ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.182 by root, Wed Dec 12 01:27:08 2007 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
214 390# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 391# ifdef O_CLOEXEC
216# include <sys/inotify.h> 392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
217#endif 396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
218 434
219/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
220 442
221/* 443/*
222 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
228 */ 450 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230 452
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 455
235#if __GNUC__ >= 3 456#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
238#else 459#else
239# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
240# define noinline 461# define noinline
241# if __STDC_VERSION__ < 199901L 462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 463# define inline
243# endif 464# endif
244#endif 465#endif
245 466
246#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 472# define inline_speed static noinline
252#else 473#else
253# define inline_speed static inline 474# define inline_speed static inline
254#endif 475#endif
255 476
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
258 484
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
261 487
262typedef ev_watcher *W; 488typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
265 491
492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
267 514
268#ifdef _WIN32 515#ifdef _WIN32
269# include "ev_win32.c" 516# include "ev_win32.c"
270#endif 517#endif
271 518
278{ 525{
279 syserr_cb = cb; 526 syserr_cb = cb;
280} 527}
281 528
282static void noinline 529static void noinline
283syserr (const char *msg) 530ev_syserr (const char *msg)
284{ 531{
285 if (!msg) 532 if (!msg)
286 msg = "(libev) system error"; 533 msg = "(libev) system error";
287 534
288 if (syserr_cb) 535 if (syserr_cb)
292 perror (msg); 539 perror (msg);
293 abort (); 540 abort ();
294 } 541 }
295} 542}
296 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
297static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 560
299void 561void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 563{
302 alloc = cb; 564 alloc = cb;
303} 565}
304 566
305inline_speed void * 567inline_speed void *
306ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
307{ 569{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
309 571
310 if (!ptr && size) 572 if (!ptr && size)
311 { 573 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 575 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
321 583
322/*****************************************************************************/ 584/*****************************************************************************/
323 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
324typedef struct 590typedef struct
325{ 591{
326 WL head; 592 WL head;
327 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
329#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 601 SOCKET handle;
331#endif 602#endif
332} ANFD; 603} ANFD;
333 604
605/* stores the pending event set for a given watcher */
334typedef struct 606typedef struct
335{ 607{
336 W w; 608 W w;
337 int events; 609 int events; /* the pending event set for the given watcher */
338} ANPENDING; 610} ANPENDING;
339 611
340#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
341typedef struct 614typedef struct
342{ 615{
343 WL head; 616 WL head;
344} ANFS; 617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
345#endif 638#endif
346 639
347#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
348 641
349 struct ev_loop 642 struct ev_loop
368 661
369 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
370 663
371#endif 664#endif
372 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
373/*****************************************************************************/ 678/*****************************************************************************/
374 679
680#ifndef EV_HAVE_EV_TIME
375ev_tstamp 681ev_tstamp
376ev_time (void) 682ev_time (void)
377{ 683{
378#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
379 struct timespec ts; 687 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 690 }
691#endif
692
383 struct timeval tv; 693 struct timeval tv;
384 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 696}
697#endif
388 698
389ev_tstamp inline_size 699inline_size ev_tstamp
390get_clock (void) 700get_clock (void)
391{ 701{
392#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
394 { 704 {
407{ 717{
408 return ev_rt_now; 718 return ev_rt_now;
409} 719}
410#endif 720#endif
411 721
412int inline_size 722void
723ev_sleep (ev_tstamp delay)
724{
725 if (delay > 0.)
726 {
727#if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734#elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736#else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746#endif
747 }
748}
749
750/*****************************************************************************/
751
752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
413array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
414{ 758{
415 int ncur = cur + 1; 759 int ncur = cur + 1;
416 760
417 do 761 do
418 ncur <<= 1; 762 ncur <<= 1;
419 while (cnt > ncur); 763 while (cnt > ncur);
420 764
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 767 {
424 ncur *= elem; 768 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 770 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 771 ncur /= elem;
428 } 772 }
429 773
430 return ncur; 774 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
435{ 779{
436 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
438} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 786
440#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
442 { \ 789 { \
443 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 803 }
457#endif 804#endif
458 805
459#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 808
462/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
463 816
464void noinline 817void noinline
465ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
466{ 819{
467 W w_ = (W)w; 820 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
478 } 831 }
479} 832}
480 833
481void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 851{
484 int i; 852 int i;
485 853
486 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
488} 856}
489 857
490/*****************************************************************************/ 858/*****************************************************************************/
491 859
492void inline_size 860inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
507{ 862{
508 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
509 ev_io *w; 864 ev_io *w;
510 865
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 870 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
517 } 872 }
518} 873}
519 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
520void 886void
521ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 888{
523 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
525} 891}
526 892
527void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
528fd_reify (EV_P) 896fd_reify (EV_P)
529{ 897{
530 int i; 898 int i;
531 899
532 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
533 { 901 {
534 int fd = fdchanges [i]; 902 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 903 ANFD *anfd = anfds + fd;
536 ev_io *w; 904 ev_io *w;
537 905
538 int events = 0; 906 unsigned char events = 0;
539 907
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 909 events |= (unsigned char)w->events;
542 910
543#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
544 if (events) 912 if (events)
545 { 913 {
546 unsigned long argp; 914 unsigned long arg;
547 anfd->handle = _get_osfhandle (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 917 }
550#endif 918#endif
551 919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
552 anfd->reify = 0; 924 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
556 } 930 }
557 931
558 fdchangecnt = 0; 932 fdchangecnt = 0;
559} 933}
560 934
561void inline_size 935/* something about the given fd changed */
936inline_size void
562fd_change (EV_P_ int fd) 937fd_change (EV_P_ int fd, int flags)
563{ 938{
564 if (expect_false (anfds [fd].reify)) 939 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 940 anfds [fd].reify |= flags;
568 941
942 if (expect_true (!reify))
943 {
569 ++fdchangecnt; 944 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
947 }
572} 948}
573 949
574void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
575fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
576{ 953{
577 ev_io *w; 954 ev_io *w;
578 955
579 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 960 }
584} 961}
585 962
586int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
587fd_valid (int fd) 965fd_valid (int fd)
588{ 966{
589#ifdef _WIN32 967#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
591#else 969#else
599{ 977{
600 int fd; 978 int fd;
601 979
602 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 981 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
606} 984}
607 985
608/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 987static void noinline
613 991
614 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
615 if (anfds [fd].events) 993 if (anfds [fd].events)
616 { 994 {
617 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
618 return; 996 break;
619 } 997 }
620} 998}
621 999
622/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
623static void noinline 1001static void noinline
627 1005
628 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 1007 if (anfds [fd].events)
630 { 1008 {
631 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 1012 }
634} 1013}
635 1014
636/*****************************************************************************/ 1015/*****************************************************************************/
637 1016
638void inline_speed 1017/*
639upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
642 1022
643 while (k) 1023/*
644 { 1024 * at the moment we allow libev the luxury of two heaps,
645 int p = (k - 1) >> 1; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029#if EV_USE_4HEAP
646 1030
647 if (heap [p]->at <= w->at) 1031#define DHEAP 4
1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036/* away from the root */
1037inline_speed void
1038downheap (ANHE *heap, int N, int k)
1039{
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
648 break; 1065 break;
649 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113}
1114#endif
1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
650 heap [k] = heap [p]; 1129 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 1130 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 1131 k = p;
653 } 1132 }
654 1133
655 heap [k] = w; 1134 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 1135 ev_active (ANHE_w (he)) = k;
657} 1136}
658 1137
659void inline_speed 1138/* move an element suitably so it is in a correct place */
660downheap (WT *heap, int N, int k) 1139inline_size void
661{
662 WT w = heap [k];
663
664 for (;;)
665 {
666 int c = (k << 1) + 1;
667
668 if (c >= N)
669 break;
670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
677 heap [k] = heap [c];
678 ((W)heap [k])->active = k + 1;
679
680 k = c;
681 }
682
683 heap [k] = w;
684 ((W)heap [k])->active = k + 1;
685}
686
687void inline_size
688adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
689{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
690 upheap (heap, k); 1143 upheap (heap, k);
1144 else
691 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
692} 1158}
693 1159
694/*****************************************************************************/ 1160/*****************************************************************************/
695 1161
1162/* associate signal watchers to a signal signal */
696typedef struct 1163typedef struct
697{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
698 WL head; 1169 WL head;
699 sig_atomic_t volatile gotsig;
700} ANSIG; 1170} ANSIG;
701 1171
702static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
703static int signalmax;
704 1173
705static int sigpipe [2]; 1174/*****************************************************************************/
706static sig_atomic_t volatile gotsig;
707static ev_io sigev;
708 1175
709void inline_size 1176/* used to prepare libev internal fd's */
710signals_init (ANSIG *base, int count) 1177/* this is not fork-safe */
711{ 1178inline_speed void
712 while (count--)
713 {
714 base->head = 0;
715 base->gotsig = 0;
716
717 ++base;
718 }
719}
720
721static void
722sighandler (int signum)
723{
724#if _WIN32
725 signal (signum, sighandler);
726#endif
727
728 signals [signum - 1].gotsig = 1;
729
730 if (!gotsig)
731 {
732 int old_errno = errno;
733 gotsig = 1;
734 write (sigpipe [1], &signum, 1);
735 errno = old_errno;
736 }
737}
738
739void noinline
740ev_feed_signal_event (EV_P_ int signum)
741{
742 WL w;
743
744#if EV_MULTIPLICITY
745 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
746#endif
747
748 --signum;
749
750 if (signum < 0 || signum >= signalmax)
751 return;
752
753 signals [signum].gotsig = 0;
754
755 for (w = signals [signum].head; w; w = w->next)
756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
757}
758
759static void
760sigcb (EV_P_ ev_io *iow, int revents)
761{
762 int signum;
763
764 read (sigpipe [0], &revents, 1);
765 gotsig = 0;
766
767 for (signum = signalmax; signum--; )
768 if (signals [signum].gotsig)
769 ev_feed_signal_event (EV_A_ signum + 1);
770}
771
772void inline_speed
773fd_intern (int fd) 1179fd_intern (int fd)
774{ 1180{
775#ifdef _WIN32 1181#ifdef _WIN32
776 int arg = 1; 1182 unsigned long arg = 1;
777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
778#else 1184#else
779 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
780 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
781#endif 1187#endif
782} 1188}
783 1189
784static void noinline 1190static void noinline
785siginit (EV_P) 1191evpipe_init (EV_P)
786{ 1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
787 fd_intern (sigpipe [0]); 1212 fd_intern (evpipe [0]);
788 fd_intern (sigpipe [1]); 1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
789 1216
790 ev_io_set (&sigev, sigpipe [0], EV_READ);
791 ev_io_start (EV_A_ &sigev); 1217 ev_io_start (EV_A_ &pipe_w);
792 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1247static void
1248pipecb (EV_P_ ev_io *iow, int revents)
1249{
1250 int i;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
793} 1287}
794 1288
795/*****************************************************************************/ 1289/*****************************************************************************/
796 1290
1291static void
1292ev_sighandler (int signum)
1293{
1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
1297
1298#if _WIN32
1299 signal (signum, ev_sighandler);
1300#endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304}
1305
1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1350/*****************************************************************************/
1351
797static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
798 1353
799#ifndef _WIN32 1354#ifndef _WIN32
800 1355
801static ev_signal childev; 1356static ev_signal childev;
802 1357
803void inline_speed 1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
805{ 1365{
806 ev_child *w; 1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
807 1368
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
809 if (w->pid == pid || !w->pid) 1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
810 { 1373 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
812 w->rpid = pid; 1375 w->rpid = pid;
813 w->rstatus = status; 1376 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 } 1378 }
1379 }
816} 1380}
817 1381
818#ifndef WCONTINUED 1382#ifndef WCONTINUED
819# define WCONTINUED 0 1383# define WCONTINUED 0
820#endif 1384#endif
821 1385
1386/* called on sigchld etc., calls waitpid */
822static void 1387static void
823childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
824{ 1389{
825 int pid, status; 1390 int pid, status;
826 1391
829 if (!WCONTINUED 1394 if (!WCONTINUED
830 || errno != EINVAL 1395 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return; 1397 return;
833 1398
834 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
835 /* we need to do it this way so that the callback gets called before we continue */ 1400 /* we need to do it this way so that the callback gets called before we continue */
836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
837 1402
838 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
839 if (EV_PID_HASHSIZE > 1) 1404 if (EV_PID_HASHSIZE > 1)
840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
841} 1406}
842 1407
843#endif 1408#endif
844 1409
845/*****************************************************************************/ 1410/*****************************************************************************/
907 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
908 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
909 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
910#endif 1475#endif
911#ifdef __APPLE__ 1476#ifdef __APPLE__
912 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
913 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
914#endif 1480#endif
915 1481
916 return flags; 1482 return flags;
917} 1483}
918 1484
919unsigned int 1485unsigned int
920ev_embeddable_backends (void) 1486ev_embeddable_backends (void)
921{ 1487{
922 return EVBACKEND_EPOLL 1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
923 | EVBACKEND_KQUEUE 1489
924 | EVBACKEND_PORT; 1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
925} 1495}
926 1496
927unsigned int 1497unsigned int
928ev_backend (EV_P) 1498ev_backend (EV_P)
929{ 1499{
930 return backend; 1500 return backend;
931} 1501}
932 1502
1503#if EV_MINIMAL < 2
933unsigned int 1504unsigned int
934ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
935{ 1506{
936 return loop_count; 1507 return loop_count;
937} 1508}
938 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1516void
1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518{
1519 io_blocktime = interval;
1520}
1521
1522void
1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524{
1525 timeout_blocktime = interval;
1526}
1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
939static void noinline 1553static void noinline
940loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
941{ 1555{
942 if (!backend) 1556 if (!backend)
943 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
944#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
945 { 1570 {
946 struct timespec ts; 1571 struct timespec ts;
1572
947 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
948 have_monotonic = 1; 1574 have_monotonic = 1;
949 } 1575 }
950#endif 1576#endif
951
952 ev_rt_now = ev_time ();
953 mn_now = get_clock ();
954 now_floor = mn_now;
955 rtmn_diff = ev_rt_now - mn_now;
956 1577
957 /* pid check not overridable via env */ 1578 /* pid check not overridable via env */
958#ifndef _WIN32 1579#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK) 1580 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid (); 1581 curpid = getpid ();
963 if (!(flags & EVFLAG_NOENV) 1584 if (!(flags & EVFLAG_NOENV)
964 && !enable_secure () 1585 && !enable_secure ()
965 && getenv ("LIBEV_FLAGS")) 1586 && getenv ("LIBEV_FLAGS"))
966 flags = atoi (getenv ("LIBEV_FLAGS")); 1587 flags = atoi (getenv ("LIBEV_FLAGS"));
967 1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
968 if (!(flags & 0x0000ffffUL)) 1612 if (!(flags & 0x0000ffffU))
969 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
970
971 backend = 0;
972 backend_fd = -1;
973#if EV_USE_INOTIFY
974 fs_fd = -2;
975#endif
976 1614
977#if EV_USE_PORT 1615#if EV_USE_PORT
978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
979#endif 1617#endif
980#if EV_USE_KQUEUE 1618#if EV_USE_KQUEUE
988#endif 1626#endif
989#if EV_USE_SELECT 1627#if EV_USE_SELECT
990 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
991#endif 1629#endif
992 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
993 ev_init (&sigev, sigcb); 1633 ev_init (&pipe_w, pipecb);
994 ev_set_priority (&sigev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
995 } 1635 }
996} 1636}
997 1637
1638/* free up a loop structure */
998static void noinline 1639static void noinline
999loop_destroy (EV_P) 1640loop_destroy (EV_P)
1000{ 1641{
1001 int i; 1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1002 1670
1003#if EV_USE_INOTIFY 1671#if EV_USE_INOTIFY
1004 if (fs_fd >= 0) 1672 if (fs_fd >= 0)
1005 close (fs_fd); 1673 close (fs_fd);
1006#endif 1674#endif
1030#if EV_IDLE_ENABLE 1698#if EV_IDLE_ENABLE
1031 array_free (idle, [i]); 1699 array_free (idle, [i]);
1032#endif 1700#endif
1033 } 1701 }
1034 1702
1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1704
1035 /* have to use the microsoft-never-gets-it-right macro */ 1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1036 array_free (fdchange, EMPTY); 1707 array_free (fdchange, EMPTY);
1037 array_free (timer, EMPTY); 1708 array_free (timer, EMPTY);
1038#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1039 array_free (periodic, EMPTY); 1710 array_free (periodic, EMPTY);
1040#endif 1711#endif
1712#if EV_FORK_ENABLE
1713 array_free (fork, EMPTY);
1714#endif
1041 array_free (prepare, EMPTY); 1715 array_free (prepare, EMPTY);
1042 array_free (check, EMPTY); 1716 array_free (check, EMPTY);
1717#if EV_ASYNC_ENABLE
1718 array_free (async, EMPTY);
1719#endif
1043 1720
1044 backend = 0; 1721 backend = 0;
1045} 1722}
1046 1723
1724#if EV_USE_INOTIFY
1047void inline_size infy_fork (EV_P); 1725inline_size void infy_fork (EV_P);
1726#endif
1048 1727
1049void inline_size 1728inline_size void
1050loop_fork (EV_P) 1729loop_fork (EV_P)
1051{ 1730{
1052#if EV_USE_PORT 1731#if EV_USE_PORT
1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1054#endif 1733#endif
1060#endif 1739#endif
1061#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1062 infy_fork (EV_A); 1741 infy_fork (EV_A);
1063#endif 1742#endif
1064 1743
1065 if (ev_is_active (&sigev)) 1744 if (ev_is_active (&pipe_w))
1066 { 1745 {
1067 /* default loop */ 1746 /* this "locks" the handlers against writing to the pipe */
1747 /* while we modify the fd vars */
1748 sig_pending = 1;
1749#if EV_ASYNC_ENABLE
1750 async_pending = 1;
1751#endif
1068 1752
1069 ev_ref (EV_A); 1753 ev_ref (EV_A);
1070 ev_io_stop (EV_A_ &sigev); 1754 ev_io_stop (EV_A_ &pipe_w);
1071 close (sigpipe [0]);
1072 close (sigpipe [1]);
1073 1755
1074 while (pipe (sigpipe)) 1756#if EV_USE_EVENTFD
1075 syserr ("(libev) error creating pipe"); 1757 if (evfd >= 0)
1758 close (evfd);
1759#endif
1076 1760
1761 if (evpipe [0] >= 0)
1762 {
1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1765 }
1766
1077 siginit (EV_A); 1767 evpipe_init (EV_A);
1768 /* now iterate over everything, in case we missed something */
1769 pipecb (EV_A_ &pipe_w, EV_READ);
1078 } 1770 }
1079 1771
1080 postfork = 0; 1772 postfork = 0;
1081} 1773}
1082 1774
1083#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1776
1084struct ev_loop * 1777struct ev_loop *
1085ev_loop_new (unsigned int flags) 1778ev_loop_new (unsigned int flags)
1086{ 1779{
1087 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1088 1781
1089 memset (loop, 0, sizeof (struct ev_loop)); 1782 memset (EV_A, 0, sizeof (struct ev_loop));
1090
1091 loop_init (EV_A_ flags); 1783 loop_init (EV_A_ flags);
1092 1784
1093 if (ev_backend (EV_A)) 1785 if (ev_backend (EV_A))
1094 return loop; 1786 return EV_A;
1095 1787
1096 return 0; 1788 return 0;
1097} 1789}
1098 1790
1099void 1791void
1104} 1796}
1105 1797
1106void 1798void
1107ev_loop_fork (EV_P) 1799ev_loop_fork (EV_P)
1108{ 1800{
1109 postfork = 1; 1801 postfork = 1; /* must be in line with ev_default_fork */
1110} 1802}
1803#endif /* multiplicity */
1111 1804
1805#if EV_VERIFY
1806static void noinline
1807verify_watcher (EV_P_ W w)
1808{
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813}
1814
1815static void noinline
1816verify_heap (EV_P_ ANHE *heap, int N)
1817{
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828}
1829
1830static void noinline
1831array_verify (EV_P_ W *ws, int cnt)
1832{
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838}
1839#endif
1840
1841#if EV_MINIMAL < 2
1842void
1843ev_loop_verify (EV_P)
1844{
1845#if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
1858 {
1859 verify_watcher (EV_A_ (W)w);
1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1862 }
1863
1864 assert (timermax >= timercnt);
1865 verify_heap (EV_A_ timers, timercnt);
1866
1867#if EV_PERIODIC_ENABLE
1868 assert (periodicmax >= periodiccnt);
1869 verify_heap (EV_A_ periodics, periodiccnt);
1870#endif
1871
1872 for (i = NUMPRI; i--; )
1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875#if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879#endif
1880 }
1881
1882#if EV_FORK_ENABLE
1883 assert (forkmax >= forkcnt);
1884 array_verify (EV_A_ (W *)forks, forkcnt);
1885#endif
1886
1887#if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890#endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898# if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1901# endif
1902#endif
1903}
1112#endif 1904#endif
1113 1905
1114#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1115struct ev_loop * 1907struct ev_loop *
1116ev_default_loop_init (unsigned int flags) 1908ev_default_loop_init (unsigned int flags)
1117#else 1909#else
1118int 1910int
1119ev_default_loop (unsigned int flags) 1911ev_default_loop (unsigned int flags)
1120#endif 1912#endif
1121{ 1913{
1122 if (sigpipe [0] == sigpipe [1])
1123 if (pipe (sigpipe))
1124 return 0;
1125
1126 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
1127 { 1915 {
1128#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1129 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1130#else 1918#else
1131 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
1132#endif 1920#endif
1133 1921
1134 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
1135 1923
1136 if (ev_backend (EV_A)) 1924 if (ev_backend (EV_A))
1137 { 1925 {
1138 siginit (EV_A);
1139
1140#ifndef _WIN32 1926#ifndef _WIN32
1141 ev_signal_init (&childev, childcb, SIGCHLD); 1927 ev_signal_init (&childev, childcb, SIGCHLD);
1142 ev_set_priority (&childev, EV_MAXPRI); 1928 ev_set_priority (&childev, EV_MAXPRI);
1143 ev_signal_start (EV_A_ &childev); 1929 ev_signal_start (EV_A_ &childev);
1144 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1930 ev_unref (EV_A); /* child watcher should not keep loop alive */
1153 1939
1154void 1940void
1155ev_default_destroy (void) 1941ev_default_destroy (void)
1156{ 1942{
1157#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
1158 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
1159#endif 1945#endif
1946
1947 ev_default_loop_ptr = 0;
1160 1948
1161#ifndef _WIN32 1949#ifndef _WIN32
1162 ev_ref (EV_A); /* child watcher */ 1950 ev_ref (EV_A); /* child watcher */
1163 ev_signal_stop (EV_A_ &childev); 1951 ev_signal_stop (EV_A_ &childev);
1164#endif 1952#endif
1165 1953
1166 ev_ref (EV_A); /* signal watcher */
1167 ev_io_stop (EV_A_ &sigev);
1168
1169 close (sigpipe [0]); sigpipe [0] = 0;
1170 close (sigpipe [1]); sigpipe [1] = 0;
1171
1172 loop_destroy (EV_A); 1954 loop_destroy (EV_A);
1173} 1955}
1174 1956
1175void 1957void
1176ev_default_fork (void) 1958ev_default_fork (void)
1177{ 1959{
1178#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1179 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
1180#endif 1962#endif
1181 1963
1182 if (backend) 1964 postfork = 1; /* must be in line with ev_loop_fork */
1183 postfork = 1;
1184} 1965}
1185 1966
1186/*****************************************************************************/ 1967/*****************************************************************************/
1187 1968
1188void 1969void
1189ev_invoke (EV_P_ void *w, int revents) 1970ev_invoke (EV_P_ void *w, int revents)
1190{ 1971{
1191 EV_CB_INVOKE ((W)w, revents); 1972 EV_CB_INVOKE ((W)w, revents);
1192} 1973}
1193 1974
1194void inline_speed 1975unsigned int
1195call_pending (EV_P) 1976ev_pending_count (EV_P)
1977{
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985}
1986
1987void noinline
1988ev_invoke_pending (EV_P)
1196{ 1989{
1197 int pri; 1990 int pri;
1198 1991
1199 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1200 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1201 { 1994 {
1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1203 1996
1204 if (expect_true (p->w))
1205 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1207 1999
1208 p->w->pending = 0; 2000 p->w->pending = 0;
1209 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1210 } 2002 EV_FREQUENT_CHECK;
1211 } 2003 }
1212} 2004}
1213 2005
1214void inline_size
1215timers_reify (EV_P)
1216{
1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1218 {
1219 ev_timer *w = (ev_timer *)timers [0];
1220
1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1222
1223 /* first reschedule or stop timer */
1224 if (w->repeat)
1225 {
1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1227
1228 ((WT)w)->at += w->repeat;
1229 if (((WT)w)->at < mn_now)
1230 ((WT)w)->at = mn_now;
1231
1232 downheap (timers, timercnt, 0);
1233 }
1234 else
1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1236
1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1238 }
1239}
1240
1241#if EV_PERIODIC_ENABLE
1242void inline_size
1243periodics_reify (EV_P)
1244{
1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1246 {
1247 ev_periodic *w = (ev_periodic *)periodics [0];
1248
1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1250
1251 /* first reschedule or stop timer */
1252 if (w->reschedule_cb)
1253 {
1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1256 downheap (periodics, periodiccnt, 0);
1257 }
1258 else if (w->interval)
1259 {
1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1263 downheap (periodics, periodiccnt, 0);
1264 }
1265 else
1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1267
1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1269 }
1270}
1271
1272static void noinline
1273periodics_reschedule (EV_P)
1274{
1275 int i;
1276
1277 /* adjust periodics after time jump */
1278 for (i = 0; i < periodiccnt; ++i)
1279 {
1280 ev_periodic *w = (ev_periodic *)periodics [i];
1281
1282 if (w->reschedule_cb)
1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1284 else if (w->interval)
1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1286 }
1287
1288 /* now rebuild the heap */
1289 for (i = periodiccnt >> 1; i--; )
1290 downheap (periodics, periodiccnt, i);
1291}
1292#endif
1293
1294#if EV_IDLE_ENABLE 2006#if EV_IDLE_ENABLE
1295void inline_size 2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
1296idle_reify (EV_P) 2010idle_reify (EV_P)
1297{ 2011{
1298 if (expect_false (idleall)) 2012 if (expect_false (idleall))
1299 { 2013 {
1300 int pri; 2014 int pri;
1312 } 2026 }
1313 } 2027 }
1314} 2028}
1315#endif 2029#endif
1316 2030
1317void inline_speed 2031/* make timers pending */
2032inline_size void
2033timers_reify (EV_P)
2034{
2035 EV_FREQUENT_CHECK;
2036
2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2038 {
2039 do
2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
2048 ev_at (w) += w->repeat;
2049 if (ev_at (w) < mn_now)
2050 ev_at (w) = mn_now;
2051
2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2053
2054 ANHE_at_cache (timers [HEAP0]);
2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
2062 }
2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2064
2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
2066 }
2067}
2068
2069#if EV_PERIODIC_ENABLE
2070/* make periodics pending */
2071inline_size void
2072periodics_reify (EV_P)
2073{
2074 EV_FREQUENT_CHECK;
2075
2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2077 {
2078 int feed_count = 0;
2079
2080 do
2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090
2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2092
2093 ANHE_at_cache (periodics [HEAP0]);
2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
2120 }
2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2122
2123 feed_reverse_done (EV_A_ EV_PERIODIC);
2124 }
2125}
2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2129static void noinline
2130periodics_reschedule (EV_P)
2131{
2132 int i;
2133
2134 /* adjust periodics after time jump */
2135 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2136 {
2137 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2138
2139 if (w->reschedule_cb)
2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2141 else if (w->interval)
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143
2144 ANHE_at_cache (periodics [i]);
2145 }
2146
2147 reheap (periodics, periodiccnt);
2148}
2149#endif
2150
2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
2163}
2164
2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
1318time_update (EV_P_ ev_tstamp max_block) 2168time_update (EV_P_ ev_tstamp max_block)
1319{ 2169{
1320 int i;
1321
1322#if EV_USE_MONOTONIC 2170#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic)) 2171 if (expect_true (have_monotonic))
1324 { 2172 {
2173 int i;
1325 ev_tstamp odiff = rtmn_diff; 2174 ev_tstamp odiff = rtmn_diff;
1326 2175
1327 mn_now = get_clock (); 2176 mn_now = get_clock ();
1328 2177
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1347 */ 2196 */
1348 for (i = 4; --i; ) 2197 for (i = 4; --i; )
1349 { 2198 {
1350 rtmn_diff = ev_rt_now - mn_now; 2199 rtmn_diff = ev_rt_now - mn_now;
1351 2200
1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2201 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1353 return; /* all is well */ 2202 return; /* all is well */
1354 2203
1355 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1356 mn_now = get_clock (); 2205 mn_now = get_clock ();
1357 now_floor = mn_now; 2206 now_floor = mn_now;
1358 } 2207 }
1359 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1360# if EV_PERIODIC_ENABLE 2211# if EV_PERIODIC_ENABLE
1361 periodics_reschedule (EV_A); 2212 periodics_reschedule (EV_A);
1362# endif 2213# endif
1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1365 } 2214 }
1366 else 2215 else
1367#endif 2216#endif
1368 { 2217 {
1369 ev_rt_now = ev_time (); 2218 ev_rt_now = ev_time ();
1370 2219
1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2224#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1375#endif 2226#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i)
1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1379 } 2227 }
1380 2228
1381 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1382 } 2230 }
1383} 2231}
1384 2232
1385void 2233void
1386ev_ref (EV_P)
1387{
1388 ++activecnt;
1389}
1390
1391void
1392ev_unref (EV_P)
1393{
1394 --activecnt;
1395}
1396
1397static int loop_done;
1398
1399void
1400ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1401{ 2235{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2236#if EV_MINIMAL < 2
1403 ? EVUNLOOP_ONE 2237 ++loop_depth;
1404 : EVUNLOOP_CANCEL; 2238#endif
1405 2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
2242 loop_done = EVUNLOOP_CANCEL;
2243
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1407 2245
1408 do 2246 do
1409 { 2247 {
2248#if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250#endif
2251
1410#ifndef _WIN32 2252#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */ 2253 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid)) 2254 if (expect_false (getpid () != curpid))
1413 { 2255 {
1414 curpid = getpid (); 2256 curpid = getpid ();
1420 /* we might have forked, so queue fork handlers */ 2262 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork)) 2263 if (expect_false (postfork))
1422 if (forkcnt) 2264 if (forkcnt)
1423 { 2265 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A); 2267 EV_INVOKE_PENDING;
1426 } 2268 }
1427#endif 2269#endif
1428 2270
1429 /* queue prepare watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1430 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1431 { 2273 {
1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1433 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
1434 } 2276 }
1435 2277
1436 if (expect_false (!activecnt)) 2278 if (expect_false (loop_done))
1437 break; 2279 break;
1438 2280
1439 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
1440 if (expect_false (postfork)) 2282 if (expect_false (postfork))
1441 loop_fork (EV_A); 2283 loop_fork (EV_A);
1443 /* update fd-related kernel structures */ 2285 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 2286 fd_reify (EV_A);
1445 2287
1446 /* calculate blocking time */ 2288 /* calculate blocking time */
1447 { 2289 {
1448 ev_tstamp block; 2290 ev_tstamp waittime = 0.;
2291 ev_tstamp sleeptime = 0.;
1449 2292
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
1454 /* update time to cancel out callback processing overhead */ 2298 /* update time to cancel out callback processing overhead */
1455 time_update (EV_A_ 1e100); 2299 time_update (EV_A_ 1e100);
1456 2300
1457 block = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
1458 2302
1459 if (timercnt) 2303 if (timercnt)
1460 { 2304 {
1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2305 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1462 if (block > to) block = to; 2306 if (waittime > to) waittime = to;
1463 } 2307 }
1464 2308
1465#if EV_PERIODIC_ENABLE 2309#if EV_PERIODIC_ENABLE
1466 if (periodiccnt) 2310 if (periodiccnt)
1467 { 2311 {
1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1469 if (block > to) block = to; 2313 if (waittime > to) waittime = to;
1470 } 2314 }
1471#endif 2315#endif
1472 2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
2318 if (expect_false (waittime < timeout_blocktime))
2319 waittime = timeout_blocktime;
2320
2321 /* extra check because io_blocktime is commonly 0 */
1473 if (expect_false (block < 0.)) block = 0.; 2322 if (expect_false (io_blocktime))
2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
2331 ev_sleep (sleeptime);
2332 waittime -= sleeptime;
2333 }
2334 }
1474 } 2335 }
1475 2336
2337#if EV_MINIMAL < 2
1476 ++loop_count; 2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1477 backend_poll (EV_A_ block); 2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1478 2343
1479 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block); 2345 time_update (EV_A_ waittime + sleeptime);
1481 } 2346 }
1482 2347
1483 /* queue pending timers and reschedule them */ 2348 /* queue pending timers and reschedule them */
1484 timers_reify (EV_A); /* relative timers called last */ 2349 timers_reify (EV_A); /* relative timers called last */
1485#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1493 2358
1494 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
1495 if (expect_false (checkcnt)) 2360 if (expect_false (checkcnt))
1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1497 2362
1498 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1499
1500 } 2364 }
1501 while (expect_true (activecnt && !loop_done)); 2365 while (expect_true (
2366 activecnt
2367 && !loop_done
2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2369 ));
1502 2370
1503 if (loop_done == EVUNLOOP_ONE) 2371 if (loop_done == EVUNLOOP_ONE)
1504 loop_done = EVUNLOOP_CANCEL; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
1505} 2377}
1506 2378
1507void 2379void
1508ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
1509{ 2381{
1510 loop_done = how; 2382 loop_done = how;
1511} 2383}
1512 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
1513/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
1514 2424
1515void inline_size 2425inline_size void
1516wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
1517{ 2427{
1518 elem->next = *head; 2428 elem->next = *head;
1519 *head = elem; 2429 *head = elem;
1520} 2430}
1521 2431
1522void inline_size 2432inline_size void
1523wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
1524{ 2434{
1525 while (*head) 2435 while (*head)
1526 { 2436 {
1527 if (*head == elem) 2437 if (expect_true (*head == elem))
1528 { 2438 {
1529 *head = elem->next; 2439 *head = elem->next;
1530 return; 2440 break;
1531 } 2441 }
1532 2442
1533 head = &(*head)->next; 2443 head = &(*head)->next;
1534 } 2444 }
1535} 2445}
1536 2446
1537void inline_speed 2447/* internal, faster, version of ev_clear_pending */
2448inline_speed void
1538clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
1539{ 2450{
1540 if (w->pending) 2451 if (w->pending)
1541 { 2452 {
1542 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1543 w->pending = 0; 2454 w->pending = 0;
1544 } 2455 }
1545} 2456}
1546 2457
1547int 2458int
1551 int pending = w_->pending; 2462 int pending = w_->pending;
1552 2463
1553 if (expect_true (pending)) 2464 if (expect_true (pending))
1554 { 2465 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
1556 w_->pending = 0; 2468 w_->pending = 0;
1557 p->w = 0;
1558 return p->events; 2469 return p->events;
1559 } 2470 }
1560 else 2471 else
1561 return 0; 2472 return 0;
1562} 2473}
1563 2474
1564void inline_size 2475inline_size void
1565pri_adjust (EV_P_ W w) 2476pri_adjust (EV_P_ W w)
1566{ 2477{
1567 int pri = w->priority; 2478 int pri = ev_priority (w);
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri; 2481 ev_set_priority (w, pri);
1571} 2482}
1572 2483
1573void inline_speed 2484inline_speed void
1574ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
1575{ 2486{
1576 pri_adjust (EV_A_ w); 2487 pri_adjust (EV_A_ w);
1577 w->active = active; 2488 w->active = active;
1578 ev_ref (EV_A); 2489 ev_ref (EV_A);
1579} 2490}
1580 2491
1581void inline_size 2492inline_size void
1582ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
1583{ 2494{
1584 ev_unref (EV_A); 2495 ev_unref (EV_A);
1585 w->active = 0; 2496 w->active = 0;
1586} 2497}
1593 int fd = w->fd; 2504 int fd = w->fd;
1594 2505
1595 if (expect_false (ev_is_active (w))) 2506 if (expect_false (ev_is_active (w)))
1596 return; 2507 return;
1597 2508
1598 assert (("ev_io_start called with negative fd", fd >= 0)); 2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
1599 2513
1600 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1602 wlist_add (&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
1603 2517
1604 fd_change (EV_A_ fd); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2519 w->events &= ~EV__IOFDSET;
2520
2521 EV_FREQUENT_CHECK;
1605} 2522}
1606 2523
1607void noinline 2524void noinline
1608ev_io_stop (EV_P_ ev_io *w) 2525ev_io_stop (EV_P_ ev_io *w)
1609{ 2526{
1610 clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1611 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
1612 return; 2529 return;
1613 2530
1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2532
2533 EV_FREQUENT_CHECK;
1615 2534
1616 wlist_del (&anfds[w->fd].head, (WL)w); 2535 wlist_del (&anfds[w->fd].head, (WL)w);
1617 ev_stop (EV_A_ (W)w); 2536 ev_stop (EV_A_ (W)w);
1618 2537
1619 fd_change (EV_A_ w->fd); 2538 fd_change (EV_A_ w->fd, 1);
2539
2540 EV_FREQUENT_CHECK;
1620} 2541}
1621 2542
1622void noinline 2543void noinline
1623ev_timer_start (EV_P_ ev_timer *w) 2544ev_timer_start (EV_P_ ev_timer *w)
1624{ 2545{
1625 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1626 return; 2547 return;
1627 2548
1628 ((WT)w)->at += mn_now; 2549 ev_at (w) += mn_now;
1629 2550
1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1631 2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
1632 ev_start (EV_A_ (W)w, ++timercnt); 2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1634 timers [timercnt - 1] = (WT)w; 2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
1635 upheap (timers, timercnt - 1); 2559 ANHE_at_cache (timers [ev_active (w)]);
2560 upheap (timers, ev_active (w));
1636 2561
2562 EV_FREQUENT_CHECK;
2563
1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1638} 2565}
1639 2566
1640void noinline 2567void noinline
1641ev_timer_stop (EV_P_ ev_timer *w) 2568ev_timer_stop (EV_P_ ev_timer *w)
1642{ 2569{
1643 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1645 return; 2572 return;
1646 2573
1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2574 EV_FREQUENT_CHECK;
1648 2575
1649 { 2576 {
1650 int active = ((W)w)->active; 2577 int active = ev_active (w);
1651 2578
2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2580
2581 --timercnt;
2582
1652 if (expect_true (--active < --timercnt)) 2583 if (expect_true (active < timercnt + HEAP0))
1653 { 2584 {
1654 timers [active] = timers [timercnt]; 2585 timers [active] = timers [timercnt + HEAP0];
1655 adjustheap (timers, timercnt, active); 2586 adjustheap (timers, timercnt, active);
1656 } 2587 }
1657 } 2588 }
1658 2589
1659 ((WT)w)->at -= mn_now; 2590 EV_FREQUENT_CHECK;
2591
2592 ev_at (w) -= mn_now;
1660 2593
1661 ev_stop (EV_A_ (W)w); 2594 ev_stop (EV_A_ (W)w);
1662} 2595}
1663 2596
1664void noinline 2597void noinline
1665ev_timer_again (EV_P_ ev_timer *w) 2598ev_timer_again (EV_P_ ev_timer *w)
1666{ 2599{
2600 EV_FREQUENT_CHECK;
2601
1667 if (ev_is_active (w)) 2602 if (ev_is_active (w))
1668 { 2603 {
1669 if (w->repeat) 2604 if (w->repeat)
1670 { 2605 {
1671 ((WT)w)->at = mn_now + w->repeat; 2606 ev_at (w) = mn_now + w->repeat;
2607 ANHE_at_cache (timers [ev_active (w)]);
1672 adjustheap (timers, timercnt, ((W)w)->active - 1); 2608 adjustheap (timers, timercnt, ev_active (w));
1673 } 2609 }
1674 else 2610 else
1675 ev_timer_stop (EV_A_ w); 2611 ev_timer_stop (EV_A_ w);
1676 } 2612 }
1677 else if (w->repeat) 2613 else if (w->repeat)
1678 { 2614 {
1679 w->at = w->repeat; 2615 ev_at (w) = w->repeat;
1680 ev_timer_start (EV_A_ w); 2616 ev_timer_start (EV_A_ w);
1681 } 2617 }
2618
2619 EV_FREQUENT_CHECK;
2620}
2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1682} 2626}
1683 2627
1684#if EV_PERIODIC_ENABLE 2628#if EV_PERIODIC_ENABLE
1685void noinline 2629void noinline
1686ev_periodic_start (EV_P_ ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
1687{ 2631{
1688 if (expect_false (ev_is_active (w))) 2632 if (expect_false (ev_is_active (w)))
1689 return; 2633 return;
1690 2634
1691 if (w->reschedule_cb) 2635 if (w->reschedule_cb)
1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2637 else if (w->interval)
1694 { 2638 {
1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1696 /* this formula differs from the one in periodic_reify because we do not always round up */ 2640 /* this formula differs from the one in periodic_reify because we do not always round up */
1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1698 } 2642 }
1699 else 2643 else
1700 ((WT)w)->at = w->offset; 2644 ev_at (w) = w->offset;
1701 2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
1702 ev_start (EV_A_ (W)w, ++periodiccnt); 2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1704 periodics [periodiccnt - 1] = (WT)w; 2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1705 upheap (periodics, periodiccnt - 1); 2652 ANHE_at_cache (periodics [ev_active (w)]);
2653 upheap (periodics, ev_active (w));
1706 2654
2655 EV_FREQUENT_CHECK;
2656
1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1708} 2658}
1709 2659
1710void noinline 2660void noinline
1711ev_periodic_stop (EV_P_ ev_periodic *w) 2661ev_periodic_stop (EV_P_ ev_periodic *w)
1712{ 2662{
1713 clear_pending (EV_A_ (W)w); 2663 clear_pending (EV_A_ (W)w);
1714 if (expect_false (!ev_is_active (w))) 2664 if (expect_false (!ev_is_active (w)))
1715 return; 2665 return;
1716 2666
1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2667 EV_FREQUENT_CHECK;
1718 2668
1719 { 2669 {
1720 int active = ((W)w)->active; 2670 int active = ev_active (w);
1721 2671
2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2673
2674 --periodiccnt;
2675
1722 if (expect_true (--active < --periodiccnt)) 2676 if (expect_true (active < periodiccnt + HEAP0))
1723 { 2677 {
1724 periodics [active] = periodics [periodiccnt]; 2678 periodics [active] = periodics [periodiccnt + HEAP0];
1725 adjustheap (periodics, periodiccnt, active); 2679 adjustheap (periodics, periodiccnt, active);
1726 } 2680 }
1727 } 2681 }
1728 2682
2683 EV_FREQUENT_CHECK;
2684
1729 ev_stop (EV_A_ (W)w); 2685 ev_stop (EV_A_ (W)w);
1730} 2686}
1731 2687
1732void noinline 2688void noinline
1733ev_periodic_again (EV_P_ ev_periodic *w) 2689ev_periodic_again (EV_P_ ev_periodic *w)
1743#endif 2699#endif
1744 2700
1745void noinline 2701void noinline
1746ev_signal_start (EV_P_ ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
1747{ 2703{
1748#if EV_MULTIPLICITY
1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1750#endif
1751 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
1752 return; 2705 return;
1753 2706
1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1755 2708
2709#if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2712
2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
1756 { 2720 {
1757#ifndef _WIN32 2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1758 sigset_t full, prev; 2722 if (sigfd < 0 && errno == EINVAL)
1759 sigfillset (&full); 2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762 2724
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
1764 2728
1765#ifndef _WIN32 2729 sigemptyset (&sigfd_set);
1766 sigprocmask (SIG_SETMASK, &prev, 0); 2730
1767#endif 2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
1768 } 2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
1769 2747
1770 ev_start (EV_A_ (W)w, 1); 2748 ev_start (EV_A_ (W)w, 1);
1771 wlist_add (&signals [w->signum - 1].head, (WL)w); 2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
1772 2750
1773 if (!((WL)w)->next) 2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754# endif
1774 { 2755 {
1775#if _WIN32 2756# if _WIN32
1776 signal (w->signum, sighandler); 2757 signal (w->signum, ev_sighandler);
1777#else 2758# else
1778 struct sigaction sa; 2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
1779 sa.sa_handler = sighandler; 2763 sa.sa_handler = ev_sighandler;
1780 sigfillset (&sa.sa_mask); 2764 sigfillset (&sa.sa_mask);
1781 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1782 sigaction (w->signum, &sa, 0); 2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1783#endif 2771#endif
1784 } 2772 }
2773
2774 EV_FREQUENT_CHECK;
1785} 2775}
1786 2776
1787void noinline 2777void noinline
1788ev_signal_stop (EV_P_ ev_signal *w) 2778ev_signal_stop (EV_P_ ev_signal *w)
1789{ 2779{
1790 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
1791 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
1792 return; 2782 return;
1793 2783
2784 EV_FREQUENT_CHECK;
2785
1794 wlist_del (&signals [w->signum - 1].head, (WL)w); 2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
1795 ev_stop (EV_A_ (W)w); 2787 ev_stop (EV_A_ (W)w);
1796 2788
1797 if (!signals [w->signum - 1].head) 2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
1798 signal (w->signum, SIG_DFL); 2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
1799} 2809}
1800 2810
1801void 2811void
1802ev_child_start (EV_P_ ev_child *w) 2812ev_child_start (EV_P_ ev_child *w)
1803{ 2813{
1804#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1806#endif 2816#endif
1807 if (expect_false (ev_is_active (w))) 2817 if (expect_false (ev_is_active (w)))
1808 return; 2818 return;
1809 2819
2820 EV_FREQUENT_CHECK;
2821
1810 ev_start (EV_A_ (W)w, 1); 2822 ev_start (EV_A_ (W)w, 1);
1811 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2824
2825 EV_FREQUENT_CHECK;
1812} 2826}
1813 2827
1814void 2828void
1815ev_child_stop (EV_P_ ev_child *w) 2829ev_child_stop (EV_P_ ev_child *w)
1816{ 2830{
1817 clear_pending (EV_A_ (W)w); 2831 clear_pending (EV_A_ (W)w);
1818 if (expect_false (!ev_is_active (w))) 2832 if (expect_false (!ev_is_active (w)))
1819 return; 2833 return;
1820 2834
2835 EV_FREQUENT_CHECK;
2836
1821 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1822 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
1823} 2841}
1824 2842
1825#if EV_STAT_ENABLE 2843#if EV_STAT_ENABLE
1826 2844
1827# ifdef _WIN32 2845# ifdef _WIN32
1828# undef lstat 2846# undef lstat
1829# define lstat(a,b) _stati64 (a,b) 2847# define lstat(a,b) _stati64 (a,b)
1830# endif 2848# endif
1831 2849
1832#define DEF_STAT_INTERVAL 5.0074891 2850#define DEF_STAT_INTERVAL 5.0074891
2851#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1833#define MIN_STAT_INTERVAL 0.1074891 2852#define MIN_STAT_INTERVAL 0.1074891
1834 2853
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2854static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836 2855
1837#if EV_USE_INOTIFY 2856#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192 2857# define EV_INOTIFY_BUFSIZE 8192
1842{ 2861{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844 2863
1845 if (w->wd < 0) 2864 if (w->wd < 0)
1846 { 2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848 2868
1849 /* monitor some parent directory for speedup hints */ 2869 /* monitor some parent directory for speedup hints */
2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2871 /* but an efficiency issue only */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 { 2873 {
1852 char path [4096]; 2874 char path [4096];
1853 strcpy (path, w->path); 2875 strcpy (path, w->path);
1854 2876
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859 2881
1860 char *pend = strrchr (path, '/'); 2882 char *pend = strrchr (path, '/');
1861 2883
1862 if (!pend) 2884 if (!pend || pend == path)
1863 break; /* whoops, no '/', complain to your admin */ 2885 break;
1864 2886
1865 *pend = 0; 2887 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask); 2888 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 } 2889 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 } 2891 }
1870 } 2892 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873 2893
1874 if (w->wd >= 0) 2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
1876} 2916}
1877 2917
1878static void noinline 2918static void noinline
1879infy_del (EV_P_ ev_stat *w) 2919infy_del (EV_P_ ev_stat *w)
1880{ 2920{
1894 2934
1895static void noinline 2935static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2936infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{ 2937{
1898 if (slot < 0) 2938 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */ 2939 /* overflow, need to check for all hash slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev); 2941 infy_wd (EV_A_ slot, wd, ev);
1902 else 2942 else
1903 { 2943 {
1904 WL w_; 2944 WL w_;
1910 2950
1911 if (w->wd == wd || wd == -1) 2951 if (w->wd == wd || wd == -1)
1912 { 2952 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 { 2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1915 w->wd = -1; 2956 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */ 2957 infy_add (EV_A_ w); /* re-add, no matter what */
1917 } 2958 }
1918 2959
1919 stat_timer_cb (EV_A_ &w->timer, 0); 2960 stat_timer_cb (EV_A_ &w->timer, 0);
1932 2973
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935} 2976}
1936 2977
1937void inline_size 2978inline_size void
2979check_2625 (EV_P)
2980{
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999}
3000
3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
1938infy_init (EV_P) 3013infy_init (EV_P)
1939{ 3014{
1940 if (fs_fd != -2) 3015 if (fs_fd != -2)
1941 return; 3016 return;
1942 3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
1943 fs_fd = inotify_init (); 3022 fs_fd = infy_newfd ();
1944 3023
1945 if (fs_fd >= 0) 3024 if (fs_fd >= 0)
1946 { 3025 {
3026 fd_intern (fs_fd);
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI); 3028 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w); 3029 ev_io_start (EV_A_ &fs_w);
1950 } 3030 }
1951} 3031}
1952 3032
1953void inline_size 3033inline_size void
1954infy_fork (EV_P) 3034infy_fork (EV_P)
1955{ 3035{
1956 int slot; 3036 int slot;
1957 3037
1958 if (fs_fd < 0) 3038 if (fs_fd < 0)
1959 return; 3039 return;
1960 3040
3041 ev_io_stop (EV_A_ &fs_w);
1961 close (fs_fd); 3042 close (fs_fd);
1962 fs_fd = inotify_init (); 3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
1963 3051
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 { 3053 {
1966 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
1974 w->wd = -1; 3062 w->wd = -1;
1975 3063
1976 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else 3066 else
1979 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
1980 } 3068 }
1981
1982 } 3069 }
1983} 3070}
1984 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
1985#endif 3078#endif
1986 3079
1987void 3080void
1988ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
1989{ 3082{
2016 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2019 ) { 3112 ) {
2020 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2021 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2024 #endif 3120 #endif
2025 3121
2026 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2027 } 3123 }
2028} 3124}
2031ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2032{ 3128{
2033 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2034 return; 3130 return;
2035 3131
2036 /* since we use memcmp, we need to clear any padding data etc. */
2037 memset (&w->prev, 0, sizeof (ev_statdata));
2038 memset (&w->attr, 0, sizeof (ev_statdata));
2039
2040 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2041 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2042 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2044 3136
2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2046 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2047 3139
2048#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2049 infy_init (EV_A); 3141 infy_init (EV_A);
2050 3142
2051 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2052 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2053 else 3145 else
2054#endif 3146#endif
2055 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2056 3148
2057 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2058} 3152}
2059 3153
2060void 3154void
2061ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2062{ 3156{
2063 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2065 return; 3159 return;
2066 3160
3161 EV_FREQUENT_CHECK;
3162
2067#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2069#endif 3165#endif
2070 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2071 3167
2072 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2073} 3171}
2074#endif 3172#endif
2075 3173
2076#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2077void 3175void
2079{ 3177{
2080 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2081 return; 3179 return;
2082 3180
2083 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2084 3184
2085 { 3185 {
2086 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2087 3187
2088 ++idleall; 3188 ++idleall;
2089 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2090 3190
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2093 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2094} 3196}
2095 3197
2096void 3198void
2097ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2098{ 3200{
2099 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2101 return; 3203 return;
2102 3204
3205 EV_FREQUENT_CHECK;
3206
2103 { 3207 {
2104 int active = ((W)w)->active; 3208 int active = ev_active (w);
2105 3209
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2108 3212
2109 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2110 --idleall; 3214 --idleall;
2111 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2112} 3218}
2113#endif 3219#endif
2114 3220
2115void 3221void
2116ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2117{ 3223{
2118 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2119 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2120 3228
2121 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2124} 3234}
2125 3235
2126void 3236void
2127ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2128{ 3238{
2129 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2131 return; 3241 return;
2132 3242
3243 EV_FREQUENT_CHECK;
3244
2133 { 3245 {
2134 int active = ((W)w)->active; 3246 int active = ev_active (w);
3247
2135 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active; 3249 ev_active (prepares [active - 1]) = active;
2137 } 3250 }
2138 3251
2139 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2140} 3255}
2141 3256
2142void 3257void
2143ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2144{ 3259{
2145 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2146 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2147 3264
2148 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2151} 3270}
2152 3271
2153void 3272void
2154ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2155{ 3274{
2156 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2158 return; 3277 return;
2159 3278
3279 EV_FREQUENT_CHECK;
3280
2160 { 3281 {
2161 int active = ((W)w)->active; 3282 int active = ev_active (w);
3283
2162 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active; 3285 ev_active (checks [active - 1]) = active;
2164 } 3286 }
2165 3287
2166 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2167} 3291}
2168 3292
2169#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2170void noinline 3294void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2172{ 3296{
2173 ev_loop (w->loop, EVLOOP_NONBLOCK); 3297 ev_loop (w->other, EVLOOP_NONBLOCK);
2174} 3298}
2175 3299
2176static void 3300static void
2177embed_cb (EV_P_ ev_io *io, int revents) 3301embed_io_cb (EV_P_ ev_io *io, int revents)
2178{ 3302{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3303 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180 3304
2181 if (ev_cb (w)) 3305 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3306 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else 3307 else
2184 ev_embed_sweep (loop, w); 3308 ev_loop (w->other, EVLOOP_NONBLOCK);
2185} 3309}
3310
3311static void
3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3313{
3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3315
3316 {
3317 EV_P = w->other;
3318
3319 while (fdchangecnt)
3320 {
3321 fd_reify (EV_A);
3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3323 }
3324 }
3325}
3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
3344#if 0
3345static void
3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3347{
3348 ev_idle_stop (EV_A_ idle);
3349}
3350#endif
2186 3351
2187void 3352void
2188ev_embed_start (EV_P_ ev_embed *w) 3353ev_embed_start (EV_P_ ev_embed *w)
2189{ 3354{
2190 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2191 return; 3356 return;
2192 3357
2193 { 3358 {
2194 struct ev_loop *loop = w->loop; 3359 EV_P = w->other;
2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2197 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2198 3365
2199 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2200 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2201 3368
3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
3370 ev_set_priority (&w->prepare, EV_MINPRI);
3371 ev_prepare_start (EV_A_ &w->prepare);
3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3377
2202 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2203} 3381}
2204 3382
2205void 3383void
2206ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2207{ 3385{
2208 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2209 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2210 return; 3388 return;
2211 3389
3390 EV_FREQUENT_CHECK;
3391
2212 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2213 3395
2214 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2215} 3397}
2216#endif 3398#endif
2217 3399
2218#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2219void 3401void
2220ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2221{ 3403{
2222 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2223 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2224 3408
2225 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2228} 3414}
2229 3415
2230void 3416void
2231ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2232{ 3418{
2233 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2235 return; 3421 return;
2236 3422
3423 EV_FREQUENT_CHECK;
3424
2237 { 3425 {
2238 int active = ((W)w)->active; 3426 int active = ev_active (w);
3427
2239 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active; 3429 ev_active (forks [active - 1]) = active;
2241 } 3430 }
2242 3431
2243 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
3435}
3436#endif
3437
3438#if EV_ASYNC_ENABLE
3439void
3440ev_async_start (EV_P_ ev_async *w)
3441{
3442 if (expect_false (ev_is_active (w)))
3443 return;
3444
3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++asynccnt);
3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454}
3455
3456void
3457ev_async_stop (EV_P_ ev_async *w)
3458{
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 asyncs [active - 1] = asyncs [--asynccnt];
3469 ev_active (asyncs [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476
3477void
3478ev_async_send (EV_P_ ev_async *w)
3479{
3480 w->sent = 1;
3481 evpipe_write (EV_A_ &async_pending);
2244} 3482}
2245#endif 3483#endif
2246 3484
2247/*****************************************************************************/ 3485/*****************************************************************************/
2248 3486
2258once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2259{ 3497{
2260 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2261 void *arg = once->arg; 3499 void *arg = once->arg;
2262 3500
2263 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2264 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2265 ev_free (once); 3503 ev_free (once);
2266 3504
2267 cb (revents, arg); 3505 cb (revents, arg);
2268} 3506}
2269 3507
2270static void 3508static void
2271once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2272{ 3510{
2273 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2274} 3514}
2275 3515
2276static void 3516static void
2277once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2278{ 3518{
2279 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2280} 3522}
2281 3523
2282void 3524void
2283ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2284{ 3526{
2306 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2307 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2308 } 3550 }
2309} 3551}
2310 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
3661#if EV_MULTIPLICITY
3662 #include "ev_wrap.h"
3663#endif
3664
2311#ifdef __cplusplus 3665#ifdef __cplusplus
2312} 3666}
2313#endif 3667#endif
2314 3668

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines