ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
58#include <stdlib.h> 110#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 111#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 112#include <stddef.h>
63 113
64#include <stdio.h> 114#include <stdio.h>
65 115
66#include <assert.h> 116#include <assert.h>
67#include <errno.h> 117#include <errno.h>
68#include <sys/types.h> 118#include <sys/types.h>
119#include <time.h>
120
121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
69#ifndef WIN32 129#ifndef _WIN32
130# include <sys/time.h>
70# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
71#endif 138# endif
72#include <sys/time.h> 139#endif
73#include <time.h>
74 140
75/**/ 141/**/
76 142
77#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
79#endif 149#endif
80 150
81#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
83#endif 153#endif
84 154
85#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
87#endif 161#endif
88 162
89#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
91#endif 165#endif
92 166
93#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
95#endif 169#endif
96 170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
97#ifndef EV_USE_WIN32 175#ifndef EV_USE_INOTIFY
98# ifdef WIN32 176# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
100# else 182# else
101# define EV_USE_WIN32 0 183# define EV_PID_HASHSIZE 16
102# endif 184# endif
103#endif 185#endif
104 186
105#ifndef EV_USE_REALTIME 187#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
107#endif 193#endif
108 194
109/**/ 195/**/
110 196
111#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
119#endif 205#endif
120 206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
121/**/ 219/**/
122 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127
128#include "ev.h"
129 234
130#if __GNUC__ >= 3 235#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 237# define noinline __attribute__ ((noinline))
133#else 238#else
134# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
135# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
136#endif 244#endif
137 245
138#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
140 255
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 258
259#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */
261
144typedef struct ev_watcher *W; 262typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
147 265
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 267
150#if WIN32 268#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 269# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 270#endif
271
272/*****************************************************************************/
273
274static void (*syserr_cb)(const char *msg);
275
276void
277ev_set_syserr_cb (void (*cb)(const char *msg))
278{
279 syserr_cb = cb;
280}
281
282static void noinline
283syserr (const char *msg)
284{
285 if (!msg)
286 msg = "(libev) system error";
287
288 if (syserr_cb)
289 syserr_cb (msg);
290 else
291 {
292 perror (msg);
293 abort ();
294 }
295}
296
297static void *(*alloc)(void *ptr, long size);
298
299void
300ev_set_allocator (void *(*cb)(void *ptr, long size))
301{
302 alloc = cb;
303}
304
305inline_speed void *
306ev_realloc (void *ptr, long size)
307{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
309
310 if (!ptr && size)
311 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort ();
314 }
315
316 return ptr;
317}
318
319#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0)
155 321
156/*****************************************************************************/ 322/*****************************************************************************/
157 323
158typedef struct 324typedef struct
159{ 325{
160 WL head; 326 WL head;
161 unsigned char events; 327 unsigned char events;
162 unsigned char reify; 328 unsigned char reify;
329#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle;
331#endif
163} ANFD; 332} ANFD;
164 333
165typedef struct 334typedef struct
166{ 335{
167 W w; 336 W w;
168 int events; 337 int events;
169} ANPENDING; 338} ANPENDING;
170 339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
346
171#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
172 348
173struct ev_loop 349 struct ev_loop
174{ 350 {
351 ev_tstamp ev_rt_now;
352 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 353 #define VAR(name,decl) decl;
176# include "ev_vars.h" 354 #include "ev_vars.h"
177};
178# undef VAR 355 #undef VAR
356 };
179# include "ev_wrap.h" 357 #include "ev_wrap.h"
358
359 static struct ev_loop default_loop_struct;
360 struct ev_loop *ev_default_loop_ptr;
180 361
181#else 362#else
182 363
364 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 365 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 366 #include "ev_vars.h"
185# undef VAR 367 #undef VAR
368
369 static int ev_default_loop_ptr;
186 370
187#endif 371#endif
188 372
189/*****************************************************************************/ 373/*****************************************************************************/
190 374
191inline ev_tstamp 375ev_tstamp
192ev_time (void) 376ev_time (void)
193{ 377{
194#if EV_USE_REALTIME 378#if EV_USE_REALTIME
195 struct timespec ts; 379 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 380 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 386#endif
203} 387}
204 388
205inline ev_tstamp 389ev_tstamp inline_size
206get_clock (void) 390get_clock (void)
207{ 391{
208#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
210 { 394 {
215#endif 399#endif
216 400
217 return ev_time (); 401 return ev_time ();
218} 402}
219 403
404#if EV_MULTIPLICITY
220ev_tstamp 405ev_tstamp
221ev_now (EV_P) 406ev_now (EV_P)
222{ 407{
223 return rt_now; 408 return ev_rt_now;
224} 409}
410#endif
225 411
226#define array_roundsize(base,n) ((n) | 4 & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
227 416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
439
228#define array_needsize(base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
230 { \ 442 { \
231 int newcnt = cur; \ 443 int ocur_ = (cur); \
232 do \ 444 (base) = (type *)array_realloc \
233 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 447 }
242 448
449#if 0
243#define array_slim(stem) \ 450#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 452 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 456 }
457#endif
250 458
251#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 461
254/*****************************************************************************/ 462/*****************************************************************************/
255 463
256static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
257anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
258{ 494{
259 while (count--) 495 while (count--)
260 { 496 {
261 base->head = 0; 497 base->head = 0;
264 500
265 ++base; 501 ++base;
266 } 502 }
267} 503}
268 504
269static void 505void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 506fd_event (EV_P_ int fd, int revents)
295{ 507{
296 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 509 ev_io *w;
298 510
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 512 {
301 int ev = w->events & events; 513 int ev = w->events & revents;
302 514
303 if (ev) 515 if (ev)
304 event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
305 } 517 }
306} 518}
307 519
308/*****************************************************************************/ 520void
521ev_feed_fd_event (EV_P_ int fd, int revents)
522{
523 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents);
525}
309 526
310static void 527void inline_size
311fd_reify (EV_P) 528fd_reify (EV_P)
312{ 529{
313 int i; 530 int i;
314 531
315 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
316 { 533 {
317 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 536 ev_io *w;
320 537
321 int events = 0; 538 int events = 0;
322 539
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 541 events |= w->events;
325 542
543#if EV_SELECT_IS_WINSOCKET
544 if (events)
545 {
546 unsigned long argp;
547 anfd->handle = _get_osfhandle (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 }
550#endif
551
326 anfd->reify = 0; 552 anfd->reify = 0;
327 553
328 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 555 anfd->events = events;
330 } 556 }
331 557
332 fdchangecnt = 0; 558 fdchangecnt = 0;
333} 559}
334 560
335static void 561void inline_size
336fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
337{ 563{
338 if (anfds [fd].reify || fdchangecnt < 0) 564 if (expect_false (anfds [fd].reify))
339 return; 565 return;
340 566
341 anfds [fd].reify = 1; 567 anfds [fd].reify = 1;
342 568
343 ++fdchangecnt; 569 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
346} 572}
347 573
348static void 574void inline_speed
349fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
350{ 576{
351 struct ev_io *w; 577 ev_io *w;
352 578
353 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
354 { 580 {
355 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 583 }
584}
585
586int inline_size
587fd_valid (int fd)
588{
589#ifdef _WIN32
590 return _get_osfhandle (fd) != -1;
591#else
592 return fcntl (fd, F_GETFD) != -1;
593#endif
358} 594}
359 595
360/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
361static void 597static void noinline
362fd_ebadf (EV_P) 598fd_ebadf (EV_P)
363{ 599{
364 int fd; 600 int fd;
365 601
366 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 603 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
370} 606}
371 607
372/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 609static void noinline
374fd_enomem (EV_P) 610fd_enomem (EV_P)
375{ 611{
376 int fd; 612 int fd;
377 613
378 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
381 fd_kill (EV_A_ fd); 617 fd_kill (EV_A_ fd);
382 return; 618 return;
383 } 619 }
384} 620}
385 621
386/* susually called after fork if method needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
387static void 623static void noinline
388fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
389{ 625{
390 int fd; 626 int fd;
391 627
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events) 629 if (anfds [fd].events)
395 { 630 {
396 anfds [fd].events = 0; 631 anfds [fd].events = 0;
397 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
398 } 633 }
399} 634}
400 635
401/*****************************************************************************/ 636/*****************************************************************************/
402 637
403static void 638void inline_speed
404upheap (WT *heap, int k) 639upheap (WT *heap, int k)
405{ 640{
406 WT w = heap [k]; 641 WT w = heap [k];
407 642
408 while (k && heap [k >> 1]->at > w->at) 643 while (k)
409 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
410 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
411 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
412 k >>= 1; 652 k = p;
413 } 653 }
414 654
415 heap [k] = w; 655 heap [k] = w;
416 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
417
418} 657}
419 658
420static void 659void inline_speed
421downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
422{ 661{
423 WT w = heap [k]; 662 WT w = heap [k];
424 663
425 while (k < (N >> 1)) 664 for (;;)
426 { 665 {
427 int j = k << 1; 666 int c = (k << 1) + 1;
428 667
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
430 ++j;
431
432 if (w->at <= heap [j]->at)
433 break; 669 break;
434 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
435 heap [k] = heap [j]; 677 heap [k] = heap [c];
436 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
437 k = j; 680 k = c;
438 } 681 }
439 682
440 heap [k] = w; 683 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
685}
686
687void inline_size
688adjustheap (WT *heap, int N, int k)
689{
690 upheap (heap, k);
691 downheap (heap, N, k);
442} 692}
443 693
444/*****************************************************************************/ 694/*****************************************************************************/
445 695
446typedef struct 696typedef struct
452static ANSIG *signals; 702static ANSIG *signals;
453static int signalmax; 703static int signalmax;
454 704
455static int sigpipe [2]; 705static int sigpipe [2];
456static sig_atomic_t volatile gotsig; 706static sig_atomic_t volatile gotsig;
457static struct ev_io sigev; 707static ev_io sigev;
458 708
459static void 709void inline_size
460signals_init (ANSIG *base, int count) 710signals_init (ANSIG *base, int count)
461{ 711{
462 while (count--) 712 while (count--)
463 { 713 {
464 base->head = 0; 714 base->head = 0;
469} 719}
470 720
471static void 721static void
472sighandler (int signum) 722sighandler (int signum)
473{ 723{
474#if WIN32 724#if _WIN32
475 signal (signum, sighandler); 725 signal (signum, sighandler);
476#endif 726#endif
477 727
478 signals [signum - 1].gotsig = 1; 728 signals [signum - 1].gotsig = 1;
479 729
484 write (sigpipe [1], &signum, 1); 734 write (sigpipe [1], &signum, 1);
485 errno = old_errno; 735 errno = old_errno;
486 } 736 }
487} 737}
488 738
739void noinline
740ev_feed_signal_event (EV_P_ int signum)
741{
742 WL w;
743
744#if EV_MULTIPLICITY
745 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
746#endif
747
748 --signum;
749
750 if (signum < 0 || signum >= signalmax)
751 return;
752
753 signals [signum].gotsig = 0;
754
755 for (w = signals [signum].head; w; w = w->next)
756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
757}
758
489static void 759static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 760sigcb (EV_P_ ev_io *iow, int revents)
491{ 761{
492 WL w;
493 int signum; 762 int signum;
494 763
495 read (sigpipe [0], &revents, 1); 764 read (sigpipe [0], &revents, 1);
496 gotsig = 0; 765 gotsig = 0;
497 766
498 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
500 { 769 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506} 770}
507 771
508static void 772void inline_speed
773fd_intern (int fd)
774{
775#ifdef _WIN32
776 int arg = 1;
777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
778#else
779 fcntl (fd, F_SETFD, FD_CLOEXEC);
780 fcntl (fd, F_SETFL, O_NONBLOCK);
781#endif
782}
783
784static void noinline
509siginit (EV_P) 785siginit (EV_P)
510{ 786{
511#ifndef WIN32 787 fd_intern (sigpipe [0]);
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 788 fd_intern (sigpipe [1]);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519 789
520 ev_io_set (&sigev, sigpipe [0], EV_READ); 790 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev); 791 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 793}
524 794
525/*****************************************************************************/ 795/*****************************************************************************/
526 796
797static ev_child *childs [EV_PID_HASHSIZE];
798
527#ifndef WIN32 799#ifndef _WIN32
528 800
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 801static ev_signal childev;
802
803void inline_speed
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
805{
806 ev_child *w;
807
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
809 if (w->pid == pid || !w->pid)
810 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
812 w->rpid = pid;
813 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 }
816}
531 817
532#ifndef WCONTINUED 818#ifndef WCONTINUED
533# define WCONTINUED 0 819# define WCONTINUED 0
534#endif 820#endif
535 821
536static void 822static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538{
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 823childcb (EV_P_ ev_signal *sw, int revents)
553{ 824{
554 int pid, status; 825 int pid, status;
555 826
827 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 828 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 829 if (!WCONTINUED
830 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return;
833
558 /* make sure we are called again until all childs have been reaped */ 834 /* make sure we are called again until all childs have been reaped */
835 /* we need to do it this way so that the callback gets called before we continue */
559 event (EV_A_ (W)sw, EV_SIGNAL); 836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 837
561 child_reap (EV_A_ sw, pid, pid, status); 838 child_reap (EV_A_ sw, pid, pid, status);
839 if (EV_PID_HASHSIZE > 1)
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
563 }
564} 841}
565 842
566#endif 843#endif
567 844
568/*****************************************************************************/ 845/*****************************************************************************/
569 846
847#if EV_USE_PORT
848# include "ev_port.c"
849#endif
570#if EV_USE_KQUEUE 850#if EV_USE_KQUEUE
571# include "ev_kqueue.c" 851# include "ev_kqueue.c"
572#endif 852#endif
573#if EV_USE_EPOLL 853#if EV_USE_EPOLL
574# include "ev_epoll.c" 854# include "ev_epoll.c"
591{ 871{
592 return EV_VERSION_MINOR; 872 return EV_VERSION_MINOR;
593} 873}
594 874
595/* return true if we are running with elevated privileges and should ignore env variables */ 875/* return true if we are running with elevated privileges and should ignore env variables */
596static int 876int inline_size
597enable_secure (void) 877enable_secure (void)
598{ 878{
599#ifdef WIN32 879#ifdef _WIN32
600 return 0; 880 return 0;
601#else 881#else
602 return getuid () != geteuid () 882 return getuid () != geteuid ()
603 || getgid () != getegid (); 883 || getgid () != getegid ();
604#endif 884#endif
605} 885}
606 886
607int 887unsigned int
608ev_method (EV_P) 888ev_supported_backends (void)
609{ 889{
610 return method; 890 unsigned int flags = 0;
611}
612 891
613static void 892 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
614loop_init (EV_P_ int methods) 893 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
894 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
895 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
896 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
897
898 return flags;
899}
900
901unsigned int
902ev_recommended_backends (void)
615{ 903{
616 if (!method) 904 unsigned int flags = ev_supported_backends ();
905
906#ifndef __NetBSD__
907 /* kqueue is borked on everything but netbsd apparently */
908 /* it usually doesn't work correctly on anything but sockets and pipes */
909 flags &= ~EVBACKEND_KQUEUE;
910#endif
911#ifdef __APPLE__
912 // flags &= ~EVBACKEND_KQUEUE; for documentation
913 flags &= ~EVBACKEND_POLL;
914#endif
915
916 return flags;
917}
918
919unsigned int
920ev_embeddable_backends (void)
921{
922 return EVBACKEND_EPOLL
923 | EVBACKEND_KQUEUE
924 | EVBACKEND_PORT;
925}
926
927unsigned int
928ev_backend (EV_P)
929{
930 return backend;
931}
932
933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
939static void noinline
940loop_init (EV_P_ unsigned int flags)
941{
942 if (!backend)
617 { 943 {
618#if EV_USE_MONOTONIC 944#if EV_USE_MONOTONIC
619 { 945 {
620 struct timespec ts; 946 struct timespec ts;
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 947 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 948 have_monotonic = 1;
623 } 949 }
624#endif 950#endif
625 951
626 rt_now = ev_time (); 952 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 953 mn_now = get_clock ();
628 now_floor = mn_now; 954 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
630 956
631 if (methods == EVMETHOD_AUTO) 957 /* pid check not overridable via env */
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
963 if (!(flags & EVFLAG_NOENV)
964 && !enable_secure ()
965 && getenv ("LIBEV_FLAGS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
634 else
635 methods = EVMETHOD_ANY;
636 967
637 method = 0; 968 if (!(flags & 0x0000ffffUL))
969 flags |= ev_recommended_backends ();
970
971 backend = 0;
972 backend_fd = -1;
638#if EV_USE_WIN32 973#if EV_USE_INOTIFY
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 974 fs_fd = -2;
975#endif
976
977#if EV_USE_PORT
978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
640#endif 979#endif
641#if EV_USE_KQUEUE 980#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 981 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
643#endif 982#endif
644#if EV_USE_EPOLL 983#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 984 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
646#endif 985#endif
647#if EV_USE_POLL 986#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 987 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
649#endif 988#endif
650#if EV_USE_SELECT 989#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 990 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
652#endif 991#endif
653 }
654}
655 992
656void 993 ev_init (&sigev, sigcb);
994 ev_set_priority (&sigev, EV_MAXPRI);
995 }
996}
997
998static void noinline
657loop_destroy (EV_P) 999loop_destroy (EV_P)
658{ 1000{
659 int i; 1001 int i;
660 1002
661#if EV_USE_WIN32 1003#if EV_USE_INOTIFY
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1004 if (fs_fd >= 0)
1005 close (fs_fd);
1006#endif
1007
1008 if (backend_fd >= 0)
1009 close (backend_fd);
1010
1011#if EV_USE_PORT
1012 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
663#endif 1013#endif
664#if EV_USE_KQUEUE 1014#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1015 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
666#endif 1016#endif
667#if EV_USE_EPOLL 1017#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1018 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
669#endif 1019#endif
670#if EV_USE_POLL 1020#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1021 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
672#endif 1022#endif
673#if EV_USE_SELECT 1023#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
675#endif 1025#endif
676 1026
677 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
678 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
679 1034
1035 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 1036 array_free (fdchange, EMPTY);
681 array_free (timer, ); 1037 array_free (timer, EMPTY);
1038#if EV_PERIODIC_ENABLE
682 array_free (periodic, ); 1039 array_free (periodic, EMPTY);
683 array_free (idle, ); 1040#endif
684 array_free (prepare, ); 1041 array_free (prepare, EMPTY);
685 array_free (check, ); 1042 array_free (check, EMPTY);
686 1043
687 method = 0; 1044 backend = 0;
688 /*TODO*/
689} 1045}
690 1046
691void 1047void inline_size infy_fork (EV_P);
1048
1049void inline_size
692loop_fork (EV_P) 1050loop_fork (EV_P)
693{ 1051{
694 /*TODO*/ 1052#if EV_USE_PORT
1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1054#endif
1055#if EV_USE_KQUEUE
1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1057#endif
695#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
697#endif 1060#endif
698#if EV_USE_KQUEUE 1061#if EV_USE_INOTIFY
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1062 infy_fork (EV_A);
700#endif 1063#endif
1064
1065 if (ev_is_active (&sigev))
1066 {
1067 /* default loop */
1068
1069 ev_ref (EV_A);
1070 ev_io_stop (EV_A_ &sigev);
1071 close (sigpipe [0]);
1072 close (sigpipe [1]);
1073
1074 while (pipe (sigpipe))
1075 syserr ("(libev) error creating pipe");
1076
1077 siginit (EV_A);
1078 }
1079
1080 postfork = 0;
701} 1081}
702 1082
703#if EV_MULTIPLICITY 1083#if EV_MULTIPLICITY
704struct ev_loop * 1084struct ev_loop *
705ev_loop_new (int methods) 1085ev_loop_new (unsigned int flags)
706{ 1086{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1087 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
708 1088
1089 memset (loop, 0, sizeof (struct ev_loop));
1090
709 loop_init (EV_A_ methods); 1091 loop_init (EV_A_ flags);
710 1092
711 if (ev_method (EV_A)) 1093 if (ev_backend (EV_A))
712 return loop; 1094 return loop;
713 1095
714 return 0; 1096 return 0;
715} 1097}
716 1098
717void 1099void
718ev_loop_destroy (EV_P) 1100ev_loop_destroy (EV_P)
719{ 1101{
720 loop_destroy (EV_A); 1102 loop_destroy (EV_A);
721 free (loop); 1103 ev_free (loop);
722} 1104}
723 1105
724void 1106void
725ev_loop_fork (EV_P) 1107ev_loop_fork (EV_P)
726{ 1108{
727 loop_fork (EV_A); 1109 postfork = 1;
728} 1110}
729 1111
730#endif 1112#endif
731 1113
732#if EV_MULTIPLICITY 1114#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 1115struct ev_loop *
1116ev_default_loop_init (unsigned int flags)
737#else 1117#else
738static int default_loop;
739
740int 1118int
1119ev_default_loop (unsigned int flags)
741#endif 1120#endif
742ev_default_loop (int methods)
743{ 1121{
744 if (sigpipe [0] == sigpipe [1]) 1122 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe)) 1123 if (pipe (sigpipe))
746 return 0; 1124 return 0;
747 1125
748 if (!default_loop) 1126 if (!ev_default_loop_ptr)
749 { 1127 {
750#if EV_MULTIPLICITY 1128#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct; 1129 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
752#else 1130#else
753 default_loop = 1; 1131 ev_default_loop_ptr = 1;
754#endif 1132#endif
755 1133
756 loop_init (EV_A_ methods); 1134 loop_init (EV_A_ flags);
757 1135
758 if (ev_method (EV_A)) 1136 if (ev_backend (EV_A))
759 { 1137 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 1138 siginit (EV_A);
763 1139
764#ifndef WIN32 1140#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 1141 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 1142 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 1143 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1144 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 1145#endif
770 } 1146 }
771 else 1147 else
772 default_loop = 0; 1148 ev_default_loop_ptr = 0;
773 } 1149 }
774 1150
775 return default_loop; 1151 return ev_default_loop_ptr;
776} 1152}
777 1153
778void 1154void
779ev_default_destroy (void) 1155ev_default_destroy (void)
780{ 1156{
781#if EV_MULTIPLICITY 1157#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 1158 struct ev_loop *loop = ev_default_loop_ptr;
783#endif 1159#endif
784 1160
1161#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 1162 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 1163 ev_signal_stop (EV_A_ &childev);
1164#endif
787 1165
788 ev_ref (EV_A); /* signal watcher */ 1166 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 1167 ev_io_stop (EV_A_ &sigev);
790 1168
791 close (sigpipe [0]); sigpipe [0] = 0; 1169 close (sigpipe [0]); sigpipe [0] = 0;
796 1174
797void 1175void
798ev_default_fork (void) 1176ev_default_fork (void)
799{ 1177{
800#if EV_MULTIPLICITY 1178#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 1179 struct ev_loop *loop = ev_default_loop_ptr;
802#endif 1180#endif
803 1181
804 loop_fork (EV_A); 1182 if (backend)
805 1183 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 1184}
814 1185
815/*****************************************************************************/ 1186/*****************************************************************************/
816 1187
817static void 1188void
1189ev_invoke (EV_P_ void *w, int revents)
1190{
1191 EV_CB_INVOKE ((W)w, revents);
1192}
1193
1194void inline_speed
818call_pending (EV_P) 1195call_pending (EV_P)
819{ 1196{
820 int pri; 1197 int pri;
821 1198
822 for (pri = NUMPRI; pri--; ) 1199 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri]) 1200 while (pendingcnt [pri])
824 { 1201 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 1203
827 if (p->w) 1204 if (expect_true (p->w))
828 { 1205 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1207
829 p->w->pending = 0; 1208 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 1209 EV_CB_INVOKE (p->w, p->events);
831 } 1210 }
832 } 1211 }
833} 1212}
834 1213
835static void 1214void inline_size
836timers_reify (EV_P) 1215timers_reify (EV_P)
837{ 1216{
838 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
839 { 1218 {
840 struct ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
841 1220
842 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
843 1222
844 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
845 if (w->repeat) 1224 if (w->repeat)
846 { 1225 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1227
848 ((WT)w)->at = mn_now + w->repeat; 1228 ((WT)w)->at += w->repeat;
1229 if (((WT)w)->at < mn_now)
1230 ((WT)w)->at = mn_now;
1231
849 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
850 } 1233 }
851 else 1234 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1236
854 event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1238 }
856} 1239}
857 1240
858static void 1241#if EV_PERIODIC_ENABLE
1242void inline_size
859periodics_reify (EV_P) 1243periodics_reify (EV_P)
860{ 1244{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1246 {
863 struct ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
864 1248
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
866 1250
867 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
868 if (w->interval) 1252 if (w->reschedule_cb)
869 { 1253 {
1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1256 downheap (periodics, periodiccnt, 0);
1257 }
1258 else if (w->interval)
1259 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
873 } 1264 }
874 else 1265 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1267
877 event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1269 }
879} 1270}
880 1271
881static void 1272static void noinline
882periodics_reschedule (EV_P) 1273periodics_reschedule (EV_P)
883{ 1274{
884 int i; 1275 int i;
885 1276
886 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
888 { 1279 {
889 struct ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
890 1281
1282 if (w->reschedule_cb)
1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1284 else if (w->interval)
1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1286 }
1287
1288 /* now rebuild the heap */
1289 for (i = periodiccnt >> 1; i--; )
1290 downheap (periodics, periodiccnt, i);
1291}
1292#endif
1293
1294#if EV_IDLE_ENABLE
1295void inline_size
1296idle_reify (EV_P)
1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
892 { 1303 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1304 if (pendingcnt [pri])
1305 break;
894 1306
895 if (fabs (diff) >= 1e-4) 1307 if (idlecnt [pri])
896 { 1308 {
897 ev_periodic_stop (EV_A_ w); 1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
898 ev_periodic_start (EV_A_ w); 1310 break;
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 } 1311 }
902 } 1312 }
903 } 1313 }
904} 1314}
1315#endif
905 1316
906inline int 1317void inline_speed
907time_update_monotonic (EV_P) 1318time_update (EV_P_ ev_tstamp max_block)
908{
909 mn_now = get_clock ();
910
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 }
916 else
917 {
918 now_floor = mn_now;
919 rt_now = ev_time ();
920 return 1;
921 }
922}
923
924static void
925time_update (EV_P)
926{ 1319{
927 int i; 1320 int i;
928 1321
929#if EV_USE_MONOTONIC 1322#if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic)) 1323 if (expect_true (have_monotonic))
931 { 1324 {
932 if (time_update_monotonic (EV_A)) 1325 ev_tstamp odiff = rtmn_diff;
1326
1327 mn_now = get_clock ();
1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
933 { 1332 {
934 ev_tstamp odiff = rtmn_diff; 1333 ev_rt_now = rtmn_diff + mn_now;
1334 return;
1335 }
935 1336
1337 now_floor = mn_now;
1338 ev_rt_now = ev_time ();
1339
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1340 /* loop a few times, before making important decisions.
1341 * on the choice of "4": one iteration isn't enough,
1342 * in case we get preempted during the calls to
1343 * ev_time and get_clock. a second call is almost guaranteed
1344 * to succeed in that case, though. and looping a few more times
1345 * doesn't hurt either as we only do this on time-jumps or
1346 * in the unlikely event of having been preempted here.
1347 */
1348 for (i = 4; --i; )
937 { 1349 {
938 rtmn_diff = rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
939 1351
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1353 return; /* all is well */
942 1354
943 rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1356 mn_now = get_clock ();
945 now_floor = mn_now; 1357 now_floor = mn_now;
946 } 1358 }
947 1359
1360# if EV_PERIODIC_ENABLE
1361 periodics_reschedule (EV_A);
1362# endif
1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1365 }
1366 else
1367#endif
1368 {
1369 ev_rt_now = ev_time ();
1370
1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 {
1373#if EV_PERIODIC_ENABLE
948 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1375#endif
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i)
1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
951 } 1379 }
952 }
953 else
954#endif
955 {
956 rt_now = ev_time ();
957 1380
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
966
967 mn_now = rt_now; 1381 mn_now = ev_rt_now;
968 } 1382 }
969} 1383}
970 1384
971void 1385void
972ev_ref (EV_P) 1386ev_ref (EV_P)
983static int loop_done; 1397static int loop_done;
984 1398
985void 1399void
986ev_loop (EV_P_ int flags) 1400ev_loop (EV_P_ int flags)
987{ 1401{
988 double block;
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
990 1407
991 do 1408 do
992 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
993 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
994 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
995 { 1431 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1433 call_pending (EV_A);
998 } 1434 }
999 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1439 /* we might have forked, so reify kernel state if necessary */
1440 if (expect_false (postfork))
1441 loop_fork (EV_A);
1442
1000 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1444 fd_reify (EV_A);
1002 1445
1003 /* calculate blocking time */ 1446 /* calculate blocking time */
1447 {
1448 ev_tstamp block;
1004 1449
1005 /* we only need this for !monotonic clockor timers, but as we basically 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1006 always have timers, we just calculate it always */ 1451 block = 0.; /* do not block at all */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else 1452 else
1011#endif
1012 { 1453 {
1013 rt_now = ev_time (); 1454 /* update time to cancel out callback processing overhead */
1014 mn_now = rt_now; 1455 time_update (EV_A_ 1e100);
1015 }
1016 1456
1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.;
1019 else
1020 {
1021 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1022 1458
1023 if (timercnt) 1459 if (timercnt)
1024 { 1460 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1026 if (block > to) block = to; 1462 if (block > to) block = to;
1027 } 1463 }
1028 1464
1465#if EV_PERIODIC_ENABLE
1029 if (periodiccnt) 1466 if (periodiccnt)
1030 { 1467 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1032 if (block > to) block = to; 1469 if (block > to) block = to;
1033 } 1470 }
1471#endif
1034 1472
1035 if (block < 0.) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1036 } 1474 }
1037 1475
1476 ++loop_count;
1038 method_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1039 1478
1040 /* update rt_now, do magic */ 1479 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1480 time_update (EV_A_ block);
1481 }
1042 1482
1043 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1485#if EV_PERIODIC_ENABLE
1045 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1487#endif
1046 1488
1489#if EV_IDLE_ENABLE
1047 /* queue idle watchers unless io or timers are pending */ 1490 /* queue idle watchers unless other events are pending */
1048 if (!pendingcnt) 1491 idle_reify (EV_A);
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1050 1493
1051 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1495 if (expect_false (checkcnt))
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054 1497
1055 call_pending (EV_A); 1498 call_pending (EV_A);
1499
1056 } 1500 }
1057 while (activecnt && !loop_done); 1501 while (expect_true (activecnt && !loop_done));
1058 1502
1059 if (loop_done != 2) 1503 if (loop_done == EVUNLOOP_ONE)
1060 loop_done = 0; 1504 loop_done = EVUNLOOP_CANCEL;
1061} 1505}
1062 1506
1063void 1507void
1064ev_unloop (EV_P_ int how) 1508ev_unloop (EV_P_ int how)
1065{ 1509{
1066 loop_done = how; 1510 loop_done = how;
1067} 1511}
1068 1512
1069/*****************************************************************************/ 1513/*****************************************************************************/
1070 1514
1071inline void 1515void inline_size
1072wlist_add (WL *head, WL elem) 1516wlist_add (WL *head, WL elem)
1073{ 1517{
1074 elem->next = *head; 1518 elem->next = *head;
1075 *head = elem; 1519 *head = elem;
1076} 1520}
1077 1521
1078inline void 1522void inline_size
1079wlist_del (WL *head, WL elem) 1523wlist_del (WL *head, WL elem)
1080{ 1524{
1081 while (*head) 1525 while (*head)
1082 { 1526 {
1083 if (*head == elem) 1527 if (*head == elem)
1088 1532
1089 head = &(*head)->next; 1533 head = &(*head)->next;
1090 } 1534 }
1091} 1535}
1092 1536
1093inline void 1537void inline_speed
1094ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1095{ 1539{
1096 if (w->pending) 1540 if (w->pending)
1097 { 1541 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1099 w->pending = 0; 1543 w->pending = 0;
1100 } 1544 }
1101} 1545}
1102 1546
1103inline void 1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1573void inline_speed
1104ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1105{ 1575{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
1109 w->active = active; 1577 w->active = active;
1110 ev_ref (EV_A); 1578 ev_ref (EV_A);
1111} 1579}
1112 1580
1113inline void 1581void inline_size
1114ev_stop (EV_P_ W w) 1582ev_stop (EV_P_ W w)
1115{ 1583{
1116 ev_unref (EV_A); 1584 ev_unref (EV_A);
1117 w->active = 0; 1585 w->active = 0;
1118} 1586}
1119 1587
1120/*****************************************************************************/ 1588/*****************************************************************************/
1121 1589
1122void 1590void noinline
1123ev_io_start (EV_P_ struct ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1124{ 1592{
1125 int fd = w->fd; 1593 int fd = w->fd;
1126 1594
1127 if (ev_is_active (w)) 1595 if (expect_false (ev_is_active (w)))
1128 return; 1596 return;
1129 1597
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1598 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1599
1132 ev_start (EV_A_ (W)w, 1); 1600 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1603
1136 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1137} 1605}
1138 1606
1139void 1607void noinline
1140ev_io_stop (EV_P_ struct ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1141{ 1609{
1142 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1611 if (expect_false (!ev_is_active (w)))
1144 return; 1612 return;
1613
1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1145 1615
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1616 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1148 1618
1149 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1150} 1620}
1151 1621
1152void 1622void noinline
1153ev_timer_start (EV_P_ struct ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1154{ 1624{
1155 if (ev_is_active (w)) 1625 if (expect_false (ev_is_active (w)))
1156 return; 1626 return;
1157 1627
1158 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1159 1629
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1631
1162 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1164 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1165 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1166 1636
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1168} 1638}
1169 1639
1170void 1640void noinline
1171ev_timer_stop (EV_P_ struct ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1172{ 1642{
1173 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w)) 1644 if (expect_false (!ev_is_active (w)))
1175 return; 1645 return;
1176 1646
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1178 1648
1179 if (((W)w)->active < timercnt--) 1649 {
1650 int active = ((W)w)->active;
1651
1652 if (expect_true (--active < --timercnt))
1180 { 1653 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1655 adjustheap (timers, timercnt, active);
1183 } 1656 }
1657 }
1184 1658
1185 ((WT)w)->at = w->repeat; 1659 ((WT)w)->at -= mn_now;
1186 1660
1187 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1188} 1662}
1189 1663
1190void 1664void noinline
1191ev_timer_again (EV_P_ struct ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1192{ 1666{
1193 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1194 { 1668 {
1195 if (w->repeat) 1669 if (w->repeat)
1196 { 1670 {
1197 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1199 } 1673 }
1200 else 1674 else
1201 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1202 } 1676 }
1203 else if (w->repeat) 1677 else if (w->repeat)
1678 {
1679 w->at = w->repeat;
1204 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1681 }
1205} 1682}
1206 1683
1207void 1684#if EV_PERIODIC_ENABLE
1685void noinline
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1209{ 1687{
1210 if (ev_is_active (w)) 1688 if (expect_false (ev_is_active (w)))
1211 return; 1689 return;
1212 1690
1691 if (w->reschedule_cb)
1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1218 1701
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1223 1706
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1225} 1708}
1226 1709
1227void 1710void noinline
1228ev_periodic_stop (EV_P_ struct ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1229{ 1712{
1230 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w)) 1714 if (expect_false (!ev_is_active (w)))
1232 return; 1715 return;
1233 1716
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1235 1718
1236 if (((W)w)->active < periodiccnt--) 1719 {
1720 int active = ((W)w)->active;
1721
1722 if (expect_true (--active < --periodiccnt))
1237 { 1723 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1725 adjustheap (periodics, periodiccnt, active);
1240 } 1726 }
1727 }
1241 1728
1242 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1243} 1730}
1244 1731
1245void 1732void noinline
1246ev_idle_start (EV_P_ struct ev_idle *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1247{ 1734{
1248 if (ev_is_active (w)) 1735 /* TODO: use adjustheap and recalculation */
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 1736 ev_periodic_stop (EV_A_ w);
1737 ev_periodic_start (EV_A_ w);
1265} 1738}
1266 1739#endif
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310 1740
1311#ifndef SA_RESTART 1741#ifndef SA_RESTART
1312# define SA_RESTART 0 1742# define SA_RESTART 0
1313#endif 1743#endif
1314 1744
1315void 1745void noinline
1316ev_signal_start (EV_P_ struct ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1317{ 1747{
1318#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1320#endif 1750#endif
1321 if (ev_is_active (w)) 1751 if (expect_false (ev_is_active (w)))
1322 return; 1752 return;
1323 1753
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1326 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1772
1330 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1331 { 1774 {
1332#if WIN32 1775#if _WIN32
1333 signal (w->signum, sighandler); 1776 signal (w->signum, sighandler);
1334#else 1777#else
1335 struct sigaction sa; 1778 struct sigaction sa;
1336 sa.sa_handler = sighandler; 1779 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask); 1780 sigfillset (&sa.sa_mask);
1339 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1340#endif 1783#endif
1341 } 1784 }
1342} 1785}
1343 1786
1344void 1787void noinline
1345ev_signal_stop (EV_P_ struct ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1346{ 1789{
1347 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1791 if (expect_false (!ev_is_active (w)))
1349 return; 1792 return;
1350 1793
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1352 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1353 1796
1354 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1355 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1356} 1799}
1357 1800
1358void 1801void
1359ev_child_start (EV_P_ struct ev_child *w) 1802ev_child_start (EV_P_ ev_child *w)
1360{ 1803{
1361#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1363#endif 1806#endif
1364 if (ev_is_active (w)) 1807 if (expect_false (ev_is_active (w)))
1365 return; 1808 return;
1366 1809
1367 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1369} 1812}
1370 1813
1371void 1814void
1372ev_child_stop (EV_P_ struct ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1373{ 1816{
1374 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1818 if (expect_false (!ev_is_active (w)))
1376 return; 1819 return;
1377 1820
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1380} 1823}
1381 1824
1825#if EV_STAT_ENABLE
1826
1827# ifdef _WIN32
1828# undef lstat
1829# define lstat(a,b) _stati64 (a,b)
1830# endif
1831
1832#define DEF_STAT_INTERVAL 5.0074891
1833#define MIN_STAT_INTERVAL 0.1074891
1834
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836
1837#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192
1839
1840static void noinline
1841infy_add (EV_P_ ev_stat *w)
1842{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844
1845 if (w->wd < 0)
1846 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848
1849 /* monitor some parent directory for speedup hints */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 {
1852 char path [4096];
1853 strcpy (path, w->path);
1854
1855 do
1856 {
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859
1860 char *pend = strrchr (path, '/');
1861
1862 if (!pend)
1863 break; /* whoops, no '/', complain to your admin */
1864
1865 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 }
1870 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873
1874 if (w->wd >= 0)
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1876}
1877
1878static void noinline
1879infy_del (EV_P_ ev_stat *w)
1880{
1881 int slot;
1882 int wd = w->wd;
1883
1884 if (wd < 0)
1885 return;
1886
1887 w->wd = -2;
1888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1889 wlist_del (&fs_hash [slot].head, (WL)w);
1890
1891 /* remove this watcher, if others are watching it, they will rearm */
1892 inotify_rm_watch (fs_fd, wd);
1893}
1894
1895static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{
1898 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev);
1902 else
1903 {
1904 WL w_;
1905
1906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1907 {
1908 ev_stat *w = (ev_stat *)w_;
1909 w_ = w_->next; /* lets us remove this watcher and all before it */
1910
1911 if (w->wd == wd || wd == -1)
1912 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 {
1915 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */
1917 }
1918
1919 stat_timer_cb (EV_A_ &w->timer, 0);
1920 }
1921 }
1922 }
1923}
1924
1925static void
1926infy_cb (EV_P_ ev_io *w, int revents)
1927{
1928 char buf [EV_INOTIFY_BUFSIZE];
1929 struct inotify_event *ev = (struct inotify_event *)buf;
1930 int ofs;
1931 int len = read (fs_fd, buf, sizeof (buf));
1932
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935}
1936
1937void inline_size
1938infy_init (EV_P)
1939{
1940 if (fs_fd != -2)
1941 return;
1942
1943 fs_fd = inotify_init ();
1944
1945 if (fs_fd >= 0)
1946 {
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w);
1950 }
1951}
1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1985#endif
1986
1987void
1988ev_stat_stat (EV_P_ ev_stat *w)
1989{
1990 if (lstat (w->path, &w->attr) < 0)
1991 w->attr.st_nlink = 0;
1992 else if (!w->attr.st_nlink)
1993 w->attr.st_nlink = 1;
1994}
1995
1996static void noinline
1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1998{
1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2000
2001 /* we copy this here each the time so that */
2002 /* prev has the old value when the callback gets invoked */
2003 w->prev = w->attr;
2004 ev_stat_stat (EV_A_ w);
2005
2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
2019 ) {
2020 #if EV_USE_INOTIFY
2021 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */
2024 #endif
2025
2026 ev_feed_event (EV_A_ w, EV_STAT);
2027 }
2028}
2029
2030void
2031ev_stat_start (EV_P_ ev_stat *w)
2032{
2033 if (expect_false (ev_is_active (w)))
2034 return;
2035
2036 /* since we use memcmp, we need to clear any padding data etc. */
2037 memset (&w->prev, 0, sizeof (ev_statdata));
2038 memset (&w->attr, 0, sizeof (ev_statdata));
2039
2040 ev_stat_stat (EV_A_ w);
2041
2042 if (w->interval < MIN_STAT_INTERVAL)
2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2044
2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2046 ev_set_priority (&w->timer, ev_priority (w));
2047
2048#if EV_USE_INOTIFY
2049 infy_init (EV_A);
2050
2051 if (fs_fd >= 0)
2052 infy_add (EV_A_ w);
2053 else
2054#endif
2055 ev_timer_start (EV_A_ &w->timer);
2056
2057 ev_start (EV_A_ (W)w, 1);
2058}
2059
2060void
2061ev_stat_stop (EV_P_ ev_stat *w)
2062{
2063 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w)))
2065 return;
2066
2067#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w);
2069#endif
2070 ev_timer_stop (EV_A_ &w->timer);
2071
2072 ev_stop (EV_A_ (W)w);
2073}
2074#endif
2075
2076#if EV_IDLE_ENABLE
2077void
2078ev_idle_start (EV_P_ ev_idle *w)
2079{
2080 if (expect_false (ev_is_active (w)))
2081 return;
2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
2089 ev_start (EV_A_ (W)w, active);
2090
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
2094}
2095
2096void
2097ev_idle_stop (EV_P_ ev_idle *w)
2098{
2099 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w)))
2101 return;
2102
2103 {
2104 int active = ((W)w)->active;
2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
2111 }
2112}
2113#endif
2114
2115void
2116ev_prepare_start (EV_P_ ev_prepare *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w;
2124}
2125
2126void
2127ev_prepare_stop (EV_P_ ev_prepare *w)
2128{
2129 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w)))
2131 return;
2132
2133 {
2134 int active = ((W)w)->active;
2135 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active;
2137 }
2138
2139 ev_stop (EV_A_ (W)w);
2140}
2141
2142void
2143ev_check_start (EV_P_ ev_check *w)
2144{
2145 if (expect_false (ev_is_active (w)))
2146 return;
2147
2148 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w;
2151}
2152
2153void
2154ev_check_stop (EV_P_ ev_check *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160 {
2161 int active = ((W)w)->active;
2162 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active;
2164 }
2165
2166 ev_stop (EV_A_ (W)w);
2167}
2168
2169#if EV_EMBED_ENABLE
2170void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w)
2172{
2173 ev_loop (w->loop, EVLOOP_NONBLOCK);
2174}
2175
2176static void
2177embed_cb (EV_P_ ev_io *io, int revents)
2178{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180
2181 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else
2184 ev_embed_sweep (loop, w);
2185}
2186
2187void
2188ev_embed_start (EV_P_ ev_embed *w)
2189{
2190 if (expect_false (ev_is_active (w)))
2191 return;
2192
2193 {
2194 struct ev_loop *loop = w->loop;
2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2197 }
2198
2199 ev_set_priority (&w->io, ev_priority (w));
2200 ev_io_start (EV_A_ &w->io);
2201
2202 ev_start (EV_A_ (W)w, 1);
2203}
2204
2205void
2206ev_embed_stop (EV_P_ ev_embed *w)
2207{
2208 clear_pending (EV_A_ (W)w);
2209 if (expect_false (!ev_is_active (w)))
2210 return;
2211
2212 ev_io_stop (EV_A_ &w->io);
2213
2214 ev_stop (EV_A_ (W)w);
2215}
2216#endif
2217
2218#if EV_FORK_ENABLE
2219void
2220ev_fork_start (EV_P_ ev_fork *w)
2221{
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w;
2228}
2229
2230void
2231ev_fork_stop (EV_P_ ev_fork *w)
2232{
2233 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w)))
2235 return;
2236
2237 {
2238 int active = ((W)w)->active;
2239 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active;
2241 }
2242
2243 ev_stop (EV_A_ (W)w);
2244}
2245#endif
2246
1382/*****************************************************************************/ 2247/*****************************************************************************/
1383 2248
1384struct ev_once 2249struct ev_once
1385{ 2250{
1386 struct ev_io io; 2251 ev_io io;
1387 struct ev_timer to; 2252 ev_timer to;
1388 void (*cb)(int revents, void *arg); 2253 void (*cb)(int revents, void *arg);
1389 void *arg; 2254 void *arg;
1390}; 2255};
1391 2256
1392static void 2257static void
1395 void (*cb)(int revents, void *arg) = once->cb; 2260 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 2261 void *arg = once->arg;
1397 2262
1398 ev_io_stop (EV_A_ &once->io); 2263 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 2264 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 2265 ev_free (once);
1401 2266
1402 cb (revents, arg); 2267 cb (revents, arg);
1403} 2268}
1404 2269
1405static void 2270static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents) 2271once_cb_io (EV_P_ ev_io *w, int revents)
1407{ 2272{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2273 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1409} 2274}
1410 2275
1411static void 2276static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents) 2277once_cb_to (EV_P_ ev_timer *w, int revents)
1413{ 2278{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2279 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1415} 2280}
1416 2281
1417void 2282void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2283ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 2284{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 2285 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 2286
1422 if (!once) 2287 if (expect_false (!once))
2288 {
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2289 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 2290 return;
1425 { 2291 }
2292
1426 once->cb = cb; 2293 once->cb = cb;
1427 once->arg = arg; 2294 once->arg = arg;
1428 2295
1429 ev_watcher_init (&once->io, once_cb_io); 2296 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 2297 if (fd >= 0)
1431 { 2298 {
1432 ev_io_set (&once->io, fd, events); 2299 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 2300 ev_io_start (EV_A_ &once->io);
1434 } 2301 }
1435 2302
1436 ev_watcher_init (&once->to, once_cb_to); 2303 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 2304 if (timeout >= 0.)
1438 { 2305 {
1439 ev_timer_set (&once->to, timeout, 0.); 2306 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 2307 ev_timer_start (EV_A_ &once->to);
1441 }
1442 } 2308 }
1443} 2309}
1444 2310
2311#ifdef __cplusplus
2312}
2313#endif
2314

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines