ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.153 by root, Wed Nov 28 11:41:18 2007 UTC vs.
Revision 1.182 by root, Wed Dec 12 01:27:08 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
281 perror (msg); 292 perror (msg);
282 abort (); 293 abort ();
283 } 294 }
284} 295}
285 296
286static void *(*alloc)(void *ptr, size_t size) = realloc; 297static void *(*alloc)(void *ptr, long size);
287 298
288void 299void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 301{
291 alloc = cb; 302 alloc = cb;
292} 303}
293 304
294inline_speed void * 305inline_speed void *
295ev_realloc (void *ptr, size_t size) 306ev_realloc (void *ptr, long size)
296{ 307{
297 ptr = alloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 309
299 if (!ptr && size) 310 if (!ptr && size)
300 { 311 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 313 abort ();
303 } 314 }
304 315
305 return ptr; 316 return ptr;
306} 317}
324{ 335{
325 W w; 336 W w;
326 int events; 337 int events;
327} ANPENDING; 338} ANPENDING;
328 339
340#if EV_USE_INOTIFY
329typedef struct 341typedef struct
330{ 342{
331#if EV_USE_INOTIFY
332 WL head; 343 WL head;
333#endif
334} ANFS; 344} ANFS;
345#endif
335 346
336#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
337 348
338 struct ev_loop 349 struct ev_loop
339 { 350 {
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
589static void noinline 623static void noinline
590fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
591{ 625{
592 int fd; 626 int fd;
593 627
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 629 if (anfds [fd].events)
597 { 630 {
598 anfds [fd].events = 0; 631 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
605void inline_speed 638void inline_speed
606upheap (WT *heap, int k) 639upheap (WT *heap, int k)
607{ 640{
608 WT w = heap [k]; 641 WT w = heap [k];
609 642
610 while (k && heap [k >> 1]->at > w->at) 643 while (k)
611 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
612 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
614 k >>= 1; 652 k = p;
615 } 653 }
616 654
617 heap [k] = w; 655 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
619
620} 657}
621 658
622void inline_speed 659void inline_speed
623downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
624{ 661{
625 WT w = heap [k]; 662 WT w = heap [k];
626 663
627 while (k < (N >> 1)) 664 for (;;)
628 { 665 {
629 int j = k << 1; 666 int c = (k << 1) + 1;
630 667
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 669 break;
636 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
637 heap [k] = heap [j]; 677 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
639 k = j; 680 k = c;
640 } 681 }
641 682
642 heap [k] = w; 683 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
644} 685}
726 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
729} 770}
730 771
731void inline_size 772void inline_speed
732fd_intern (int fd) 773fd_intern (int fd)
733{ 774{
734#ifdef _WIN32 775#ifdef _WIN32
735 int arg = 1; 776 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
752} 793}
753 794
754/*****************************************************************************/ 795/*****************************************************************************/
755 796
756static ev_child *childs [EV_PID_HASHSIZE]; 797static WL childs [EV_PID_HASHSIZE];
757 798
758#ifndef _WIN32 799#ifndef _WIN32
759 800
760static ev_signal childev; 801static ev_signal childev;
761 802
765 ev_child *w; 806 ev_child *w;
766 807
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 809 if (w->pid == pid || !w->pid)
769 { 810 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 812 w->rpid = pid;
772 w->rstatus = status; 813 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 815 }
775} 816}
776 817
777#ifndef WCONTINUED 818#ifndef WCONTINUED
887ev_backend (EV_P) 928ev_backend (EV_P)
888{ 929{
889 return backend; 930 return backend;
890} 931}
891 932
933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
892static void noinline 939static void noinline
893loop_init (EV_P_ unsigned int flags) 940loop_init (EV_P_ unsigned int flags)
894{ 941{
895 if (!backend) 942 if (!backend)
896 { 943 {
905 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 953 mn_now = get_clock ();
907 now_floor = mn_now; 954 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
909 956
957 /* pid check not overridable via env */
958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
910 if (!(flags & EVFLAG_NOENV) 963 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 964 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 965 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
914 967
970#if EV_USE_SELECT 1023#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1025#endif
973 1026
974 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
975 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
976 1034
977 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1036 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1037 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1038#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1039 array_free (periodic, EMPTY);
982#endif 1040#endif
983 array_free (idle, EMPTY0);
984 array_free (prepare, EMPTY0); 1041 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1042 array_free (check, EMPTY);
986 1043
987 backend = 0; 1044 backend = 0;
988} 1045}
1046
1047void inline_size infy_fork (EV_P);
989 1048
990void inline_size 1049void inline_size
991loop_fork (EV_P) 1050loop_fork (EV_P)
992{ 1051{
993#if EV_USE_PORT 1052#if EV_USE_PORT
996#if EV_USE_KQUEUE 1055#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
998#endif 1057#endif
999#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
1000 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1060#endif
1061#if EV_USE_INOTIFY
1062 infy_fork (EV_A);
1001#endif 1063#endif
1002 1064
1003 if (ev_is_active (&sigev)) 1065 if (ev_is_active (&sigev))
1004 { 1066 {
1005 /* default loop */ 1067 /* default loop */
1121 postfork = 1; 1183 postfork = 1;
1122} 1184}
1123 1185
1124/*****************************************************************************/ 1186/*****************************************************************************/
1125 1187
1126int inline_size 1188void
1127any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
1128{ 1190{
1129 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
1130
1131 for (pri = NUMPRI; pri--; )
1132 if (pendingcnt [pri])
1133 return 1;
1134
1135 return 0;
1136} 1192}
1137 1193
1138void inline_speed 1194void inline_speed
1139call_pending (EV_P) 1195call_pending (EV_P)
1140{ 1196{
1158void inline_size 1214void inline_size
1159timers_reify (EV_P) 1215timers_reify (EV_P)
1160{ 1216{
1161 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1162 { 1218 {
1163 ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1164 1220
1165 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1166 1222
1167 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1168 if (w->repeat) 1224 if (w->repeat)
1171 1227
1172 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1173 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1174 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1175 1231
1176 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1177 } 1233 }
1178 else 1234 else
1179 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1180 1236
1181 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1186void inline_size 1242void inline_size
1187periodics_reify (EV_P) 1243periodics_reify (EV_P)
1188{ 1244{
1189 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1190 { 1246 {
1191 ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1192 1248
1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1194 1250
1195 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1196 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1197 { 1253 {
1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1199 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1200 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1201 } 1257 }
1202 else if (w->interval) 1258 else if (w->interval)
1203 { 1259 {
1204 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1205 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1206 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1207 } 1264 }
1208 else 1265 else
1209 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1267
1211 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1218 int i; 1275 int i;
1219 1276
1220 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1221 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1222 { 1279 {
1223 ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1224 1281
1225 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1227 else if (w->interval) 1284 else if (w->interval)
1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1229 } 1286 }
1230 1287
1231 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1232 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1233 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1234} 1291}
1235#endif 1292#endif
1236 1293
1294#if EV_IDLE_ENABLE
1237int inline_size 1295void inline_size
1238time_update_monotonic (EV_P) 1296idle_reify (EV_P)
1239{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1240 mn_now = get_clock (); 1327 mn_now = get_clock ();
1241 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1243 { 1332 {
1244 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1245 return 0; 1334 return;
1246 } 1335 }
1247 else 1336
1248 {
1249 now_floor = mn_now; 1337 now_floor = mn_now;
1250 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1251 return 1;
1252 }
1253}
1254 1339
1255void inline_size 1340 /* loop a few times, before making important decisions.
1256time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1257{ 1342 * in case we get preempted during the calls to
1258 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1259 1344 * to succeed in that case, though. and looping a few more times
1260#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1261 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1262 { 1347 */
1263 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1264 { 1349 {
1265 ev_tstamp odiff = rtmn_diff;
1266
1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1276 {
1277 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1278 1351
1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1280 return; /* all is well */ 1353 return; /* all is well */
1281 1354
1282 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1356 mn_now = get_clock ();
1284 now_floor = mn_now; 1357 now_floor = mn_now;
1285 } 1358 }
1286 1359
1287# if EV_PERIODIC_ENABLE 1360# if EV_PERIODIC_ENABLE
1288 periodics_reschedule (EV_A); 1361 periodics_reschedule (EV_A);
1289# endif 1362# endif
1290 /* no timer adjustment, as the monotonic clock doesn't jump */ 1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292 }
1293 } 1365 }
1294 else 1366 else
1295#endif 1367#endif
1296 { 1368 {
1297 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1298 1370
1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1300 { 1372 {
1301#if EV_PERIODIC_ENABLE 1373#if EV_PERIODIC_ENABLE
1302 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1303#endif 1375#endif
1304
1305 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1306 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1307 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1308 } 1379 }
1309 1380
1310 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1330{ 1401{
1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1332 ? EVUNLOOP_ONE 1403 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL; 1404 : EVUNLOOP_CANCEL;
1334 1405
1335 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1336 { 1409 {
1337 /* we might have forked, so reify kernel state if necessary */ 1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1338 #if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1339 if (expect_false (postfork)) 1421 if (expect_false (postfork))
1340 if (forkcnt) 1422 if (forkcnt)
1341 { 1423 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A); 1425 call_pending (EV_A);
1344 } 1426 }
1345 #endif 1427#endif
1346 1428
1347 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1348 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1349 { 1431 {
1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1351 call_pending (EV_A); 1433 call_pending (EV_A);
1352 } 1434 }
1353 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1354 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1355 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1356 loop_fork (EV_A); 1441 loop_fork (EV_A);
1357 1442
1358 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1359 fd_reify (EV_A); 1444 fd_reify (EV_A);
1360 1445
1361 /* calculate blocking time */ 1446 /* calculate blocking time */
1362 { 1447 {
1363 double block; 1448 ev_tstamp block;
1364 1449
1365 if (flags & EVLOOP_NONBLOCK || idlecnt) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1366 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1367 else 1452 else
1368 { 1453 {
1369 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1370#if EV_USE_MONOTONIC
1371 if (expect_true (have_monotonic))
1372 time_update_monotonic (EV_A); 1455 time_update (EV_A_ 1e100);
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377 mn_now = ev_rt_now;
1378 }
1379 1456
1380 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1381 1458
1382 if (timercnt) 1459 if (timercnt)
1383 { 1460 {
1394#endif 1471#endif
1395 1472
1396 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1397 } 1474 }
1398 1475
1476 ++loop_count;
1399 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1478
1479 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block);
1400 } 1481 }
1401
1402 /* update ev_rt_now, do magic */
1403 time_update (EV_A);
1404 1482
1405 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1406 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1407#if EV_PERIODIC_ENABLE 1485#if EV_PERIODIC_ENABLE
1408 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1409#endif 1487#endif
1410 1488
1489#if EV_IDLE_ENABLE
1411 /* queue idle watchers unless other events are pending */ 1490 /* queue idle watchers unless other events are pending */
1412 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1414 1493
1415 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1416 if (expect_false (checkcnt)) 1495 if (expect_false (checkcnt))
1417 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1418 1497
1419 call_pending (EV_A); 1498 call_pending (EV_A);
1420 1499
1421 if (expect_false (loop_done))
1422 break;
1423 } 1500 }
1501 while (expect_true (activecnt && !loop_done));
1424 1502
1425 if (loop_done == EVUNLOOP_ONE) 1503 if (loop_done == EVUNLOOP_ONE)
1426 loop_done = EVUNLOOP_CANCEL; 1504 loop_done = EVUNLOOP_CANCEL;
1427} 1505}
1428 1506
1455 head = &(*head)->next; 1533 head = &(*head)->next;
1456 } 1534 }
1457} 1535}
1458 1536
1459void inline_speed 1537void inline_speed
1460ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1461{ 1539{
1462 if (w->pending) 1540 if (w->pending)
1463 { 1541 {
1464 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1465 w->pending = 0; 1543 w->pending = 0;
1466 } 1544 }
1467} 1545}
1468 1546
1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1469void inline_speed 1573void inline_speed
1470ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1471{ 1575{
1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1474
1475 w->active = active; 1577 w->active = active;
1476 ev_ref (EV_A); 1578 ev_ref (EV_A);
1477} 1579}
1478 1580
1479void inline_size 1581void inline_size
1483 w->active = 0; 1585 w->active = 0;
1484} 1586}
1485 1587
1486/*****************************************************************************/ 1588/*****************************************************************************/
1487 1589
1488void 1590void noinline
1489ev_io_start (EV_P_ ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1490{ 1592{
1491 int fd = w->fd; 1593 int fd = w->fd;
1492 1594
1493 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1495 1597
1496 assert (("ev_io_start called with negative fd", fd >= 0)); 1598 assert (("ev_io_start called with negative fd", fd >= 0));
1497 1599
1498 ev_start (EV_A_ (W)w, 1); 1600 ev_start (EV_A_ (W)w, 1);
1499 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1500 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add (&anfds[fd].head, (WL)w);
1501 1603
1502 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1503} 1605}
1504 1606
1505void 1607void noinline
1506ev_io_stop (EV_P_ ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1507{ 1609{
1508 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1510 return; 1612 return;
1511 1613
1512 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1513 1615
1514 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1616 wlist_del (&anfds[w->fd].head, (WL)w);
1515 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1516 1618
1517 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1518} 1620}
1519 1621
1520void 1622void noinline
1521ev_timer_start (EV_P_ ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1522{ 1624{
1523 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1524 return; 1626 return;
1525 1627
1526 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1527 1629
1528 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1529 1631
1530 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1531 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1532 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1533 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1534 1636
1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1536} 1638}
1537 1639
1538void 1640void noinline
1539ev_timer_stop (EV_P_ ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1540{ 1642{
1541 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1543 return; 1645 return;
1544 1646
1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1546 1648
1547 { 1649 {
1548 int active = ((W)w)->active; 1650 int active = ((W)w)->active;
1549 1651
1550 if (expect_true (--active < --timercnt)) 1652 if (expect_true (--active < --timercnt))
1551 { 1653 {
1552 timers [active] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1553 adjustheap ((WT *)timers, timercnt, active); 1655 adjustheap (timers, timercnt, active);
1554 } 1656 }
1555 } 1657 }
1556 1658
1557 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1558 1660
1559 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1560} 1662}
1561 1663
1562void 1664void noinline
1563ev_timer_again (EV_P_ ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1564{ 1666{
1565 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1566 { 1668 {
1567 if (w->repeat) 1669 if (w->repeat)
1568 { 1670 {
1569 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1570 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1571 } 1673 }
1572 else 1674 else
1573 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1574 } 1676 }
1575 else if (w->repeat) 1677 else if (w->repeat)
1578 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1579 } 1681 }
1580} 1682}
1581 1683
1582#if EV_PERIODIC_ENABLE 1684#if EV_PERIODIC_ENABLE
1583void 1685void noinline
1584ev_periodic_start (EV_P_ ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1585{ 1687{
1586 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1587 return; 1689 return;
1588 1690
1590 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1591 else if (w->interval) 1693 else if (w->interval)
1592 { 1694 {
1593 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1594 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1596 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1597 1701
1598 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1600 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1601 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1602 1706
1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1604} 1708}
1605 1709
1606void 1710void noinline
1607ev_periodic_stop (EV_P_ ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1608{ 1712{
1609 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1611 return; 1715 return;
1612 1716
1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1614 1718
1615 { 1719 {
1616 int active = ((W)w)->active; 1720 int active = ((W)w)->active;
1617 1721
1618 if (expect_true (--active < --periodiccnt)) 1722 if (expect_true (--active < --periodiccnt))
1619 { 1723 {
1620 periodics [active] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1621 adjustheap ((WT *)periodics, periodiccnt, active); 1725 adjustheap (periodics, periodiccnt, active);
1622 } 1726 }
1623 } 1727 }
1624 1728
1625 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1626} 1730}
1627 1731
1628void 1732void noinline
1629ev_periodic_again (EV_P_ ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1630{ 1734{
1631 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1632 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1633 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1636 1740
1637#ifndef SA_RESTART 1741#ifndef SA_RESTART
1638# define SA_RESTART 0 1742# define SA_RESTART 0
1639#endif 1743#endif
1640 1744
1641void 1745void noinline
1642ev_signal_start (EV_P_ ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1643{ 1747{
1644#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1646#endif 1750#endif
1647 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1648 return; 1752 return;
1649 1753
1650 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1651 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1652 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1653 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1654 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add (&signals [w->signum - 1].head, (WL)w);
1655 1772
1656 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1657 { 1774 {
1658#if _WIN32 1775#if _WIN32
1659 signal (w->signum, sighandler); 1776 signal (w->signum, sighandler);
1665 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1666#endif 1783#endif
1667 } 1784 }
1668} 1785}
1669 1786
1670void 1787void noinline
1671ev_signal_stop (EV_P_ ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1672{ 1789{
1673 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1674 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1675 return; 1792 return;
1676 1793
1677 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del (&signals [w->signum - 1].head, (WL)w);
1678 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1679 1796
1680 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1681 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1682} 1799}
1689#endif 1806#endif
1690 if (expect_false (ev_is_active (w))) 1807 if (expect_false (ev_is_active (w)))
1691 return; 1808 return;
1692 1809
1693 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1694 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1695} 1812}
1696 1813
1697void 1814void
1698ev_child_stop (EV_P_ ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1699{ 1816{
1700 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 1818 if (expect_false (!ev_is_active (w)))
1702 return; 1819 return;
1703 1820
1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1705 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1706} 1823}
1707 1824
1708#if EV_STAT_ENABLE 1825#if EV_STAT_ENABLE
1709 1826
1713# endif 1830# endif
1714 1831
1715#define DEF_STAT_INTERVAL 5.0074891 1832#define DEF_STAT_INTERVAL 5.0074891
1716#define MIN_STAT_INTERVAL 0.1074891 1833#define MIN_STAT_INTERVAL 0.1074891
1717 1834
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719 1836
1720#if EV_USE_INOTIFY 1837#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE 8192 1838# define EV_INOTIFY_BUFSIZE 8192
1722 1839
1723static void noinline 1840static void noinline
1831 ev_set_priority (&fs_w, EV_MAXPRI); 1948 ev_set_priority (&fs_w, EV_MAXPRI);
1832 ev_io_start (EV_A_ &fs_w); 1949 ev_io_start (EV_A_ &fs_w);
1833 } 1950 }
1834} 1951}
1835 1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1836#endif 1985#endif
1837 1986
1838void 1987void
1839ev_stat_stat (EV_P_ ev_stat *w) 1988ev_stat_stat (EV_P_ ev_stat *w)
1840{ 1989{
1842 w->attr.st_nlink = 0; 1991 w->attr.st_nlink = 0;
1843 else if (!w->attr.st_nlink) 1992 else if (!w->attr.st_nlink)
1844 w->attr.st_nlink = 1; 1993 w->attr.st_nlink = 1;
1845} 1994}
1846 1995
1847void noinline 1996static void noinline
1848stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1849{ 1998{
1850 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1851 2000
1852 /* we copy this here each the time so that */ 2001 /* we copy this here each the time so that */
1853 /* prev has the old value when the callback gets invoked */ 2002 /* prev has the old value when the callback gets invoked */
1854 w->prev = w->attr; 2003 w->prev = w->attr;
1855 ev_stat_stat (EV_A_ w); 2004 ev_stat_stat (EV_A_ w);
1856 2005
1857 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
1858 { 2019 ) {
1859 #if EV_USE_INOTIFY 2020 #if EV_USE_INOTIFY
1860 infy_del (EV_A_ w); 2021 infy_del (EV_A_ w);
1861 infy_add (EV_A_ w); 2022 infy_add (EV_A_ w);
1862 ev_stat_stat (EV_A_ w); /* avoid race... */ 2023 ev_stat_stat (EV_A_ w); /* avoid race... */
1863 #endif 2024 #endif
1897} 2058}
1898 2059
1899void 2060void
1900ev_stat_stop (EV_P_ ev_stat *w) 2061ev_stat_stop (EV_P_ ev_stat *w)
1901{ 2062{
1902 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1904 return; 2065 return;
1905 2066
1906#if EV_USE_INOTIFY 2067#if EV_USE_INOTIFY
1907 infy_del (EV_A_ w); 2068 infy_del (EV_A_ w);
1910 2071
1911 ev_stop (EV_A_ (W)w); 2072 ev_stop (EV_A_ (W)w);
1912} 2073}
1913#endif 2074#endif
1914 2075
2076#if EV_IDLE_ENABLE
1915void 2077void
1916ev_idle_start (EV_P_ ev_idle *w) 2078ev_idle_start (EV_P_ ev_idle *w)
1917{ 2079{
1918 if (expect_false (ev_is_active (w))) 2080 if (expect_false (ev_is_active (w)))
1919 return; 2081 return;
1920 2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
1921 ev_start (EV_A_ (W)w, ++idlecnt); 2089 ev_start (EV_A_ (W)w, active);
2090
1922 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1923 idles [idlecnt - 1] = w; 2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
1924} 2094}
1925 2095
1926void 2096void
1927ev_idle_stop (EV_P_ ev_idle *w) 2097ev_idle_stop (EV_P_ ev_idle *w)
1928{ 2098{
1929 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1930 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1931 return; 2101 return;
1932 2102
1933 { 2103 {
1934 int active = ((W)w)->active; 2104 int active = ((W)w)->active;
1935 idles [active - 1] = idles [--idlecnt]; 2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1936 ((W)idles [active - 1])->active = active; 2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
1937 } 2111 }
1938
1939 ev_stop (EV_A_ (W)w);
1940} 2112}
2113#endif
1941 2114
1942void 2115void
1943ev_prepare_start (EV_P_ ev_prepare *w) 2116ev_prepare_start (EV_P_ ev_prepare *w)
1944{ 2117{
1945 if (expect_false (ev_is_active (w))) 2118 if (expect_false (ev_is_active (w)))
1951} 2124}
1952 2125
1953void 2126void
1954ev_prepare_stop (EV_P_ ev_prepare *w) 2127ev_prepare_stop (EV_P_ ev_prepare *w)
1955{ 2128{
1956 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1957 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1958 return; 2131 return;
1959 2132
1960 { 2133 {
1961 int active = ((W)w)->active; 2134 int active = ((W)w)->active;
1978} 2151}
1979 2152
1980void 2153void
1981ev_check_stop (EV_P_ ev_check *w) 2154ev_check_stop (EV_P_ ev_check *w)
1982{ 2155{
1983 ev_clear_pending (EV_A_ (W)w); 2156 clear_pending (EV_A_ (W)w);
1984 if (expect_false (!ev_is_active (w))) 2157 if (expect_false (!ev_is_active (w)))
1985 return; 2158 return;
1986 2159
1987 { 2160 {
1988 int active = ((W)w)->active; 2161 int active = ((W)w)->active;
2030} 2203}
2031 2204
2032void 2205void
2033ev_embed_stop (EV_P_ ev_embed *w) 2206ev_embed_stop (EV_P_ ev_embed *w)
2034{ 2207{
2035 ev_clear_pending (EV_A_ (W)w); 2208 clear_pending (EV_A_ (W)w);
2036 if (expect_false (!ev_is_active (w))) 2209 if (expect_false (!ev_is_active (w)))
2037 return; 2210 return;
2038 2211
2039 ev_io_stop (EV_A_ &w->io); 2212 ev_io_stop (EV_A_ &w->io);
2040 2213
2055} 2228}
2056 2229
2057void 2230void
2058ev_fork_stop (EV_P_ ev_fork *w) 2231ev_fork_stop (EV_P_ ev_fork *w)
2059{ 2232{
2060 ev_clear_pending (EV_A_ (W)w); 2233 clear_pending (EV_A_ (W)w);
2061 if (expect_false (!ev_is_active (w))) 2234 if (expect_false (!ev_is_active (w)))
2062 return; 2235 return;
2063 2236
2064 { 2237 {
2065 int active = ((W)w)->active; 2238 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines