ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.185 by root, Fri Dec 14 18:22:30 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158
159/* darwin simply cannot be helped */
160#ifdef __APPLE__
161# undef EV_USE_POLL
162# undef EV_USE_KQUEUE
163#endif
164 196
165#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168#endif 200#endif
170#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
173#endif 205#endif
174 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
175#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 217# include <winsock.h>
177#endif 218#endif
178 219
179/**/ 220/**/
180 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 235
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 236#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 238# define noinline __attribute__ ((noinline))
195#else 239#else
196# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
197# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
198#endif 245#endif
199 246
200#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
202 256
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 259
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
208 262
209typedef struct ev_watcher *W; 263typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
212 266
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
214 268
215#ifdef _WIN32 269#ifdef _WIN32
216# include "ev_win32.c" 270# include "ev_win32.c"
218 272
219/*****************************************************************************/ 273/*****************************************************************************/
220 274
221static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
222 276
277void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 279{
225 syserr_cb = cb; 280 syserr_cb = cb;
226} 281}
227 282
228static void 283static void noinline
229syserr (const char *msg) 284syserr (const char *msg)
230{ 285{
231 if (!msg) 286 if (!msg)
232 msg = "(libev) system error"; 287 msg = "(libev) system error";
233 288
240 } 295 }
241} 296}
242 297
243static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
244 299
300void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 302{
247 alloc = cb; 303 alloc = cb;
248} 304}
249 305
250static void * 306inline_speed void *
251ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
252{ 308{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
254 310
255 if (!ptr && size) 311 if (!ptr && size)
279typedef struct 335typedef struct
280{ 336{
281 W w; 337 W w;
282 int events; 338 int events;
283} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
284 347
285#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
286 349
287 struct ev_loop 350 struct ev_loop
288 { 351 {
322 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 387#endif
325} 388}
326 389
327inline ev_tstamp 390ev_tstamp inline_size
328get_clock (void) 391get_clock (void)
329{ 392{
330#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
332 { 395 {
345{ 408{
346 return ev_rt_now; 409 return ev_rt_now;
347} 410}
348#endif 411#endif
349 412
350#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
351 440
352#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
354 { \ 443 { \
355 int newcnt = cur; \ 444 int ocur_ = (cur); \
356 do \ 445 (base) = (type *)array_realloc \
357 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 448 }
366 449
450#if 0
367#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 453 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 457 }
458#endif
374 459
375#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 462
378/*****************************************************************************/ 463/*****************************************************************************/
379 464
380static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
381anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
382{ 495{
383 while (count--) 496 while (count--)
384 { 497 {
385 base->head = 0; 498 base->head = 0;
388 501
389 ++base; 502 ++base;
390 } 503 }
391} 504}
392 505
393void 506void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
421{ 508{
422 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 510 ev_io *w;
424 511
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 513 {
427 int ev = w->events & revents; 514 int ev = w->events & revents;
428 515
429 if (ev) 516 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
432} 519}
433 520
434void 521void
435ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 523{
524 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
438} 526}
439 527
440/*****************************************************************************/ 528void inline_size
441
442inline void
443fd_reify (EV_P) 529fd_reify (EV_P)
444{ 530{
445 int i; 531 int i;
446 532
447 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
448 { 534 {
449 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 537 ev_io *w;
452 538
453 int events = 0; 539 unsigned char events = 0;
454 540
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 542 events |= (unsigned char)w->events;
457 543
458#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
459 if (events) 545 if (events)
460 { 546 {
461 unsigned long argp; 547 unsigned long argp;
462 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 } 550 }
465#endif 551#endif
466 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
467 anfd->reify = 0; 557 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
471 } 563 }
472 564
473 fdchangecnt = 0; 565 fdchangecnt = 0;
474} 566}
475 567
476static void 568void inline_size
477fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
478{ 570{
479 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
483 573
574 if (expect_true (!reify))
575 {
484 ++fdchangecnt; 576 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
487} 580}
488 581
489static void 582void inline_speed
490fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
491{ 584{
492 struct ev_io *w; 585 ev_io *w;
493 586
494 while ((w = (struct ev_io *)anfds [fd].head)) 587 while ((w = (ev_io *)anfds [fd].head))
495 { 588 {
496 ev_io_stop (EV_A_ w); 589 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 591 }
499} 592}
500 593
501inline int 594int inline_size
502fd_valid (int fd) 595fd_valid (int fd)
503{ 596{
504#ifdef _WIN32 597#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 598 return _get_osfhandle (fd) != -1;
506#else 599#else
507 return fcntl (fd, F_GETFD) != -1; 600 return fcntl (fd, F_GETFD) != -1;
508#endif 601#endif
509} 602}
510 603
511/* called on EBADF to verify fds */ 604/* called on EBADF to verify fds */
512static void 605static void noinline
513fd_ebadf (EV_P) 606fd_ebadf (EV_P)
514{ 607{
515 int fd; 608 int fd;
516 609
517 for (fd = 0; fd < anfdmax; ++fd) 610 for (fd = 0; fd < anfdmax; ++fd)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 612 if (!fd_valid (fd) == -1 && errno == EBADF)
520 fd_kill (EV_A_ fd); 613 fd_kill (EV_A_ fd);
521} 614}
522 615
523/* called on ENOMEM in select/poll to kill some fds and retry */ 616/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 617static void noinline
525fd_enomem (EV_P) 618fd_enomem (EV_P)
526{ 619{
527 int fd; 620 int fd;
528 621
529 for (fd = anfdmax; fd--; ) 622 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 625 fd_kill (EV_A_ fd);
533 return; 626 return;
534 } 627 }
535} 628}
536 629
537/* usually called after fork if method needs to re-arm all fds from scratch */ 630/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 631static void noinline
539fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
540{ 633{
541 int fd; 634 int fd;
542 635
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 637 if (anfds [fd].events)
546 { 638 {
547 anfds [fd].events = 0; 639 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 641 }
550} 642}
551 643
552/*****************************************************************************/ 644/*****************************************************************************/
553 645
554static void 646void inline_speed
555upheap (WT *heap, int k) 647upheap (WT *heap, int k)
556{ 648{
557 WT w = heap [k]; 649 WT w = heap [k];
558 650
559 while (k && heap [k >> 1]->at > w->at) 651 while (k)
560 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
561 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
562 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
563 k >>= 1; 660 k = p;
564 } 661 }
565 662
566 heap [k] = w; 663 heap [k] = w;
567 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
568
569} 665}
570 666
571static void 667void inline_speed
572downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
573{ 669{
574 WT w = heap [k]; 670 WT w = heap [k];
575 671
576 while (k < (N >> 1)) 672 for (;;)
577 { 673 {
578 int j = k << 1; 674 int c = (k << 1) + 1;
579 675
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break; 677 break;
585 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
586 heap [k] = heap [j]; 685 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
588 k = j; 688 k = c;
589 } 689 }
590 690
591 heap [k] = w; 691 heap [k] = w;
592 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
593} 693}
594 694
595inline void 695void inline_size
596adjustheap (WT *heap, int N, int k) 696adjustheap (WT *heap, int N, int k)
597{ 697{
598 upheap (heap, k); 698 upheap (heap, k);
599 downheap (heap, N, k); 699 downheap (heap, N, k);
600} 700}
610static ANSIG *signals; 710static ANSIG *signals;
611static int signalmax; 711static int signalmax;
612 712
613static int sigpipe [2]; 713static int sigpipe [2];
614static sig_atomic_t volatile gotsig; 714static sig_atomic_t volatile gotsig;
615static struct ev_io sigev; 715static ev_io sigev;
616 716
617static void 717void inline_size
618signals_init (ANSIG *base, int count) 718signals_init (ANSIG *base, int count)
619{ 719{
620 while (count--) 720 while (count--)
621 { 721 {
622 base->head = 0; 722 base->head = 0;
642 write (sigpipe [1], &signum, 1); 742 write (sigpipe [1], &signum, 1);
643 errno = old_errno; 743 errno = old_errno;
644 } 744 }
645} 745}
646 746
647void 747void noinline
648ev_feed_signal_event (EV_P_ int signum) 748ev_feed_signal_event (EV_P_ int signum)
649{ 749{
650 WL w; 750 WL w;
651 751
652#if EV_MULTIPLICITY 752#if EV_MULTIPLICITY
663 for (w = signals [signum].head; w; w = w->next) 763 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665} 765}
666 766
667static void 767static void
668sigcb (EV_P_ struct ev_io *iow, int revents) 768sigcb (EV_P_ ev_io *iow, int revents)
669{ 769{
670 int signum; 770 int signum;
671 771
672 read (sigpipe [0], &revents, 1); 772 read (sigpipe [0], &revents, 1);
673 gotsig = 0; 773 gotsig = 0;
675 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
678} 778}
679 779
680static void 780void inline_speed
681fd_intern (int fd) 781fd_intern (int fd)
682{ 782{
683#ifdef _WIN32 783#ifdef _WIN32
684 int arg = 1; 784 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 787 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 788 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 789#endif
690} 790}
691 791
692static void 792static void noinline
693siginit (EV_P) 793siginit (EV_P)
694{ 794{
695 fd_intern (sigpipe [0]); 795 fd_intern (sigpipe [0]);
696 fd_intern (sigpipe [1]); 796 fd_intern (sigpipe [1]);
697 797
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
701} 801}
702 802
703/*****************************************************************************/ 803/*****************************************************************************/
704 804
705static struct ev_child *childs [PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
706 806
707#ifndef _WIN32 807#ifndef _WIN32
708 808
709static struct ev_signal childev; 809static ev_signal childev;
810
811void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
813{
814 ev_child *w;
815
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
817 if (w->pid == pid || !w->pid)
818 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
820 w->rpid = pid;
821 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 }
824}
710 825
711#ifndef WCONTINUED 826#ifndef WCONTINUED
712# define WCONTINUED 0 827# define WCONTINUED 0
713#endif 828#endif
714 829
715static void 830static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 831childcb (EV_P_ ev_signal *sw, int revents)
732{ 832{
733 int pid, status; 833 int pid, status;
734 834
835 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 836 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 837 if (!WCONTINUED
838 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return;
841
737 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 845
740 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 849}
744 850
745#endif 851#endif
746 852
747/*****************************************************************************/ 853/*****************************************************************************/
773{ 879{
774 return EV_VERSION_MINOR; 880 return EV_VERSION_MINOR;
775} 881}
776 882
777/* return true if we are running with elevated privileges and should ignore env variables */ 883/* return true if we are running with elevated privileges and should ignore env variables */
778static int 884int inline_size
779enable_secure (void) 885enable_secure (void)
780{ 886{
781#ifdef _WIN32 887#ifdef _WIN32
782 return 0; 888 return 0;
783#else 889#else
785 || getgid () != getegid (); 891 || getgid () != getegid ();
786#endif 892#endif
787} 893}
788 894
789unsigned int 895unsigned int
790ev_method (EV_P) 896ev_supported_backends (void)
791{ 897{
792 return method; 898 unsigned int flags = 0;
793}
794 899
795static void 900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
902 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
903 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
905
906 return flags;
907}
908
909unsigned int
910ev_recommended_backends (void)
911{
912 unsigned int flags = ev_supported_backends ();
913
914#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE;
918#endif
919#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation
921 flags &= ~EVBACKEND_POLL;
922#endif
923
924 return flags;
925}
926
927unsigned int
928ev_embeddable_backends (void)
929{
930 return EVBACKEND_EPOLL
931 | EVBACKEND_KQUEUE
932 | EVBACKEND_PORT;
933}
934
935unsigned int
936ev_backend (EV_P)
937{
938 return backend;
939}
940
941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
796loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
797{ 949{
798 if (!method) 950 if (!backend)
799 { 951 {
800#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
801 { 953 {
802 struct timespec ts; 954 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 955 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
808 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 961 mn_now = get_clock ();
810 now_floor = mn_now; 962 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
812 964
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
971 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
815 975
816 if (!(flags & 0x0000ffff)) 976 if (!(flags & 0x0000ffffUL))
817 flags |= 0x0000ffff; 977 flags |= ev_recommended_backends ();
818 978
819 method = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
820#if EV_USE_PORT 985#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 987#endif
823#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 990#endif
826#if EV_USE_EPOLL 991#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 992 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 993#endif
829#if EV_USE_POLL 994#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 995 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 996#endif
832#if EV_USE_SELECT 997#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 999#endif
835 1000
836 ev_init (&sigev, sigcb); 1001 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1002 ev_set_priority (&sigev, EV_MAXPRI);
838 } 1003 }
839} 1004}
840 1005
841static void 1006static void noinline
842loop_destroy (EV_P) 1007loop_destroy (EV_P)
843{ 1008{
844 int i; 1009 int i;
845 1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
1018
846#if EV_USE_PORT 1019#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1021#endif
849#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1024#endif
852#if EV_USE_EPOLL 1025#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1026 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1027#endif
855#if EV_USE_POLL 1028#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1029 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1030#endif
858#if EV_USE_SELECT 1031#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1033#endif
861 1034
862 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
863 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
864 1042
865 /* have to use the microsoft-never-gets-it-right macro */ 1043 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1044 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1045 array_free (timer, EMPTY);
868#if EV_PERIODICS 1046#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1047 array_free (periodic, EMPTY);
870#endif 1048#endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0); 1049 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1050 array_free (check, EMPTY);
874 1051
875 method = 0; 1052 backend = 0;
876} 1053}
877 1054
878static void 1055void inline_size infy_fork (EV_P);
1056
1057void inline_size
879loop_fork (EV_P) 1058loop_fork (EV_P)
880{ 1059{
881#if EV_USE_PORT 1060#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1062#endif
884#if EV_USE_KQUEUE 1063#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1065#endif
887#if EV_USE_EPOLL 1066#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1068#endif
1069#if EV_USE_INOTIFY
1070 infy_fork (EV_A);
889#endif 1071#endif
890 1072
891 if (ev_is_active (&sigev)) 1073 if (ev_is_active (&sigev))
892 { 1074 {
893 /* default loop */ 1075 /* default loop */
914 1096
915 memset (loop, 0, sizeof (struct ev_loop)); 1097 memset (loop, 0, sizeof (struct ev_loop));
916 1098
917 loop_init (EV_A_ flags); 1099 loop_init (EV_A_ flags);
918 1100
919 if (ev_method (EV_A)) 1101 if (ev_backend (EV_A))
920 return loop; 1102 return loop;
921 1103
922 return 0; 1104 return 0;
923} 1105}
924 1106
957 ev_default_loop_ptr = 1; 1139 ev_default_loop_ptr = 1;
958#endif 1140#endif
959 1141
960 loop_init (EV_A_ flags); 1142 loop_init (EV_A_ flags);
961 1143
962 if (ev_method (EV_A)) 1144 if (ev_backend (EV_A))
963 { 1145 {
964 siginit (EV_A); 1146 siginit (EV_A);
965 1147
966#ifndef _WIN32 1148#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1149 ev_signal_init (&childev, childcb, SIGCHLD);
1003{ 1185{
1004#if EV_MULTIPLICITY 1186#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1187 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1188#endif
1007 1189
1008 if (method) 1190 if (backend)
1009 postfork = 1; 1191 postfork = 1;
1010} 1192}
1011 1193
1012/*****************************************************************************/ 1194/*****************************************************************************/
1013 1195
1014static int 1196void
1015any_pending (EV_P) 1197ev_invoke (EV_P_ void *w, int revents)
1016{ 1198{
1017 int pri; 1199 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1200}
1025 1201
1026inline void 1202void inline_speed
1027call_pending (EV_P) 1203call_pending (EV_P)
1028{ 1204{
1029 int pri; 1205 int pri;
1030 1206
1031 for (pri = NUMPRI; pri--; ) 1207 for (pri = NUMPRI; pri--; )
1033 { 1209 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1210 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1211
1036 if (expect_true (p->w)) 1212 if (expect_true (p->w))
1037 { 1213 {
1214 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1215
1038 p->w->pending = 0; 1216 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1217 EV_CB_INVOKE (p->w, p->events);
1040 } 1218 }
1041 } 1219 }
1042} 1220}
1043 1221
1044inline void 1222void inline_size
1045timers_reify (EV_P) 1223timers_reify (EV_P)
1046{ 1224{
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1225 while (timercnt && ((WT)timers [0])->at <= mn_now)
1048 { 1226 {
1049 struct ev_timer *w = timers [0]; 1227 ev_timer *w = (ev_timer *)timers [0];
1050 1228
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1229 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1230
1053 /* first reschedule or stop timer */ 1231 /* first reschedule or stop timer */
1054 if (w->repeat) 1232 if (w->repeat)
1055 { 1233 {
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1234 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1235
1058 ((WT)w)->at += w->repeat; 1236 ((WT)w)->at += w->repeat;
1059 if (((WT)w)->at < mn_now) 1237 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now; 1238 ((WT)w)->at = mn_now;
1061 1239
1062 downheap ((WT *)timers, timercnt, 0); 1240 downheap (timers, timercnt, 0);
1063 } 1241 }
1064 else 1242 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1243 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1244
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1245 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1246 }
1069} 1247}
1070 1248
1071#if EV_PERIODICS 1249#if EV_PERIODIC_ENABLE
1072inline void 1250void inline_size
1073periodics_reify (EV_P) 1251periodics_reify (EV_P)
1074{ 1252{
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1253 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1076 { 1254 {
1077 struct ev_periodic *w = periodics [0]; 1255 ev_periodic *w = (ev_periodic *)periodics [0];
1078 1256
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1257 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1258
1081 /* first reschedule or stop timer */ 1259 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1260 if (w->reschedule_cb)
1083 { 1261 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1262 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1086 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1087 } 1265 }
1088 else if (w->interval) 1266 else if (w->interval)
1089 { 1267 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1268 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1269 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1270 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0); 1271 downheap (periodics, periodiccnt, 0);
1093 } 1272 }
1094 else 1273 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1274 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1275
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1276 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1277 }
1099} 1278}
1100 1279
1101static void 1280static void noinline
1102periodics_reschedule (EV_P) 1281periodics_reschedule (EV_P)
1103{ 1282{
1104 int i; 1283 int i;
1105 1284
1106 /* adjust periodics after time jump */ 1285 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1286 for (i = 0; i < periodiccnt; ++i)
1108 { 1287 {
1109 struct ev_periodic *w = periodics [i]; 1288 ev_periodic *w = (ev_periodic *)periodics [i];
1110 1289
1111 if (w->reschedule_cb) 1290 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1291 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1292 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1293 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1115 } 1294 }
1116 1295
1117 /* now rebuild the heap */ 1296 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; ) 1297 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i); 1298 downheap (periodics, periodiccnt, i);
1120} 1299}
1121#endif 1300#endif
1122 1301
1123inline int 1302#if EV_IDLE_ENABLE
1124time_update_monotonic (EV_P) 1303void inline_size
1304idle_reify (EV_P)
1125{ 1305{
1306 if (expect_false (idleall))
1307 {
1308 int pri;
1309
1310 for (pri = NUMPRI; pri--; )
1311 {
1312 if (pendingcnt [pri])
1313 break;
1314
1315 if (idlecnt [pri])
1316 {
1317 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1318 break;
1319 }
1320 }
1321 }
1322}
1323#endif
1324
1325void inline_speed
1326time_update (EV_P_ ev_tstamp max_block)
1327{
1328 int i;
1329
1330#if EV_USE_MONOTONIC
1331 if (expect_true (have_monotonic))
1332 {
1333 ev_tstamp odiff = rtmn_diff;
1334
1126 mn_now = get_clock (); 1335 mn_now = get_clock ();
1127 1336
1337 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1338 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1339 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1340 {
1130 ev_rt_now = rtmn_diff + mn_now; 1341 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1342 return;
1132 } 1343 }
1133 else 1344
1134 {
1135 now_floor = mn_now; 1345 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1346 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1347
1141inline void 1348 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1349 * on the choice of "4": one iteration isn't enough,
1143{ 1350 * in case we get preempted during the calls to
1144 int i; 1351 * ev_time and get_clock. a second call is almost guaranteed
1145 1352 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1353 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1354 * in the unlikely event of having been preempted here.
1148 { 1355 */
1149 if (time_update_monotonic (EV_A)) 1356 for (i = 4; --i; )
1150 { 1357 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 1358 rtmn_diff = ev_rt_now - mn_now;
1156 1359
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1360 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1158 return; /* all is well */ 1361 return; /* all is well */
1159 1362
1160 ev_rt_now = ev_time (); 1363 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 1364 mn_now = get_clock ();
1162 now_floor = mn_now; 1365 now_floor = mn_now;
1163 } 1366 }
1164 1367
1165# if EV_PERIODICS 1368# if EV_PERIODIC_ENABLE
1369 periodics_reschedule (EV_A);
1370# endif
1371 /* no timer adjustment, as the monotonic clock doesn't jump */
1372 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373 }
1374 else
1375#endif
1376 {
1377 ev_rt_now = ev_time ();
1378
1379 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1380 {
1381#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 1382 periodics_reschedule (EV_A);
1167# endif 1383#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */ 1384 /* adjust timers. this is easy, as the offset is the same for all of them */
1184 for (i = 0; i < timercnt; ++i) 1385 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now; 1386 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 } 1387 }
1187 1388
1188 mn_now = ev_rt_now; 1389 mn_now = ev_rt_now;
1204static int loop_done; 1405static int loop_done;
1205 1406
1206void 1407void
1207ev_loop (EV_P_ int flags) 1408ev_loop (EV_P_ int flags)
1208{ 1409{
1209 double block;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1410 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1411 ? EVUNLOOP_ONE
1412 : EVUNLOOP_CANCEL;
1211 1413
1212 while (activecnt) 1414 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1415
1416 do
1213 { 1417 {
1418#ifndef _WIN32
1419 if (expect_false (curpid)) /* penalise the forking check even more */
1420 if (expect_false (getpid () != curpid))
1421 {
1422 curpid = getpid ();
1423 postfork = 1;
1424 }
1425#endif
1426
1427#if EV_FORK_ENABLE
1428 /* we might have forked, so queue fork handlers */
1429 if (expect_false (postfork))
1430 if (forkcnt)
1431 {
1432 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1433 call_pending (EV_A);
1434 }
1435#endif
1436
1214 /* queue check watchers (and execute them) */ 1437 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1438 if (expect_false (preparecnt))
1216 { 1439 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1440 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1441 call_pending (EV_A);
1219 } 1442 }
1220 1443
1444 if (expect_false (!activecnt))
1445 break;
1446
1221 /* we might have forked, so reify kernel state if necessary */ 1447 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1448 if (expect_false (postfork))
1223 loop_fork (EV_A); 1449 loop_fork (EV_A);
1224 1450
1225 /* update fd-related kernel structures */ 1451 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1452 fd_reify (EV_A);
1227 1453
1228 /* calculate blocking time */ 1454 /* calculate blocking time */
1455 {
1456 ev_tstamp block;
1229 1457
1230 /* we only need this for !monotonic clock or timers, but as we basically 1458 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1231 always have timers, we just calculate it always */ 1459 block = 0.; /* do not block at all */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else 1460 else
1236#endif
1237 { 1461 {
1238 ev_rt_now = ev_time (); 1462 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1463 time_update (EV_A_ 1e100);
1240 }
1241 1464
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1465 block = MAX_BLOCKTIME;
1247 1466
1248 if (timercnt) 1467 if (timercnt)
1249 { 1468 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1251 if (block > to) block = to; 1470 if (block > to) block = to;
1252 } 1471 }
1253 1472
1254#if EV_PERIODICS 1473#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1474 if (periodiccnt)
1256 { 1475 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1477 if (block > to) block = to;
1259 } 1478 }
1260#endif 1479#endif
1261 1480
1262 if (expect_false (block < 0.)) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1263 } 1482 }
1264 1483
1484 ++loop_count;
1265 method_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1266 1486
1267 /* update ev_rt_now, do magic */ 1487 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 1488 time_update (EV_A_ block);
1489 }
1269 1490
1270 /* queue pending timers and reschedule them */ 1491 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 1493#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 1495#endif
1275 1496
1497#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 1498 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 1499 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1279 1501
1280 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 1503 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 1505
1284 call_pending (EV_A); 1506 call_pending (EV_A);
1285 1507
1286 if (expect_false (loop_done))
1287 break;
1288 } 1508 }
1509 while (expect_true (activecnt && !loop_done));
1289 1510
1290 if (loop_done != 2) 1511 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 1512 loop_done = EVUNLOOP_CANCEL;
1292} 1513}
1293 1514
1294void 1515void
1295ev_unloop (EV_P_ int how) 1516ev_unloop (EV_P_ int how)
1296{ 1517{
1297 loop_done = how; 1518 loop_done = how;
1298} 1519}
1299 1520
1300/*****************************************************************************/ 1521/*****************************************************************************/
1301 1522
1302inline void 1523void inline_size
1303wlist_add (WL *head, WL elem) 1524wlist_add (WL *head, WL elem)
1304{ 1525{
1305 elem->next = *head; 1526 elem->next = *head;
1306 *head = elem; 1527 *head = elem;
1307} 1528}
1308 1529
1309inline void 1530void inline_size
1310wlist_del (WL *head, WL elem) 1531wlist_del (WL *head, WL elem)
1311{ 1532{
1312 while (*head) 1533 while (*head)
1313 { 1534 {
1314 if (*head == elem) 1535 if (*head == elem)
1319 1540
1320 head = &(*head)->next; 1541 head = &(*head)->next;
1321 } 1542 }
1322} 1543}
1323 1544
1324inline void 1545void inline_speed
1325ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1326{ 1547{
1327 if (w->pending) 1548 if (w->pending)
1328 { 1549 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 1551 w->pending = 0;
1331 } 1552 }
1332} 1553}
1333 1554
1334inline void 1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1581void inline_speed
1335ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1336{ 1583{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 1585 w->active = active;
1341 ev_ref (EV_A); 1586 ev_ref (EV_A);
1342} 1587}
1343 1588
1344inline void 1589void inline_size
1345ev_stop (EV_P_ W w) 1590ev_stop (EV_P_ W w)
1346{ 1591{
1347 ev_unref (EV_A); 1592 ev_unref (EV_A);
1348 w->active = 0; 1593 w->active = 0;
1349} 1594}
1350 1595
1351/*****************************************************************************/ 1596/*****************************************************************************/
1352 1597
1353void 1598void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1355{ 1600{
1356 int fd = w->fd; 1601 int fd = w->fd;
1357 1602
1358 if (expect_false (ev_is_active (w))) 1603 if (expect_false (ev_is_active (w)))
1359 return; 1604 return;
1360 1605
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 1606 assert (("ev_io_start called with negative fd", fd >= 0));
1362 1607
1363 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add (&anfds[fd].head, (WL)w);
1366 1611
1367 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1613 w->events &= ~EV_IOFDSET;
1368} 1614}
1369 1615
1370void 1616void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1372{ 1618{
1373 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 1620 if (expect_false (!ev_is_active (w)))
1375 return; 1621 return;
1376 1622
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 1624
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1381 1627
1382 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd, 1);
1383} 1629}
1384 1630
1385void 1631void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1387{ 1633{
1388 if (expect_false (ev_is_active (w))) 1634 if (expect_false (ev_is_active (w)))
1389 return; 1635 return;
1390 1636
1391 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1392 1638
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 1640
1395 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1397 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 1644 upheap (timers, timercnt - 1);
1399 1645
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1401} 1647}
1402 1648
1403void 1649void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 1650ev_timer_stop (EV_P_ ev_timer *w)
1405{ 1651{
1406 ev_clear_pending (EV_A_ (W)w); 1652 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1653 if (expect_false (!ev_is_active (w)))
1408 return; 1654 return;
1409 1655
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1411 1657
1658 {
1659 int active = ((W)w)->active;
1660
1412 if (expect_true (((W)w)->active < timercnt--)) 1661 if (expect_true (--active < --timercnt))
1413 { 1662 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap (timers, timercnt, active);
1416 } 1665 }
1666 }
1417 1667
1418 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1419 1669
1420 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1421} 1671}
1422 1672
1423void 1673void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1425{ 1675{
1426 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1427 { 1677 {
1428 if (w->repeat) 1678 if (w->repeat)
1429 { 1679 {
1430 ((WT)w)->at = mn_now + w->repeat; 1680 ((WT)w)->at = mn_now + w->repeat;
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1681 adjustheap (timers, timercnt, ((W)w)->active - 1);
1432 } 1682 }
1433 else 1683 else
1434 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1435 } 1685 }
1436 else if (w->repeat) 1686 else if (w->repeat)
1438 w->at = w->repeat; 1688 w->at = w->repeat;
1439 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1440 } 1690 }
1441} 1691}
1442 1692
1443#if EV_PERIODICS 1693#if EV_PERIODIC_ENABLE
1444void 1694void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 1696{
1447 if (expect_false (ev_is_active (w))) 1697 if (expect_false (ev_is_active (w)))
1448 return; 1698 return;
1449 1699
1450 if (w->reschedule_cb) 1700 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 1702 else if (w->interval)
1453 { 1703 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1458 1710
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap (periodics, periodiccnt - 1);
1463 1715
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1465} 1717}
1466 1718
1467void 1719void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 1720ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 1721{
1470 ev_clear_pending (EV_A_ (W)w); 1722 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 1723 if (expect_false (!ev_is_active (w)))
1472 return; 1724 return;
1473 1725
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1475 1727
1728 {
1729 int active = ((W)w)->active;
1730
1476 if (expect_true (((W)w)->active < periodiccnt--)) 1731 if (expect_true (--active < --periodiccnt))
1477 { 1732 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap (periodics, periodiccnt, active);
1480 } 1735 }
1736 }
1481 1737
1482 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1483} 1739}
1484 1740
1485void 1741void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 1743{
1488 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1491} 1747}
1492#endif 1748#endif
1493 1749
1494void
1495ev_idle_start (EV_P_ struct ev_idle *w)
1496{
1497 if (expect_false (ev_is_active (w)))
1498 return;
1499
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART 1750#ifndef SA_RESTART
1561# define SA_RESTART 0 1751# define SA_RESTART 0
1562#endif 1752#endif
1563 1753
1564void 1754void noinline
1565ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1566{ 1756{
1567#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif 1759#endif
1570 if (expect_false (ev_is_active (w))) 1760 if (expect_false (ev_is_active (w)))
1571 return; 1761 return;
1572 1762
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 1764
1765 {
1766#ifndef _WIN32
1767 sigset_t full, prev;
1768 sigfillset (&full);
1769 sigprocmask (SIG_SETMASK, &full, &prev);
1770#endif
1771
1772 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1773
1774#ifndef _WIN32
1775 sigprocmask (SIG_SETMASK, &prev, 0);
1776#endif
1777 }
1778
1575 ev_start (EV_A_ (W)w, 1); 1779 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 1781
1579 if (!((WL)w)->next) 1782 if (!((WL)w)->next)
1580 { 1783 {
1581#if _WIN32 1784#if _WIN32
1582 signal (w->signum, sighandler); 1785 signal (w->signum, sighandler);
1588 sigaction (w->signum, &sa, 0); 1791 sigaction (w->signum, &sa, 0);
1589#endif 1792#endif
1590 } 1793 }
1591} 1794}
1592 1795
1593void 1796void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 1797ev_signal_stop (EV_P_ ev_signal *w)
1595{ 1798{
1596 ev_clear_pending (EV_A_ (W)w); 1799 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 1800 if (expect_false (!ev_is_active (w)))
1598 return; 1801 return;
1599 1802
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1803 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 1804 ev_stop (EV_A_ (W)w);
1602 1805
1603 if (!signals [w->signum - 1].head) 1806 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 1807 signal (w->signum, SIG_DFL);
1605} 1808}
1606 1809
1607void 1810void
1608ev_child_start (EV_P_ struct ev_child *w) 1811ev_child_start (EV_P_ ev_child *w)
1609{ 1812{
1610#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1814 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 1815#endif
1613 if (expect_false (ev_is_active (w))) 1816 if (expect_false (ev_is_active (w)))
1614 return; 1817 return;
1615 1818
1616 ev_start (EV_A_ (W)w, 1); 1819 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618} 1821}
1619 1822
1620void 1823void
1621ev_child_stop (EV_P_ struct ev_child *w) 1824ev_child_stop (EV_P_ ev_child *w)
1622{ 1825{
1623 ev_clear_pending (EV_A_ (W)w); 1826 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 1827 if (expect_false (!ev_is_active (w)))
1625 return; 1828 return;
1626 1829
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1830 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 1831 ev_stop (EV_A_ (W)w);
1629} 1832}
1630 1833
1834#if EV_STAT_ENABLE
1835
1836# ifdef _WIN32
1837# undef lstat
1838# define lstat(a,b) _stati64 (a,b)
1839# endif
1840
1841#define DEF_STAT_INTERVAL 5.0074891
1842#define MIN_STAT_INTERVAL 0.1074891
1843
1844static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1845
1846#if EV_USE_INOTIFY
1847# define EV_INOTIFY_BUFSIZE 8192
1848
1849static void noinline
1850infy_add (EV_P_ ev_stat *w)
1851{
1852 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1853
1854 if (w->wd < 0)
1855 {
1856 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1857
1858 /* monitor some parent directory for speedup hints */
1859 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1860 {
1861 char path [4096];
1862 strcpy (path, w->path);
1863
1864 do
1865 {
1866 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1867 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1868
1869 char *pend = strrchr (path, '/');
1870
1871 if (!pend)
1872 break; /* whoops, no '/', complain to your admin */
1873
1874 *pend = 0;
1875 w->wd = inotify_add_watch (fs_fd, path, mask);
1876 }
1877 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1878 }
1879 }
1880 else
1881 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1882
1883 if (w->wd >= 0)
1884 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1885}
1886
1887static void noinline
1888infy_del (EV_P_ ev_stat *w)
1889{
1890 int slot;
1891 int wd = w->wd;
1892
1893 if (wd < 0)
1894 return;
1895
1896 w->wd = -2;
1897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1898 wlist_del (&fs_hash [slot].head, (WL)w);
1899
1900 /* remove this watcher, if others are watching it, they will rearm */
1901 inotify_rm_watch (fs_fd, wd);
1902}
1903
1904static void noinline
1905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1906{
1907 if (slot < 0)
1908 /* overflow, need to check for all hahs slots */
1909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1910 infy_wd (EV_A_ slot, wd, ev);
1911 else
1912 {
1913 WL w_;
1914
1915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1916 {
1917 ev_stat *w = (ev_stat *)w_;
1918 w_ = w_->next; /* lets us remove this watcher and all before it */
1919
1920 if (w->wd == wd || wd == -1)
1921 {
1922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1923 {
1924 w->wd = -1;
1925 infy_add (EV_A_ w); /* re-add, no matter what */
1926 }
1927
1928 stat_timer_cb (EV_A_ &w->timer, 0);
1929 }
1930 }
1931 }
1932}
1933
1934static void
1935infy_cb (EV_P_ ev_io *w, int revents)
1936{
1937 char buf [EV_INOTIFY_BUFSIZE];
1938 struct inotify_event *ev = (struct inotify_event *)buf;
1939 int ofs;
1940 int len = read (fs_fd, buf, sizeof (buf));
1941
1942 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1943 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1944}
1945
1946void inline_size
1947infy_init (EV_P)
1948{
1949 if (fs_fd != -2)
1950 return;
1951
1952 fs_fd = inotify_init ();
1953
1954 if (fs_fd >= 0)
1955 {
1956 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1957 ev_set_priority (&fs_w, EV_MAXPRI);
1958 ev_io_start (EV_A_ &fs_w);
1959 }
1960}
1961
1962void inline_size
1963infy_fork (EV_P)
1964{
1965 int slot;
1966
1967 if (fs_fd < 0)
1968 return;
1969
1970 close (fs_fd);
1971 fs_fd = inotify_init ();
1972
1973 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1974 {
1975 WL w_ = fs_hash [slot].head;
1976 fs_hash [slot].head = 0;
1977
1978 while (w_)
1979 {
1980 ev_stat *w = (ev_stat *)w_;
1981 w_ = w_->next; /* lets us add this watcher */
1982
1983 w->wd = -1;
1984
1985 if (fs_fd >= 0)
1986 infy_add (EV_A_ w); /* re-add, no matter what */
1987 else
1988 ev_timer_start (EV_A_ &w->timer);
1989 }
1990
1991 }
1992}
1993
1994#endif
1995
1996void
1997ev_stat_stat (EV_P_ ev_stat *w)
1998{
1999 if (lstat (w->path, &w->attr) < 0)
2000 w->attr.st_nlink = 0;
2001 else if (!w->attr.st_nlink)
2002 w->attr.st_nlink = 1;
2003}
2004
2005static void noinline
2006stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2007{
2008 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2009
2010 /* we copy this here each the time so that */
2011 /* prev has the old value when the callback gets invoked */
2012 w->prev = w->attr;
2013 ev_stat_stat (EV_A_ w);
2014
2015 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2016 if (
2017 w->prev.st_dev != w->attr.st_dev
2018 || w->prev.st_ino != w->attr.st_ino
2019 || w->prev.st_mode != w->attr.st_mode
2020 || w->prev.st_nlink != w->attr.st_nlink
2021 || w->prev.st_uid != w->attr.st_uid
2022 || w->prev.st_gid != w->attr.st_gid
2023 || w->prev.st_rdev != w->attr.st_rdev
2024 || w->prev.st_size != w->attr.st_size
2025 || w->prev.st_atime != w->attr.st_atime
2026 || w->prev.st_mtime != w->attr.st_mtime
2027 || w->prev.st_ctime != w->attr.st_ctime
2028 ) {
2029 #if EV_USE_INOTIFY
2030 infy_del (EV_A_ w);
2031 infy_add (EV_A_ w);
2032 ev_stat_stat (EV_A_ w); /* avoid race... */
2033 #endif
2034
2035 ev_feed_event (EV_A_ w, EV_STAT);
2036 }
2037}
2038
2039void
2040ev_stat_start (EV_P_ ev_stat *w)
2041{
2042 if (expect_false (ev_is_active (w)))
2043 return;
2044
2045 /* since we use memcmp, we need to clear any padding data etc. */
2046 memset (&w->prev, 0, sizeof (ev_statdata));
2047 memset (&w->attr, 0, sizeof (ev_statdata));
2048
2049 ev_stat_stat (EV_A_ w);
2050
2051 if (w->interval < MIN_STAT_INTERVAL)
2052 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2053
2054 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2055 ev_set_priority (&w->timer, ev_priority (w));
2056
2057#if EV_USE_INOTIFY
2058 infy_init (EV_A);
2059
2060 if (fs_fd >= 0)
2061 infy_add (EV_A_ w);
2062 else
2063#endif
2064 ev_timer_start (EV_A_ &w->timer);
2065
2066 ev_start (EV_A_ (W)w, 1);
2067}
2068
2069void
2070ev_stat_stop (EV_P_ ev_stat *w)
2071{
2072 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w)))
2074 return;
2075
2076#if EV_USE_INOTIFY
2077 infy_del (EV_A_ w);
2078#endif
2079 ev_timer_stop (EV_A_ &w->timer);
2080
2081 ev_stop (EV_A_ (W)w);
2082}
2083#endif
2084
2085#if EV_IDLE_ENABLE
2086void
2087ev_idle_start (EV_P_ ev_idle *w)
2088{
2089 if (expect_false (ev_is_active (w)))
2090 return;
2091
2092 pri_adjust (EV_A_ (W)w);
2093
2094 {
2095 int active = ++idlecnt [ABSPRI (w)];
2096
2097 ++idleall;
2098 ev_start (EV_A_ (W)w, active);
2099
2100 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2101 idles [ABSPRI (w)][active - 1] = w;
2102 }
2103}
2104
2105void
2106ev_idle_stop (EV_P_ ev_idle *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114
2115 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2116 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2117
2118 ev_stop (EV_A_ (W)w);
2119 --idleall;
2120 }
2121}
2122#endif
2123
2124void
2125ev_prepare_start (EV_P_ ev_prepare *w)
2126{
2127 if (expect_false (ev_is_active (w)))
2128 return;
2129
2130 ev_start (EV_A_ (W)w, ++preparecnt);
2131 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2132 prepares [preparecnt - 1] = w;
2133}
2134
2135void
2136ev_prepare_stop (EV_P_ ev_prepare *w)
2137{
2138 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w)))
2140 return;
2141
2142 {
2143 int active = ((W)w)->active;
2144 prepares [active - 1] = prepares [--preparecnt];
2145 ((W)prepares [active - 1])->active = active;
2146 }
2147
2148 ev_stop (EV_A_ (W)w);
2149}
2150
2151void
2152ev_check_start (EV_P_ ev_check *w)
2153{
2154 if (expect_false (ev_is_active (w)))
2155 return;
2156
2157 ev_start (EV_A_ (W)w, ++checkcnt);
2158 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2159 checks [checkcnt - 1] = w;
2160}
2161
2162void
2163ev_check_stop (EV_P_ ev_check *w)
2164{
2165 clear_pending (EV_A_ (W)w);
2166 if (expect_false (!ev_is_active (w)))
2167 return;
2168
2169 {
2170 int active = ((W)w)->active;
2171 checks [active - 1] = checks [--checkcnt];
2172 ((W)checks [active - 1])->active = active;
2173 }
2174
2175 ev_stop (EV_A_ (W)w);
2176}
2177
2178#if EV_EMBED_ENABLE
2179void noinline
2180ev_embed_sweep (EV_P_ ev_embed *w)
2181{
2182 ev_loop (w->loop, EVLOOP_NONBLOCK);
2183}
2184
2185static void
2186embed_cb (EV_P_ ev_io *io, int revents)
2187{
2188 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2189
2190 if (ev_cb (w))
2191 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2192 else
2193 ev_embed_sweep (loop, w);
2194}
2195
2196void
2197ev_embed_start (EV_P_ ev_embed *w)
2198{
2199 if (expect_false (ev_is_active (w)))
2200 return;
2201
2202 {
2203 struct ev_loop *loop = w->loop;
2204 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2205 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2206 }
2207
2208 ev_set_priority (&w->io, ev_priority (w));
2209 ev_io_start (EV_A_ &w->io);
2210
2211 ev_start (EV_A_ (W)w, 1);
2212}
2213
2214void
2215ev_embed_stop (EV_P_ ev_embed *w)
2216{
2217 clear_pending (EV_A_ (W)w);
2218 if (expect_false (!ev_is_active (w)))
2219 return;
2220
2221 ev_io_stop (EV_A_ &w->io);
2222
2223 ev_stop (EV_A_ (W)w);
2224}
2225#endif
2226
2227#if EV_FORK_ENABLE
2228void
2229ev_fork_start (EV_P_ ev_fork *w)
2230{
2231 if (expect_false (ev_is_active (w)))
2232 return;
2233
2234 ev_start (EV_A_ (W)w, ++forkcnt);
2235 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2236 forks [forkcnt - 1] = w;
2237}
2238
2239void
2240ev_fork_stop (EV_P_ ev_fork *w)
2241{
2242 clear_pending (EV_A_ (W)w);
2243 if (expect_false (!ev_is_active (w)))
2244 return;
2245
2246 {
2247 int active = ((W)w)->active;
2248 forks [active - 1] = forks [--forkcnt];
2249 ((W)forks [active - 1])->active = active;
2250 }
2251
2252 ev_stop (EV_A_ (W)w);
2253}
2254#endif
2255
1631/*****************************************************************************/ 2256/*****************************************************************************/
1632 2257
1633struct ev_once 2258struct ev_once
1634{ 2259{
1635 struct ev_io io; 2260 ev_io io;
1636 struct ev_timer to; 2261 ev_timer to;
1637 void (*cb)(int revents, void *arg); 2262 void (*cb)(int revents, void *arg);
1638 void *arg; 2263 void *arg;
1639}; 2264};
1640 2265
1641static void 2266static void
1650 2275
1651 cb (revents, arg); 2276 cb (revents, arg);
1652} 2277}
1653 2278
1654static void 2279static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 2280once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 2281{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2282 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1658} 2283}
1659 2284
1660static void 2285static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 2286once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 2287{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2288 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1664} 2289}
1665 2290
1666void 2291void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines