ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.185 by root, Fri Dec 14 18:22:30 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
207#if !EV_STAT_ENABLE 270#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 271# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 272# define EV_USE_INOTIFY 0
210#endif 273#endif
211 274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
212#if EV_USE_INOTIFY 281#if EV_USE_INOTIFY
213# include <sys/inotify.h> 282# include <sys/inotify.h>
214#endif 283#endif
215 284
216#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 286# include <winsock.h>
218#endif 287#endif
219 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
220/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
221 308
222/* 309/*
223 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
237# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
239#else 326#else
240# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
241# define noinline 328# define noinline
242# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 330# define inline
244# endif 331# endif
245#endif 332#endif
246 333
247#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
262 349
263typedef ev_watcher *W; 350typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
266 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
268 362
269#ifdef _WIN32 363#ifdef _WIN32
270# include "ev_win32.c" 364# include "ev_win32.c"
271#endif 365#endif
272 366
293 perror (msg); 387 perror (msg);
294 abort (); 388 abort ();
295 } 389 }
296} 390}
297 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
298static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 408
300void 409void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 411{
303 alloc = cb; 412 alloc = cb;
304} 413}
305 414
306inline_speed void * 415inline_speed void *
307ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
308{ 417{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
310 419
311 if (!ptr && size) 420 if (!ptr && size)
312 { 421 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 423 abort ();
337 W w; 446 W w;
338 int events; 447 int events;
339} ANPENDING; 448} ANPENDING;
340 449
341#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
342typedef struct 452typedef struct
343{ 453{
344 WL head; 454 WL head;
345} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
346#endif 474#endif
347 475
348#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
349 477
350 struct ev_loop 478 struct ev_loop
408{ 536{
409 return ev_rt_now; 537 return ev_rt_now;
410} 538}
411#endif 539#endif
412 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
413int inline_size 570int inline_size
414array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
415{ 572{
416 int ncur = cur + 1; 573 int ncur = cur + 1;
417 574
418 do 575 do
419 ncur <<= 1; 576 ncur <<= 1;
420 while (cnt > ncur); 577 while (cnt > ncur);
421 578
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 581 {
425 ncur *= elem; 582 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 585 ncur /= elem;
429 } 586 }
430 587
431 return ncur; 588 return ncur;
543 700
544#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
545 if (events) 702 if (events)
546 { 703 {
547 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
548 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 711 }
551#endif 712#endif
552 713
553 { 714 {
641 } 802 }
642} 803}
643 804
644/*****************************************************************************/ 805/*****************************************************************************/
645 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
646void inline_speed 827void inline_speed
647upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
648{ 829{
649 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
650 832
651 while (k) 833 for (;;)
652 { 834 {
653 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
654 838
655 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
656 break; 855 break;
657 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
658 heap [k] = heap [p]; 919 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 921 k = p;
661 } 922 }
662 923
663 heap [k] = w; 924 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693} 926}
694 927
695void inline_size 928void inline_size
696adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
697{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
698 upheap (heap, k); 932 upheap (heap, k);
933 else
699 downheap (heap, N, k); 934 downheap (heap, N, k);
700} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
701 962
702/*****************************************************************************/ 963/*****************************************************************************/
703 964
704typedef struct 965typedef struct
705{ 966{
706 WL head; 967 WL head;
707 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
708} ANSIG; 969} ANSIG;
709 970
710static ANSIG *signals; 971static ANSIG *signals;
711static int signalmax; 972static int signalmax;
712 973
713static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 975
717void inline_size 976void inline_size
718signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
719{ 978{
720 while (count--) 979 while (count--)
724 983
725 ++base; 984 ++base;
726 } 985 }
727} 986}
728 987
729static void 988/*****************************************************************************/
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779 989
780void inline_speed 990void inline_speed
781fd_intern (int fd) 991fd_intern (int fd)
782{ 992{
783#ifdef _WIN32 993#ifdef _WIN32
788 fcntl (fd, F_SETFL, O_NONBLOCK); 998 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 999#endif
790} 1000}
791 1001
792static void noinline 1002static void noinline
793siginit (EV_P) 1003evpipe_init (EV_P)
794{ 1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
795 fd_intern (sigpipe [0]); 1020 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
797 1024
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1025 ev_io_start (EV_A_ &pipeev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
1068
1069 if (gotsig && ev_is_default_loop (EV_A))
1070 {
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
801} 1093}
802 1094
803/*****************************************************************************/ 1095/*****************************************************************************/
804 1096
1097static void
1098ev_sighandler (int signum)
1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return;
1125
1126 signals [signum].gotsig = 0;
1127
1128 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130}
1131
1132/*****************************************************************************/
1133
805static WL childs [EV_PID_HASHSIZE]; 1134static WL childs [EV_PID_HASHSIZE];
806 1135
807#ifndef _WIN32 1136#ifndef _WIN32
808 1137
809static ev_signal childev; 1138static ev_signal childev;
810 1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
811void inline_speed 1144void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1145child_reap (EV_P_ int chain, int pid, int status)
813{ 1146{
814 ev_child *w; 1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1149
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
817 if (w->pid == pid || !w->pid) 1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
818 { 1154 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1156 w->rpid = pid;
821 w->rstatus = status; 1157 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1159 }
1160 }
824} 1161}
825 1162
826#ifndef WCONTINUED 1163#ifndef WCONTINUED
827# define WCONTINUED 0 1164# define WCONTINUED 0
828#endif 1165#endif
837 if (!WCONTINUED 1174 if (!WCONTINUED
838 || errno != EINVAL 1175 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1177 return;
841 1178
842 /* make sure we are called again until all childs have been reaped */ 1179 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1180 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1182
846 child_reap (EV_A_ sw, pid, pid, status); 1183 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1184 if (EV_PID_HASHSIZE > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1186}
850 1187
851#endif 1188#endif
852 1189
853/*****************************************************************************/ 1190/*****************************************************************************/
925} 1262}
926 1263
927unsigned int 1264unsigned int
928ev_embeddable_backends (void) 1265ev_embeddable_backends (void)
929{ 1266{
930 return EVBACKEND_EPOLL 1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 1268
932 | EVBACKEND_PORT; 1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
933} 1274}
934 1275
935unsigned int 1276unsigned int
936ev_backend (EV_P) 1277ev_backend (EV_P)
937{ 1278{
940 1281
941unsigned int 1282unsigned int
942ev_loop_count (EV_P) 1283ev_loop_count (EV_P)
943{ 1284{
944 return loop_count; 1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
945} 1298}
946 1299
947static void noinline 1300static void noinline
948loop_init (EV_P_ unsigned int flags) 1301loop_init (EV_P_ unsigned int flags)
949{ 1302{
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1309 have_monotonic = 1;
957 } 1310 }
958#endif 1311#endif
959 1312
960 ev_rt_now = ev_time (); 1313 ev_rt_now = ev_time ();
961 mn_now = get_clock (); 1314 mn_now = get_clock ();
962 now_floor = mn_now; 1315 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now; 1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
964 1326
965 /* pid check not overridable via env */ 1327 /* pid check not overridable via env */
966#ifndef _WIN32 1328#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1329 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1330 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1334 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1337
976 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984 1340
985#if EV_USE_PORT 1341#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1343#endif
988#if EV_USE_KQUEUE 1344#if EV_USE_KQUEUE
996#endif 1352#endif
997#if EV_USE_SELECT 1353#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1355#endif
1000 1356
1001 ev_init (&sigev, sigcb); 1357 ev_init (&pipeev, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1358 ev_set_priority (&pipeev, EV_MAXPRI);
1003 } 1359 }
1004} 1360}
1005 1361
1006static void noinline 1362static void noinline
1007loop_destroy (EV_P) 1363loop_destroy (EV_P)
1008{ 1364{
1009 int i; 1365 int i;
1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1010 1383
1011#if EV_USE_INOTIFY 1384#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1385 if (fs_fd >= 0)
1013 close (fs_fd); 1386 close (fs_fd);
1014#endif 1387#endif
1037 array_free (pending, [i]); 1410 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE 1411#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 1412 array_free (idle, [i]);
1040#endif 1413#endif
1041 } 1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
1042 1417
1043 /* have to use the microsoft-never-gets-it-right macro */ 1418 /* have to use the microsoft-never-gets-it-right macro */
1044 array_free (fdchange, EMPTY); 1419 array_free (fdchange, EMPTY);
1045 array_free (timer, EMPTY); 1420 array_free (timer, EMPTY);
1046#if EV_PERIODIC_ENABLE 1421#if EV_PERIODIC_ENABLE
1047 array_free (periodic, EMPTY); 1422 array_free (periodic, EMPTY);
1048#endif 1423#endif
1424#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY);
1426#endif
1049 array_free (prepare, EMPTY); 1427 array_free (prepare, EMPTY);
1050 array_free (check, EMPTY); 1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
1051 1432
1052 backend = 0; 1433 backend = 0;
1053} 1434}
1054 1435
1436#if EV_USE_INOTIFY
1055void inline_size infy_fork (EV_P); 1437void inline_size infy_fork (EV_P);
1438#endif
1056 1439
1057void inline_size 1440void inline_size
1058loop_fork (EV_P) 1441loop_fork (EV_P)
1059{ 1442{
1060#if EV_USE_PORT 1443#if EV_USE_PORT
1068#endif 1451#endif
1069#if EV_USE_INOTIFY 1452#if EV_USE_INOTIFY
1070 infy_fork (EV_A); 1453 infy_fork (EV_A);
1071#endif 1454#endif
1072 1455
1073 if (ev_is_active (&sigev)) 1456 if (ev_is_active (&pipeev))
1074 { 1457 {
1075 /* default loop */ 1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1076 1464
1077 ev_ref (EV_A); 1465 ev_ref (EV_A);
1078 ev_io_stop (EV_A_ &sigev); 1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
1079 close (sigpipe [0]); 1475 close (evpipe [0]);
1080 close (sigpipe [1]); 1476 close (evpipe [1]);
1477 }
1081 1478
1082 while (pipe (sigpipe))
1083 syserr ("(libev) error creating pipe");
1084
1085 siginit (EV_A); 1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
1086 } 1482 }
1087 1483
1088 postfork = 0; 1484 postfork = 0;
1089} 1485}
1090 1486
1091#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1092struct ev_loop * 1489struct ev_loop *
1093ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1094{ 1491{
1095 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1096 1493
1112} 1509}
1113 1510
1114void 1511void
1115ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1116{ 1513{
1117 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1118} 1515}
1119 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1120#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1121 1553
1122#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1123struct ev_loop * 1555struct ev_loop *
1124ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1125#else 1557#else
1126int 1558int
1127ev_default_loop (unsigned int flags) 1559ev_default_loop (unsigned int flags)
1128#endif 1560#endif
1129{ 1561{
1130 if (sigpipe [0] == sigpipe [1])
1131 if (pipe (sigpipe))
1132 return 0;
1133
1134 if (!ev_default_loop_ptr) 1562 if (!ev_default_loop_ptr)
1135 { 1563 {
1136#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1137 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1138#else 1566#else
1141 1569
1142 loop_init (EV_A_ flags); 1570 loop_init (EV_A_ flags);
1143 1571
1144 if (ev_backend (EV_A)) 1572 if (ev_backend (EV_A))
1145 { 1573 {
1146 siginit (EV_A);
1147
1148#ifndef _WIN32 1574#ifndef _WIN32
1149 ev_signal_init (&childev, childcb, SIGCHLD); 1575 ev_signal_init (&childev, childcb, SIGCHLD);
1150 ev_set_priority (&childev, EV_MAXPRI); 1576 ev_set_priority (&childev, EV_MAXPRI);
1151 ev_signal_start (EV_A_ &childev); 1577 ev_signal_start (EV_A_ &childev);
1152 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
1169#ifndef _WIN32 1595#ifndef _WIN32
1170 ev_ref (EV_A); /* child watcher */ 1596 ev_ref (EV_A); /* child watcher */
1171 ev_signal_stop (EV_A_ &childev); 1597 ev_signal_stop (EV_A_ &childev);
1172#endif 1598#endif
1173 1599
1174 ev_ref (EV_A); /* signal watcher */
1175 ev_io_stop (EV_A_ &sigev);
1176
1177 close (sigpipe [0]); sigpipe [0] = 0;
1178 close (sigpipe [1]); sigpipe [1] = 0;
1179
1180 loop_destroy (EV_A); 1600 loop_destroy (EV_A);
1181} 1601}
1182 1602
1183void 1603void
1184ev_default_fork (void) 1604ev_default_fork (void)
1186#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1187 struct ev_loop *loop = ev_default_loop_ptr; 1607 struct ev_loop *loop = ev_default_loop_ptr;
1188#endif 1608#endif
1189 1609
1190 if (backend) 1610 if (backend)
1191 postfork = 1; 1611 postfork = 1; /* must be in line with ev_loop_fork */
1192} 1612}
1193 1613
1194/*****************************************************************************/ 1614/*****************************************************************************/
1195 1615
1196void 1616void
1213 { 1633 {
1214 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1215 1635
1216 p->w->pending = 0; 1636 p->w->pending = 0;
1217 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1218 } 1639 }
1219 } 1640 }
1220} 1641}
1221
1222void inline_size
1223timers_reify (EV_P)
1224{
1225 while (timercnt && ((WT)timers [0])->at <= mn_now)
1226 {
1227 ev_timer *w = (ev_timer *)timers [0];
1228
1229 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1230
1231 /* first reschedule or stop timer */
1232 if (w->repeat)
1233 {
1234 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1235
1236 ((WT)w)->at += w->repeat;
1237 if (((WT)w)->at < mn_now)
1238 ((WT)w)->at = mn_now;
1239
1240 downheap (timers, timercnt, 0);
1241 }
1242 else
1243 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1244
1245 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1246 }
1247}
1248
1249#if EV_PERIODIC_ENABLE
1250void inline_size
1251periodics_reify (EV_P)
1252{
1253 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1254 {
1255 ev_periodic *w = (ev_periodic *)periodics [0];
1256
1257 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1258
1259 /* first reschedule or stop timer */
1260 if (w->reschedule_cb)
1261 {
1262 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1263 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1264 downheap (periodics, periodiccnt, 0);
1265 }
1266 else if (w->interval)
1267 {
1268 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1269 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1270 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1271 downheap (periodics, periodiccnt, 0);
1272 }
1273 else
1274 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1275
1276 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1277 }
1278}
1279
1280static void noinline
1281periodics_reschedule (EV_P)
1282{
1283 int i;
1284
1285 /* adjust periodics after time jump */
1286 for (i = 0; i < periodiccnt; ++i)
1287 {
1288 ev_periodic *w = (ev_periodic *)periodics [i];
1289
1290 if (w->reschedule_cb)
1291 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1292 else if (w->interval)
1293 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1294 }
1295
1296 /* now rebuild the heap */
1297 for (i = periodiccnt >> 1; i--; )
1298 downheap (periodics, periodiccnt, i);
1299}
1300#endif
1301 1642
1302#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1303void inline_size 1644void inline_size
1304idle_reify (EV_P) 1645idle_reify (EV_P)
1305{ 1646{
1317 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1318 break; 1659 break;
1319 } 1660 }
1320 } 1661 }
1321 } 1662 }
1663}
1664#endif
1665
1666void inline_size
1667timers_reify (EV_P)
1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1322} 1765}
1323#endif 1766#endif
1324 1767
1325void inline_speed 1768void inline_speed
1326time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1355 */ 1798 */
1356 for (i = 4; --i; ) 1799 for (i = 4; --i; )
1357 { 1800 {
1358 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1359 1802
1360 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1361 return; /* all is well */ 1804 return; /* all is well */
1362 1805
1363 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1364 mn_now = get_clock (); 1807 mn_now = get_clock ();
1365 now_floor = mn_now; 1808 now_floor = mn_now;
1381#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1382 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1383#endif 1826#endif
1384 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1385 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1386 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1387 } 1834 }
1388 1835
1389 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1390 } 1837 }
1391} 1838}
1405static int loop_done; 1852static int loop_done;
1406 1853
1407void 1854void
1408ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1409{ 1856{
1410 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1857 loop_done = EVUNLOOP_CANCEL;
1411 ? EVUNLOOP_ONE
1412 : EVUNLOOP_CANCEL;
1413 1858
1414 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1415 1860
1416 do 1861 do
1417 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1418#ifndef _WIN32 1867#ifndef _WIN32
1419 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1420 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1421 { 1870 {
1422 curpid = getpid (); 1871 curpid = getpid ();
1451 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
1452 fd_reify (EV_A); 1901 fd_reify (EV_A);
1453 1902
1454 /* calculate blocking time */ 1903 /* calculate blocking time */
1455 { 1904 {
1456 ev_tstamp block; 1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
1457 1907
1458 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1459 block = 0.; /* do not block at all */
1460 else
1461 { 1909 {
1462 /* update time to cancel out callback processing overhead */ 1910 /* update time to cancel out callback processing overhead */
1463 time_update (EV_A_ 1e100); 1911 time_update (EV_A_ 1e100);
1464 1912
1465 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1466 1914
1467 if (timercnt) 1915 if (timercnt)
1468 { 1916 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
1471 } 1919 }
1472 1920
1473#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 1922 if (periodiccnt)
1475 { 1923 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
1478 } 1926 }
1479#endif 1927#endif
1480 1928
1481 if (expect_false (block < 0.)) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
1482 } 1942 }
1483 1943
1484 ++loop_count; 1944 ++loop_count;
1485 backend_poll (EV_A_ block); 1945 backend_poll (EV_A_ waittime);
1486 1946
1487 /* update ev_rt_now, do magic */ 1947 /* update ev_rt_now, do magic */
1488 time_update (EV_A_ block); 1948 time_update (EV_A_ waittime + sleeptime);
1489 } 1949 }
1490 1950
1491 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 1952 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 1953#if EV_PERIODIC_ENABLE
1502 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 1963 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 1965
1506 call_pending (EV_A); 1966 call_pending (EV_A);
1507
1508 } 1967 }
1509 while (expect_true (activecnt && !loop_done)); 1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1510 1973
1511 if (loop_done == EVUNLOOP_ONE) 1974 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 1975 loop_done = EVUNLOOP_CANCEL;
1513} 1976}
1514 1977
1603 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1604 return; 2067 return;
1605 2068
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1607 2070
2071 EV_FREQUENT_CHECK;
2072
1608 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1610 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1611 2076
1612 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1613 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1614} 2081}
1615 2082
1616void noinline 2083void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1618{ 2085{
1619 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1621 return; 2088 return;
1622 2089
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1624 2093
1625 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1627 2096
1628 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1629} 2100}
1630 2101
1631void noinline 2102void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1633{ 2104{
1634 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1635 return; 2106 return;
1636 2107
1637 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1638 2109
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap (timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1645 2120
2121 EV_FREQUENT_CHECK;
2122
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2124}
1648 2125
1649void noinline 2126void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2128{
1652 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1654 return; 2131 return;
1655 2132
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2133 EV_FREQUENT_CHECK;
1657 2134
1658 { 2135 {
1659 int active = ((W)w)->active; 2136 int active = ev_active (w);
1660 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1661 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1662 { 2143 {
1663 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1665 } 2146 }
1666 } 2147 }
1667 2148
1668 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1669 2152
1670 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1671} 2154}
1672 2155
1673void noinline 2156void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1675{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1676 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1677 { 2162 {
1678 if (w->repeat) 2163 if (w->repeat)
1679 { 2164 {
1680 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap (timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1682 } 2168 }
1683 else 2169 else
1684 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1685 } 2171 }
1686 else if (w->repeat) 2172 else if (w->repeat)
1687 { 2173 {
1688 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1690 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1691} 2179}
1692 2180
1693#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1694void noinline 2182void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2184{
1697 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1698 return; 2186 return;
1699 2187
1700 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2190 else if (w->interval)
1703 { 2191 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2195 }
1708 else 2196 else
1709 ((WT)w)->at = w->offset; 2197 ev_at (w) = w->offset;
1710 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap (periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1715 2207
2208 EV_FREQUENT_CHECK;
2209
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2211}
1718 2212
1719void noinline 2213void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2215{
1722 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1724 return; 2218 return;
1725 2219
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2220 EV_FREQUENT_CHECK;
1727 2221
1728 { 2222 {
1729 int active = ((W)w)->active; 2223 int active = ev_active (w);
1730 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1731 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2230 {
1733 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1735 } 2233 }
1736 } 2234 }
1737 2235
2236 EV_FREQUENT_CHECK;
2237
1738 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1739} 2239}
1740 2240
1741void noinline 2241void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1759#endif 2259#endif
1760 if (expect_false (ev_is_active (w))) 2260 if (expect_false (ev_is_active (w)))
1761 return; 2261 return;
1762 2262
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
1764 2268
1765 { 2269 {
1766#ifndef _WIN32 2270#ifndef _WIN32
1767 sigset_t full, prev; 2271 sigset_t full, prev;
1768 sigfillset (&full); 2272 sigfillset (&full);
1780 wlist_add (&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1781 2285
1782 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1783 { 2287 {
1784#if _WIN32 2288#if _WIN32
1785 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1786#else 2290#else
1787 struct sigaction sa; 2291 struct sigaction sa;
1788 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1789 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1790 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1791 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1792#endif 2296#endif
1793 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
1794} 2300}
1795 2301
1796void noinline 2302void noinline
1797ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1798{ 2304{
1799 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1801 return; 2307 return;
1802 2308
2309 EV_FREQUENT_CHECK;
2310
1803 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1804 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1805 2313
1806 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1807 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
1808} 2318}
1809 2319
1810void 2320void
1811ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1812{ 2322{
1814 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1815#endif 2325#endif
1816 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
1817 return; 2327 return;
1818 2328
2329 EV_FREQUENT_CHECK;
2330
1819 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
1821} 2335}
1822 2336
1823void 2337void
1824ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1825{ 2339{
1826 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1827 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
1828 return; 2342 return;
1829 2343
2344 EV_FREQUENT_CHECK;
2345
1830 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1831 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1832} 2350}
1833 2351
1834#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
1835 2353
1836# ifdef _WIN32 2354# ifdef _WIN32
1854 if (w->wd < 0) 2372 if (w->wd < 0)
1855 { 2373 {
1856 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1857 2375
1858 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
1859 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1860 { 2380 {
1861 char path [4096]; 2381 char path [4096];
1862 strcpy (path, w->path); 2382 strcpy (path, w->path);
1863 2383
2062 else 2582 else
2063#endif 2583#endif
2064 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2065 2585
2066 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2067} 2589}
2068 2590
2069void 2591void
2070ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2071{ 2593{
2072 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2074 return; 2596 return;
2075 2597
2598 EV_FREQUENT_CHECK;
2599
2076#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2077 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2078#endif 2602#endif
2079 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2080 2604
2081 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2082} 2608}
2083#endif 2609#endif
2084 2610
2085#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2086void 2612void
2088{ 2614{
2089 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2090 return; 2616 return;
2091 2617
2092 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2093 2621
2094 { 2622 {
2095 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2096 2624
2097 ++idleall; 2625 ++idleall;
2098 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2099 2627
2100 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2101 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2102 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2103} 2633}
2104 2634
2105void 2635void
2106ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2107{ 2637{
2108 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2110 return; 2640 return;
2111 2641
2642 EV_FREQUENT_CHECK;
2643
2112 { 2644 {
2113 int active = ((W)w)->active; 2645 int active = ev_active (w);
2114 2646
2115 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2116 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2117 2649
2118 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2119 --idleall; 2651 --idleall;
2120 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2121} 2655}
2122#endif 2656#endif
2123 2657
2124void 2658void
2125ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2126{ 2660{
2127 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2128 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2129 2665
2130 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2131 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2132 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2133} 2671}
2134 2672
2135void 2673void
2136ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2137{ 2675{
2138 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2140 return; 2678 return;
2141 2679
2680 EV_FREQUENT_CHECK;
2681
2142 { 2682 {
2143 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2144 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2145 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2146 } 2687 }
2147 2688
2148 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2149} 2692}
2150 2693
2151void 2694void
2152ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2153{ 2696{
2154 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2155 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2156 2701
2157 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2158 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2159 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2160} 2707}
2161 2708
2162void 2709void
2163ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2164{ 2711{
2165 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2166 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2167 return; 2714 return;
2168 2715
2716 EV_FREQUENT_CHECK;
2717
2169 { 2718 {
2170 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2171 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2172 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2173 } 2723 }
2174 2724
2175 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2176} 2728}
2177 2729
2178#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2179void noinline 2731void noinline
2180ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2181{ 2733{
2182 ev_loop (w->loop, EVLOOP_NONBLOCK); 2734 ev_loop (w->other, EVLOOP_NONBLOCK);
2183} 2735}
2184 2736
2185static void 2737static void
2186embed_cb (EV_P_ ev_io *io, int revents) 2738embed_io_cb (EV_P_ ev_io *io, int revents)
2187{ 2739{
2188 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2189 2741
2190 if (ev_cb (w)) 2742 if (ev_cb (w))
2191 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2192 else 2744 else
2193 ev_embed_sweep (loop, w); 2745 ev_loop (w->other, EVLOOP_NONBLOCK);
2194} 2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
2195 2771
2196void 2772void
2197ev_embed_start (EV_P_ ev_embed *w) 2773ev_embed_start (EV_P_ ev_embed *w)
2198{ 2774{
2199 if (expect_false (ev_is_active (w))) 2775 if (expect_false (ev_is_active (w)))
2200 return; 2776 return;
2201 2777
2202 { 2778 {
2203 struct ev_loop *loop = w->loop; 2779 struct ev_loop *loop = w->other;
2204 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2205 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2206 } 2782 }
2783
2784 EV_FREQUENT_CHECK;
2207 2785
2208 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2209 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2210 2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
2211 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2212} 2798}
2213 2799
2214void 2800void
2215ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2216{ 2802{
2217 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2218 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2219 return; 2805 return;
2220 2806
2807 EV_FREQUENT_CHECK;
2808
2221 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
2222 2811
2223 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2224} 2815}
2225#endif 2816#endif
2226 2817
2227#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2228void 2819void
2229ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2230{ 2821{
2231 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2232 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2233 2826
2234 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2235 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2236 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2237} 2832}
2238 2833
2239void 2834void
2240ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2241{ 2836{
2242 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2243 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2244 return; 2839 return;
2245 2840
2841 EV_FREQUENT_CHECK;
2842
2246 { 2843 {
2247 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2248 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2249 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2250 } 2848 }
2251 2849
2252 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
2253} 2900}
2254#endif 2901#endif
2255 2902
2256/*****************************************************************************/ 2903/*****************************************************************************/
2257 2904
2315 ev_timer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
2316 ev_timer_start (EV_A_ &once->to); 2963 ev_timer_start (EV_A_ &once->to);
2317 } 2964 }
2318} 2965}
2319 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
2969#endif
2970
2320#ifdef __cplusplus 2971#ifdef __cplusplus
2321} 2972}
2322#endif 2973#endif
2323 2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines