ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.164 by root, Fri Dec 7 16:44:10 2007 UTC vs.
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
417 } 428 }
418 429
419 return ncur; 430 return ncur;
420} 431}
421 432
422inline_speed void * 433static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 434array_realloc (int elem, void *base, int *cur, int cnt)
424{ 435{
425 *cur = array_nextsize (elem, *cur, cnt); 436 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 437 return ev_realloc (base, elem * *cur);
427} 438}
452 463
453void noinline 464void noinline
454ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
455{ 466{
456 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
457 469
458 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
459 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 478 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 479}
469 480
470void inline_size 481void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 483{
473 int i; 484 int i;
474 485
475 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
507} 518}
508 519
509void 520void
510ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 522{
523 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
513} 525}
514 526
515void inline_size 527void inline_size
516fd_reify (EV_P) 528fd_reify (EV_P)
517{ 529{
545 557
546 fdchangecnt = 0; 558 fdchangecnt = 0;
547} 559}
548 560
549void inline_size 561void inline_size
550fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd, int flags)
551{ 563{
552 if (expect_false (anfds [fd].reify)) 564 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 565 anfds [fd].reify |= flags | 1;
556 566
567 if (expect_true (!reify))
568 {
557 ++fdchangecnt; 569 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
572 }
560} 573}
561 574
562void inline_speed 575void inline_speed
563fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
564{ 577{
615 628
616 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 630 if (anfds [fd].events)
618 { 631 {
619 anfds [fd].events = 0; 632 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd, EV_IOFDSET);
621 } 634 }
622} 635}
623 636
624/*****************************************************************************/ 637/*****************************************************************************/
625 638
626void inline_speed 639void inline_speed
627upheap (WT *heap, int k) 640upheap (WT *heap, int k)
628{ 641{
629 WT w = heap [k]; 642 WT w = heap [k];
630 643
631 while (k && heap [k >> 1]->at > w->at) 644 while (k)
632 { 645 {
646 int p = (k - 1) >> 1;
647
648 if (heap [p]->at <= w->at)
649 break;
650
633 heap [k] = heap [k >> 1]; 651 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
635 k >>= 1; 653 k = p;
636 } 654 }
637 655
638 heap [k] = w; 656 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 657 ((W)heap [k])->active = k + 1;
640
641} 658}
642 659
643void inline_speed 660void inline_speed
644downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
645{ 662{
646 WT w = heap [k]; 663 WT w = heap [k];
647 664
648 while (k < (N >> 1)) 665 for (;;)
649 { 666 {
650 int j = k << 1; 667 int c = (k << 1) + 1;
651 668
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 670 break;
657 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
658 heap [k] = heap [j]; 678 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
660 k = j; 681 k = c;
661 } 682 }
662 683
663 heap [k] = w; 684 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
665} 686}
747 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
750} 771}
751 772
752void inline_size 773void inline_speed
753fd_intern (int fd) 774fd_intern (int fd)
754{ 775{
755#ifdef _WIN32 776#ifdef _WIN32
756 int arg = 1; 777 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
773} 794}
774 795
775/*****************************************************************************/ 796/*****************************************************************************/
776 797
777static ev_child *childs [EV_PID_HASHSIZE]; 798static WL childs [EV_PID_HASHSIZE];
778 799
779#ifndef _WIN32 800#ifndef _WIN32
780 801
781static ev_signal childev; 802static ev_signal childev;
782 803
1163 postfork = 1; 1184 postfork = 1;
1164} 1185}
1165 1186
1166/*****************************************************************************/ 1187/*****************************************************************************/
1167 1188
1189void
1190ev_invoke (EV_P_ void *w, int revents)
1191{
1192 EV_CB_INVOKE ((W)w, revents);
1193}
1194
1168void inline_speed 1195void inline_speed
1169call_pending (EV_P) 1196call_pending (EV_P)
1170{ 1197{
1171 int pri; 1198 int pri;
1172 1199
1188void inline_size 1215void inline_size
1189timers_reify (EV_P) 1216timers_reify (EV_P)
1190{ 1217{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 { 1219 {
1193 ev_timer *w = timers [0]; 1220 ev_timer *w = (ev_timer *)timers [0];
1194 1221
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196 1223
1197 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
1198 if (w->repeat) 1225 if (w->repeat)
1201 1228
1202 ((WT)w)->at += w->repeat; 1229 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now) 1230 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now; 1231 ((WT)w)->at = mn_now;
1205 1232
1206 downheap ((WT *)timers, timercnt, 0); 1233 downheap (timers, timercnt, 0);
1207 } 1234 }
1208 else 1235 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1237
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1216void inline_size 1243void inline_size
1217periodics_reify (EV_P) 1244periodics_reify (EV_P)
1218{ 1245{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 { 1247 {
1221 ev_periodic *w = periodics [0]; 1248 ev_periodic *w = (ev_periodic *)periodics [0];
1222 1249
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1251
1225 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1227 { 1254 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap (periodics, periodiccnt, 0);
1231 } 1258 }
1232 else if (w->interval) 1259 else if (w->interval)
1233 { 1260 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1237 } 1265 }
1238 else 1266 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240 1268
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1248 int i; 1276 int i;
1249 1277
1250 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
1252 { 1280 {
1253 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = (ev_periodic *)periodics [i];
1254 1282
1255 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1285 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1287 }
1260 1288
1261 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap (periodics, periodiccnt, i);
1264} 1292}
1265#endif 1293#endif
1266 1294
1267#if EV_IDLE_ENABLE 1295#if EV_IDLE_ENABLE
1268void inline_size 1296void inline_size
1269idle_reify (EV_P) 1297idle_reify (EV_P)
1270{ 1298{
1271 if (expect_false (!idleall)) 1299 if (expect_false (idleall))
1272 { 1300 {
1273 int pri; 1301 int pri;
1274 1302
1275 for (pri = NUMPRI; pri--; ) 1303 for (pri = NUMPRI; pri--; )
1276 { 1304 {
1285 } 1313 }
1286 } 1314 }
1287} 1315}
1288#endif 1316#endif
1289 1317
1290int inline_size 1318void inline_speed
1291time_update_monotonic (EV_P) 1319time_update (EV_P_ ev_tstamp max_block)
1292{ 1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1293 mn_now = get_clock (); 1328 mn_now = get_clock ();
1294 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1333 {
1297 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1335 return;
1299 } 1336 }
1300 else 1337
1301 {
1302 now_floor = mn_now; 1338 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1340
1308void inline_size 1341 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1310{ 1343 * in case we get preempted during the calls to
1311 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1312 1345 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1315 { 1348 */
1316 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1317 { 1350 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1331 1352
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1354 return; /* all is well */
1334 1355
1335 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1357 mn_now = get_clock ();
1337 now_floor = mn_now; 1358 now_floor = mn_now;
1338 } 1359 }
1339 1360
1340# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1342# endif 1363# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1366 }
1347 else 1367 else
1348#endif 1368#endif
1349 { 1369 {
1350 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1351 1371
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1373 {
1354#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1356#endif 1376#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 1380 }
1362 1381
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1426 call_pending (EV_A);
1408 } 1427 }
1409#endif 1428#endif
1410 1429
1411 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1413 { 1432 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1434 call_pending (EV_A);
1416 } 1435 }
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1433 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1434 else 1453 else
1435 { 1454 {
1436 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1457
1447 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1448 1459
1449 if (timercnt) 1460 if (timercnt)
1450 { 1461 {
1463 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1464 } 1475 }
1465 1476
1466 ++loop_count; 1477 ++loop_count;
1467 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1468 } 1482 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1483
1473 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1523 head = &(*head)->next; 1534 head = &(*head)->next;
1524 } 1535 }
1525} 1536}
1526 1537
1527void inline_speed 1538void inline_speed
1528ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1529{ 1540{
1530 if (w->pending) 1541 if (w->pending)
1531 { 1542 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 1544 w->pending = 0;
1534 } 1545 }
1546}
1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1535} 1563}
1536 1564
1537void inline_size 1565void inline_size
1538pri_adjust (EV_P_ W w) 1566pri_adjust (EV_P_ W w)
1539{ 1567{
1558 w->active = 0; 1586 w->active = 0;
1559} 1587}
1560 1588
1561/*****************************************************************************/ 1589/*****************************************************************************/
1562 1590
1563void 1591void noinline
1564ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1565{ 1593{
1566 int fd = w->fd; 1594 int fd = w->fd;
1567 1595
1568 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1570 1598
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 1599 assert (("ev_io_start called with negative fd", fd >= 0));
1572 1600
1573 ev_start (EV_A_ (W)w, 1); 1601 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add (&anfds[fd].head, (WL)w);
1576 1604
1577 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET);
1606 w->events &= ~ EV_IOFDSET;
1578} 1607}
1579 1608
1580void 1609void noinline
1581ev_io_stop (EV_P_ ev_io *w) 1610ev_io_stop (EV_P_ ev_io *w)
1582{ 1611{
1583 ev_clear_pending (EV_A_ (W)w); 1612 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 1613 if (expect_false (!ev_is_active (w)))
1585 return; 1614 return;
1586 1615
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 1617
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1618 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 1619 ev_stop (EV_A_ (W)w);
1591 1620
1592 fd_change (EV_A_ w->fd); 1621 fd_change (EV_A_ w->fd, 0);
1593} 1622}
1594 1623
1595void 1624void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 1625ev_timer_start (EV_P_ ev_timer *w)
1597{ 1626{
1598 if (expect_false (ev_is_active (w))) 1627 if (expect_false (ev_is_active (w)))
1599 return; 1628 return;
1600 1629
1601 ((WT)w)->at += mn_now; 1630 ((WT)w)->at += mn_now;
1602 1631
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 1633
1605 ev_start (EV_A_ (W)w, ++timercnt); 1634 ev_start (EV_A_ (W)w, ++timercnt);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1607 timers [timercnt - 1] = w; 1636 timers [timercnt - 1] = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 1637 upheap (timers, timercnt - 1);
1609 1638
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1611} 1640}
1612 1641
1613void 1642void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 1643ev_timer_stop (EV_P_ ev_timer *w)
1615{ 1644{
1616 ev_clear_pending (EV_A_ (W)w); 1645 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 1646 if (expect_false (!ev_is_active (w)))
1618 return; 1647 return;
1619 1648
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1621 1650
1622 { 1651 {
1623 int active = ((W)w)->active; 1652 int active = ((W)w)->active;
1624 1653
1625 if (expect_true (--active < --timercnt)) 1654 if (expect_true (--active < --timercnt))
1626 { 1655 {
1627 timers [active] = timers [timercnt]; 1656 timers [active] = timers [timercnt];
1628 adjustheap ((WT *)timers, timercnt, active); 1657 adjustheap (timers, timercnt, active);
1629 } 1658 }
1630 } 1659 }
1631 1660
1632 ((WT)w)->at -= mn_now; 1661 ((WT)w)->at -= mn_now;
1633 1662
1634 ev_stop (EV_A_ (W)w); 1663 ev_stop (EV_A_ (W)w);
1635} 1664}
1636 1665
1637void 1666void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 1667ev_timer_again (EV_P_ ev_timer *w)
1639{ 1668{
1640 if (ev_is_active (w)) 1669 if (ev_is_active (w))
1641 { 1670 {
1642 if (w->repeat) 1671 if (w->repeat)
1643 { 1672 {
1644 ((WT)w)->at = mn_now + w->repeat; 1673 ((WT)w)->at = mn_now + w->repeat;
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1674 adjustheap (timers, timercnt, ((W)w)->active - 1);
1646 } 1675 }
1647 else 1676 else
1648 ev_timer_stop (EV_A_ w); 1677 ev_timer_stop (EV_A_ w);
1649 } 1678 }
1650 else if (w->repeat) 1679 else if (w->repeat)
1653 ev_timer_start (EV_A_ w); 1682 ev_timer_start (EV_A_ w);
1654 } 1683 }
1655} 1684}
1656 1685
1657#if EV_PERIODIC_ENABLE 1686#if EV_PERIODIC_ENABLE
1658void 1687void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 1688ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 1689{
1661 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1662 return; 1691 return;
1663 1692
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 1695 else if (w->interval)
1667 { 1696 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 1698 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 1700 }
1701 else
1702 ((WT)w)->at = w->offset;
1672 1703
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 1704 ev_start (EV_A_ (W)w, ++periodiccnt);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 1706 periodics [periodiccnt - 1] = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 1707 upheap (periodics, periodiccnt - 1);
1677 1708
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1679} 1710}
1680 1711
1681void 1712void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 1713ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 1714{
1684 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 1716 if (expect_false (!ev_is_active (w)))
1686 return; 1717 return;
1687 1718
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1689 1720
1690 { 1721 {
1691 int active = ((W)w)->active; 1722 int active = ((W)w)->active;
1692 1723
1693 if (expect_true (--active < --periodiccnt)) 1724 if (expect_true (--active < --periodiccnt))
1694 { 1725 {
1695 periodics [active] = periodics [periodiccnt]; 1726 periodics [active] = periodics [periodiccnt];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 1727 adjustheap (periodics, periodiccnt, active);
1697 } 1728 }
1698 } 1729 }
1699 1730
1700 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1701} 1732}
1702 1733
1703void 1734void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 1735ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 1736{
1706 /* TODO: use adjustheap and recalculation */ 1737 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 1738 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 1739 ev_periodic_start (EV_A_ w);
1711 1742
1712#ifndef SA_RESTART 1743#ifndef SA_RESTART
1713# define SA_RESTART 0 1744# define SA_RESTART 0
1714#endif 1745#endif
1715 1746
1716void 1747void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 1748ev_signal_start (EV_P_ ev_signal *w)
1718{ 1749{
1719#if EV_MULTIPLICITY 1750#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif 1752#endif
1722 if (expect_false (ev_is_active (w))) 1753 if (expect_false (ev_is_active (w)))
1723 return; 1754 return;
1724 1755
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1726 1757
1758 {
1759#ifndef _WIN32
1760 sigset_t full, prev;
1761 sigfillset (&full);
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766
1767#ifndef _WIN32
1768 sigprocmask (SIG_SETMASK, &prev, 0);
1769#endif
1770 }
1771
1727 ev_start (EV_A_ (W)w, 1); 1772 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 1774
1731 if (!((WL)w)->next) 1775 if (!((WL)w)->next)
1732 { 1776 {
1733#if _WIN32 1777#if _WIN32
1734 signal (w->signum, sighandler); 1778 signal (w->signum, sighandler);
1740 sigaction (w->signum, &sa, 0); 1784 sigaction (w->signum, &sa, 0);
1741#endif 1785#endif
1742 } 1786 }
1743} 1787}
1744 1788
1745void 1789void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 1790ev_signal_stop (EV_P_ ev_signal *w)
1747{ 1791{
1748 ev_clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 1793 if (expect_false (!ev_is_active (w)))
1750 return; 1794 return;
1751 1795
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1796 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 1797 ev_stop (EV_A_ (W)w);
1754 1798
1755 if (!signals [w->signum - 1].head) 1799 if (!signals [w->signum - 1].head)
1756 signal (w->signum, SIG_DFL); 1800 signal (w->signum, SIG_DFL);
1757} 1801}
1764#endif 1808#endif
1765 if (expect_false (ev_is_active (w))) 1809 if (expect_false (ev_is_active (w)))
1766 return; 1810 return;
1767 1811
1768 ev_start (EV_A_ (W)w, 1); 1812 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1770} 1814}
1771 1815
1772void 1816void
1773ev_child_stop (EV_P_ ev_child *w) 1817ev_child_stop (EV_P_ ev_child *w)
1774{ 1818{
1775 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 1820 if (expect_false (!ev_is_active (w)))
1777 return; 1821 return;
1778 1822
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 1824 ev_stop (EV_A_ (W)w);
1781} 1825}
1782 1826
1783#if EV_STAT_ENABLE 1827#if EV_STAT_ENABLE
1784 1828
2016} 2060}
2017 2061
2018void 2062void
2019ev_stat_stop (EV_P_ ev_stat *w) 2063ev_stat_stop (EV_P_ ev_stat *w)
2020{ 2064{
2021 ev_clear_pending (EV_A_ (W)w); 2065 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2066 if (expect_false (!ev_is_active (w)))
2023 return; 2067 return;
2024 2068
2025#if EV_USE_INOTIFY 2069#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 2070 infy_del (EV_A_ w);
2052} 2096}
2053 2097
2054void 2098void
2055ev_idle_stop (EV_P_ ev_idle *w) 2099ev_idle_stop (EV_P_ ev_idle *w)
2056{ 2100{
2057 ev_clear_pending (EV_A_ (W)w); 2101 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2102 if (expect_false (!ev_is_active (w)))
2059 return; 2103 return;
2060 2104
2061 { 2105 {
2062 int active = ((W)w)->active; 2106 int active = ((W)w)->active;
2082} 2126}
2083 2127
2084void 2128void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 2129ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 2130{
2087 ev_clear_pending (EV_A_ (W)w); 2131 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2132 if (expect_false (!ev_is_active (w)))
2089 return; 2133 return;
2090 2134
2091 { 2135 {
2092 int active = ((W)w)->active; 2136 int active = ((W)w)->active;
2109} 2153}
2110 2154
2111void 2155void
2112ev_check_stop (EV_P_ ev_check *w) 2156ev_check_stop (EV_P_ ev_check *w)
2113{ 2157{
2114 ev_clear_pending (EV_A_ (W)w); 2158 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2159 if (expect_false (!ev_is_active (w)))
2116 return; 2160 return;
2117 2161
2118 { 2162 {
2119 int active = ((W)w)->active; 2163 int active = ((W)w)->active;
2161} 2205}
2162 2206
2163void 2207void
2164ev_embed_stop (EV_P_ ev_embed *w) 2208ev_embed_stop (EV_P_ ev_embed *w)
2165{ 2209{
2166 ev_clear_pending (EV_A_ (W)w); 2210 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 2211 if (expect_false (!ev_is_active (w)))
2168 return; 2212 return;
2169 2213
2170 ev_io_stop (EV_A_ &w->io); 2214 ev_io_stop (EV_A_ &w->io);
2171 2215
2186} 2230}
2187 2231
2188void 2232void
2189ev_fork_stop (EV_P_ ev_fork *w) 2233ev_fork_stop (EV_P_ ev_fork *w)
2190{ 2234{
2191 ev_clear_pending (EV_A_ (W)w); 2235 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 2236 if (expect_false (!ev_is_active (w)))
2193 return; 2237 return;
2194 2238
2195 { 2239 {
2196 int active = ((W)w)->active; 2240 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines