
1481} 1579}
1482 1580
1483void inline_size 1581void inline_size
1487 w->active = 0; 1585 w->active = 0;
1488} 1586}
1489 1587
1490/*****************************************************************************/ 1588/*****************************************************************************/
1491 1589
1492void 1590void noinline
1493ev_io_start (EV_P_ ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1494{ 1592{
1495 int fd = w->fd; 1593 int fd = w->fd;
1496 1594
1497 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1505 1603
1506 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1507} 1605}
1508 1606
1509void 1607void noinline
1510ev_io_stop (EV_P_ ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1511{ 1609{
1512 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1514 return; 1612 return;
1515 1613
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 1615
1519 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1520 1618
1521 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1522} 1620}
1523 1621
1524void 1622void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1526{ 1624{
1527 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1528 return; 1626 return;
1529 1627
1530 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1531 1629
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 1631
1534 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1536 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1538 1636
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1540} 1638}
1541 1639
1542void 1640void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1544{ 1642{
1545 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1547 return; 1645 return;
1548 1646
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1550 1648
1551 { 1649 {
1552 int active = ((W)w)->active; 1650 int active = ((W)w)->active;
1553 1651
1554 if (expect_true (--active < --timercnt)) 1652 if (expect_true (--active < --timercnt))
1555 { 1653 {
1556 timers [active] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1557 adjustheap ((WT *)timers, timercnt, active); 1655 adjustheap (timers, timercnt, active);
1558 } 1656 }
1559 } 1657 }
1560 1658
1561 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1562 1660
1563 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1564} 1662}
1565 1663
1566void 1664void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1568{ 1666{
1569 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1570 { 1668 {
1571 if (w->repeat) 1669 if (w->repeat)
1572 { 1670 {
1573 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1575 } 1673 }
1576 else 1674 else
1577 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1578 } 1676 }
1579 else if (w->repeat) 1677 else if (w->repeat)
1582 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1583 } 1681 }
1584} 1682}
1585 1683
1586#if EV_PERIODIC_ENABLE 1684#if EV_PERIODIC_ENABLE
1587void 1685void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 1687{
1590 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1591 return; 1689 return;
1592 1690
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 1693 else if (w->interval)
1596 { 1694 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1601 1701
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1606 1706
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1608} 1708}
1609 1709
1610void 1710void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 1712{
1613 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1615 return; 1715 return;
1616 1716
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1618 1718
1619 { 1719 {
1620 int active = ((W)w)->active; 1720 int active = ((W)w)->active;
1621 1721
1622 if (expect_true (--active < --periodiccnt)) 1722 if (expect_true (--active < --periodiccnt))
1623 { 1723 {
1624 periodics [active] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 1725 adjustheap (periodics, periodiccnt, active);
1626 } 1726 }
1627 } 1727 }
1628 1728
1629 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1630} 1730}
1631 1731
1632void 1732void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 1734{
1635 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1640 1740
1641#ifndef SA_RESTART 1741#ifndef SA_RESTART
1642# define SA_RESTART 0 1742# define SA_RESTART 0
1643#endif 1743#endif
1644 1744
1645void 1745void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1647{ 1747{
1648#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 1750#endif
1651 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1652 return; 1752 return;
1653 1753
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1655 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1656 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1659 1772
1660 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1661 { 1774 {
1662#if _WIN32 1775#if _WIN32
1669 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1670#endif 1783#endif
1671 } 1784 }
1672} 1785}
1673 1786
1674void 1787void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1676{ 1789{
1677 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1679 return; 1792 return;
1680 1793
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1699} 1812}
1700 1813
1701void 1814void
1702ev_child_stop (EV_P_ ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1703{ 1816{
1704 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 1818 if (expect_false (!ev_is_active (w)))
1706 return; 1819 return;
1707 1820
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1945} 2058}
1946 2059
1947void 2060void
1948ev_stat_stop (EV_P_ ev_stat *w) 2061ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2062{
1950 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1952 return; 2065 return;
1953 2066
1954#if EV_USE_INOTIFY 2067#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2068 infy_del (EV_A_ w);
1958 2071
1959 ev_stop (EV_A_ (W)w); 2072 ev_stop (EV_A_ (W)w);
1960} 2073}
1961#endif 2074#endif
1962 2075
2076#if EV_IDLE_ENABLE
1963void 2077void
1964ev_idle_start (EV_P_ ev_idle *w) 2078ev_idle_start (EV_P_ ev_idle *w)
1965{ 2079{
1966 if (expect_false (ev_is_active (w))) 2080 if (expect_false (ev_is_active (w)))
1967 return; 2081 return;
1968 2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2089 ev_start (EV_A_ (W)w, active);
2090
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
1972} 2094}
1973 2095
1974void 2096void
1975ev_idle_stop (EV_P_ ev_idle *w) 2097ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2098{
1977 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1979 return; 2101 return;
1980 2102
1981 { 2103 {
1982 int active = ((W)w)->active; 2104 int active = ((W)w)->active;
1983 idles [active - 1] = idles [--idlecnt]; 2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1984 ((W)idles [active - 1])->active = active; 2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
1985 } 2111 }
1986
1987 ev_stop (EV_A_ (W)w);
1988} 2112}
2113#endif
1989 2114
1990void 2115void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2116ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2117{
1993 if (expect_false (ev_is_active (w))) 2118 if (expect_false (ev_is_active (w)))
1999} 2124}
2000 2125
2001void 2126void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2127ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2128{
2004 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
2006 return; 2131 return;
2007 2132
2008 { 2133 {
2009 int active = ((W)w)->active; 2134 int active = ((W)w)->active;
2026} 2151}
2027 2152
2028void 2153void
2029ev_check_stop (EV_P_ ev_check *w) 2154ev_check_stop (EV_P_ ev_check *w)
2030{ 2155{
2031 ev_clear_pending (EV_A_ (W)w); 2156 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2157 if (expect_false (!ev_is_active (w)))
2033 return; 2158 return;
2034 2159
2035 { 2160 {
2036 int active = ((W)w)->active; 2161 int active = ((W)w)->active;
2078} 2203}
2079 2204
2080void 2205void
2081ev_embed_stop (EV_P_ ev_embed *w) 2206ev_embed_stop (EV_P_ ev_embed *w)
2082{ 2207{
2083 ev_clear_pending (EV_A_ (W)w); 2208 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2209 if (expect_false (!ev_is_active (w)))
2085 return; 2210 return;
2086 2211
2087 ev_io_stop (EV_A_ &w->io); 2212 ev_io_stop (EV_A_ &w->io);
2088 2213
2103} 2228}
2104 2229
2105void 2230void
2106ev_fork_stop (EV_P_ ev_fork *w) 2231ev_fork_stop (EV_P_ ev_fork *w)
2107{ 2232{
2108 ev_clear_pending (EV_A_ (W)w); 2233 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2234 if (expect_false (!ev_is_active (w)))
2110 return; 2235 return;
2111 2236
2112 { 2237 {
2113 int active = ((W)w)->active; 2238 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines