ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
58#include <stdlib.h> 110#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 111#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 112#include <stddef.h>
63 113
64#include <stdio.h> 114#include <stdio.h>
65 115
66#include <assert.h> 116#include <assert.h>
67#include <errno.h> 117#include <errno.h>
68#include <sys/types.h> 118#include <sys/types.h>
119#include <time.h>
120
121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
69#ifndef WIN32 129#ifndef _WIN32
130# include <sys/time.h>
70# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
71#endif 138# endif
72#include <sys/time.h> 139#endif
73#include <time.h>
74 140
75/**/ 141/**/
76 142
77#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
79#endif 149#endif
80 150
81#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
83#endif 153#endif
84 154
85#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
87#endif 161#endif
88 162
89#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
91#endif 165#endif
92 166
93#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
95#endif 169#endif
96 170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
97#ifndef EV_USE_WIN32 175#ifndef EV_USE_INOTIFY
98# ifdef WIN32 176# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
100# else 182# else
101# define EV_USE_WIN32 0 183# define EV_PID_HASHSIZE 16
102# endif 184# endif
103#endif 185#endif
104 186
105#ifndef EV_USE_REALTIME 187#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
107#endif 193#endif
108 194
109/**/ 195/**/
110 196
111#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
119#endif 205#endif
120 206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
121/**/ 219/**/
122 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127
128#include "ev.h"
129 234
130#if __GNUC__ >= 3 235#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 237# define noinline __attribute__ ((noinline))
133#else 238#else
134# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
135# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
136#endif 244#endif
137 245
138#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
140 255
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 258
259#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */
261
144typedef struct ev_watcher *W; 262typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
147 265
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 267
150#if WIN32 268#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 269# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 270#endif
155 271
156/*****************************************************************************/ 272/*****************************************************************************/
157 273
158static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
159 275
276void
160void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 278{
162 syserr_cb = cb; 279 syserr_cb = cb;
163} 280}
164 281
165static void 282static void noinline
166syserr (const char *msg) 283syserr (const char *msg)
167{ 284{
168 if (!msg) 285 if (!msg)
169 msg = "(libev) system error"; 286 msg = "(libev) system error";
170 287
177 } 294 }
178} 295}
179 296
180static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
181 298
299void
182void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
183{ 301{
184 alloc = cb; 302 alloc = cb;
185} 303}
186 304
187static void * 305inline_speed void *
188ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
189{ 307{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191 309
192 if (!ptr && size) 310 if (!ptr && size)
206typedef struct 324typedef struct
207{ 325{
208 WL head; 326 WL head;
209 unsigned char events; 327 unsigned char events;
210 unsigned char reify; 328 unsigned char reify;
329#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle;
331#endif
211} ANFD; 332} ANFD;
212 333
213typedef struct 334typedef struct
214{ 335{
215 W w; 336 W w;
216 int events; 337 int events;
217} ANPENDING; 338} ANPENDING;
218 339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
346
219#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
220 348
221struct ev_loop 349 struct ev_loop
222{ 350 {
351 ev_tstamp ev_rt_now;
352 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 353 #define VAR(name,decl) decl;
224# include "ev_vars.h" 354 #include "ev_vars.h"
225};
226# undef VAR 355 #undef VAR
356 };
227# include "ev_wrap.h" 357 #include "ev_wrap.h"
358
359 static struct ev_loop default_loop_struct;
360 struct ev_loop *ev_default_loop_ptr;
228 361
229#else 362#else
230 363
364 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 365 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 366 #include "ev_vars.h"
233# undef VAR 367 #undef VAR
368
369 static int ev_default_loop_ptr;
234 370
235#endif 371#endif
236 372
237/*****************************************************************************/ 373/*****************************************************************************/
238 374
239inline ev_tstamp 375ev_tstamp
240ev_time (void) 376ev_time (void)
241{ 377{
242#if EV_USE_REALTIME 378#if EV_USE_REALTIME
243 struct timespec ts; 379 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 380 clock_gettime (CLOCK_REALTIME, &ts);
248 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
249 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
250#endif 386#endif
251} 387}
252 388
253inline ev_tstamp 389ev_tstamp inline_size
254get_clock (void) 390get_clock (void)
255{ 391{
256#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
257 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
258 { 394 {
263#endif 399#endif
264 400
265 return ev_time (); 401 return ev_time ();
266} 402}
267 403
404#if EV_MULTIPLICITY
268ev_tstamp 405ev_tstamp
269ev_now (EV_P) 406ev_now (EV_P)
270{ 407{
271 return rt_now; 408 return ev_rt_now;
272} 409}
410#endif
273 411
274#define array_roundsize(base,n) ((n) | 4 & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
275 416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
439
276#define array_needsize(base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
278 { \ 442 { \
279 int newcnt = cur; \ 443 int ocur_ = (cur); \
280 do \ 444 (base) = (type *)array_realloc \
281 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
282 newcnt = array_roundsize (base, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
283 } \
284 while ((cnt) > newcnt); \
285 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
287 init (base + cur, newcnt - cur); \
288 cur = newcnt; \
289 } 447 }
290 448
449#if 0
291#define array_slim(stem) \ 450#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 452 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 456 }
457#endif
298 458
299#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
301 461
302/*****************************************************************************/ 462/*****************************************************************************/
303 463
304static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
305anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
306{ 494{
307 while (count--) 495 while (count--)
308 { 496 {
309 base->head = 0; 497 base->head = 0;
312 500
313 ++base; 501 ++base;
314 } 502 }
315} 503}
316 504
317static void 505void inline_speed
318event (EV_P_ W w, int events)
319{
320 if (w->pending)
321 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
323 return;
324 }
325
326 w->pending = ++pendingcnt [ABSPRI (w)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
328 pendings [ABSPRI (w)][w->pending - 1].w = w;
329 pendings [ABSPRI (w)][w->pending - 1].events = events;
330}
331
332static void
333queue_events (EV_P_ W *events, int eventcnt, int type)
334{
335 int i;
336
337 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type);
339}
340
341static void
342fd_event (EV_P_ int fd, int events) 506fd_event (EV_P_ int fd, int revents)
343{ 507{
344 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 509 ev_io *w;
346 510
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
348 { 512 {
349 int ev = w->events & events; 513 int ev = w->events & revents;
350 514
351 if (ev) 515 if (ev)
352 event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
353 } 517 }
354} 518}
355 519
356/*****************************************************************************/ 520void
521ev_feed_fd_event (EV_P_ int fd, int revents)
522{
523 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents);
525}
357 526
358static void 527void inline_size
359fd_reify (EV_P) 528fd_reify (EV_P)
360{ 529{
361 int i; 530 int i;
362 531
363 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
364 { 533 {
365 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
366 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
367 struct ev_io *w; 536 ev_io *w;
368 537
369 int events = 0; 538 unsigned char events = 0;
370 539
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 events |= w->events; 541 events |= (unsigned char)w->events;
373 542
543#if EV_SELECT_IS_WINSOCKET
544 if (events)
545 {
546 unsigned long argp;
547 anfd->handle = _get_osfhandle (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 }
550#endif
551
552 {
553 unsigned char o_events = anfd->events;
554 unsigned char o_reify = anfd->reify;
555
374 anfd->reify = 0; 556 anfd->reify = 0;
375
376 method_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events; 557 anfd->events = events;
558
559 if (o_events != events || o_reify & EV_IOFDSET)
560 backend_modify (EV_A_ fd, o_events, events);
561 }
378 } 562 }
379 563
380 fdchangecnt = 0; 564 fdchangecnt = 0;
381} 565}
382 566
383static void 567void inline_size
384fd_change (EV_P_ int fd) 568fd_change (EV_P_ int fd, int flags)
385{ 569{
386 if (anfds [fd].reify) 570 unsigned char reify = anfds [fd].reify;
387 return;
388
389 anfds [fd].reify = 1; 571 anfds [fd].reify |= flags;
390 572
573 if (expect_true (!reify))
574 {
391 ++fdchangecnt; 575 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 576 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
393 fdchanges [fdchangecnt - 1] = fd; 577 fdchanges [fdchangecnt - 1] = fd;
578 }
394} 579}
395 580
396static void 581void inline_speed
397fd_kill (EV_P_ int fd) 582fd_kill (EV_P_ int fd)
398{ 583{
399 struct ev_io *w; 584 ev_io *w;
400 585
401 while ((w = (struct ev_io *)anfds [fd].head)) 586 while ((w = (ev_io *)anfds [fd].head))
402 { 587 {
403 ev_io_stop (EV_A_ w); 588 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 589 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 590 }
591}
592
593int inline_size
594fd_valid (int fd)
595{
596#ifdef _WIN32
597 return _get_osfhandle (fd) != -1;
598#else
599 return fcntl (fd, F_GETFD) != -1;
600#endif
406} 601}
407 602
408/* called on EBADF to verify fds */ 603/* called on EBADF to verify fds */
409static void 604static void noinline
410fd_ebadf (EV_P) 605fd_ebadf (EV_P)
411{ 606{
412 int fd; 607 int fd;
413 608
414 for (fd = 0; fd < anfdmax; ++fd) 609 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 610 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 611 if (!fd_valid (fd) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd); 612 fd_kill (EV_A_ fd);
418} 613}
419 614
420/* called on ENOMEM in select/poll to kill some fds and retry */ 615/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 616static void noinline
422fd_enomem (EV_P) 617fd_enomem (EV_P)
423{ 618{
424 int fd; 619 int fd;
425 620
426 for (fd = anfdmax; fd--; ) 621 for (fd = anfdmax; fd--; )
429 fd_kill (EV_A_ fd); 624 fd_kill (EV_A_ fd);
430 return; 625 return;
431 } 626 }
432} 627}
433 628
434/* usually called after fork if method needs to re-arm all fds from scratch */ 629/* usually called after fork if backend needs to re-arm all fds from scratch */
435static void 630static void noinline
436fd_rearm_all (EV_P) 631fd_rearm_all (EV_P)
437{ 632{
438 int fd; 633 int fd;
439 634
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd) 635 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events) 636 if (anfds [fd].events)
443 { 637 {
444 anfds [fd].events = 0; 638 anfds [fd].events = 0;
445 fd_change (EV_A_ fd); 639 fd_change (EV_A_ fd, EV_IOFDSET | 1);
446 } 640 }
447} 641}
448 642
449/*****************************************************************************/ 643/*****************************************************************************/
450 644
451static void 645void inline_speed
452upheap (WT *heap, int k) 646upheap (WT *heap, int k)
453{ 647{
454 WT w = heap [k]; 648 WT w = heap [k];
455 649
456 while (k && heap [k >> 1]->at > w->at) 650 while (k)
457 { 651 {
652 int p = (k - 1) >> 1;
653
654 if (heap [p]->at <= w->at)
655 break;
656
458 heap [k] = heap [k >> 1]; 657 heap [k] = heap [p];
459 ((W)heap [k])->active = k + 1; 658 ((W)heap [k])->active = k + 1;
460 k >>= 1; 659 k = p;
461 } 660 }
462 661
463 heap [k] = w; 662 heap [k] = w;
464 ((W)heap [k])->active = k + 1; 663 ((W)heap [k])->active = k + 1;
465
466} 664}
467 665
468static void 666void inline_speed
469downheap (WT *heap, int N, int k) 667downheap (WT *heap, int N, int k)
470{ 668{
471 WT w = heap [k]; 669 WT w = heap [k];
472 670
473 while (k < (N >> 1)) 671 for (;;)
474 { 672 {
475 int j = k << 1; 673 int c = (k << 1) + 1;
476 674
477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 675 if (c >= N)
478 ++j;
479
480 if (w->at <= heap [j]->at)
481 break; 676 break;
482 677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
483 heap [k] = heap [j]; 684 heap [k] = heap [c];
484 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
686
485 k = j; 687 k = c;
486 } 688 }
487 689
488 heap [k] = w; 690 heap [k] = w;
489 ((W)heap [k])->active = k + 1; 691 ((W)heap [k])->active = k + 1;
692}
693
694void inline_size
695adjustheap (WT *heap, int N, int k)
696{
697 upheap (heap, k);
698 downheap (heap, N, k);
490} 699}
491 700
492/*****************************************************************************/ 701/*****************************************************************************/
493 702
494typedef struct 703typedef struct
500static ANSIG *signals; 709static ANSIG *signals;
501static int signalmax; 710static int signalmax;
502 711
503static int sigpipe [2]; 712static int sigpipe [2];
504static sig_atomic_t volatile gotsig; 713static sig_atomic_t volatile gotsig;
505static struct ev_io sigev; 714static ev_io sigev;
506 715
507static void 716void inline_size
508signals_init (ANSIG *base, int count) 717signals_init (ANSIG *base, int count)
509{ 718{
510 while (count--) 719 while (count--)
511 { 720 {
512 base->head = 0; 721 base->head = 0;
517} 726}
518 727
519static void 728static void
520sighandler (int signum) 729sighandler (int signum)
521{ 730{
522#if WIN32 731#if _WIN32
523 signal (signum, sighandler); 732 signal (signum, sighandler);
524#endif 733#endif
525 734
526 signals [signum - 1].gotsig = 1; 735 signals [signum - 1].gotsig = 1;
527 736
532 write (sigpipe [1], &signum, 1); 741 write (sigpipe [1], &signum, 1);
533 errno = old_errno; 742 errno = old_errno;
534 } 743 }
535} 744}
536 745
746void noinline
747ev_feed_signal_event (EV_P_ int signum)
748{
749 WL w;
750
751#if EV_MULTIPLICITY
752 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
753#endif
754
755 --signum;
756
757 if (signum < 0 || signum >= signalmax)
758 return;
759
760 signals [signum].gotsig = 0;
761
762 for (w = signals [signum].head; w; w = w->next)
763 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
764}
765
537static void 766static void
538sigcb (EV_P_ struct ev_io *iow, int revents) 767sigcb (EV_P_ ev_io *iow, int revents)
539{ 768{
540 WL w;
541 int signum; 769 int signum;
542 770
543 read (sigpipe [0], &revents, 1); 771 read (sigpipe [0], &revents, 1);
544 gotsig = 0; 772 gotsig = 0;
545 773
546 for (signum = signalmax; signum--; ) 774 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig) 775 if (signals [signum].gotsig)
548 { 776 ev_feed_signal_event (EV_A_ signum + 1);
549 signals [signum].gotsig = 0;
550
551 for (w = signals [signum].head; w; w = w->next)
552 event (EV_A_ (W)w, EV_SIGNAL);
553 }
554} 777}
555 778
556static void 779void inline_speed
780fd_intern (int fd)
781{
782#ifdef _WIN32
783 int arg = 1;
784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
785#else
786 fcntl (fd, F_SETFD, FD_CLOEXEC);
787 fcntl (fd, F_SETFL, O_NONBLOCK);
788#endif
789}
790
791static void noinline
557siginit (EV_P) 792siginit (EV_P)
558{ 793{
559#ifndef WIN32 794 fd_intern (sigpipe [0]);
560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 795 fd_intern (sigpipe [1]);
561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562
563 /* rather than sort out wether we really need nb, set it */
564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
567 796
568 ev_io_set (&sigev, sigpipe [0], EV_READ); 797 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 ev_io_start (EV_A_ &sigev); 798 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 799 ev_unref (EV_A); /* child watcher should not keep loop alive */
571} 800}
572 801
573/*****************************************************************************/ 802/*****************************************************************************/
574 803
804static WL childs [EV_PID_HASHSIZE];
805
575#ifndef WIN32 806#ifndef _WIN32
576 807
577static struct ev_child *childs [PID_HASHSIZE];
578static struct ev_signal childev; 808static ev_signal childev;
809
810void inline_speed
811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
812{
813 ev_child *w;
814
815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
816 if (w->pid == pid || !w->pid)
817 {
818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
819 w->rpid = pid;
820 w->rstatus = status;
821 ev_feed_event (EV_A_ (W)w, EV_CHILD);
822 }
823}
579 824
580#ifndef WCONTINUED 825#ifndef WCONTINUED
581# define WCONTINUED 0 826# define WCONTINUED 0
582#endif 827#endif
583 828
584static void 829static void
585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586{
587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 830childcb (EV_P_ ev_signal *sw, int revents)
601{ 831{
602 int pid, status; 832 int pid, status;
603 833
834 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 835 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 836 if (!WCONTINUED
837 || errno != EINVAL
838 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
839 return;
840
606 /* make sure we are called again until all childs have been reaped */ 841 /* make sure we are called again until all childs have been reaped */
842 /* we need to do it this way so that the callback gets called before we continue */
607 event (EV_A_ (W)sw, EV_SIGNAL); 843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 844
609 child_reap (EV_A_ sw, pid, pid, status); 845 child_reap (EV_A_ sw, pid, pid, status);
846 if (EV_PID_HASHSIZE > 1)
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
611 }
612} 848}
613 849
614#endif 850#endif
615 851
616/*****************************************************************************/ 852/*****************************************************************************/
617 853
854#if EV_USE_PORT
855# include "ev_port.c"
856#endif
618#if EV_USE_KQUEUE 857#if EV_USE_KQUEUE
619# include "ev_kqueue.c" 858# include "ev_kqueue.c"
620#endif 859#endif
621#if EV_USE_EPOLL 860#if EV_USE_EPOLL
622# include "ev_epoll.c" 861# include "ev_epoll.c"
639{ 878{
640 return EV_VERSION_MINOR; 879 return EV_VERSION_MINOR;
641} 880}
642 881
643/* return true if we are running with elevated privileges and should ignore env variables */ 882/* return true if we are running with elevated privileges and should ignore env variables */
644static int 883int inline_size
645enable_secure (void) 884enable_secure (void)
646{ 885{
647#ifdef WIN32 886#ifdef _WIN32
648 return 0; 887 return 0;
649#else 888#else
650 return getuid () != geteuid () 889 return getuid () != geteuid ()
651 || getgid () != getegid (); 890 || getgid () != getegid ();
652#endif 891#endif
653} 892}
654 893
655int 894unsigned int
656ev_method (EV_P) 895ev_supported_backends (void)
657{ 896{
658 return method; 897 unsigned int flags = 0;
659}
660 898
661static void 899 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
662loop_init (EV_P_ int methods) 900 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
901 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
902 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
903 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
904
905 return flags;
906}
907
908unsigned int
909ev_recommended_backends (void)
663{ 910{
664 if (!method) 911 unsigned int flags = ev_supported_backends ();
912
913#ifndef __NetBSD__
914 /* kqueue is borked on everything but netbsd apparently */
915 /* it usually doesn't work correctly on anything but sockets and pipes */
916 flags &= ~EVBACKEND_KQUEUE;
917#endif
918#ifdef __APPLE__
919 // flags &= ~EVBACKEND_KQUEUE; for documentation
920 flags &= ~EVBACKEND_POLL;
921#endif
922
923 return flags;
924}
925
926unsigned int
927ev_embeddable_backends (void)
928{
929 return EVBACKEND_EPOLL
930 | EVBACKEND_KQUEUE
931 | EVBACKEND_PORT;
932}
933
934unsigned int
935ev_backend (EV_P)
936{
937 return backend;
938}
939
940unsigned int
941ev_loop_count (EV_P)
942{
943 return loop_count;
944}
945
946static void noinline
947loop_init (EV_P_ unsigned int flags)
948{
949 if (!backend)
665 { 950 {
666#if EV_USE_MONOTONIC 951#if EV_USE_MONOTONIC
667 { 952 {
668 struct timespec ts; 953 struct timespec ts;
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 954 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670 have_monotonic = 1; 955 have_monotonic = 1;
671 } 956 }
672#endif 957#endif
673 958
674 rt_now = ev_time (); 959 ev_rt_now = ev_time ();
675 mn_now = get_clock (); 960 mn_now = get_clock ();
676 now_floor = mn_now; 961 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now; 962 rtmn_diff = ev_rt_now - mn_now;
678 963
679 if (methods == EVMETHOD_AUTO) 964 /* pid check not overridable via env */
680 if (!enable_secure () && getenv ("LIBEV_METHODS")) 965#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid ();
968#endif
969
970 if (!(flags & EVFLAG_NOENV)
971 && !enable_secure ()
972 && getenv ("LIBEV_FLAGS"))
681 methods = atoi (getenv ("LIBEV_METHODS")); 973 flags = atoi (getenv ("LIBEV_FLAGS"));
682 else
683 methods = EVMETHOD_ANY;
684 974
685 method = 0; 975 if (!(flags & 0x0000ffffUL))
976 flags |= ev_recommended_backends ();
977
978 backend = 0;
979 backend_fd = -1;
686#if EV_USE_WIN32 980#if EV_USE_INOTIFY
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 981 fs_fd = -2;
982#endif
983
984#if EV_USE_PORT
985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
688#endif 986#endif
689#if EV_USE_KQUEUE 987#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 988 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
691#endif 989#endif
692#if EV_USE_EPOLL 990#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 991 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
694#endif 992#endif
695#if EV_USE_POLL 993#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 994 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
697#endif 995#endif
698#if EV_USE_SELECT 996#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 997 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
700#endif 998#endif
701 999
702 ev_watcher_init (&sigev, sigcb); 1000 ev_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI); 1001 ev_set_priority (&sigev, EV_MAXPRI);
704 } 1002 }
705} 1003}
706 1004
707void 1005static void noinline
708loop_destroy (EV_P) 1006loop_destroy (EV_P)
709{ 1007{
710 int i; 1008 int i;
711 1009
712#if EV_USE_WIN32 1010#if EV_USE_INOTIFY
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1011 if (fs_fd >= 0)
1012 close (fs_fd);
1013#endif
1014
1015 if (backend_fd >= 0)
1016 close (backend_fd);
1017
1018#if EV_USE_PORT
1019 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
714#endif 1020#endif
715#if EV_USE_KQUEUE 1021#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1022 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
717#endif 1023#endif
718#if EV_USE_EPOLL 1024#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1025 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
720#endif 1026#endif
721#if EV_USE_POLL 1027#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1028 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
723#endif 1029#endif
724#if EV_USE_SELECT 1030#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1031 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
726#endif 1032#endif
727 1033
728 for (i = NUMPRI; i--; ) 1034 for (i = NUMPRI; i--; )
1035 {
729 array_free (pending, [i]); 1036 array_free (pending, [i]);
1037#if EV_IDLE_ENABLE
1038 array_free (idle, [i]);
1039#endif
1040 }
730 1041
1042 /* have to use the microsoft-never-gets-it-right macro */
731 array_free (fdchange, ); 1043 array_free (fdchange, EMPTY);
732 array_free (timer, ); 1044 array_free (timer, EMPTY);
1045#if EV_PERIODIC_ENABLE
733 array_free (periodic, ); 1046 array_free (periodic, EMPTY);
734 array_free (idle, ); 1047#endif
735 array_free (prepare, ); 1048 array_free (prepare, EMPTY);
736 array_free (check, ); 1049 array_free (check, EMPTY);
737 1050
738 method = 0; 1051 backend = 0;
739} 1052}
740 1053
741static void 1054void inline_size infy_fork (EV_P);
1055
1056void inline_size
742loop_fork (EV_P) 1057loop_fork (EV_P)
743{ 1058{
1059#if EV_USE_PORT
1060 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1061#endif
1062#if EV_USE_KQUEUE
1063 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1064#endif
744#if EV_USE_EPOLL 1065#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1066 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
746#endif 1067#endif
747#if EV_USE_KQUEUE 1068#if EV_USE_INOTIFY
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1069 infy_fork (EV_A);
749#endif 1070#endif
750 1071
751 if (ev_is_active (&sigev)) 1072 if (ev_is_active (&sigev))
752 { 1073 {
753 /* default loop */ 1074 /* default loop */
766 postfork = 0; 1087 postfork = 0;
767} 1088}
768 1089
769#if EV_MULTIPLICITY 1090#if EV_MULTIPLICITY
770struct ev_loop * 1091struct ev_loop *
771ev_loop_new (int methods) 1092ev_loop_new (unsigned int flags)
772{ 1093{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1094 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774 1095
775 memset (loop, 0, sizeof (struct ev_loop)); 1096 memset (loop, 0, sizeof (struct ev_loop));
776 1097
777 loop_init (EV_A_ methods); 1098 loop_init (EV_A_ flags);
778 1099
779 if (ev_method (EV_A)) 1100 if (ev_backend (EV_A))
780 return loop; 1101 return loop;
781 1102
782 return 0; 1103 return 0;
783} 1104}
784 1105
796} 1117}
797 1118
798#endif 1119#endif
799 1120
800#if EV_MULTIPLICITY 1121#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop * 1122struct ev_loop *
1123ev_default_loop_init (unsigned int flags)
805#else 1124#else
806static int default_loop;
807
808int 1125int
1126ev_default_loop (unsigned int flags)
809#endif 1127#endif
810ev_default_loop (int methods)
811{ 1128{
812 if (sigpipe [0] == sigpipe [1]) 1129 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe)) 1130 if (pipe (sigpipe))
814 return 0; 1131 return 0;
815 1132
816 if (!default_loop) 1133 if (!ev_default_loop_ptr)
817 { 1134 {
818#if EV_MULTIPLICITY 1135#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct; 1136 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
820#else 1137#else
821 default_loop = 1; 1138 ev_default_loop_ptr = 1;
822#endif 1139#endif
823 1140
824 loop_init (EV_A_ methods); 1141 loop_init (EV_A_ flags);
825 1142
826 if (ev_method (EV_A)) 1143 if (ev_backend (EV_A))
827 { 1144 {
828 siginit (EV_A); 1145 siginit (EV_A);
829 1146
830#ifndef WIN32 1147#ifndef _WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD); 1148 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI); 1149 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev); 1150 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1151 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif 1152#endif
836 } 1153 }
837 else 1154 else
838 default_loop = 0; 1155 ev_default_loop_ptr = 0;
839 } 1156 }
840 1157
841 return default_loop; 1158 return ev_default_loop_ptr;
842} 1159}
843 1160
844void 1161void
845ev_default_destroy (void) 1162ev_default_destroy (void)
846{ 1163{
847#if EV_MULTIPLICITY 1164#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1165 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1166#endif
850 1167
1168#ifndef _WIN32
851 ev_ref (EV_A); /* child watcher */ 1169 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev); 1170 ev_signal_stop (EV_A_ &childev);
1171#endif
853 1172
854 ev_ref (EV_A); /* signal watcher */ 1173 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev); 1174 ev_io_stop (EV_A_ &sigev);
856 1175
857 close (sigpipe [0]); sigpipe [0] = 0; 1176 close (sigpipe [0]); sigpipe [0] = 0;
862 1181
863void 1182void
864ev_default_fork (void) 1183ev_default_fork (void)
865{ 1184{
866#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop; 1186 struct ev_loop *loop = ev_default_loop_ptr;
868#endif 1187#endif
869 1188
870 if (method) 1189 if (backend)
871 postfork = 1; 1190 postfork = 1;
872} 1191}
873 1192
874/*****************************************************************************/ 1193/*****************************************************************************/
875 1194
876static void 1195void
1196ev_invoke (EV_P_ void *w, int revents)
1197{
1198 EV_CB_INVOKE ((W)w, revents);
1199}
1200
1201void inline_speed
877call_pending (EV_P) 1202call_pending (EV_P)
878{ 1203{
879 int pri; 1204 int pri;
880 1205
881 for (pri = NUMPRI; pri--; ) 1206 for (pri = NUMPRI; pri--; )
882 while (pendingcnt [pri]) 1207 while (pendingcnt [pri])
883 { 1208 {
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1209 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 1210
886 if (p->w) 1211 if (expect_true (p->w))
887 { 1212 {
1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1214
888 p->w->pending = 0; 1215 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 1216 EV_CB_INVOKE (p->w, p->events);
890 } 1217 }
891 } 1218 }
892} 1219}
893 1220
894static void 1221void inline_size
895timers_reify (EV_P) 1222timers_reify (EV_P)
896{ 1223{
897 while (timercnt && ((WT)timers [0])->at <= mn_now) 1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
898 { 1225 {
899 struct ev_timer *w = timers [0]; 1226 ev_timer *w = (ev_timer *)timers [0];
900 1227
901 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
902 1229
903 /* first reschedule or stop timer */ 1230 /* first reschedule or stop timer */
904 if (w->repeat) 1231 if (w->repeat)
905 { 1232 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1234
907 ((WT)w)->at = mn_now + w->repeat; 1235 ((WT)w)->at += w->repeat;
1236 if (((WT)w)->at < mn_now)
1237 ((WT)w)->at = mn_now;
1238
908 downheap ((WT *)timers, timercnt, 0); 1239 downheap (timers, timercnt, 0);
909 } 1240 }
910 else 1241 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 1243
913 event (EV_A_ (W)w, EV_TIMEOUT); 1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
914 } 1245 }
915} 1246}
916 1247
917static void 1248#if EV_PERIODIC_ENABLE
1249void inline_size
918periodics_reify (EV_P) 1250periodics_reify (EV_P)
919{ 1251{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
921 { 1253 {
922 struct ev_periodic *w = periodics [0]; 1254 ev_periodic *w = (ev_periodic *)periodics [0];
923 1255
924 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
925 1257
926 /* first reschedule or stop timer */ 1258 /* first reschedule or stop timer */
927 if (w->interval) 1259 if (w->reschedule_cb)
928 { 1260 {
1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1263 downheap (periodics, periodiccnt, 0);
1264 }
1265 else if (w->interval)
1266 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0); 1270 downheap (periodics, periodiccnt, 0);
932 } 1271 }
933 else 1272 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 1274
936 event (EV_A_ (W)w, EV_PERIODIC); 1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
937 } 1276 }
938} 1277}
939 1278
940static void 1279static void noinline
941periodics_reschedule (EV_P) 1280periodics_reschedule (EV_P)
942{ 1281{
943 int i; 1282 int i;
944 1283
945 /* adjust periodics after time jump */ 1284 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i) 1285 for (i = 0; i < periodiccnt; ++i)
947 { 1286 {
948 struct ev_periodic *w = periodics [i]; 1287 ev_periodic *w = (ev_periodic *)periodics [i];
949 1288
1289 if (w->reschedule_cb)
1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
950 if (w->interval) 1291 else if (w->interval)
1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1293 }
1294
1295 /* now rebuild the heap */
1296 for (i = periodiccnt >> 1; i--; )
1297 downheap (periodics, periodiccnt, i);
1298}
1299#endif
1300
1301#if EV_IDLE_ENABLE
1302void inline_size
1303idle_reify (EV_P)
1304{
1305 if (expect_false (idleall))
1306 {
1307 int pri;
1308
1309 for (pri = NUMPRI; pri--; )
951 { 1310 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1311 if (pendingcnt [pri])
1312 break;
953 1313
954 if (fabs (diff) >= 1e-4) 1314 if (idlecnt [pri])
955 { 1315 {
956 ev_periodic_stop (EV_A_ w); 1316 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
957 ev_periodic_start (EV_A_ w); 1317 break;
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 } 1318 }
961 } 1319 }
962 } 1320 }
963} 1321}
1322#endif
964 1323
965inline int 1324void inline_speed
966time_update_monotonic (EV_P) 1325time_update (EV_P_ ev_tstamp max_block)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
983static void
984time_update (EV_P)
985{ 1326{
986 int i; 1327 int i;
987 1328
988#if EV_USE_MONOTONIC 1329#if EV_USE_MONOTONIC
989 if (expect_true (have_monotonic)) 1330 if (expect_true (have_monotonic))
990 { 1331 {
991 if (time_update_monotonic (EV_A)) 1332 ev_tstamp odiff = rtmn_diff;
1333
1334 mn_now = get_clock ();
1335
1336 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1337 /* interpolate in the meantime */
1338 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
992 { 1339 {
993 ev_tstamp odiff = rtmn_diff; 1340 ev_rt_now = rtmn_diff + mn_now;
1341 return;
1342 }
994 1343
1344 now_floor = mn_now;
1345 ev_rt_now = ev_time ();
1346
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1347 /* loop a few times, before making important decisions.
1348 * on the choice of "4": one iteration isn't enough,
1349 * in case we get preempted during the calls to
1350 * ev_time and get_clock. a second call is almost guaranteed
1351 * to succeed in that case, though. and looping a few more times
1352 * doesn't hurt either as we only do this on time-jumps or
1353 * in the unlikely event of having been preempted here.
1354 */
1355 for (i = 4; --i; )
996 { 1356 {
997 rtmn_diff = rt_now - mn_now; 1357 rtmn_diff = ev_rt_now - mn_now;
998 1358
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */ 1360 return; /* all is well */
1001 1361
1002 rt_now = ev_time (); 1362 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 1363 mn_now = get_clock ();
1004 now_floor = mn_now; 1364 now_floor = mn_now;
1005 } 1365 }
1006 1366
1367# if EV_PERIODIC_ENABLE
1368 periodics_reschedule (EV_A);
1369# endif
1370 /* no timer adjustment, as the monotonic clock doesn't jump */
1371 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1372 }
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377
1378 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1379 {
1380#if EV_PERIODIC_ENABLE
1007 periodics_reschedule (EV_A); 1381 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 1382#endif
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1383 /* adjust timers. this is easy, as the offset is the same for all of them */
1384 for (i = 0; i < timercnt; ++i)
1385 ((WT)timers [i])->at += ev_rt_now - mn_now;
1010 } 1386 }
1011 }
1012 else
1013#endif
1014 {
1015 rt_now = ev_time ();
1016 1387
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 {
1019 periodics_reschedule (EV_A);
1020
1021 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now;
1024 }
1025
1026 mn_now = rt_now; 1388 mn_now = ev_rt_now;
1027 } 1389 }
1028} 1390}
1029 1391
1030void 1392void
1031ev_ref (EV_P) 1393ev_ref (EV_P)
1042static int loop_done; 1404static int loop_done;
1043 1405
1044void 1406void
1045ev_loop (EV_P_ int flags) 1407ev_loop (EV_P_ int flags)
1046{ 1408{
1047 double block;
1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1410 ? EVUNLOOP_ONE
1411 : EVUNLOOP_CANCEL;
1412
1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1049 1414
1050 do 1415 do
1051 { 1416 {
1417#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid))
1420 {
1421 curpid = getpid ();
1422 postfork = 1;
1423 }
1424#endif
1425
1426#if EV_FORK_ENABLE
1427 /* we might have forked, so queue fork handlers */
1428 if (expect_false (postfork))
1429 if (forkcnt)
1430 {
1431 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1432 call_pending (EV_A);
1433 }
1434#endif
1435
1052 /* queue check watchers (and execute them) */ 1436 /* queue prepare watchers (and execute them) */
1053 if (expect_false (preparecnt)) 1437 if (expect_false (preparecnt))
1054 { 1438 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1439 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056 call_pending (EV_A); 1440 call_pending (EV_A);
1057 } 1441 }
1058 1442
1443 if (expect_false (!activecnt))
1444 break;
1445
1059 /* we might have forked, so reify kernel state if necessary */ 1446 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork)) 1447 if (expect_false (postfork))
1061 loop_fork (EV_A); 1448 loop_fork (EV_A);
1062 1449
1063 /* update fd-related kernel structures */ 1450 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 1451 fd_reify (EV_A);
1065 1452
1066 /* calculate blocking time */ 1453 /* calculate blocking time */
1454 {
1455 ev_tstamp block;
1067 1456
1068 /* we only need this for !monotonic clockor timers, but as we basically 1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1069 always have timers, we just calculate it always */ 1458 block = 0.; /* do not block at all */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else 1459 else
1074#endif
1075 { 1460 {
1076 rt_now = ev_time (); 1461 /* update time to cancel out callback processing overhead */
1077 mn_now = rt_now; 1462 time_update (EV_A_ 1e100);
1078 }
1079 1463
1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.;
1082 else
1083 {
1084 block = MAX_BLOCKTIME; 1464 block = MAX_BLOCKTIME;
1085 1465
1086 if (timercnt) 1466 if (timercnt)
1087 { 1467 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1468 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1089 if (block > to) block = to; 1469 if (block > to) block = to;
1090 } 1470 }
1091 1471
1472#if EV_PERIODIC_ENABLE
1092 if (periodiccnt) 1473 if (periodiccnt)
1093 { 1474 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1475 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1095 if (block > to) block = to; 1476 if (block > to) block = to;
1096 } 1477 }
1478#endif
1097 1479
1098 if (block < 0.) block = 0.; 1480 if (expect_false (block < 0.)) block = 0.;
1099 } 1481 }
1100 1482
1483 ++loop_count;
1101 method_poll (EV_A_ block); 1484 backend_poll (EV_A_ block);
1102 1485
1103 /* update rt_now, do magic */ 1486 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 1487 time_update (EV_A_ block);
1488 }
1105 1489
1106 /* queue pending timers and reschedule them */ 1490 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 1491 timers_reify (EV_A); /* relative timers called last */
1492#if EV_PERIODIC_ENABLE
1108 periodics_reify (EV_A); /* absolute timers called first */ 1493 periodics_reify (EV_A); /* absolute timers called first */
1494#endif
1109 1495
1496#if EV_IDLE_ENABLE
1110 /* queue idle watchers unless io or timers are pending */ 1497 /* queue idle watchers unless other events are pending */
1111 if (!pendingcnt) 1498 idle_reify (EV_A);
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1499#endif
1113 1500
1114 /* queue check watchers, to be executed first */ 1501 /* queue check watchers, to be executed first */
1115 if (checkcnt) 1502 if (expect_false (checkcnt))
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1117 1504
1118 call_pending (EV_A); 1505 call_pending (EV_A);
1506
1119 } 1507 }
1120 while (activecnt && !loop_done); 1508 while (expect_true (activecnt && !loop_done));
1121 1509
1122 if (loop_done != 2) 1510 if (loop_done == EVUNLOOP_ONE)
1123 loop_done = 0; 1511 loop_done = EVUNLOOP_CANCEL;
1124} 1512}
1125 1513
1126void 1514void
1127ev_unloop (EV_P_ int how) 1515ev_unloop (EV_P_ int how)
1128{ 1516{
1129 loop_done = how; 1517 loop_done = how;
1130} 1518}
1131 1519
1132/*****************************************************************************/ 1520/*****************************************************************************/
1133 1521
1134inline void 1522void inline_size
1135wlist_add (WL *head, WL elem) 1523wlist_add (WL *head, WL elem)
1136{ 1524{
1137 elem->next = *head; 1525 elem->next = *head;
1138 *head = elem; 1526 *head = elem;
1139} 1527}
1140 1528
1141inline void 1529void inline_size
1142wlist_del (WL *head, WL elem) 1530wlist_del (WL *head, WL elem)
1143{ 1531{
1144 while (*head) 1532 while (*head)
1145 { 1533 {
1146 if (*head == elem) 1534 if (*head == elem)
1151 1539
1152 head = &(*head)->next; 1540 head = &(*head)->next;
1153 } 1541 }
1154} 1542}
1155 1543
1156inline void 1544void inline_speed
1157ev_clear_pending (EV_P_ W w) 1545clear_pending (EV_P_ W w)
1158{ 1546{
1159 if (w->pending) 1547 if (w->pending)
1160 { 1548 {
1161 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1549 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1162 w->pending = 0; 1550 w->pending = 0;
1163 } 1551 }
1164} 1552}
1165 1553
1166inline void 1554int
1555ev_clear_pending (EV_P_ void *w)
1556{
1557 W w_ = (W)w;
1558 int pending = w_->pending;
1559
1560 if (expect_true (pending))
1561 {
1562 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1563 w_->pending = 0;
1564 p->w = 0;
1565 return p->events;
1566 }
1567 else
1568 return 0;
1569}
1570
1571void inline_size
1572pri_adjust (EV_P_ W w)
1573{
1574 int pri = w->priority;
1575 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1576 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1577 w->priority = pri;
1578}
1579
1580void inline_speed
1167ev_start (EV_P_ W w, int active) 1581ev_start (EV_P_ W w, int active)
1168{ 1582{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1583 pri_adjust (EV_A_ w);
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
1172 w->active = active; 1584 w->active = active;
1173 ev_ref (EV_A); 1585 ev_ref (EV_A);
1174} 1586}
1175 1587
1176inline void 1588void inline_size
1177ev_stop (EV_P_ W w) 1589ev_stop (EV_P_ W w)
1178{ 1590{
1179 ev_unref (EV_A); 1591 ev_unref (EV_A);
1180 w->active = 0; 1592 w->active = 0;
1181} 1593}
1182 1594
1183/*****************************************************************************/ 1595/*****************************************************************************/
1184 1596
1185void 1597void noinline
1186ev_io_start (EV_P_ struct ev_io *w) 1598ev_io_start (EV_P_ ev_io *w)
1187{ 1599{
1188 int fd = w->fd; 1600 int fd = w->fd;
1189 1601
1190 if (ev_is_active (w)) 1602 if (expect_false (ev_is_active (w)))
1191 return; 1603 return;
1192 1604
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 1605 assert (("ev_io_start called with negative fd", fd >= 0));
1194 1606
1195 ev_start (EV_A_ (W)w, 1); 1607 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1609 wlist_add (&anfds[fd].head, (WL)w);
1198 1610
1199 fd_change (EV_A_ fd); 1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET;
1200} 1613}
1201 1614
1202void 1615void noinline
1203ev_io_stop (EV_P_ struct ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1204{ 1617{
1205 ev_clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 1619 if (expect_false (!ev_is_active (w)))
1207 return; 1620 return;
1208 1621
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1624 wlist_del (&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1211 1626
1212 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd, 1);
1213} 1628}
1214 1629
1215void 1630void noinline
1216ev_timer_start (EV_P_ struct ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1217{ 1632{
1218 if (ev_is_active (w)) 1633 if (expect_false (ev_is_active (w)))
1219 return; 1634 return;
1220 1635
1221 ((WT)w)->at += mn_now; 1636 ((WT)w)->at += mn_now;
1222 1637
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 1639
1225 ev_start (EV_A_ (W)w, ++timercnt); 1640 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, ); 1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1227 timers [timercnt - 1] = w; 1642 timers [timercnt - 1] = (WT)w;
1228 upheap ((WT *)timers, timercnt - 1); 1643 upheap (timers, timercnt - 1);
1229 1644
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1231} 1646}
1232 1647
1233void 1648void noinline
1234ev_timer_stop (EV_P_ struct ev_timer *w) 1649ev_timer_stop (EV_P_ ev_timer *w)
1235{ 1650{
1236 ev_clear_pending (EV_A_ (W)w); 1651 clear_pending (EV_A_ (W)w);
1237 if (!ev_is_active (w)) 1652 if (expect_false (!ev_is_active (w)))
1238 return; 1653 return;
1239 1654
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1241 1656
1242 if (((W)w)->active < timercnt--) 1657 {
1658 int active = ((W)w)->active;
1659
1660 if (expect_true (--active < --timercnt))
1243 { 1661 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 1662 timers [active] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1663 adjustheap (timers, timercnt, active);
1246 } 1664 }
1665 }
1247 1666
1248 ((WT)w)->at = w->repeat; 1667 ((WT)w)->at -= mn_now;
1249 1668
1250 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1251} 1670}
1252 1671
1253void 1672void noinline
1254ev_timer_again (EV_P_ struct ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1255{ 1674{
1256 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1257 { 1676 {
1258 if (w->repeat) 1677 if (w->repeat)
1259 { 1678 {
1260 ((WT)w)->at = mn_now + w->repeat; 1679 ((WT)w)->at = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1680 adjustheap (timers, timercnt, ((W)w)->active - 1);
1262 } 1681 }
1263 else 1682 else
1264 ev_timer_stop (EV_A_ w); 1683 ev_timer_stop (EV_A_ w);
1265 } 1684 }
1266 else if (w->repeat) 1685 else if (w->repeat)
1686 {
1687 w->at = w->repeat;
1267 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1689 }
1268} 1690}
1269 1691
1270void 1692#if EV_PERIODIC_ENABLE
1693void noinline
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1272{ 1695{
1273 if (ev_is_active (w)) 1696 if (expect_false (ev_is_active (w)))
1274 return; 1697 return;
1275 1698
1699 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval)
1702 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1281 1709
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1284 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = (WT)w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap (periodics, periodiccnt - 1);
1286 1714
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1288} 1716}
1289 1717
1290void 1718void noinline
1291ev_periodic_stop (EV_P_ struct ev_periodic *w) 1719ev_periodic_stop (EV_P_ ev_periodic *w)
1292{ 1720{
1293 ev_clear_pending (EV_A_ (W)w); 1721 clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w)) 1722 if (expect_false (!ev_is_active (w)))
1295 return; 1723 return;
1296 1724
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1298 1726
1299 if (((W)w)->active < periodiccnt--) 1727 {
1728 int active = ((W)w)->active;
1729
1730 if (expect_true (--active < --periodiccnt))
1300 { 1731 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1732 periodics [active] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1733 adjustheap (periodics, periodiccnt, active);
1303 } 1734 }
1735 }
1304 1736
1305 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1306} 1738}
1307 1739
1308void 1740void noinline
1309ev_idle_start (EV_P_ struct ev_idle *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1310{ 1742{
1311 if (ev_is_active (w)) 1743 /* TODO: use adjustheap and recalculation */
1312 return;
1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w); 1744 ev_periodic_stop (EV_A_ w);
1745 ev_periodic_start (EV_A_ w);
1328} 1746}
1329 1747#endif
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373 1748
1374#ifndef SA_RESTART 1749#ifndef SA_RESTART
1375# define SA_RESTART 0 1750# define SA_RESTART 0
1376#endif 1751#endif
1377 1752
1378void 1753void noinline
1379ev_signal_start (EV_P_ struct ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1380{ 1755{
1381#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1383#endif 1758#endif
1384 if (ev_is_active (w)) 1759 if (expect_false (ev_is_active (w)))
1385 return; 1760 return;
1386 1761
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388 1763
1764 {
1765#ifndef _WIN32
1766 sigset_t full, prev;
1767 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif
1770
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1772
1773#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif
1776 }
1777
1389 ev_start (EV_A_ (W)w, 1); 1778 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1392 1780
1393 if (!((WL)w)->next) 1781 if (!((WL)w)->next)
1394 { 1782 {
1395#if WIN32 1783#if _WIN32
1396 signal (w->signum, sighandler); 1784 signal (w->signum, sighandler);
1397#else 1785#else
1398 struct sigaction sa; 1786 struct sigaction sa;
1399 sa.sa_handler = sighandler; 1787 sa.sa_handler = sighandler;
1400 sigfillset (&sa.sa_mask); 1788 sigfillset (&sa.sa_mask);
1402 sigaction (w->signum, &sa, 0); 1790 sigaction (w->signum, &sa, 0);
1403#endif 1791#endif
1404 } 1792 }
1405} 1793}
1406 1794
1407void 1795void noinline
1408ev_signal_stop (EV_P_ struct ev_signal *w) 1796ev_signal_stop (EV_P_ ev_signal *w)
1409{ 1797{
1410 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1411 if (!ev_is_active (w)) 1799 if (expect_false (!ev_is_active (w)))
1412 return; 1800 return;
1413 1801
1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1802 wlist_del (&signals [w->signum - 1].head, (WL)w);
1415 ev_stop (EV_A_ (W)w); 1803 ev_stop (EV_A_ (W)w);
1416 1804
1417 if (!signals [w->signum - 1].head) 1805 if (!signals [w->signum - 1].head)
1418 signal (w->signum, SIG_DFL); 1806 signal (w->signum, SIG_DFL);
1419} 1807}
1420 1808
1421void 1809void
1422ev_child_start (EV_P_ struct ev_child *w) 1810ev_child_start (EV_P_ ev_child *w)
1423{ 1811{
1424#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1813 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1426#endif 1814#endif
1427 if (ev_is_active (w)) 1815 if (expect_false (ev_is_active (w)))
1428 return; 1816 return;
1429 1817
1430 ev_start (EV_A_ (W)w, 1); 1818 ev_start (EV_A_ (W)w, 1);
1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1432} 1820}
1433 1821
1434void 1822void
1435ev_child_stop (EV_P_ struct ev_child *w) 1823ev_child_stop (EV_P_ ev_child *w)
1436{ 1824{
1437 ev_clear_pending (EV_A_ (W)w); 1825 clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 1826 if (expect_false (!ev_is_active (w)))
1439 return; 1827 return;
1440 1828
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1442 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1443} 1831}
1444 1832
1833#if EV_STAT_ENABLE
1834
1835# ifdef _WIN32
1836# undef lstat
1837# define lstat(a,b) _stati64 (a,b)
1838# endif
1839
1840#define DEF_STAT_INTERVAL 5.0074891
1841#define MIN_STAT_INTERVAL 0.1074891
1842
1843static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1844
1845#if EV_USE_INOTIFY
1846# define EV_INOTIFY_BUFSIZE 8192
1847
1848static void noinline
1849infy_add (EV_P_ ev_stat *w)
1850{
1851 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1852
1853 if (w->wd < 0)
1854 {
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856
1857 /* monitor some parent directory for speedup hints */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 {
1860 char path [4096];
1861 strcpy (path, w->path);
1862
1863 do
1864 {
1865 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1866 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1867
1868 char *pend = strrchr (path, '/');
1869
1870 if (!pend)
1871 break; /* whoops, no '/', complain to your admin */
1872
1873 *pend = 0;
1874 w->wd = inotify_add_watch (fs_fd, path, mask);
1875 }
1876 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1877 }
1878 }
1879 else
1880 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1881
1882 if (w->wd >= 0)
1883 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1884}
1885
1886static void noinline
1887infy_del (EV_P_ ev_stat *w)
1888{
1889 int slot;
1890 int wd = w->wd;
1891
1892 if (wd < 0)
1893 return;
1894
1895 w->wd = -2;
1896 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1897 wlist_del (&fs_hash [slot].head, (WL)w);
1898
1899 /* remove this watcher, if others are watching it, they will rearm */
1900 inotify_rm_watch (fs_fd, wd);
1901}
1902
1903static void noinline
1904infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1905{
1906 if (slot < 0)
1907 /* overflow, need to check for all hahs slots */
1908 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1909 infy_wd (EV_A_ slot, wd, ev);
1910 else
1911 {
1912 WL w_;
1913
1914 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1915 {
1916 ev_stat *w = (ev_stat *)w_;
1917 w_ = w_->next; /* lets us remove this watcher and all before it */
1918
1919 if (w->wd == wd || wd == -1)
1920 {
1921 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1922 {
1923 w->wd = -1;
1924 infy_add (EV_A_ w); /* re-add, no matter what */
1925 }
1926
1927 stat_timer_cb (EV_A_ &w->timer, 0);
1928 }
1929 }
1930 }
1931}
1932
1933static void
1934infy_cb (EV_P_ ev_io *w, int revents)
1935{
1936 char buf [EV_INOTIFY_BUFSIZE];
1937 struct inotify_event *ev = (struct inotify_event *)buf;
1938 int ofs;
1939 int len = read (fs_fd, buf, sizeof (buf));
1940
1941 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1942 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1943}
1944
1945void inline_size
1946infy_init (EV_P)
1947{
1948 if (fs_fd != -2)
1949 return;
1950
1951 fs_fd = inotify_init ();
1952
1953 if (fs_fd >= 0)
1954 {
1955 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1956 ev_set_priority (&fs_w, EV_MAXPRI);
1957 ev_io_start (EV_A_ &fs_w);
1958 }
1959}
1960
1961void inline_size
1962infy_fork (EV_P)
1963{
1964 int slot;
1965
1966 if (fs_fd < 0)
1967 return;
1968
1969 close (fs_fd);
1970 fs_fd = inotify_init ();
1971
1972 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1973 {
1974 WL w_ = fs_hash [slot].head;
1975 fs_hash [slot].head = 0;
1976
1977 while (w_)
1978 {
1979 ev_stat *w = (ev_stat *)w_;
1980 w_ = w_->next; /* lets us add this watcher */
1981
1982 w->wd = -1;
1983
1984 if (fs_fd >= 0)
1985 infy_add (EV_A_ w); /* re-add, no matter what */
1986 else
1987 ev_timer_start (EV_A_ &w->timer);
1988 }
1989
1990 }
1991}
1992
1993#endif
1994
1995void
1996ev_stat_stat (EV_P_ ev_stat *w)
1997{
1998 if (lstat (w->path, &w->attr) < 0)
1999 w->attr.st_nlink = 0;
2000 else if (!w->attr.st_nlink)
2001 w->attr.st_nlink = 1;
2002}
2003
2004static void noinline
2005stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2006{
2007 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2008
2009 /* we copy this here each the time so that */
2010 /* prev has the old value when the callback gets invoked */
2011 w->prev = w->attr;
2012 ev_stat_stat (EV_A_ w);
2013
2014 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2015 if (
2016 w->prev.st_dev != w->attr.st_dev
2017 || w->prev.st_ino != w->attr.st_ino
2018 || w->prev.st_mode != w->attr.st_mode
2019 || w->prev.st_nlink != w->attr.st_nlink
2020 || w->prev.st_uid != w->attr.st_uid
2021 || w->prev.st_gid != w->attr.st_gid
2022 || w->prev.st_rdev != w->attr.st_rdev
2023 || w->prev.st_size != w->attr.st_size
2024 || w->prev.st_atime != w->attr.st_atime
2025 || w->prev.st_mtime != w->attr.st_mtime
2026 || w->prev.st_ctime != w->attr.st_ctime
2027 ) {
2028 #if EV_USE_INOTIFY
2029 infy_del (EV_A_ w);
2030 infy_add (EV_A_ w);
2031 ev_stat_stat (EV_A_ w); /* avoid race... */
2032 #endif
2033
2034 ev_feed_event (EV_A_ w, EV_STAT);
2035 }
2036}
2037
2038void
2039ev_stat_start (EV_P_ ev_stat *w)
2040{
2041 if (expect_false (ev_is_active (w)))
2042 return;
2043
2044 /* since we use memcmp, we need to clear any padding data etc. */
2045 memset (&w->prev, 0, sizeof (ev_statdata));
2046 memset (&w->attr, 0, sizeof (ev_statdata));
2047
2048 ev_stat_stat (EV_A_ w);
2049
2050 if (w->interval < MIN_STAT_INTERVAL)
2051 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2052
2053 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2054 ev_set_priority (&w->timer, ev_priority (w));
2055
2056#if EV_USE_INOTIFY
2057 infy_init (EV_A);
2058
2059 if (fs_fd >= 0)
2060 infy_add (EV_A_ w);
2061 else
2062#endif
2063 ev_timer_start (EV_A_ &w->timer);
2064
2065 ev_start (EV_A_ (W)w, 1);
2066}
2067
2068void
2069ev_stat_stop (EV_P_ ev_stat *w)
2070{
2071 clear_pending (EV_A_ (W)w);
2072 if (expect_false (!ev_is_active (w)))
2073 return;
2074
2075#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w);
2077#endif
2078 ev_timer_stop (EV_A_ &w->timer);
2079
2080 ev_stop (EV_A_ (W)w);
2081}
2082#endif
2083
2084#if EV_IDLE_ENABLE
2085void
2086ev_idle_start (EV_P_ ev_idle *w)
2087{
2088 if (expect_false (ev_is_active (w)))
2089 return;
2090
2091 pri_adjust (EV_A_ (W)w);
2092
2093 {
2094 int active = ++idlecnt [ABSPRI (w)];
2095
2096 ++idleall;
2097 ev_start (EV_A_ (W)w, active);
2098
2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2100 idles [ABSPRI (w)][active - 1] = w;
2101 }
2102}
2103
2104void
2105ev_idle_stop (EV_P_ ev_idle *w)
2106{
2107 clear_pending (EV_A_ (W)w);
2108 if (expect_false (!ev_is_active (w)))
2109 return;
2110
2111 {
2112 int active = ((W)w)->active;
2113
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2115 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2116
2117 ev_stop (EV_A_ (W)w);
2118 --idleall;
2119 }
2120}
2121#endif
2122
2123void
2124ev_prepare_start (EV_P_ ev_prepare *w)
2125{
2126 if (expect_false (ev_is_active (w)))
2127 return;
2128
2129 ev_start (EV_A_ (W)w, ++preparecnt);
2130 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2131 prepares [preparecnt - 1] = w;
2132}
2133
2134void
2135ev_prepare_stop (EV_P_ ev_prepare *w)
2136{
2137 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w)))
2139 return;
2140
2141 {
2142 int active = ((W)w)->active;
2143 prepares [active - 1] = prepares [--preparecnt];
2144 ((W)prepares [active - 1])->active = active;
2145 }
2146
2147 ev_stop (EV_A_ (W)w);
2148}
2149
2150void
2151ev_check_start (EV_P_ ev_check *w)
2152{
2153 if (expect_false (ev_is_active (w)))
2154 return;
2155
2156 ev_start (EV_A_ (W)w, ++checkcnt);
2157 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2158 checks [checkcnt - 1] = w;
2159}
2160
2161void
2162ev_check_stop (EV_P_ ev_check *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168 {
2169 int active = ((W)w)->active;
2170 checks [active - 1] = checks [--checkcnt];
2171 ((W)checks [active - 1])->active = active;
2172 }
2173
2174 ev_stop (EV_A_ (W)w);
2175}
2176
2177#if EV_EMBED_ENABLE
2178void noinline
2179ev_embed_sweep (EV_P_ ev_embed *w)
2180{
2181 ev_loop (w->loop, EVLOOP_NONBLOCK);
2182}
2183
2184static void
2185embed_cb (EV_P_ ev_io *io, int revents)
2186{
2187 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2188
2189 if (ev_cb (w))
2190 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2191 else
2192 ev_embed_sweep (loop, w);
2193}
2194
2195void
2196ev_embed_start (EV_P_ ev_embed *w)
2197{
2198 if (expect_false (ev_is_active (w)))
2199 return;
2200
2201 {
2202 struct ev_loop *loop = w->loop;
2203 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2204 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2205 }
2206
2207 ev_set_priority (&w->io, ev_priority (w));
2208 ev_io_start (EV_A_ &w->io);
2209
2210 ev_start (EV_A_ (W)w, 1);
2211}
2212
2213void
2214ev_embed_stop (EV_P_ ev_embed *w)
2215{
2216 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w)))
2218 return;
2219
2220 ev_io_stop (EV_A_ &w->io);
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
2226#if EV_FORK_ENABLE
2227void
2228ev_fork_start (EV_P_ ev_fork *w)
2229{
2230 if (expect_false (ev_is_active (w)))
2231 return;
2232
2233 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w;
2236}
2237
2238void
2239ev_fork_stop (EV_P_ ev_fork *w)
2240{
2241 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w)))
2243 return;
2244
2245 {
2246 int active = ((W)w)->active;
2247 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active;
2249 }
2250
2251 ev_stop (EV_A_ (W)w);
2252}
2253#endif
2254
1445/*****************************************************************************/ 2255/*****************************************************************************/
1446 2256
1447struct ev_once 2257struct ev_once
1448{ 2258{
1449 struct ev_io io; 2259 ev_io io;
1450 struct ev_timer to; 2260 ev_timer to;
1451 void (*cb)(int revents, void *arg); 2261 void (*cb)(int revents, void *arg);
1452 void *arg; 2262 void *arg;
1453}; 2263};
1454 2264
1455static void 2265static void
1464 2274
1465 cb (revents, arg); 2275 cb (revents, arg);
1466} 2276}
1467 2277
1468static void 2278static void
1469once_cb_io (EV_P_ struct ev_io *w, int revents) 2279once_cb_io (EV_P_ ev_io *w, int revents)
1470{ 2280{
1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1472} 2282}
1473 2283
1474static void 2284static void
1475once_cb_to (EV_P_ struct ev_timer *w, int revents) 2285once_cb_to (EV_P_ ev_timer *w, int revents)
1476{ 2286{
1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1478} 2288}
1479 2289
1480void 2290void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2291ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 2292{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 2293 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 2294
1485 if (!once) 2295 if (expect_false (!once))
2296 {
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2297 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else 2298 return;
1488 { 2299 }
2300
1489 once->cb = cb; 2301 once->cb = cb;
1490 once->arg = arg; 2302 once->arg = arg;
1491 2303
1492 ev_watcher_init (&once->io, once_cb_io); 2304 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 2305 if (fd >= 0)
1494 { 2306 {
1495 ev_io_set (&once->io, fd, events); 2307 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io); 2308 ev_io_start (EV_A_ &once->io);
1497 } 2309 }
1498 2310
1499 ev_watcher_init (&once->to, once_cb_to); 2311 ev_init (&once->to, once_cb_to);
1500 if (timeout >= 0.) 2312 if (timeout >= 0.)
1501 { 2313 {
1502 ev_timer_set (&once->to, timeout, 0.); 2314 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to); 2315 ev_timer_start (EV_A_ &once->to);
1504 }
1505 } 2316 }
1506} 2317}
1507 2318
2319#ifdef __cplusplus
2320}
2321#endif
2322

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines