ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
417 } 428 }
418 429
419 return ncur; 430 return ncur;
420} 431}
421 432
422inline_speed void * 433static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 434array_realloc (int elem, void *base, int *cur, int cnt)
424{ 435{
425 *cur = array_nextsize (elem, *cur, cnt); 436 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 437 return ev_realloc (base, elem * *cur);
427} 438}
452 463
453void noinline 464void noinline
454ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
455{ 466{
456 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
457 469
458 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
459 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 478 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 479}
469 480
470void inline_size 481void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 483{
473 int i; 484 int i;
474 485
475 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
546 557
547 fdchangecnt = 0; 558 fdchangecnt = 0;
548} 559}
549 560
550void inline_size 561void inline_size
551fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd, int flags)
552{ 563{
553 if (expect_false (anfds [fd].reify)) 564 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 565 anfds [fd].reify |= flags | 1;
557 566
567 if (expect_true (!reify))
568 {
558 ++fdchangecnt; 569 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
572 }
561} 573}
562 574
563void inline_speed 575void inline_speed
564fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
565{ 577{
616 628
617 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 630 if (anfds [fd].events)
619 { 631 {
620 anfds [fd].events = 0; 632 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd, EV_IOFDSET);
622 } 634 }
623} 635}
624 636
625/*****************************************************************************/ 637/*****************************************************************************/
626 638
627void inline_speed 639void inline_speed
628upheap (WT *heap, int k) 640upheap (WT *heap, int k)
629{ 641{
630 WT w = heap [k]; 642 WT w = heap [k];
631 643
632 while (k && heap [k >> 1]->at > w->at) 644 while (k)
633 { 645 {
646 int p = (k - 1) >> 1;
647
648 if (heap [p]->at <= w->at)
649 break;
650
634 heap [k] = heap [k >> 1]; 651 heap [k] = heap [p];
635 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
636 k >>= 1; 653 k = p;
637 } 654 }
638 655
639 heap [k] = w; 656 heap [k] = w;
640 ((W)heap [k])->active = k + 1; 657 ((W)heap [k])->active = k + 1;
641
642} 658}
643 659
644void inline_speed 660void inline_speed
645downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
646{ 662{
647 WT w = heap [k]; 663 WT w = heap [k];
648 664
649 while (k < (N >> 1)) 665 for (;;)
650 { 666 {
651 int j = k << 1; 667 int c = (k << 1) + 1;
652 668
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break; 670 break;
658 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
659 heap [k] = heap [j]; 678 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
661 k = j; 681 k = c;
662 } 682 }
663 683
664 heap [k] = w; 684 heap [k] = w;
665 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
666} 686}
748 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
751} 771}
752 772
753void inline_size 773void inline_speed
754fd_intern (int fd) 774fd_intern (int fd)
755{ 775{
756#ifdef _WIN32 776#ifdef _WIN32
757 int arg = 1; 777 int arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
774} 794}
775 795
776/*****************************************************************************/ 796/*****************************************************************************/
777 797
778static ev_child *childs [EV_PID_HASHSIZE]; 798static WL childs [EV_PID_HASHSIZE];
779 799
780#ifndef _WIN32 800#ifndef _WIN32
781 801
782static ev_signal childev; 802static ev_signal childev;
783 803
1195void inline_size 1215void inline_size
1196timers_reify (EV_P) 1216timers_reify (EV_P)
1197{ 1217{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 { 1219 {
1200 ev_timer *w = timers [0]; 1220 ev_timer *w = (ev_timer *)timers [0];
1201 1221
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203 1223
1204 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
1205 if (w->repeat) 1225 if (w->repeat)
1208 1228
1209 ((WT)w)->at += w->repeat; 1229 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now) 1230 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now; 1231 ((WT)w)->at = mn_now;
1212 1232
1213 downheap ((WT *)timers, timercnt, 0); 1233 downheap (timers, timercnt, 0);
1214 } 1234 }
1215 else 1235 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217 1237
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1223void inline_size 1243void inline_size
1224periodics_reify (EV_P) 1244periodics_reify (EV_P)
1225{ 1245{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 { 1247 {
1228 ev_periodic *w = periodics [0]; 1248 ev_periodic *w = (ev_periodic *)periodics [0];
1229 1249
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231 1251
1232 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1233 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1234 { 1254 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap (periodics, periodiccnt, 0);
1238 } 1258 }
1239 else if (w->interval) 1259 else if (w->interval)
1240 { 1260 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1244 } 1265 }
1245 else 1266 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247 1268
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1255 int i; 1276 int i;
1256 1277
1257 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
1259 { 1280 {
1260 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = (ev_periodic *)periodics [i];
1261 1282
1262 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval) 1285 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1266 } 1287 }
1267 1288
1268 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap (periodics, periodiccnt, i);
1271} 1292}
1272#endif 1293#endif
1273 1294
1274#if EV_IDLE_ENABLE 1295#if EV_IDLE_ENABLE
1275void inline_size 1296void inline_size
1292 } 1313 }
1293 } 1314 }
1294} 1315}
1295#endif 1316#endif
1296 1317
1297int inline_size 1318void inline_speed
1298time_update_monotonic (EV_P) 1319time_update (EV_P_ ev_tstamp max_block)
1299{ 1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1300 mn_now = get_clock (); 1328 mn_now = get_clock ();
1301 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1333 {
1304 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1335 return;
1306 } 1336 }
1307 else 1337
1308 {
1309 now_floor = mn_now; 1338 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1340
1315void inline_size 1341 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1317{ 1343 * in case we get preempted during the calls to
1318 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1319 1345 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1322 { 1348 */
1323 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1324 { 1350 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1338 1352
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1340 return; /* all is well */ 1354 return; /* all is well */
1341 1355
1342 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1357 mn_now = get_clock ();
1344 now_floor = mn_now; 1358 now_floor = mn_now;
1345 } 1359 }
1346 1360
1347# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1349# endif 1363# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1366 }
1354 else 1367 else
1355#endif 1368#endif
1356 { 1369 {
1357 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1358 1371
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1373 {
1361#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1363#endif 1376#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 1380 }
1369 1381
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1426 call_pending (EV_A);
1415 } 1427 }
1416#endif 1428#endif
1417 1429
1418 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1420 { 1432 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1434 call_pending (EV_A);
1423 } 1435 }
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1440 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1441 else 1453 else
1442 { 1454 {
1443 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1457
1454 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1455 1459
1456 if (timercnt) 1460 if (timercnt)
1457 { 1461 {
1470 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1471 } 1475 }
1472 1476
1473 ++loop_count; 1477 ++loop_count;
1474 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1475 } 1482 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 1483
1480 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1545ev_clear_pending (EV_P_ void *w) 1549ev_clear_pending (EV_P_ void *w)
1546{ 1550{
1547 W w_ = (W)w; 1551 W w_ = (W)w;
1548 int pending = w_->pending; 1552 int pending = w_->pending;
1549 1553
1550 if (!pending) 1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1551 return 0; 1562 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 1563}
1559 1564
1560void inline_size 1565void inline_size
1561pri_adjust (EV_P_ W w) 1566pri_adjust (EV_P_ W w)
1562{ 1567{
1581 w->active = 0; 1586 w->active = 0;
1582} 1587}
1583 1588
1584/*****************************************************************************/ 1589/*****************************************************************************/
1585 1590
1586void 1591void noinline
1587ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1588{ 1593{
1589 int fd = w->fd; 1594 int fd = w->fd;
1590 1595
1591 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1593 1598
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 1599 assert (("ev_io_start called with negative fd", fd >= 0));
1595 1600
1596 ev_start (EV_A_ (W)w, 1); 1601 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add (&anfds[fd].head, (WL)w);
1599 1604
1600 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET);
1606 w->events &= ~ EV_IOFDSET;
1601} 1607}
1602 1608
1603void 1609void noinline
1604ev_io_stop (EV_P_ ev_io *w) 1610ev_io_stop (EV_P_ ev_io *w)
1605{ 1611{
1606 clear_pending (EV_A_ (W)w); 1612 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 1613 if (expect_false (!ev_is_active (w)))
1608 return; 1614 return;
1609 1615
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 1617
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1618 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 1619 ev_stop (EV_A_ (W)w);
1614 1620
1615 fd_change (EV_A_ w->fd); 1621 fd_change (EV_A_ w->fd, 0);
1616} 1622}
1617 1623
1618void 1624void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 1625ev_timer_start (EV_P_ ev_timer *w)
1620{ 1626{
1621 if (expect_false (ev_is_active (w))) 1627 if (expect_false (ev_is_active (w)))
1622 return; 1628 return;
1623 1629
1624 ((WT)w)->at += mn_now; 1630 ((WT)w)->at += mn_now;
1625 1631
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 1633
1628 ev_start (EV_A_ (W)w, ++timercnt); 1634 ev_start (EV_A_ (W)w, ++timercnt);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1630 timers [timercnt - 1] = w; 1636 timers [timercnt - 1] = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 1637 upheap (timers, timercnt - 1);
1632 1638
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1634} 1640}
1635 1641
1636void 1642void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 1643ev_timer_stop (EV_P_ ev_timer *w)
1638{ 1644{
1639 clear_pending (EV_A_ (W)w); 1645 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1646 if (expect_false (!ev_is_active (w)))
1641 return; 1647 return;
1642 1648
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1644 1650
1645 { 1651 {
1646 int active = ((W)w)->active; 1652 int active = ((W)w)->active;
1647 1653
1648 if (expect_true (--active < --timercnt)) 1654 if (expect_true (--active < --timercnt))
1649 { 1655 {
1650 timers [active] = timers [timercnt]; 1656 timers [active] = timers [timercnt];
1651 adjustheap ((WT *)timers, timercnt, active); 1657 adjustheap (timers, timercnt, active);
1652 } 1658 }
1653 } 1659 }
1654 1660
1655 ((WT)w)->at -= mn_now; 1661 ((WT)w)->at -= mn_now;
1656 1662
1657 ev_stop (EV_A_ (W)w); 1663 ev_stop (EV_A_ (W)w);
1658} 1664}
1659 1665
1660void 1666void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 1667ev_timer_again (EV_P_ ev_timer *w)
1662{ 1668{
1663 if (ev_is_active (w)) 1669 if (ev_is_active (w))
1664 { 1670 {
1665 if (w->repeat) 1671 if (w->repeat)
1666 { 1672 {
1667 ((WT)w)->at = mn_now + w->repeat; 1673 ((WT)w)->at = mn_now + w->repeat;
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1674 adjustheap (timers, timercnt, ((W)w)->active - 1);
1669 } 1675 }
1670 else 1676 else
1671 ev_timer_stop (EV_A_ w); 1677 ev_timer_stop (EV_A_ w);
1672 } 1678 }
1673 else if (w->repeat) 1679 else if (w->repeat)
1676 ev_timer_start (EV_A_ w); 1682 ev_timer_start (EV_A_ w);
1677 } 1683 }
1678} 1684}
1679 1685
1680#if EV_PERIODIC_ENABLE 1686#if EV_PERIODIC_ENABLE
1681void 1687void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 1688ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 1689{
1684 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1685 return; 1691 return;
1686 1692
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 1695 else if (w->interval)
1690 { 1696 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 1698 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 1700 }
1701 else
1702 ((WT)w)->at = w->offset;
1695 1703
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 1704 ev_start (EV_A_ (W)w, ++periodiccnt);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 1706 periodics [periodiccnt - 1] = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 1707 upheap (periodics, periodiccnt - 1);
1700 1708
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1702} 1710}
1703 1711
1704void 1712void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 1713ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 1714{
1707 clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1716 if (expect_false (!ev_is_active (w)))
1709 return; 1717 return;
1710 1718
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1712 1720
1713 { 1721 {
1714 int active = ((W)w)->active; 1722 int active = ((W)w)->active;
1715 1723
1716 if (expect_true (--active < --periodiccnt)) 1724 if (expect_true (--active < --periodiccnt))
1717 { 1725 {
1718 periodics [active] = periodics [periodiccnt]; 1726 periodics [active] = periodics [periodiccnt];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 1727 adjustheap (periodics, periodiccnt, active);
1720 } 1728 }
1721 } 1729 }
1722 1730
1723 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1724} 1732}
1725 1733
1726void 1734void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 1735ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 1736{
1729 /* TODO: use adjustheap and recalculation */ 1737 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 1738 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 1739 ev_periodic_start (EV_A_ w);
1734 1742
1735#ifndef SA_RESTART 1743#ifndef SA_RESTART
1736# define SA_RESTART 0 1744# define SA_RESTART 0
1737#endif 1745#endif
1738 1746
1739void 1747void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 1748ev_signal_start (EV_P_ ev_signal *w)
1741{ 1749{
1742#if EV_MULTIPLICITY 1750#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 1752#endif
1745 if (expect_false (ev_is_active (w))) 1753 if (expect_false (ev_is_active (w)))
1746 return; 1754 return;
1747 1755
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 1757
1758 {
1759#ifndef _WIN32
1760 sigset_t full, prev;
1761 sigfillset (&full);
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766
1767#ifndef _WIN32
1768 sigprocmask (SIG_SETMASK, &prev, 0);
1769#endif
1770 }
1771
1750 ev_start (EV_A_ (W)w, 1); 1772 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 1774
1754 if (!((WL)w)->next) 1775 if (!((WL)w)->next)
1755 { 1776 {
1756#if _WIN32 1777#if _WIN32
1757 signal (w->signum, sighandler); 1778 signal (w->signum, sighandler);
1763 sigaction (w->signum, &sa, 0); 1784 sigaction (w->signum, &sa, 0);
1764#endif 1785#endif
1765 } 1786 }
1766} 1787}
1767 1788
1768void 1789void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 1790ev_signal_stop (EV_P_ ev_signal *w)
1770{ 1791{
1771 clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 1793 if (expect_false (!ev_is_active (w)))
1773 return; 1794 return;
1774 1795
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1796 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 1797 ev_stop (EV_A_ (W)w);
1777 1798
1778 if (!signals [w->signum - 1].head) 1799 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 1800 signal (w->signum, SIG_DFL);
1780} 1801}
1787#endif 1808#endif
1788 if (expect_false (ev_is_active (w))) 1809 if (expect_false (ev_is_active (w)))
1789 return; 1810 return;
1790 1811
1791 ev_start (EV_A_ (W)w, 1); 1812 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1793} 1814}
1794 1815
1795void 1816void
1796ev_child_stop (EV_P_ ev_child *w) 1817ev_child_stop (EV_P_ ev_child *w)
1797{ 1818{
1798 clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 1820 if (expect_false (!ev_is_active (w)))
1800 return; 1821 return;
1801 1822
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 1824 ev_stop (EV_A_ (W)w);
1804} 1825}
1805 1826
1806#if EV_STAT_ENABLE 1827#if EV_STAT_ENABLE
1807 1828

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines