ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
58#include <stdlib.h> 110#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 111#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 112#include <stddef.h>
63 113
64#include <stdio.h> 114#include <stdio.h>
65 115
66#include <assert.h> 116#include <assert.h>
67#include <errno.h> 117#include <errno.h>
68#include <sys/types.h> 118#include <sys/types.h>
119#include <time.h>
120
121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
69#ifndef WIN32 129#ifndef _WIN32
130# include <sys/time.h>
70# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
71#endif 138# endif
72#include <sys/time.h> 139#endif
73#include <time.h>
74 140
75/**/ 141/**/
76 142
77#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
79#endif 149#endif
80 150
81#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
83#endif 153#endif
84 154
85#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
87#endif 161#endif
88 162
89#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
91#endif 165#endif
92 166
93#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
95#endif 169#endif
96 170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
97#ifndef EV_USE_WIN32 175#ifndef EV_USE_INOTIFY
98# ifdef WIN32 176# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
100# else 182# else
101# define EV_USE_WIN32 0 183# define EV_PID_HASHSIZE 16
102# endif 184# endif
103#endif 185#endif
104 186
105#ifndef EV_USE_REALTIME 187#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
107#endif 193#endif
108 194
109/**/ 195/**/
110 196
111#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
119#endif 205#endif
120 206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
121/**/ 219/**/
122 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127
128#include "ev.h"
129 234
130#if __GNUC__ >= 3 235#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 237# define noinline __attribute__ ((noinline))
133#else 238#else
134# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
135# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
136#endif 244#endif
137 245
138#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
140 255
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 258
259#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */
261
144typedef struct ev_watcher *W; 262typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
147 265
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 267
150#if WIN32 268#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 269# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 270#endif
155 271
156/*****************************************************************************/ 272/*****************************************************************************/
157 273
158static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
159 275
276void
160void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 278{
162 syserr_cb = cb; 279 syserr_cb = cb;
163} 280}
164 281
165static void 282static void noinline
166syserr (const char *msg) 283syserr (const char *msg)
167{ 284{
168 if (!msg) 285 if (!msg)
169 msg = "(libev) system error"; 286 msg = "(libev) system error";
170 287
177 } 294 }
178} 295}
179 296
180static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
181 298
299void
182void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
183{ 301{
184 alloc = cb; 302 alloc = cb;
185} 303}
186 304
187static void * 305inline_speed void *
188ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
189{ 307{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191 309
192 if (!ptr && size) 310 if (!ptr && size)
206typedef struct 324typedef struct
207{ 325{
208 WL head; 326 WL head;
209 unsigned char events; 327 unsigned char events;
210 unsigned char reify; 328 unsigned char reify;
329#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle;
331#endif
211} ANFD; 332} ANFD;
212 333
213typedef struct 334typedef struct
214{ 335{
215 W w; 336 W w;
216 int events; 337 int events;
217} ANPENDING; 338} ANPENDING;
218 339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
346
219#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
220 348
221struct ev_loop 349 struct ev_loop
222{ 350 {
351 ev_tstamp ev_rt_now;
352 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 353 #define VAR(name,decl) decl;
224# include "ev_vars.h" 354 #include "ev_vars.h"
225};
226# undef VAR 355 #undef VAR
356 };
227# include "ev_wrap.h" 357 #include "ev_wrap.h"
358
359 static struct ev_loop default_loop_struct;
360 struct ev_loop *ev_default_loop_ptr;
228 361
229#else 362#else
230 363
364 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 365 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 366 #include "ev_vars.h"
233# undef VAR 367 #undef VAR
368
369 static int ev_default_loop_ptr;
234 370
235#endif 371#endif
236 372
237/*****************************************************************************/ 373/*****************************************************************************/
238 374
239inline ev_tstamp 375ev_tstamp
240ev_time (void) 376ev_time (void)
241{ 377{
242#if EV_USE_REALTIME 378#if EV_USE_REALTIME
243 struct timespec ts; 379 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 380 clock_gettime (CLOCK_REALTIME, &ts);
248 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
249 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
250#endif 386#endif
251} 387}
252 388
253inline ev_tstamp 389ev_tstamp inline_size
254get_clock (void) 390get_clock (void)
255{ 391{
256#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
257 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
258 { 394 {
263#endif 399#endif
264 400
265 return ev_time (); 401 return ev_time ();
266} 402}
267 403
404#if EV_MULTIPLICITY
268ev_tstamp 405ev_tstamp
269ev_now (EV_P) 406ev_now (EV_P)
270{ 407{
271 return rt_now; 408 return ev_rt_now;
272} 409}
410#endif
273 411
274#define array_roundsize(base,n) ((n) | 4 & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
275 416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
439
276#define array_needsize(base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
278 { \ 442 { \
279 int newcnt = cur; \ 443 int ocur_ = (cur); \
280 do \ 444 (base) = (type *)array_realloc \
281 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
282 newcnt = array_roundsize (base, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
283 } \
284 while ((cnt) > newcnt); \
285 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
287 init (base + cur, newcnt - cur); \
288 cur = newcnt; \
289 } 447 }
290 448
449#if 0
291#define array_slim(stem) \ 450#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 452 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 456 }
457#endif
298 458
299#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
301 461
302/*****************************************************************************/ 462/*****************************************************************************/
303 463
304static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
305anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
306{ 494{
307 while (count--) 495 while (count--)
308 { 496 {
309 base->head = 0; 497 base->head = 0;
312 500
313 ++base; 501 ++base;
314 } 502 }
315} 503}
316 504
317static void 505void inline_speed
318event (EV_P_ W w, int events)
319{
320 if (w->pending)
321 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
323 return;
324 }
325
326 w->pending = ++pendingcnt [ABSPRI (w)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
328 pendings [ABSPRI (w)][w->pending - 1].w = w;
329 pendings [ABSPRI (w)][w->pending - 1].events = events;
330}
331
332static void
333queue_events (EV_P_ W *events, int eventcnt, int type)
334{
335 int i;
336
337 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type);
339}
340
341static void
342fd_event (EV_P_ int fd, int events) 506fd_event (EV_P_ int fd, int revents)
343{ 507{
344 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 509 ev_io *w;
346 510
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
348 { 512 {
349 int ev = w->events & events; 513 int ev = w->events & revents;
350 514
351 if (ev) 515 if (ev)
352 event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
353 } 517 }
354} 518}
355 519
356/*****************************************************************************/ 520void
521ev_feed_fd_event (EV_P_ int fd, int revents)
522{
523 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents);
525}
357 526
358static void 527void inline_size
359fd_reify (EV_P) 528fd_reify (EV_P)
360{ 529{
361 int i; 530 int i;
362 531
363 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
364 { 533 {
365 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
366 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
367 struct ev_io *w; 536 ev_io *w;
368 537
369 int events = 0; 538 int events = 0;
370 539
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 events |= w->events; 541 events |= w->events;
373 542
543#if EV_SELECT_IS_WINSOCKET
544 if (events)
545 {
546 unsigned long argp;
547 anfd->handle = _get_osfhandle (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 }
550#endif
551
374 anfd->reify = 0; 552 anfd->reify = 0;
375 553
376 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events; 555 anfd->events = events;
378 } 556 }
379 557
380 fdchangecnt = 0; 558 fdchangecnt = 0;
381} 559}
382 560
383static void 561void inline_size
384fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd, int flags)
385{ 563{
386 if (anfds [fd].reify) 564 unsigned char reify = anfds [fd].reify;
387 return;
388
389 anfds [fd].reify = 1; 565 anfds [fd].reify |= flags | 1;
390 566
567 if (expect_true (!reify))
568 {
391 ++fdchangecnt; 569 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
393 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
572 }
394} 573}
395 574
396static void 575void inline_speed
397fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
398{ 577{
399 struct ev_io *w; 578 ev_io *w;
400 579
401 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
402 { 581 {
403 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 584 }
585}
586
587int inline_size
588fd_valid (int fd)
589{
590#ifdef _WIN32
591 return _get_osfhandle (fd) != -1;
592#else
593 return fcntl (fd, F_GETFD) != -1;
594#endif
406} 595}
407 596
408/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
409static void 598static void noinline
410fd_ebadf (EV_P) 599fd_ebadf (EV_P)
411{ 600{
412 int fd; 601 int fd;
413 602
414 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 604 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
418} 607}
419 608
420/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 610static void noinline
422fd_enomem (EV_P) 611fd_enomem (EV_P)
423{ 612{
424 int fd; 613 int fd;
425 614
426 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
429 fd_kill (EV_A_ fd); 618 fd_kill (EV_A_ fd);
430 return; 619 return;
431 } 620 }
432} 621}
433 622
434/* usually called after fork if method needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
435static void 624static void noinline
436fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
437{ 626{
438 int fd; 627 int fd;
439 628
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events) 630 if (anfds [fd].events)
443 { 631 {
444 anfds [fd].events = 0; 632 anfds [fd].events = 0;
445 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd, EV_IOFDSET);
446 } 634 }
447} 635}
448 636
449/*****************************************************************************/ 637/*****************************************************************************/
450 638
451static void 639void inline_speed
452upheap (WT *heap, int k) 640upheap (WT *heap, int k)
453{ 641{
454 WT w = heap [k]; 642 WT w = heap [k];
455 643
456 while (k && heap [k >> 1]->at > w->at) 644 while (k)
457 { 645 {
646 int p = (k - 1) >> 1;
647
648 if (heap [p]->at <= w->at)
649 break;
650
458 heap [k] = heap [k >> 1]; 651 heap [k] = heap [p];
459 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
460 k >>= 1; 653 k = p;
461 } 654 }
462 655
463 heap [k] = w; 656 heap [k] = w;
464 ((W)heap [k])->active = k + 1; 657 ((W)heap [k])->active = k + 1;
465
466} 658}
467 659
468static void 660void inline_speed
469downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
470{ 662{
471 WT w = heap [k]; 663 WT w = heap [k];
472 664
473 while (k < (N >> 1)) 665 for (;;)
474 { 666 {
475 int j = k << 1; 667 int c = (k << 1) + 1;
476 668
477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
478 ++j;
479
480 if (w->at <= heap [j]->at)
481 break; 670 break;
482 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
483 heap [k] = heap [j]; 678 heap [k] = heap [c];
484 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
485 k = j; 681 k = c;
486 } 682 }
487 683
488 heap [k] = w; 684 heap [k] = w;
489 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k)
690{
691 upheap (heap, k);
692 downheap (heap, N, k);
490} 693}
491 694
492/*****************************************************************************/ 695/*****************************************************************************/
493 696
494typedef struct 697typedef struct
500static ANSIG *signals; 703static ANSIG *signals;
501static int signalmax; 704static int signalmax;
502 705
503static int sigpipe [2]; 706static int sigpipe [2];
504static sig_atomic_t volatile gotsig; 707static sig_atomic_t volatile gotsig;
505static struct ev_io sigev; 708static ev_io sigev;
506 709
507static void 710void inline_size
508signals_init (ANSIG *base, int count) 711signals_init (ANSIG *base, int count)
509{ 712{
510 while (count--) 713 while (count--)
511 { 714 {
512 base->head = 0; 715 base->head = 0;
517} 720}
518 721
519static void 722static void
520sighandler (int signum) 723sighandler (int signum)
521{ 724{
522#if WIN32 725#if _WIN32
523 signal (signum, sighandler); 726 signal (signum, sighandler);
524#endif 727#endif
525 728
526 signals [signum - 1].gotsig = 1; 729 signals [signum - 1].gotsig = 1;
527 730
532 write (sigpipe [1], &signum, 1); 735 write (sigpipe [1], &signum, 1);
533 errno = old_errno; 736 errno = old_errno;
534 } 737 }
535} 738}
536 739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
537static void 760static void
538sigcb (EV_P_ struct ev_io *iow, int revents) 761sigcb (EV_P_ ev_io *iow, int revents)
539{ 762{
540 WL w;
541 int signum; 763 int signum;
542 764
543 read (sigpipe [0], &revents, 1); 765 read (sigpipe [0], &revents, 1);
544 gotsig = 0; 766 gotsig = 0;
545 767
546 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
548 { 770 ev_feed_signal_event (EV_A_ signum + 1);
549 signals [signum].gotsig = 0;
550
551 for (w = signals [signum].head; w; w = w->next)
552 event (EV_A_ (W)w, EV_SIGNAL);
553 }
554} 771}
555 772
556static void 773void inline_speed
774fd_intern (int fd)
775{
776#ifdef _WIN32
777 int arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif
783}
784
785static void noinline
557siginit (EV_P) 786siginit (EV_P)
558{ 787{
559#ifndef WIN32 788 fd_intern (sigpipe [0]);
560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 789 fd_intern (sigpipe [1]);
561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562
563 /* rather than sort out wether we really need nb, set it */
564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
567 790
568 ev_io_set (&sigev, sigpipe [0], EV_READ); 791 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 ev_io_start (EV_A_ &sigev); 792 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
571} 794}
572 795
573/*****************************************************************************/ 796/*****************************************************************************/
574 797
798static WL childs [EV_PID_HASHSIZE];
799
575#ifndef WIN32 800#ifndef _WIN32
576 801
577static struct ev_child *childs [PID_HASHSIZE];
578static struct ev_signal childev; 802static ev_signal childev;
803
804void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
806{
807 ev_child *w;
808
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
810 if (w->pid == pid || !w->pid)
811 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
813 w->rpid = pid;
814 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 }
817}
579 818
580#ifndef WCONTINUED 819#ifndef WCONTINUED
581# define WCONTINUED 0 820# define WCONTINUED 0
582#endif 821#endif
583 822
584static void 823static void
585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586{
587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 824childcb (EV_P_ ev_signal *sw, int revents)
601{ 825{
602 int pid, status; 826 int pid, status;
603 827
828 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 829 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 830 if (!WCONTINUED
831 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return;
834
606 /* make sure we are called again until all childs have been reaped */ 835 /* make sure we are called again until all childs have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */
607 event (EV_A_ (W)sw, EV_SIGNAL); 837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 838
609 child_reap (EV_A_ sw, pid, pid, status); 839 child_reap (EV_A_ sw, pid, pid, status);
840 if (EV_PID_HASHSIZE > 1)
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
611 }
612} 842}
613 843
614#endif 844#endif
615 845
616/*****************************************************************************/ 846/*****************************************************************************/
617 847
848#if EV_USE_PORT
849# include "ev_port.c"
850#endif
618#if EV_USE_KQUEUE 851#if EV_USE_KQUEUE
619# include "ev_kqueue.c" 852# include "ev_kqueue.c"
620#endif 853#endif
621#if EV_USE_EPOLL 854#if EV_USE_EPOLL
622# include "ev_epoll.c" 855# include "ev_epoll.c"
639{ 872{
640 return EV_VERSION_MINOR; 873 return EV_VERSION_MINOR;
641} 874}
642 875
643/* return true if we are running with elevated privileges and should ignore env variables */ 876/* return true if we are running with elevated privileges and should ignore env variables */
644static int 877int inline_size
645enable_secure (void) 878enable_secure (void)
646{ 879{
647#ifdef WIN32 880#ifdef _WIN32
648 return 0; 881 return 0;
649#else 882#else
650 return getuid () != geteuid () 883 return getuid () != geteuid ()
651 || getgid () != getegid (); 884 || getgid () != getegid ();
652#endif 885#endif
653} 886}
654 887
655int 888unsigned int
656ev_method (EV_P) 889ev_supported_backends (void)
657{ 890{
658 return method; 891 unsigned int flags = 0;
659}
660 892
661static void 893 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
662loop_init (EV_P_ int methods) 894 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
895 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
896 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
897 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
898
899 return flags;
900}
901
902unsigned int
903ev_recommended_backends (void)
663{ 904{
664 if (!method) 905 unsigned int flags = ev_supported_backends ();
906
907#ifndef __NetBSD__
908 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE;
911#endif
912#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation
914 flags &= ~EVBACKEND_POLL;
915#endif
916
917 return flags;
918}
919
920unsigned int
921ev_embeddable_backends (void)
922{
923 return EVBACKEND_EPOLL
924 | EVBACKEND_KQUEUE
925 | EVBACKEND_PORT;
926}
927
928unsigned int
929ev_backend (EV_P)
930{
931 return backend;
932}
933
934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
940static void noinline
941loop_init (EV_P_ unsigned int flags)
942{
943 if (!backend)
665 { 944 {
666#if EV_USE_MONOTONIC 945#if EV_USE_MONOTONIC
667 { 946 {
668 struct timespec ts; 947 struct timespec ts;
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 948 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670 have_monotonic = 1; 949 have_monotonic = 1;
671 } 950 }
672#endif 951#endif
673 952
674 rt_now = ev_time (); 953 ev_rt_now = ev_time ();
675 mn_now = get_clock (); 954 mn_now = get_clock ();
676 now_floor = mn_now; 955 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
678 957
679 if (methods == EVMETHOD_AUTO) 958 /* pid check not overridable via env */
680 if (!enable_secure () && getenv ("LIBEV_METHODS")) 959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
964 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS"))
681 methods = atoi (getenv ("LIBEV_METHODS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
682 else
683 methods = EVMETHOD_ANY;
684 968
685 method = 0; 969 if (!(flags & 0x0000ffffUL))
970 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
686#if EV_USE_WIN32 974#if EV_USE_INOTIFY
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 975 fs_fd = -2;
976#endif
977
978#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
688#endif 980#endif
689#if EV_USE_KQUEUE 981#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
691#endif 983#endif
692#if EV_USE_EPOLL 984#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 985 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
694#endif 986#endif
695#if EV_USE_POLL 987#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 988 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
697#endif 989#endif
698#if EV_USE_SELECT 990#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
700#endif 992#endif
701 993
702 ev_watcher_init (&sigev, sigcb); 994 ev_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI); 995 ev_set_priority (&sigev, EV_MAXPRI);
704 } 996 }
705} 997}
706 998
707void 999static void noinline
708loop_destroy (EV_P) 1000loop_destroy (EV_P)
709{ 1001{
710 int i; 1002 int i;
711 1003
712#if EV_USE_WIN32 1004#if EV_USE_INOTIFY
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1005 if (fs_fd >= 0)
1006 close (fs_fd);
1007#endif
1008
1009 if (backend_fd >= 0)
1010 close (backend_fd);
1011
1012#if EV_USE_PORT
1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
714#endif 1014#endif
715#if EV_USE_KQUEUE 1015#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1016 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
717#endif 1017#endif
718#if EV_USE_EPOLL 1018#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1019 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
720#endif 1020#endif
721#if EV_USE_POLL 1021#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1022 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
723#endif 1023#endif
724#if EV_USE_SELECT 1024#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
726#endif 1026#endif
727 1027
728 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
729 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
730 1035
1036 /* have to use the microsoft-never-gets-it-right macro */
731 array_free (fdchange, ); 1037 array_free (fdchange, EMPTY);
732 array_free (timer, ); 1038 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE
733 array_free (periodic, ); 1040 array_free (periodic, EMPTY);
734 array_free (idle, ); 1041#endif
735 array_free (prepare, ); 1042 array_free (prepare, EMPTY);
736 array_free (check, ); 1043 array_free (check, EMPTY);
737 1044
738 method = 0; 1045 backend = 0;
739} 1046}
740 1047
741static void 1048void inline_size infy_fork (EV_P);
1049
1050void inline_size
742loop_fork (EV_P) 1051loop_fork (EV_P)
743{ 1052{
1053#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif
1056#if EV_USE_KQUEUE
1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1058#endif
744#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
746#endif 1061#endif
747#if EV_USE_KQUEUE 1062#if EV_USE_INOTIFY
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1063 infy_fork (EV_A);
749#endif 1064#endif
750 1065
751 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
752 { 1067 {
753 /* default loop */ 1068 /* default loop */
766 postfork = 0; 1081 postfork = 0;
767} 1082}
768 1083
769#if EV_MULTIPLICITY 1084#if EV_MULTIPLICITY
770struct ev_loop * 1085struct ev_loop *
771ev_loop_new (int methods) 1086ev_loop_new (unsigned int flags)
772{ 1087{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774 1089
775 memset (loop, 0, sizeof (struct ev_loop)); 1090 memset (loop, 0, sizeof (struct ev_loop));
776 1091
777 loop_init (EV_A_ methods); 1092 loop_init (EV_A_ flags);
778 1093
779 if (ev_method (EV_A)) 1094 if (ev_backend (EV_A))
780 return loop; 1095 return loop;
781 1096
782 return 0; 1097 return 0;
783} 1098}
784 1099
796} 1111}
797 1112
798#endif 1113#endif
799 1114
800#if EV_MULTIPLICITY 1115#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop * 1116struct ev_loop *
1117ev_default_loop_init (unsigned int flags)
805#else 1118#else
806static int default_loop;
807
808int 1119int
1120ev_default_loop (unsigned int flags)
809#endif 1121#endif
810ev_default_loop (int methods)
811{ 1122{
812 if (sigpipe [0] == sigpipe [1]) 1123 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe)) 1124 if (pipe (sigpipe))
814 return 0; 1125 return 0;
815 1126
816 if (!default_loop) 1127 if (!ev_default_loop_ptr)
817 { 1128 {
818#if EV_MULTIPLICITY 1129#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct; 1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
820#else 1131#else
821 default_loop = 1; 1132 ev_default_loop_ptr = 1;
822#endif 1133#endif
823 1134
824 loop_init (EV_A_ methods); 1135 loop_init (EV_A_ flags);
825 1136
826 if (ev_method (EV_A)) 1137 if (ev_backend (EV_A))
827 { 1138 {
828 siginit (EV_A); 1139 siginit (EV_A);
829 1140
830#ifndef WIN32 1141#ifndef _WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD); 1142 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI); 1143 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev); 1144 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1145 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif 1146#endif
836 } 1147 }
837 else 1148 else
838 default_loop = 0; 1149 ev_default_loop_ptr = 0;
839 } 1150 }
840 1151
841 return default_loop; 1152 return ev_default_loop_ptr;
842} 1153}
843 1154
844void 1155void
845ev_default_destroy (void) 1156ev_default_destroy (void)
846{ 1157{
847#if EV_MULTIPLICITY 1158#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1159 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1160#endif
850 1161
1162#ifndef _WIN32
851 ev_ref (EV_A); /* child watcher */ 1163 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev); 1164 ev_signal_stop (EV_A_ &childev);
1165#endif
853 1166
854 ev_ref (EV_A); /* signal watcher */ 1167 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev); 1168 ev_io_stop (EV_A_ &sigev);
856 1169
857 close (sigpipe [0]); sigpipe [0] = 0; 1170 close (sigpipe [0]); sigpipe [0] = 0;
862 1175
863void 1176void
864ev_default_fork (void) 1177ev_default_fork (void)
865{ 1178{
866#if EV_MULTIPLICITY 1179#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop; 1180 struct ev_loop *loop = ev_default_loop_ptr;
868#endif 1181#endif
869 1182
870 if (method) 1183 if (backend)
871 postfork = 1; 1184 postfork = 1;
872} 1185}
873 1186
874/*****************************************************************************/ 1187/*****************************************************************************/
875 1188
876static void 1189void
1190ev_invoke (EV_P_ void *w, int revents)
1191{
1192 EV_CB_INVOKE ((W)w, revents);
1193}
1194
1195void inline_speed
877call_pending (EV_P) 1196call_pending (EV_P)
878{ 1197{
879 int pri; 1198 int pri;
880 1199
881 for (pri = NUMPRI; pri--; ) 1200 for (pri = NUMPRI; pri--; )
882 while (pendingcnt [pri]) 1201 while (pendingcnt [pri])
883 { 1202 {
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 1204
886 if (p->w) 1205 if (expect_true (p->w))
887 { 1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208
888 p->w->pending = 0; 1209 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 1210 EV_CB_INVOKE (p->w, p->events);
890 } 1211 }
891 } 1212 }
892} 1213}
893 1214
894static void 1215void inline_size
895timers_reify (EV_P) 1216timers_reify (EV_P)
896{ 1217{
897 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
898 { 1219 {
899 struct ev_timer *w = timers [0]; 1220 ev_timer *w = (ev_timer *)timers [0];
900 1221
901 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
902 1223
903 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
904 if (w->repeat) 1225 if (w->repeat)
905 { 1226 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
907 ((WT)w)->at = mn_now + w->repeat; 1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
908 downheap ((WT *)timers, timercnt, 0); 1233 downheap (timers, timercnt, 0);
909 } 1234 }
910 else 1235 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 1237
913 event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
914 } 1239 }
915} 1240}
916 1241
917static void 1242#if EV_PERIODIC_ENABLE
1243void inline_size
918periodics_reify (EV_P) 1244periodics_reify (EV_P)
919{ 1245{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
921 { 1247 {
922 struct ev_periodic *w = periodics [0]; 1248 ev_periodic *w = (ev_periodic *)periodics [0];
923 1249
924 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
925 1251
926 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
927 if (w->interval) 1253 if (w->reschedule_cb)
928 { 1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap (periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
932 } 1265 }
933 else 1266 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 1268
936 event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
937 } 1270 }
938} 1271}
939 1272
940static void 1273static void noinline
941periodics_reschedule (EV_P) 1274periodics_reschedule (EV_P)
942{ 1275{
943 int i; 1276 int i;
944 1277
945 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
947 { 1280 {
948 struct ev_periodic *w = periodics [i]; 1281 ev_periodic *w = (ev_periodic *)periodics [i];
949 1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
950 if (w->interval) 1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap (periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE
1296void inline_size
1297idle_reify (EV_P)
1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
951 { 1304 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1305 if (pendingcnt [pri])
1306 break;
953 1307
954 if (fabs (diff) >= 1e-4) 1308 if (idlecnt [pri])
955 { 1309 {
956 ev_periodic_stop (EV_A_ w); 1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
957 ev_periodic_start (EV_A_ w); 1311 break;
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 } 1312 }
961 } 1313 }
962 } 1314 }
963} 1315}
1316#endif
964 1317
965inline int 1318void inline_speed
966time_update_monotonic (EV_P) 1319time_update (EV_P_ ev_tstamp max_block)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
983static void
984time_update (EV_P)
985{ 1320{
986 int i; 1321 int i;
987 1322
988#if EV_USE_MONOTONIC 1323#if EV_USE_MONOTONIC
989 if (expect_true (have_monotonic)) 1324 if (expect_true (have_monotonic))
990 { 1325 {
991 if (time_update_monotonic (EV_A)) 1326 ev_tstamp odiff = rtmn_diff;
1327
1328 mn_now = get_clock ();
1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
992 { 1333 {
993 ev_tstamp odiff = rtmn_diff; 1334 ev_rt_now = rtmn_diff + mn_now;
1335 return;
1336 }
994 1337
1338 now_floor = mn_now;
1339 ev_rt_now = ev_time ();
1340
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1341 /* loop a few times, before making important decisions.
1342 * on the choice of "4": one iteration isn't enough,
1343 * in case we get preempted during the calls to
1344 * ev_time and get_clock. a second call is almost guaranteed
1345 * to succeed in that case, though. and looping a few more times
1346 * doesn't hurt either as we only do this on time-jumps or
1347 * in the unlikely event of having been preempted here.
1348 */
1349 for (i = 4; --i; )
996 { 1350 {
997 rtmn_diff = rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
998 1352
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */ 1354 return; /* all is well */
1001 1355
1002 rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 1357 mn_now = get_clock ();
1004 now_floor = mn_now; 1358 now_floor = mn_now;
1005 } 1359 }
1006 1360
1361# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A);
1363# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 }
1367 else
1368#endif
1369 {
1370 ev_rt_now = ev_time ();
1371
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 {
1374#if EV_PERIODIC_ENABLE
1007 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 1376#endif
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1010 } 1380 }
1011 }
1012 else
1013#endif
1014 {
1015 rt_now = ev_time ();
1016 1381
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 {
1019 periodics_reschedule (EV_A);
1020
1021 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now;
1024 }
1025
1026 mn_now = rt_now; 1382 mn_now = ev_rt_now;
1027 } 1383 }
1028} 1384}
1029 1385
1030void 1386void
1031ev_ref (EV_P) 1387ev_ref (EV_P)
1042static int loop_done; 1398static int loop_done;
1043 1399
1044void 1400void
1045ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1046{ 1402{
1047 double block;
1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1049 1408
1050 do 1409 do
1051 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1052 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1053 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1054 { 1432 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056 call_pending (EV_A); 1434 call_pending (EV_A);
1057 } 1435 }
1058 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1059 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1061 loop_fork (EV_A); 1442 loop_fork (EV_A);
1062 1443
1063 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 1445 fd_reify (EV_A);
1065 1446
1066 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1067 1450
1068 /* we only need this for !monotonic clockor timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1069 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else 1453 else
1074#endif
1075 { 1454 {
1076 rt_now = ev_time (); 1455 /* update time to cancel out callback processing overhead */
1077 mn_now = rt_now; 1456 time_update (EV_A_ 1e100);
1078 }
1079 1457
1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.;
1082 else
1083 {
1084 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1085 1459
1086 if (timercnt) 1460 if (timercnt)
1087 { 1461 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1089 if (block > to) block = to; 1463 if (block > to) block = to;
1090 } 1464 }
1091 1465
1466#if EV_PERIODIC_ENABLE
1092 if (periodiccnt) 1467 if (periodiccnt)
1093 { 1468 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1095 if (block > to) block = to; 1470 if (block > to) block = to;
1096 } 1471 }
1472#endif
1097 1473
1098 if (block < 0.) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1099 } 1475 }
1100 1476
1477 ++loop_count;
1101 method_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1102 1479
1103 /* update rt_now, do magic */ 1480 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 1481 time_update (EV_A_ block);
1482 }
1105 1483
1106 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE
1108 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1488#endif
1109 1489
1490#if EV_IDLE_ENABLE
1110 /* queue idle watchers unless io or timers are pending */ 1491 /* queue idle watchers unless other events are pending */
1111 if (!pendingcnt) 1492 idle_reify (EV_A);
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1113 1494
1114 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1115 if (checkcnt) 1496 if (expect_false (checkcnt))
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1117 1498
1118 call_pending (EV_A); 1499 call_pending (EV_A);
1500
1119 } 1501 }
1120 while (activecnt && !loop_done); 1502 while (expect_true (activecnt && !loop_done));
1121 1503
1122 if (loop_done != 2) 1504 if (loop_done == EVUNLOOP_ONE)
1123 loop_done = 0; 1505 loop_done = EVUNLOOP_CANCEL;
1124} 1506}
1125 1507
1126void 1508void
1127ev_unloop (EV_P_ int how) 1509ev_unloop (EV_P_ int how)
1128{ 1510{
1129 loop_done = how; 1511 loop_done = how;
1130} 1512}
1131 1513
1132/*****************************************************************************/ 1514/*****************************************************************************/
1133 1515
1134inline void 1516void inline_size
1135wlist_add (WL *head, WL elem) 1517wlist_add (WL *head, WL elem)
1136{ 1518{
1137 elem->next = *head; 1519 elem->next = *head;
1138 *head = elem; 1520 *head = elem;
1139} 1521}
1140 1522
1141inline void 1523void inline_size
1142wlist_del (WL *head, WL elem) 1524wlist_del (WL *head, WL elem)
1143{ 1525{
1144 while (*head) 1526 while (*head)
1145 { 1527 {
1146 if (*head == elem) 1528 if (*head == elem)
1151 1533
1152 head = &(*head)->next; 1534 head = &(*head)->next;
1153 } 1535 }
1154} 1536}
1155 1537
1156inline void 1538void inline_speed
1157ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1158{ 1540{
1159 if (w->pending) 1541 if (w->pending)
1160 { 1542 {
1161 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1162 w->pending = 0; 1544 w->pending = 0;
1163 } 1545 }
1164} 1546}
1165 1547
1166inline void 1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1574void inline_speed
1167ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1168{ 1576{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
1172 w->active = active; 1578 w->active = active;
1173 ev_ref (EV_A); 1579 ev_ref (EV_A);
1174} 1580}
1175 1581
1176inline void 1582void inline_size
1177ev_stop (EV_P_ W w) 1583ev_stop (EV_P_ W w)
1178{ 1584{
1179 ev_unref (EV_A); 1585 ev_unref (EV_A);
1180 w->active = 0; 1586 w->active = 0;
1181} 1587}
1182 1588
1183/*****************************************************************************/ 1589/*****************************************************************************/
1184 1590
1185void 1591void noinline
1186ev_io_start (EV_P_ struct ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1187{ 1593{
1188 int fd = w->fd; 1594 int fd = w->fd;
1189 1595
1190 if (ev_is_active (w)) 1596 if (expect_false (ev_is_active (w)))
1191 return; 1597 return;
1192 1598
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 1599 assert (("ev_io_start called with negative fd", fd >= 0));
1194 1600
1195 ev_start (EV_A_ (W)w, 1); 1601 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add (&anfds[fd].head, (WL)w);
1198 1604
1199 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET);
1606 w->events &= ~ EV_IOFDSET;
1200} 1607}
1201 1608
1202void 1609void noinline
1203ev_io_stop (EV_P_ struct ev_io *w) 1610ev_io_stop (EV_P_ ev_io *w)
1204{ 1611{
1205 ev_clear_pending (EV_A_ (W)w); 1612 clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 1613 if (expect_false (!ev_is_active (w)))
1207 return; 1614 return;
1208 1615
1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1617
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1618 wlist_del (&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 1619 ev_stop (EV_A_ (W)w);
1211 1620
1212 fd_change (EV_A_ w->fd); 1621 fd_change (EV_A_ w->fd, 0);
1213} 1622}
1214 1623
1215void 1624void noinline
1216ev_timer_start (EV_P_ struct ev_timer *w) 1625ev_timer_start (EV_P_ ev_timer *w)
1217{ 1626{
1218 if (ev_is_active (w)) 1627 if (expect_false (ev_is_active (w)))
1219 return; 1628 return;
1220 1629
1221 ((WT)w)->at += mn_now; 1630 ((WT)w)->at += mn_now;
1222 1631
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 1633
1225 ev_start (EV_A_ (W)w, ++timercnt); 1634 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, ); 1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1227 timers [timercnt - 1] = w; 1636 timers [timercnt - 1] = (WT)w;
1228 upheap ((WT *)timers, timercnt - 1); 1637 upheap (timers, timercnt - 1);
1229 1638
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1231} 1640}
1232 1641
1233void 1642void noinline
1234ev_timer_stop (EV_P_ struct ev_timer *w) 1643ev_timer_stop (EV_P_ ev_timer *w)
1235{ 1644{
1236 ev_clear_pending (EV_A_ (W)w); 1645 clear_pending (EV_A_ (W)w);
1237 if (!ev_is_active (w)) 1646 if (expect_false (!ev_is_active (w)))
1238 return; 1647 return;
1239 1648
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1241 1650
1242 if (((W)w)->active < timercnt--) 1651 {
1652 int active = ((W)w)->active;
1653
1654 if (expect_true (--active < --timercnt))
1243 { 1655 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 1656 timers [active] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1657 adjustheap (timers, timercnt, active);
1246 } 1658 }
1659 }
1247 1660
1248 ((WT)w)->at = w->repeat; 1661 ((WT)w)->at -= mn_now;
1249 1662
1250 ev_stop (EV_A_ (W)w); 1663 ev_stop (EV_A_ (W)w);
1251} 1664}
1252 1665
1253void 1666void noinline
1254ev_timer_again (EV_P_ struct ev_timer *w) 1667ev_timer_again (EV_P_ ev_timer *w)
1255{ 1668{
1256 if (ev_is_active (w)) 1669 if (ev_is_active (w))
1257 { 1670 {
1258 if (w->repeat) 1671 if (w->repeat)
1259 { 1672 {
1260 ((WT)w)->at = mn_now + w->repeat; 1673 ((WT)w)->at = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1674 adjustheap (timers, timercnt, ((W)w)->active - 1);
1262 } 1675 }
1263 else 1676 else
1264 ev_timer_stop (EV_A_ w); 1677 ev_timer_stop (EV_A_ w);
1265 } 1678 }
1266 else if (w->repeat) 1679 else if (w->repeat)
1680 {
1681 w->at = w->repeat;
1267 ev_timer_start (EV_A_ w); 1682 ev_timer_start (EV_A_ w);
1683 }
1268} 1684}
1269 1685
1270void 1686#if EV_PERIODIC_ENABLE
1687void noinline
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 1688ev_periodic_start (EV_P_ ev_periodic *w)
1272{ 1689{
1273 if (ev_is_active (w)) 1690 if (expect_false (ev_is_active (w)))
1274 return; 1691 return;
1275 1692
1693 if (w->reschedule_cb)
1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1695 else if (w->interval)
1696 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 1698 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1700 }
1701 else
1702 ((WT)w)->at = w->offset;
1281 1703
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 1704 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1284 periodics [periodiccnt - 1] = w; 1706 periodics [periodiccnt - 1] = (WT)w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 1707 upheap (periodics, periodiccnt - 1);
1286 1708
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1288} 1710}
1289 1711
1290void 1712void noinline
1291ev_periodic_stop (EV_P_ struct ev_periodic *w) 1713ev_periodic_stop (EV_P_ ev_periodic *w)
1292{ 1714{
1293 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w)) 1716 if (expect_false (!ev_is_active (w)))
1295 return; 1717 return;
1296 1718
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1298 1720
1299 if (((W)w)->active < periodiccnt--) 1721 {
1722 int active = ((W)w)->active;
1723
1724 if (expect_true (--active < --periodiccnt))
1300 { 1725 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1726 periodics [active] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1727 adjustheap (periodics, periodiccnt, active);
1303 } 1728 }
1729 }
1304 1730
1305 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1306} 1732}
1307 1733
1308void 1734void noinline
1309ev_idle_start (EV_P_ struct ev_idle *w) 1735ev_periodic_again (EV_P_ ev_periodic *w)
1310{ 1736{
1311 if (ev_is_active (w)) 1737 /* TODO: use adjustheap and recalculation */
1312 return;
1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w); 1738 ev_periodic_stop (EV_A_ w);
1739 ev_periodic_start (EV_A_ w);
1328} 1740}
1329 1741#endif
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373 1742
1374#ifndef SA_RESTART 1743#ifndef SA_RESTART
1375# define SA_RESTART 0 1744# define SA_RESTART 0
1376#endif 1745#endif
1377 1746
1378void 1747void noinline
1379ev_signal_start (EV_P_ struct ev_signal *w) 1748ev_signal_start (EV_P_ ev_signal *w)
1380{ 1749{
1381#if EV_MULTIPLICITY 1750#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1383#endif 1752#endif
1384 if (ev_is_active (w)) 1753 if (expect_false (ev_is_active (w)))
1385 return; 1754 return;
1386 1755
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388 1757
1758 {
1759#ifndef _WIN32
1760 sigset_t full, prev;
1761 sigfillset (&full);
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766
1767#ifndef _WIN32
1768 sigprocmask (SIG_SETMASK, &prev, 0);
1769#endif
1770 }
1771
1389 ev_start (EV_A_ (W)w, 1); 1772 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1392 1774
1393 if (!((WL)w)->next) 1775 if (!((WL)w)->next)
1394 { 1776 {
1395#if WIN32 1777#if _WIN32
1396 signal (w->signum, sighandler); 1778 signal (w->signum, sighandler);
1397#else 1779#else
1398 struct sigaction sa; 1780 struct sigaction sa;
1399 sa.sa_handler = sighandler; 1781 sa.sa_handler = sighandler;
1400 sigfillset (&sa.sa_mask); 1782 sigfillset (&sa.sa_mask);
1402 sigaction (w->signum, &sa, 0); 1784 sigaction (w->signum, &sa, 0);
1403#endif 1785#endif
1404 } 1786 }
1405} 1787}
1406 1788
1407void 1789void noinline
1408ev_signal_stop (EV_P_ struct ev_signal *w) 1790ev_signal_stop (EV_P_ ev_signal *w)
1409{ 1791{
1410 ev_clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1411 if (!ev_is_active (w)) 1793 if (expect_false (!ev_is_active (w)))
1412 return; 1794 return;
1413 1795
1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1796 wlist_del (&signals [w->signum - 1].head, (WL)w);
1415 ev_stop (EV_A_ (W)w); 1797 ev_stop (EV_A_ (W)w);
1416 1798
1417 if (!signals [w->signum - 1].head) 1799 if (!signals [w->signum - 1].head)
1418 signal (w->signum, SIG_DFL); 1800 signal (w->signum, SIG_DFL);
1419} 1801}
1420 1802
1421void 1803void
1422ev_child_start (EV_P_ struct ev_child *w) 1804ev_child_start (EV_P_ ev_child *w)
1423{ 1805{
1424#if EV_MULTIPLICITY 1806#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1426#endif 1808#endif
1427 if (ev_is_active (w)) 1809 if (expect_false (ev_is_active (w)))
1428 return; 1810 return;
1429 1811
1430 ev_start (EV_A_ (W)w, 1); 1812 ev_start (EV_A_ (W)w, 1);
1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1432} 1814}
1433 1815
1434void 1816void
1435ev_child_stop (EV_P_ struct ev_child *w) 1817ev_child_stop (EV_P_ ev_child *w)
1436{ 1818{
1437 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 1820 if (expect_false (!ev_is_active (w)))
1439 return; 1821 return;
1440 1822
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1442 ev_stop (EV_A_ (W)w); 1824 ev_stop (EV_A_ (W)w);
1443} 1825}
1444 1826
1827#if EV_STAT_ENABLE
1828
1829# ifdef _WIN32
1830# undef lstat
1831# define lstat(a,b) _stati64 (a,b)
1832# endif
1833
1834#define DEF_STAT_INTERVAL 5.0074891
1835#define MIN_STAT_INTERVAL 0.1074891
1836
1837static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1838
1839#if EV_USE_INOTIFY
1840# define EV_INOTIFY_BUFSIZE 8192
1841
1842static void noinline
1843infy_add (EV_P_ ev_stat *w)
1844{
1845 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1846
1847 if (w->wd < 0)
1848 {
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1850
1851 /* monitor some parent directory for speedup hints */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 {
1854 char path [4096];
1855 strcpy (path, w->path);
1856
1857 do
1858 {
1859 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1860 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1861
1862 char *pend = strrchr (path, '/');
1863
1864 if (!pend)
1865 break; /* whoops, no '/', complain to your admin */
1866
1867 *pend = 0;
1868 w->wd = inotify_add_watch (fs_fd, path, mask);
1869 }
1870 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1871 }
1872 }
1873 else
1874 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1875
1876 if (w->wd >= 0)
1877 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1878}
1879
1880static void noinline
1881infy_del (EV_P_ ev_stat *w)
1882{
1883 int slot;
1884 int wd = w->wd;
1885
1886 if (wd < 0)
1887 return;
1888
1889 w->wd = -2;
1890 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1891 wlist_del (&fs_hash [slot].head, (WL)w);
1892
1893 /* remove this watcher, if others are watching it, they will rearm */
1894 inotify_rm_watch (fs_fd, wd);
1895}
1896
1897static void noinline
1898infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1899{
1900 if (slot < 0)
1901 /* overflow, need to check for all hahs slots */
1902 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1903 infy_wd (EV_A_ slot, wd, ev);
1904 else
1905 {
1906 WL w_;
1907
1908 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1909 {
1910 ev_stat *w = (ev_stat *)w_;
1911 w_ = w_->next; /* lets us remove this watcher and all before it */
1912
1913 if (w->wd == wd || wd == -1)
1914 {
1915 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1916 {
1917 w->wd = -1;
1918 infy_add (EV_A_ w); /* re-add, no matter what */
1919 }
1920
1921 stat_timer_cb (EV_A_ &w->timer, 0);
1922 }
1923 }
1924 }
1925}
1926
1927static void
1928infy_cb (EV_P_ ev_io *w, int revents)
1929{
1930 char buf [EV_INOTIFY_BUFSIZE];
1931 struct inotify_event *ev = (struct inotify_event *)buf;
1932 int ofs;
1933 int len = read (fs_fd, buf, sizeof (buf));
1934
1935 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1936 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1937}
1938
1939void inline_size
1940infy_init (EV_P)
1941{
1942 if (fs_fd != -2)
1943 return;
1944
1945 fs_fd = inotify_init ();
1946
1947 if (fs_fd >= 0)
1948 {
1949 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1950 ev_set_priority (&fs_w, EV_MAXPRI);
1951 ev_io_start (EV_A_ &fs_w);
1952 }
1953}
1954
1955void inline_size
1956infy_fork (EV_P)
1957{
1958 int slot;
1959
1960 if (fs_fd < 0)
1961 return;
1962
1963 close (fs_fd);
1964 fs_fd = inotify_init ();
1965
1966 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1967 {
1968 WL w_ = fs_hash [slot].head;
1969 fs_hash [slot].head = 0;
1970
1971 while (w_)
1972 {
1973 ev_stat *w = (ev_stat *)w_;
1974 w_ = w_->next; /* lets us add this watcher */
1975
1976 w->wd = -1;
1977
1978 if (fs_fd >= 0)
1979 infy_add (EV_A_ w); /* re-add, no matter what */
1980 else
1981 ev_timer_start (EV_A_ &w->timer);
1982 }
1983
1984 }
1985}
1986
1987#endif
1988
1989void
1990ev_stat_stat (EV_P_ ev_stat *w)
1991{
1992 if (lstat (w->path, &w->attr) < 0)
1993 w->attr.st_nlink = 0;
1994 else if (!w->attr.st_nlink)
1995 w->attr.st_nlink = 1;
1996}
1997
1998static void noinline
1999stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2000{
2001 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2002
2003 /* we copy this here each the time so that */
2004 /* prev has the old value when the callback gets invoked */
2005 w->prev = w->attr;
2006 ev_stat_stat (EV_A_ w);
2007
2008 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2009 if (
2010 w->prev.st_dev != w->attr.st_dev
2011 || w->prev.st_ino != w->attr.st_ino
2012 || w->prev.st_mode != w->attr.st_mode
2013 || w->prev.st_nlink != w->attr.st_nlink
2014 || w->prev.st_uid != w->attr.st_uid
2015 || w->prev.st_gid != w->attr.st_gid
2016 || w->prev.st_rdev != w->attr.st_rdev
2017 || w->prev.st_size != w->attr.st_size
2018 || w->prev.st_atime != w->attr.st_atime
2019 || w->prev.st_mtime != w->attr.st_mtime
2020 || w->prev.st_ctime != w->attr.st_ctime
2021 ) {
2022 #if EV_USE_INOTIFY
2023 infy_del (EV_A_ w);
2024 infy_add (EV_A_ w);
2025 ev_stat_stat (EV_A_ w); /* avoid race... */
2026 #endif
2027
2028 ev_feed_event (EV_A_ w, EV_STAT);
2029 }
2030}
2031
2032void
2033ev_stat_start (EV_P_ ev_stat *w)
2034{
2035 if (expect_false (ev_is_active (w)))
2036 return;
2037
2038 /* since we use memcmp, we need to clear any padding data etc. */
2039 memset (&w->prev, 0, sizeof (ev_statdata));
2040 memset (&w->attr, 0, sizeof (ev_statdata));
2041
2042 ev_stat_stat (EV_A_ w);
2043
2044 if (w->interval < MIN_STAT_INTERVAL)
2045 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2046
2047 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2048 ev_set_priority (&w->timer, ev_priority (w));
2049
2050#if EV_USE_INOTIFY
2051 infy_init (EV_A);
2052
2053 if (fs_fd >= 0)
2054 infy_add (EV_A_ w);
2055 else
2056#endif
2057 ev_timer_start (EV_A_ &w->timer);
2058
2059 ev_start (EV_A_ (W)w, 1);
2060}
2061
2062void
2063ev_stat_stop (EV_P_ ev_stat *w)
2064{
2065 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w)))
2067 return;
2068
2069#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w);
2071#endif
2072 ev_timer_stop (EV_A_ &w->timer);
2073
2074 ev_stop (EV_A_ (W)w);
2075}
2076#endif
2077
2078#if EV_IDLE_ENABLE
2079void
2080ev_idle_start (EV_P_ ev_idle *w)
2081{
2082 if (expect_false (ev_is_active (w)))
2083 return;
2084
2085 pri_adjust (EV_A_ (W)w);
2086
2087 {
2088 int active = ++idlecnt [ABSPRI (w)];
2089
2090 ++idleall;
2091 ev_start (EV_A_ (W)w, active);
2092
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w;
2095 }
2096}
2097
2098void
2099ev_idle_stop (EV_P_ ev_idle *w)
2100{
2101 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w)))
2103 return;
2104
2105 {
2106 int active = ((W)w)->active;
2107
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2110
2111 ev_stop (EV_A_ (W)w);
2112 --idleall;
2113 }
2114}
2115#endif
2116
2117void
2118ev_prepare_start (EV_P_ ev_prepare *w)
2119{
2120 if (expect_false (ev_is_active (w)))
2121 return;
2122
2123 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w;
2126}
2127
2128void
2129ev_prepare_stop (EV_P_ ev_prepare *w)
2130{
2131 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w)))
2133 return;
2134
2135 {
2136 int active = ((W)w)->active;
2137 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active;
2139 }
2140
2141 ev_stop (EV_A_ (W)w);
2142}
2143
2144void
2145ev_check_start (EV_P_ ev_check *w)
2146{
2147 if (expect_false (ev_is_active (w)))
2148 return;
2149
2150 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w;
2153}
2154
2155void
2156ev_check_stop (EV_P_ ev_check *w)
2157{
2158 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w)))
2160 return;
2161
2162 {
2163 int active = ((W)w)->active;
2164 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active;
2166 }
2167
2168 ev_stop (EV_A_ (W)w);
2169}
2170
2171#if EV_EMBED_ENABLE
2172void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w)
2174{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK);
2176}
2177
2178static void
2179embed_cb (EV_P_ ev_io *io, int revents)
2180{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182
2183 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else
2186 ev_embed_sweep (loop, w);
2187}
2188
2189void
2190ev_embed_start (EV_P_ ev_embed *w)
2191{
2192 if (expect_false (ev_is_active (w)))
2193 return;
2194
2195 {
2196 struct ev_loop *loop = w->loop;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2199 }
2200
2201 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io);
2203
2204 ev_start (EV_A_ (W)w, 1);
2205}
2206
2207void
2208ev_embed_stop (EV_P_ ev_embed *w)
2209{
2210 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w)))
2212 return;
2213
2214 ev_io_stop (EV_A_ &w->io);
2215
2216 ev_stop (EV_A_ (W)w);
2217}
2218#endif
2219
2220#if EV_FORK_ENABLE
2221void
2222ev_fork_start (EV_P_ ev_fork *w)
2223{
2224 if (expect_false (ev_is_active (w)))
2225 return;
2226
2227 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w;
2230}
2231
2232void
2233ev_fork_stop (EV_P_ ev_fork *w)
2234{
2235 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w)))
2237 return;
2238
2239 {
2240 int active = ((W)w)->active;
2241 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active;
2243 }
2244
2245 ev_stop (EV_A_ (W)w);
2246}
2247#endif
2248
1445/*****************************************************************************/ 2249/*****************************************************************************/
1446 2250
1447struct ev_once 2251struct ev_once
1448{ 2252{
1449 struct ev_io io; 2253 ev_io io;
1450 struct ev_timer to; 2254 ev_timer to;
1451 void (*cb)(int revents, void *arg); 2255 void (*cb)(int revents, void *arg);
1452 void *arg; 2256 void *arg;
1453}; 2257};
1454 2258
1455static void 2259static void
1464 2268
1465 cb (revents, arg); 2269 cb (revents, arg);
1466} 2270}
1467 2271
1468static void 2272static void
1469once_cb_io (EV_P_ struct ev_io *w, int revents) 2273once_cb_io (EV_P_ ev_io *w, int revents)
1470{ 2274{
1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1472} 2276}
1473 2277
1474static void 2278static void
1475once_cb_to (EV_P_ struct ev_timer *w, int revents) 2279once_cb_to (EV_P_ ev_timer *w, int revents)
1476{ 2280{
1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1478} 2282}
1479 2283
1480void 2284void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2285ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 2286{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 2287 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 2288
1485 if (!once) 2289 if (expect_false (!once))
2290 {
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2291 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else 2292 return;
1488 { 2293 }
2294
1489 once->cb = cb; 2295 once->cb = cb;
1490 once->arg = arg; 2296 once->arg = arg;
1491 2297
1492 ev_watcher_init (&once->io, once_cb_io); 2298 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 2299 if (fd >= 0)
1494 { 2300 {
1495 ev_io_set (&once->io, fd, events); 2301 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io); 2302 ev_io_start (EV_A_ &once->io);
1497 } 2303 }
1498 2304
1499 ev_watcher_init (&once->to, once_cb_to); 2305 ev_init (&once->to, once_cb_to);
1500 if (timeout >= 0.) 2306 if (timeout >= 0.)
1501 { 2307 {
1502 ev_timer_set (&once->to, timeout, 0.); 2308 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to); 2309 ev_timer_start (EV_A_ &once->to);
1504 }
1505 } 2310 }
1506} 2311}
1507 2312
2313#ifdef __cplusplus
2314}
2315#endif
2316

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines