ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
220 308
221/* 309/*
222 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
230 318
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 322
235#if __GNUC__ >= 3 323#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
238#else 326#else
239# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
240# define noinline 328# define noinline
241# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 330# define inline
243# endif 331# endif
244#endif 332#endif
245 333
246#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
261 349
262typedef ev_watcher *W; 350typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
265 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
267 362
268#ifdef _WIN32 363#ifdef _WIN32
269# include "ev_win32.c" 364# include "ev_win32.c"
270#endif 365#endif
271 366
292 perror (msg); 387 perror (msg);
293 abort (); 388 abort ();
294 } 389 }
295} 390}
296 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
297static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 408
299void 409void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 411{
302 alloc = cb; 412 alloc = cb;
303} 413}
304 414
305inline_speed void * 415inline_speed void *
306ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
307{ 417{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
309 419
310 if (!ptr && size) 420 if (!ptr && size)
311 { 421 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 423 abort ();
336 W w; 446 W w;
337 int events; 447 int events;
338} ANPENDING; 448} ANPENDING;
339 449
340#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
341typedef struct 452typedef struct
342{ 453{
343 WL head; 454 WL head;
344} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
345#endif 474#endif
346 475
347#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
348 477
349 struct ev_loop 478 struct ev_loop
407{ 536{
408 return ev_rt_now; 537 return ev_rt_now;
409} 538}
410#endif 539#endif
411 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
412int inline_size 570int inline_size
413array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
414{ 572{
415 int ncur = cur + 1; 573 int ncur = cur + 1;
416 574
417 do 575 do
418 ncur <<= 1; 576 ncur <<= 1;
419 while (cnt > ncur); 577 while (cnt > ncur);
420 578
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 581 {
424 ncur *= elem; 582 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 585 ncur /= elem;
428 } 586 }
429 587
430 return ncur; 588 return ncur;
542 700
543#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
544 if (events) 702 if (events)
545 { 703 {
546 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
547 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 711 }
550#endif 712#endif
551 713
552 { 714 {
640 } 802 }
641} 803}
642 804
643/*****************************************************************************/ 805/*****************************************************************************/
644 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
645void inline_speed 827void inline_speed
646upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
647{ 829{
648 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
649 832
650 while (k) 833 for (;;)
651 { 834 {
652 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
653 838
654 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
655 break; 855 break;
656 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
657 heap [k] = heap [p]; 919 heap [k] = heap [p];
658 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
659 k = p; 921 k = p;
660 } 922 }
661 923
662 heap [k] = w; 924 heap [k] = he;
663 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
664}
665
666void inline_speed
667downheap (WT *heap, int N, int k)
668{
669 WT w = heap [k];
670
671 for (;;)
672 {
673 int c = (k << 1) + 1;
674
675 if (c >= N)
676 break;
677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
684 heap [k] = heap [c];
685 ((W)heap [k])->active = k + 1;
686
687 k = c;
688 }
689
690 heap [k] = w;
691 ((W)heap [k])->active = k + 1;
692} 926}
693 927
694void inline_size 928void inline_size
695adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
696{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
697 upheap (heap, k); 932 upheap (heap, k);
933 else
698 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
699} 947}
700 948
701/*****************************************************************************/ 949/*****************************************************************************/
702 950
703typedef struct 951typedef struct
704{ 952{
705 WL head; 953 WL head;
706 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
707} ANSIG; 955} ANSIG;
708 956
709static ANSIG *signals; 957static ANSIG *signals;
710static int signalmax; 958static int signalmax;
711 959
712static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
713static sig_atomic_t volatile gotsig;
714static ev_io sigev;
715 961
716void inline_size 962void inline_size
717signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
718{ 964{
719 while (count--) 965 while (count--)
723 969
724 ++base; 970 ++base;
725 } 971 }
726} 972}
727 973
728static void 974/*****************************************************************************/
729sighandler (int signum)
730{
731#if _WIN32
732 signal (signum, sighandler);
733#endif
734
735 signals [signum - 1].gotsig = 1;
736
737 if (!gotsig)
738 {
739 int old_errno = errno;
740 gotsig = 1;
741 write (sigpipe [1], &signum, 1);
742 errno = old_errno;
743 }
744}
745
746void noinline
747ev_feed_signal_event (EV_P_ int signum)
748{
749 WL w;
750
751#if EV_MULTIPLICITY
752 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
753#endif
754
755 --signum;
756
757 if (signum < 0 || signum >= signalmax)
758 return;
759
760 signals [signum].gotsig = 0;
761
762 for (w = signals [signum].head; w; w = w->next)
763 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
764}
765
766static void
767sigcb (EV_P_ ev_io *iow, int revents)
768{
769 int signum;
770
771 read (sigpipe [0], &revents, 1);
772 gotsig = 0;
773
774 for (signum = signalmax; signum--; )
775 if (signals [signum].gotsig)
776 ev_feed_signal_event (EV_A_ signum + 1);
777}
778 975
779void inline_speed 976void inline_speed
780fd_intern (int fd) 977fd_intern (int fd)
781{ 978{
782#ifdef _WIN32 979#ifdef _WIN32
787 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
788#endif 985#endif
789} 986}
790 987
791static void noinline 988static void noinline
792siginit (EV_P) 989evpipe_init (EV_P)
793{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
794 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
795 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
796 1010
797 ev_io_set (&sigev, sigpipe [0], EV_READ);
798 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
799 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
800} 1079}
801 1080
802/*****************************************************************************/ 1081/*****************************************************************************/
803 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
804static WL childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
805 1121
806#ifndef _WIN32 1122#ifndef _WIN32
807 1123
808static ev_signal childev; 1124static ev_signal childev;
809 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
810void inline_speed 1130void inline_speed
811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
812{ 1132{
813 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
814 1135
815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
816 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
817 { 1140 {
818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
819 w->rpid = pid; 1142 w->rpid = pid;
820 w->rstatus = status; 1143 w->rstatus = status;
821 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
822 } 1145 }
1146 }
823} 1147}
824 1148
825#ifndef WCONTINUED 1149#ifndef WCONTINUED
826# define WCONTINUED 0 1150# define WCONTINUED 0
827#endif 1151#endif
836 if (!WCONTINUED 1160 if (!WCONTINUED
837 || errno != EINVAL 1161 || errno != EINVAL
838 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
839 return; 1163 return;
840 1164
841 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
842 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
844 1168
845 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
846 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
848} 1172}
849 1173
850#endif 1174#endif
851 1175
852/*****************************************************************************/ 1176/*****************************************************************************/
924} 1248}
925 1249
926unsigned int 1250unsigned int
927ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
928{ 1252{
929 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
930 | EVBACKEND_KQUEUE 1254
931 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
932} 1260}
933 1261
934unsigned int 1262unsigned int
935ev_backend (EV_P) 1263ev_backend (EV_P)
936{ 1264{
939 1267
940unsigned int 1268unsigned int
941ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
942{ 1270{
943 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
944} 1284}
945 1285
946static void noinline 1286static void noinline
947loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
948{ 1288{
954 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
955 have_monotonic = 1; 1295 have_monotonic = 1;
956 } 1296 }
957#endif 1297#endif
958 1298
959 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
960 mn_now = get_clock (); 1300 mn_now = get_clock ();
961 now_floor = mn_now; 1301 now_floor = mn_now;
962 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
963 1312
964 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
965#ifndef _WIN32 1314#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid (); 1316 curpid = getpid ();
970 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
971 && !enable_secure () 1320 && !enable_secure ()
972 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
973 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
974 1323
975 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
976 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
977
978 backend = 0;
979 backend_fd = -1;
980#if EV_USE_INOTIFY
981 fs_fd = -2;
982#endif
983 1326
984#if EV_USE_PORT 1327#if EV_USE_PORT
985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
986#endif 1329#endif
987#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
995#endif 1338#endif
996#if EV_USE_SELECT 1339#if EV_USE_SELECT
997 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
998#endif 1341#endif
999 1342
1000 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
1001 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
1002 } 1345 }
1003} 1346}
1004 1347
1005static void noinline 1348static void noinline
1006loop_destroy (EV_P) 1349loop_destroy (EV_P)
1007{ 1350{
1008 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1009 1369
1010#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1011 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1012 close (fs_fd); 1372 close (fs_fd);
1013#endif 1373#endif
1036 array_free (pending, [i]); 1396 array_free (pending, [i]);
1037#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1038 array_free (idle, [i]); 1398 array_free (idle, [i]);
1039#endif 1399#endif
1040 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1041 1403
1042 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1043 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1044 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1045#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1046 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1047#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1048 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1049 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1050 1418
1051 backend = 0; 1419 backend = 0;
1052} 1420}
1053 1421
1422#if EV_USE_INOTIFY
1054void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1055 1425
1056void inline_size 1426void inline_size
1057loop_fork (EV_P) 1427loop_fork (EV_P)
1058{ 1428{
1059#if EV_USE_PORT 1429#if EV_USE_PORT
1067#endif 1437#endif
1068#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1069 infy_fork (EV_A); 1439 infy_fork (EV_A);
1070#endif 1440#endif
1071 1441
1072 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1073 { 1443 {
1074 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1075 1450
1076 ev_ref (EV_A); 1451 ev_ref (EV_A);
1077 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1078 close (sigpipe [0]); 1461 close (evpipe [0]);
1079 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1080 1464
1081 while (pipe (sigpipe))
1082 syserr ("(libev) error creating pipe");
1083
1084 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1085 } 1468 }
1086 1469
1087 postfork = 0; 1470 postfork = 0;
1088} 1471}
1089 1472
1090#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1091struct ev_loop * 1475struct ev_loop *
1092ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1093{ 1477{
1094 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1095 1479
1111} 1495}
1112 1496
1113void 1497void
1114ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1115{ 1499{
1116 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1117} 1501}
1118 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1119#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1120 1603
1121#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1122struct ev_loop * 1605struct ev_loop *
1123ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1124#else 1607#else
1125int 1608int
1126ev_default_loop (unsigned int flags) 1609ev_default_loop (unsigned int flags)
1127#endif 1610#endif
1128{ 1611{
1129 if (sigpipe [0] == sigpipe [1])
1130 if (pipe (sigpipe))
1131 return 0;
1132
1133 if (!ev_default_loop_ptr) 1612 if (!ev_default_loop_ptr)
1134 { 1613 {
1135#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
1136 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1137#else 1616#else
1140 1619
1141 loop_init (EV_A_ flags); 1620 loop_init (EV_A_ flags);
1142 1621
1143 if (ev_backend (EV_A)) 1622 if (ev_backend (EV_A))
1144 { 1623 {
1145 siginit (EV_A);
1146
1147#ifndef _WIN32 1624#ifndef _WIN32
1148 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
1149 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
1150 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
1151 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1168#ifndef _WIN32 1645#ifndef _WIN32
1169 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1170 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1171#endif 1648#endif
1172 1649
1173 ev_ref (EV_A); /* signal watcher */
1174 ev_io_stop (EV_A_ &sigev);
1175
1176 close (sigpipe [0]); sigpipe [0] = 0;
1177 close (sigpipe [1]); sigpipe [1] = 0;
1178
1179 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1180} 1651}
1181 1652
1182void 1653void
1183ev_default_fork (void) 1654ev_default_fork (void)
1185#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1186 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1187#endif 1658#endif
1188 1659
1189 if (backend) 1660 if (backend)
1190 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1191} 1662}
1192 1663
1193/*****************************************************************************/ 1664/*****************************************************************************/
1194 1665
1195void 1666void
1212 { 1683 {
1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1214 1685
1215 p->w->pending = 0; 1686 p->w->pending = 0;
1216 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1217 } 1689 }
1218 } 1690 }
1219} 1691}
1220
1221void inline_size
1222timers_reify (EV_P)
1223{
1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1225 {
1226 ev_timer *w = (ev_timer *)timers [0];
1227
1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1229
1230 /* first reschedule or stop timer */
1231 if (w->repeat)
1232 {
1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1234
1235 ((WT)w)->at += w->repeat;
1236 if (((WT)w)->at < mn_now)
1237 ((WT)w)->at = mn_now;
1238
1239 downheap (timers, timercnt, 0);
1240 }
1241 else
1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1243
1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1245 }
1246}
1247
1248#if EV_PERIODIC_ENABLE
1249void inline_size
1250periodics_reify (EV_P)
1251{
1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1253 {
1254 ev_periodic *w = (ev_periodic *)periodics [0];
1255
1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1257
1258 /* first reschedule or stop timer */
1259 if (w->reschedule_cb)
1260 {
1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1263 downheap (periodics, periodiccnt, 0);
1264 }
1265 else if (w->interval)
1266 {
1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1270 downheap (periodics, periodiccnt, 0);
1271 }
1272 else
1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1274
1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1276 }
1277}
1278
1279static void noinline
1280periodics_reschedule (EV_P)
1281{
1282 int i;
1283
1284 /* adjust periodics after time jump */
1285 for (i = 0; i < periodiccnt; ++i)
1286 {
1287 ev_periodic *w = (ev_periodic *)periodics [i];
1288
1289 if (w->reschedule_cb)
1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1291 else if (w->interval)
1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1293 }
1294
1295 /* now rebuild the heap */
1296 for (i = periodiccnt >> 1; i--; )
1297 downheap (periodics, periodiccnt, i);
1298}
1299#endif
1300 1692
1301#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1302void inline_size 1694void inline_size
1303idle_reify (EV_P) 1695idle_reify (EV_P)
1304{ 1696{
1316 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1317 break; 1709 break;
1318 } 1710 }
1319 } 1711 }
1320 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1321} 1815}
1322#endif 1816#endif
1323 1817
1324void inline_speed 1818void inline_speed
1325time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1354 */ 1848 */
1355 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1356 { 1850 {
1357 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1358 1852
1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1360 return; /* all is well */ 1854 return; /* all is well */
1361 1855
1362 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1363 mn_now = get_clock (); 1857 mn_now = get_clock ();
1364 now_floor = mn_now; 1858 now_floor = mn_now;
1380#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1381 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1382#endif 1876#endif
1383 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1384 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1385 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1386 } 1884 }
1387 1885
1388 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1389 } 1887 }
1390} 1888}
1404static int loop_done; 1902static int loop_done;
1405 1903
1406void 1904void
1407ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1408{ 1906{
1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1907 loop_done = EVUNLOOP_CANCEL;
1410 ? EVUNLOOP_ONE
1411 : EVUNLOOP_CANCEL;
1412 1908
1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1414 1910
1415 do 1911 do
1416 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1417#ifndef _WIN32 1917#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1420 { 1920 {
1421 curpid = getpid (); 1921 curpid = getpid ();
1450 /* update fd-related kernel structures */ 1950 /* update fd-related kernel structures */
1451 fd_reify (EV_A); 1951 fd_reify (EV_A);
1452 1952
1453 /* calculate blocking time */ 1953 /* calculate blocking time */
1454 { 1954 {
1455 ev_tstamp block; 1955 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.;
1456 1957
1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1458 block = 0.; /* do not block at all */
1459 else
1460 { 1959 {
1461 /* update time to cancel out callback processing overhead */ 1960 /* update time to cancel out callback processing overhead */
1462 time_update (EV_A_ 1e100); 1961 time_update (EV_A_ 1e100);
1463 1962
1464 block = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1465 1964
1466 if (timercnt) 1965 if (timercnt)
1467 { 1966 {
1468 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1469 if (block > to) block = to; 1968 if (waittime > to) waittime = to;
1470 } 1969 }
1471 1970
1472#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1473 if (periodiccnt) 1972 if (periodiccnt)
1474 { 1973 {
1475 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1476 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1477 } 1976 }
1478#endif 1977#endif
1479 1978
1480 if (expect_false (block < 0.)) block = 0.; 1979 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime;
1981
1982 sleeptime = waittime - backend_fudge;
1983
1984 if (expect_true (sleeptime > io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 {
1989 ev_sleep (sleeptime);
1990 waittime -= sleeptime;
1991 }
1481 } 1992 }
1482 1993
1483 ++loop_count; 1994 ++loop_count;
1484 backend_poll (EV_A_ block); 1995 backend_poll (EV_A_ waittime);
1485 1996
1486 /* update ev_rt_now, do magic */ 1997 /* update ev_rt_now, do magic */
1487 time_update (EV_A_ block); 1998 time_update (EV_A_ waittime + sleeptime);
1488 } 1999 }
1489 2000
1490 /* queue pending timers and reschedule them */ 2001 /* queue pending timers and reschedule them */
1491 timers_reify (EV_A); /* relative timers called last */ 2002 timers_reify (EV_A); /* relative timers called last */
1492#if EV_PERIODIC_ENABLE 2003#if EV_PERIODIC_ENABLE
1501 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1502 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1504 2015
1505 call_pending (EV_A); 2016 call_pending (EV_A);
1506
1507 } 2017 }
1508 while (expect_true (activecnt && !loop_done)); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1509 2023
1510 if (loop_done == EVUNLOOP_ONE) 2024 if (loop_done == EVUNLOOP_ONE)
1511 loop_done = EVUNLOOP_CANCEL; 2025 loop_done = EVUNLOOP_CANCEL;
1512} 2026}
1513 2027
1602 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1603 return; 2117 return;
1604 2118
1605 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1606 2120
2121 EV_FREQUENT_CHECK;
2122
1607 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1609 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1610 2126
1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1613} 2131}
1614 2132
1615void noinline 2133void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1617{ 2135{
1618 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1620 return; 2138 return;
1621 2139
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1623 2143
1624 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1626 2146
1627 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1628} 2150}
1629 2151
1630void noinline 2152void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1632{ 2154{
1633 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1634 return; 2156 return;
1635 2157
1636 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1637 2159
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap (timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1644 2170
2171 EV_FREQUENT_CHECK;
2172
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2174}
1647 2175
1648void noinline 2176void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2178{
1651 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1653 return; 2181 return;
1654 2182
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2183 EV_FREQUENT_CHECK;
1656 2184
1657 { 2185 {
1658 int active = ((W)w)->active; 2186 int active = ev_active (w);
1659 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1660 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1661 { 2193 {
1662 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1664 } 2196 }
1665 } 2197 }
1666 2198
1667 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1668 2202
1669 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1670} 2204}
1671 2205
1672void noinline 2206void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1674{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1675 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1676 { 2212 {
1677 if (w->repeat) 2213 if (w->repeat)
1678 { 2214 {
1679 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap (timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1681 } 2218 }
1682 else 2219 else
1683 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1684 } 2221 }
1685 else if (w->repeat) 2222 else if (w->repeat)
1686 { 2223 {
1687 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1689 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1690} 2229}
1691 2230
1692#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1693void noinline 2232void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2234{
1696 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1697 return; 2236 return;
1698 2237
1699 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2240 else if (w->interval)
1702 { 2241 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2245 }
1707 else 2246 else
1708 ((WT)w)->at = w->offset; 2247 ev_at (w) = w->offset;
1709 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap (periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1714 2257
2258 EV_FREQUENT_CHECK;
2259
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2261}
1717 2262
1718void noinline 2263void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2265{
1721 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1723 return; 2268 return;
1724 2269
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2270 EV_FREQUENT_CHECK;
1726 2271
1727 { 2272 {
1728 int active = ((W)w)->active; 2273 int active = ev_active (w);
1729 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1730 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2280 {
1732 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1734 } 2283 }
1735 } 2284 }
1736 2285
2286 EV_FREQUENT_CHECK;
2287
1737 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1738} 2289}
1739 2290
1740void noinline 2291void noinline
1741ev_periodic_again (EV_P_ ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1758#endif 2309#endif
1759 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
1760 return; 2311 return;
1761 2312
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
1763 2318
1764 { 2319 {
1765#ifndef _WIN32 2320#ifndef _WIN32
1766 sigset_t full, prev; 2321 sigset_t full, prev;
1767 sigfillset (&full); 2322 sigfillset (&full);
1779 wlist_add (&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1780 2335
1781 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1782 { 2337 {
1783#if _WIN32 2338#if _WIN32
1784 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1785#else 2340#else
1786 struct sigaction sa; 2341 struct sigaction sa;
1787 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1788 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1789 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1790 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1791#endif 2346#endif
1792 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
1793} 2350}
1794 2351
1795void noinline 2352void noinline
1796ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1797{ 2354{
1798 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1800 return; 2357 return;
1801 2358
2359 EV_FREQUENT_CHECK;
2360
1802 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1803 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1804 2363
1805 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1806 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
1807} 2368}
1808 2369
1809void 2370void
1810ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1811{ 2372{
1813 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1814#endif 2375#endif
1815 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1816 return; 2377 return;
1817 2378
2379 EV_FREQUENT_CHECK;
2380
1818 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
1820} 2385}
1821 2386
1822void 2387void
1823ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1824{ 2389{
1825 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1826 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1827 return; 2392 return;
1828 2393
2394 EV_FREQUENT_CHECK;
2395
1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1830 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1831} 2400}
1832 2401
1833#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
1834 2403
1835# ifdef _WIN32 2404# ifdef _WIN32
1853 if (w->wd < 0) 2422 if (w->wd < 0)
1854 { 2423 {
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856 2425
1857 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 { 2430 {
1860 char path [4096]; 2431 char path [4096];
1861 strcpy (path, w->path); 2432 strcpy (path, w->path);
1862 2433
2061 else 2632 else
2062#endif 2633#endif
2063 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2064 2635
2065 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2066} 2639}
2067 2640
2068void 2641void
2069ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2070{ 2643{
2071 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2072 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2073 return; 2646 return;
2074 2647
2648 EV_FREQUENT_CHECK;
2649
2075#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2077#endif 2652#endif
2078 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2079 2654
2080 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2081} 2658}
2082#endif 2659#endif
2083 2660
2084#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2085void 2662void
2087{ 2664{
2088 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2089 return; 2666 return;
2090 2667
2091 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2092 2671
2093 { 2672 {
2094 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2095 2674
2096 ++idleall; 2675 ++idleall;
2097 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2098 2677
2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2100 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2101 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2102} 2683}
2103 2684
2104void 2685void
2105ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2106{ 2687{
2107 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2108 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2109 return; 2690 return;
2110 2691
2692 EV_FREQUENT_CHECK;
2693
2111 { 2694 {
2112 int active = ((W)w)->active; 2695 int active = ev_active (w);
2113 2696
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2115 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2116 2699
2117 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2118 --idleall; 2701 --idleall;
2119 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2120} 2705}
2121#endif 2706#endif
2122 2707
2123void 2708void
2124ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2125{ 2710{
2126 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2127 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2128 2715
2129 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2130 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2131 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2132} 2721}
2133 2722
2134void 2723void
2135ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2136{ 2725{
2137 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2139 return; 2728 return;
2140 2729
2730 EV_FREQUENT_CHECK;
2731
2141 { 2732 {
2142 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2143 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2144 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2145 } 2737 }
2146 2738
2147 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2148} 2742}
2149 2743
2150void 2744void
2151ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2152{ 2746{
2153 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2154 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2155 2751
2156 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2157 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2158 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2159} 2757}
2160 2758
2161void 2759void
2162ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2163{ 2761{
2164 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2166 return; 2764 return;
2167 2765
2766 EV_FREQUENT_CHECK;
2767
2168 { 2768 {
2169 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2170 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2171 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2172 } 2773 }
2173 2774
2174 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2175} 2778}
2176 2779
2177#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2178void noinline 2781void noinline
2179ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2180{ 2783{
2181 ev_loop (w->loop, EVLOOP_NONBLOCK); 2784 ev_loop (w->other, EVLOOP_NONBLOCK);
2182} 2785}
2183 2786
2184static void 2787static void
2185embed_cb (EV_P_ ev_io *io, int revents) 2788embed_io_cb (EV_P_ ev_io *io, int revents)
2186{ 2789{
2187 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2188 2791
2189 if (ev_cb (w)) 2792 if (ev_cb (w))
2190 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2191 else 2794 else
2192 ev_embed_sweep (loop, w); 2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2193} 2796}
2797
2798static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802
2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2812}
2813
2814#if 0
2815static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{
2818 ev_idle_stop (EV_A_ idle);
2819}
2820#endif
2194 2821
2195void 2822void
2196ev_embed_start (EV_P_ ev_embed *w) 2823ev_embed_start (EV_P_ ev_embed *w)
2197{ 2824{
2198 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2199 return; 2826 return;
2200 2827
2201 { 2828 {
2202 struct ev_loop *loop = w->loop; 2829 struct ev_loop *loop = w->other;
2203 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2204 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2205 } 2832 }
2833
2834 EV_FREQUENT_CHECK;
2206 2835
2207 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2208 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2209 2838
2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare);
2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2210 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2211} 2848}
2212 2849
2213void 2850void
2214ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2215{ 2852{
2216 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2218 return; 2855 return;
2219 2856
2857 EV_FREQUENT_CHECK;
2858
2220 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare);
2221 2861
2222 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2223} 2865}
2224#endif 2866#endif
2225 2867
2226#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2227void 2869void
2228ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2229{ 2871{
2230 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2231 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2232 2876
2233 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2236} 2882}
2237 2883
2238void 2884void
2239ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2240{ 2886{
2241 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2243 return; 2889 return;
2244 2890
2891 EV_FREQUENT_CHECK;
2892
2245 { 2893 {
2246 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2247 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2249 } 2898 }
2250 2899
2251 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2252} 2950}
2253#endif 2951#endif
2254 2952
2255/*****************************************************************************/ 2953/*****************************************************************************/
2256 2954
2314 ev_timer_set (&once->to, timeout, 0.); 3012 ev_timer_set (&once->to, timeout, 0.);
2315 ev_timer_start (EV_A_ &once->to); 3013 ev_timer_start (EV_A_ &once->to);
2316 } 3014 }
2317} 3015}
2318 3016
3017#if EV_MULTIPLICITY
3018 #include "ev_wrap.h"
3019#endif
3020
2319#ifdef __cplusplus 3021#ifdef __cplusplus
2320} 3022}
2321#endif 3023#endif
2322 3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines