ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.185 by root, Fri Dec 14 18:22:30 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
58#include <stdlib.h> 110#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 111#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 112#include <stddef.h>
63 113
64#include <stdio.h> 114#include <stdio.h>
65 115
66#include <assert.h> 116#include <assert.h>
67#include <errno.h> 117#include <errno.h>
68#include <sys/types.h> 118#include <sys/types.h>
119#include <time.h>
120
121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
69#ifndef WIN32 129#ifndef _WIN32
130# include <sys/time.h>
70# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
71#endif 138# endif
72#include <sys/time.h> 139#endif
73#include <time.h>
74 140
75/**/ 141/**/
76 142
77#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
79#endif 149#endif
80 150
81#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
83#endif 153#endif
84 154
85#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
87#endif 161#endif
88 162
89#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
91#endif 165#endif
92 166
93#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
95#endif 169#endif
96 170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
97#ifndef EV_USE_WIN32 175#ifndef EV_USE_INOTIFY
98# ifdef WIN32 176# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
100# else 182# else
101# define EV_USE_WIN32 0 183# define EV_PID_HASHSIZE 16
102# endif 184# endif
103#endif 185#endif
104 186
105#ifndef EV_USE_REALTIME 187#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
107#endif 193#endif
108 194
109/**/ 195/**/
110 196
111#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
119#endif 205#endif
120 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
216#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h>
218#endif
219
121/**/ 220/**/
122 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 235
128#include "ev.h"
129
130#if __GNUC__ >= 3 236#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 238# define noinline __attribute__ ((noinline))
133#else 239#else
134# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
135# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
136#endif 245#endif
137 246
138#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
140 256
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 259
260#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */
262
144typedef struct ev_watcher *W; 263typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
147 266
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 268
269#ifdef _WIN32
270# include "ev_win32.c"
271#endif
272
150/*****************************************************************************/ 273/*****************************************************************************/
151 274
275static void (*syserr_cb)(const char *msg);
276
277void
278ev_set_syserr_cb (void (*cb)(const char *msg))
279{
280 syserr_cb = cb;
281}
282
283static void noinline
284syserr (const char *msg)
285{
286 if (!msg)
287 msg = "(libev) system error";
288
289 if (syserr_cb)
290 syserr_cb (msg);
291 else
292 {
293 perror (msg);
294 abort ();
295 }
296}
297
298static void *(*alloc)(void *ptr, long size);
299
300void
301ev_set_allocator (void *(*cb)(void *ptr, long size))
302{
303 alloc = cb;
304}
305
306inline_speed void *
307ev_realloc (void *ptr, long size)
308{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
310
311 if (!ptr && size)
312 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort ();
315 }
316
317 return ptr;
318}
319
320#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0)
322
323/*****************************************************************************/
324
152typedef struct 325typedef struct
153{ 326{
154 struct ev_watcher_list *head; 327 WL head;
155 unsigned char events; 328 unsigned char events;
156 unsigned char reify; 329 unsigned char reify;
330#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle;
332#endif
157} ANFD; 333} ANFD;
158 334
159typedef struct 335typedef struct
160{ 336{
161 W w; 337 W w;
162 int events; 338 int events;
163} ANPENDING; 339} ANPENDING;
164 340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
347
165#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
166 349
167struct ev_loop 350 struct ev_loop
168{ 351 {
352 ev_tstamp ev_rt_now;
353 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 354 #define VAR(name,decl) decl;
170# include "ev_vars.h" 355 #include "ev_vars.h"
171};
172# undef VAR 356 #undef VAR
357 };
173# include "ev_wrap.h" 358 #include "ev_wrap.h"
359
360 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr;
174 362
175#else 363#else
176 364
365 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 366 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 367 #include "ev_vars.h"
179# undef VAR 368 #undef VAR
369
370 static int ev_default_loop_ptr;
180 371
181#endif 372#endif
182 373
183/*****************************************************************************/ 374/*****************************************************************************/
184 375
185inline ev_tstamp 376ev_tstamp
186ev_time (void) 377ev_time (void)
187{ 378{
188#if EV_USE_REALTIME 379#if EV_USE_REALTIME
189 struct timespec ts; 380 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 381 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 387#endif
197} 388}
198 389
199inline ev_tstamp 390ev_tstamp inline_size
200get_clock (void) 391get_clock (void)
201{ 392{
202#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
204 { 395 {
209#endif 400#endif
210 401
211 return ev_time (); 402 return ev_time ();
212} 403}
213 404
405#if EV_MULTIPLICITY
214ev_tstamp 406ev_tstamp
215ev_now (EV_P) 407ev_now (EV_P)
216{ 408{
217 return rt_now; 409 return ev_rt_now;
218} 410}
411#endif
219 412
220#define array_roundsize(base,n) ((n) | 4 & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
221 417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
440
222#define array_needsize(base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
224 { \ 443 { \
225 int newcnt = cur; \ 444 int ocur_ = (cur); \
226 do \ 445 (base) = (type *)array_realloc \
227 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 448 }
230 while ((cnt) > newcnt); \ 449
450#if 0
451#define array_slim(type,stem) \
452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 453 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 457 }
458#endif
459
460#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 462
237/*****************************************************************************/ 463/*****************************************************************************/
238 464
239static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
240anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
241{ 495{
242 while (count--) 496 while (count--)
243 { 497 {
244 base->head = 0; 498 base->head = 0;
247 501
248 ++base; 502 ++base;
249 } 503 }
250} 504}
251 505
252static void 506void inline_speed
253event (EV_P_ W w, int events)
254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
277fd_event (EV_P_ int fd, int events) 507fd_event (EV_P_ int fd, int revents)
278{ 508{
279 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 510 ev_io *w;
281 511
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 513 {
284 int ev = w->events & events; 514 int ev = w->events & revents;
285 515
286 if (ev) 516 if (ev)
287 event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
288 } 518 }
289} 519}
290 520
291/*****************************************************************************/ 521void
522ev_feed_fd_event (EV_P_ int fd, int revents)
523{
524 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents);
526}
292 527
293static void 528void inline_size
294fd_reify (EV_P) 529fd_reify (EV_P)
295{ 530{
296 int i; 531 int i;
297 532
298 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
299 { 534 {
300 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 537 ev_io *w;
303 538
304 int events = 0; 539 unsigned char events = 0;
305 540
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 542 events |= (unsigned char)w->events;
308 543
544#if EV_SELECT_IS_WINSOCKET
545 if (events)
546 {
547 unsigned long argp;
548 anfd->handle = _get_osfhandle (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 }
551#endif
552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
309 anfd->reify = 0; 557 anfd->reify = 0;
310
311 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
313 } 563 }
314 564
315 fdchangecnt = 0; 565 fdchangecnt = 0;
316} 566}
317 567
318static void 568void inline_size
319fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
320{ 570{
321 if (anfds [fd].reify || fdchangecnt < 0) 571 unsigned char reify = anfds [fd].reify;
322 return;
323
324 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
325 573
574 if (expect_true (!reify))
575 {
326 ++fdchangecnt; 576 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
328 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
329} 580}
330 581
331static void 582void inline_speed
332fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
333{ 584{
334 struct ev_io *w; 585 ev_io *w;
335 586
336 while ((w = (struct ev_io *)anfds [fd].head)) 587 while ((w = (ev_io *)anfds [fd].head))
337 { 588 {
338 ev_io_stop (EV_A_ w); 589 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 591 }
592}
593
594int inline_size
595fd_valid (int fd)
596{
597#ifdef _WIN32
598 return _get_osfhandle (fd) != -1;
599#else
600 return fcntl (fd, F_GETFD) != -1;
601#endif
341} 602}
342 603
343/* called on EBADF to verify fds */ 604/* called on EBADF to verify fds */
344static void 605static void noinline
345fd_ebadf (EV_P) 606fd_ebadf (EV_P)
346{ 607{
347 int fd; 608 int fd;
348 609
349 for (fd = 0; fd < anfdmax; ++fd) 610 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 611 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 612 if (!fd_valid (fd) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd); 613 fd_kill (EV_A_ fd);
353} 614}
354 615
355/* called on ENOMEM in select/poll to kill some fds and retry */ 616/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 617static void noinline
357fd_enomem (EV_P) 618fd_enomem (EV_P)
358{ 619{
359 int fd; 620 int fd;
360 621
361 for (fd = anfdmax; fd--; ) 622 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 623 if (anfds [fd].events)
363 { 624 {
364 close (fd);
365 fd_kill (EV_A_ fd); 625 fd_kill (EV_A_ fd);
366 return; 626 return;
367 } 627 }
368} 628}
369 629
370/* susually called after fork if method needs to re-arm all fds from scratch */ 630/* usually called after fork if backend needs to re-arm all fds from scratch */
371static void 631static void noinline
372fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
373{ 633{
374 int fd; 634 int fd;
375 635
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events) 637 if (anfds [fd].events)
379 { 638 {
380 anfds [fd].events = 0; 639 anfds [fd].events = 0;
381 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
382 } 641 }
383} 642}
384 643
385/*****************************************************************************/ 644/*****************************************************************************/
386 645
387static void 646void inline_speed
388upheap (WT *heap, int k) 647upheap (WT *heap, int k)
389{ 648{
390 WT w = heap [k]; 649 WT w = heap [k];
391 650
392 while (k && heap [k >> 1]->at > w->at) 651 while (k)
393 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
394 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
395 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
396 k >>= 1; 660 k = p;
397 } 661 }
398 662
399 heap [k] = w; 663 heap [k] = w;
400 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
401
402} 665}
403 666
404static void 667void inline_speed
405downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
406{ 669{
407 WT w = heap [k]; 670 WT w = heap [k];
408 671
409 while (k < (N >> 1)) 672 for (;;)
410 { 673 {
411 int j = k << 1; 674 int c = (k << 1) + 1;
412 675
413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
414 ++j;
415
416 if (w->at <= heap [j]->at)
417 break; 677 break;
418 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
419 heap [k] = heap [j]; 685 heap [k] = heap [c];
420 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
421 k = j; 688 k = c;
422 } 689 }
423 690
424 heap [k] = w; 691 heap [k] = w;
425 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
426} 693}
427 694
695void inline_size
696adjustheap (WT *heap, int N, int k)
697{
698 upheap (heap, k);
699 downheap (heap, N, k);
700}
701
428/*****************************************************************************/ 702/*****************************************************************************/
429 703
430typedef struct 704typedef struct
431{ 705{
432 struct ev_watcher_list *head; 706 WL head;
433 sig_atomic_t volatile gotsig; 707 sig_atomic_t volatile gotsig;
434} ANSIG; 708} ANSIG;
435 709
436static ANSIG *signals; 710static ANSIG *signals;
437static int signalmax; 711static int signalmax;
438 712
439static int sigpipe [2]; 713static int sigpipe [2];
440static sig_atomic_t volatile gotsig; 714static sig_atomic_t volatile gotsig;
441static struct ev_io sigev; 715static ev_io sigev;
442 716
443static void 717void inline_size
444signals_init (ANSIG *base, int count) 718signals_init (ANSIG *base, int count)
445{ 719{
446 while (count--) 720 while (count--)
447 { 721 {
448 base->head = 0; 722 base->head = 0;
453} 727}
454 728
455static void 729static void
456sighandler (int signum) 730sighandler (int signum)
457{ 731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
458 signals [signum - 1].gotsig = 1; 736 signals [signum - 1].gotsig = 1;
459 737
460 if (!gotsig) 738 if (!gotsig)
461 { 739 {
462 int old_errno = errno; 740 int old_errno = errno;
464 write (sigpipe [1], &signum, 1); 742 write (sigpipe [1], &signum, 1);
465 errno = old_errno; 743 errno = old_errno;
466 } 744 }
467} 745}
468 746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
469static void 767static void
470sigcb (EV_P_ struct ev_io *iow, int revents) 768sigcb (EV_P_ ev_io *iow, int revents)
471{ 769{
472 struct ev_watcher_list *w;
473 int signum; 770 int signum;
474 771
475 read (sigpipe [0], &revents, 1); 772 read (sigpipe [0], &revents, 1);
476 gotsig = 0; 773 gotsig = 0;
477 774
478 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
480 { 777 ev_feed_signal_event (EV_A_ signum + 1);
481 signals [signum].gotsig = 0;
482
483 for (w = signals [signum].head; w; w = w->next)
484 event (EV_A_ (W)w, EV_SIGNAL);
485 }
486} 778}
487 779
488static void 780void inline_speed
781fd_intern (int fd)
782{
783#ifdef _WIN32
784 int arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif
790}
791
792static void noinline
489siginit (EV_P) 793siginit (EV_P)
490{ 794{
491#ifndef WIN32 795 fd_intern (sigpipe [0]);
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 796 fd_intern (sigpipe [1]);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499 797
500 ev_io_set (&sigev, sigpipe [0], EV_READ); 798 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev); 799 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
503} 801}
504 802
505/*****************************************************************************/ 803/*****************************************************************************/
506 804
805static WL childs [EV_PID_HASHSIZE];
806
507#ifndef WIN32 807#ifndef _WIN32
508 808
509static struct ev_child *childs [PID_HASHSIZE];
510static struct ev_signal childev; 809static ev_signal childev;
810
811void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
813{
814 ev_child *w;
815
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
817 if (w->pid == pid || !w->pid)
818 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
820 w->rpid = pid;
821 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 }
824}
511 825
512#ifndef WCONTINUED 826#ifndef WCONTINUED
513# define WCONTINUED 0 827# define WCONTINUED 0
514#endif 828#endif
515 829
516static void 830static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 831childcb (EV_P_ ev_signal *sw, int revents)
533{ 832{
534 int pid, status; 833 int pid, status;
535 834
835 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 836 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 837 if (!WCONTINUED
838 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return;
841
538 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 845
541 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 849}
545 850
546#endif 851#endif
547 852
548/*****************************************************************************/ 853/*****************************************************************************/
549 854
855#if EV_USE_PORT
856# include "ev_port.c"
857#endif
550#if EV_USE_KQUEUE 858#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 859# include "ev_kqueue.c"
552#endif 860#endif
553#if EV_USE_EPOLL 861#if EV_USE_EPOLL
554# include "ev_epoll.c" 862# include "ev_epoll.c"
571{ 879{
572 return EV_VERSION_MINOR; 880 return EV_VERSION_MINOR;
573} 881}
574 882
575/* return true if we are running with elevated privileges and should ignore env variables */ 883/* return true if we are running with elevated privileges and should ignore env variables */
576static int 884int inline_size
577enable_secure (void) 885enable_secure (void)
578{ 886{
579#ifdef WIN32 887#ifdef _WIN32
580 return 0; 888 return 0;
581#else 889#else
582 return getuid () != geteuid () 890 return getuid () != geteuid ()
583 || getgid () != getegid (); 891 || getgid () != getegid ();
584#endif 892#endif
585} 893}
586 894
587int 895unsigned int
588ev_method (EV_P) 896ev_supported_backends (void)
589{ 897{
590 return method; 898 unsigned int flags = 0;
591}
592 899
593static void 900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
594loop_init (EV_P_ int methods) 901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
902 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
903 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
905
906 return flags;
907}
908
909unsigned int
910ev_recommended_backends (void)
595{ 911{
596 if (!method) 912 unsigned int flags = ev_supported_backends ();
913
914#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE;
918#endif
919#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation
921 flags &= ~EVBACKEND_POLL;
922#endif
923
924 return flags;
925}
926
927unsigned int
928ev_embeddable_backends (void)
929{
930 return EVBACKEND_EPOLL
931 | EVBACKEND_KQUEUE
932 | EVBACKEND_PORT;
933}
934
935unsigned int
936ev_backend (EV_P)
937{
938 return backend;
939}
940
941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
948loop_init (EV_P_ unsigned int flags)
949{
950 if (!backend)
597 { 951 {
598#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
599 { 953 {
600 struct timespec ts; 954 struct timespec ts;
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 955 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1; 956 have_monotonic = 1;
603 } 957 }
604#endif 958#endif
605 959
606 rt_now = ev_time (); 960 ev_rt_now = ev_time ();
607 mn_now = get_clock (); 961 mn_now = get_clock ();
608 now_floor = mn_now; 962 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
610 964
611 if (methods == EVMETHOD_AUTO) 965 /* pid check not overridable via env */
612 if (!enable_secure () && getenv ("LIBEV_METHODS")) 966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
971 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS"))
613 methods = atoi (getenv ("LIBEV_METHODS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
614 else
615 methods = EVMETHOD_ANY;
616 975
617 method = 0; 976 if (!(flags & 0x0000ffffUL))
977 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
618#if EV_USE_WIN32 981#if EV_USE_INOTIFY
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 982 fs_fd = -2;
983#endif
984
985#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
620#endif 987#endif
621#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
623#endif 990#endif
624#if EV_USE_EPOLL 991#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 992 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
626#endif 993#endif
627#if EV_USE_POLL 994#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 995 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
629#endif 996#endif
630#if EV_USE_SELECT 997#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
632#endif 999#endif
633 }
634}
635 1000
636void 1001 ev_init (&sigev, sigcb);
1002 ev_set_priority (&sigev, EV_MAXPRI);
1003 }
1004}
1005
1006static void noinline
637loop_destroy (EV_P) 1007loop_destroy (EV_P)
638{ 1008{
1009 int i;
1010
639#if EV_USE_WIN32 1011#if EV_USE_INOTIFY
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
1018
1019#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
641#endif 1021#endif
642#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
644#endif 1024#endif
645#if EV_USE_EPOLL 1025#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1026 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
647#endif 1027#endif
648#if EV_USE_POLL 1028#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1029 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
650#endif 1030#endif
651#if EV_USE_SELECT 1031#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
653#endif 1033#endif
654 1034
655 method = 0; 1035 for (i = NUMPRI; i--; )
656 /*TODO*/ 1036 {
657} 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
658 1042
659void 1043 /* have to use the microsoft-never-gets-it-right macro */
1044 array_free (fdchange, EMPTY);
1045 array_free (timer, EMPTY);
1046#if EV_PERIODIC_ENABLE
1047 array_free (periodic, EMPTY);
1048#endif
1049 array_free (prepare, EMPTY);
1050 array_free (check, EMPTY);
1051
1052 backend = 0;
1053}
1054
1055void inline_size infy_fork (EV_P);
1056
1057void inline_size
660loop_fork (EV_P) 1058loop_fork (EV_P)
661{ 1059{
662 /*TODO*/ 1060#if EV_USE_PORT
1061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1062#endif
1063#if EV_USE_KQUEUE
1064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1065#endif
663#if EV_USE_EPOLL 1066#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
665#endif 1068#endif
666#if EV_USE_KQUEUE 1069#if EV_USE_INOTIFY
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1070 infy_fork (EV_A);
668#endif 1071#endif
1072
1073 if (ev_is_active (&sigev))
1074 {
1075 /* default loop */
1076
1077 ev_ref (EV_A);
1078 ev_io_stop (EV_A_ &sigev);
1079 close (sigpipe [0]);
1080 close (sigpipe [1]);
1081
1082 while (pipe (sigpipe))
1083 syserr ("(libev) error creating pipe");
1084
1085 siginit (EV_A);
1086 }
1087
1088 postfork = 0;
669} 1089}
670 1090
671#if EV_MULTIPLICITY 1091#if EV_MULTIPLICITY
672struct ev_loop * 1092struct ev_loop *
673ev_loop_new (int methods) 1093ev_loop_new (unsigned int flags)
674{ 1094{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1095 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
676 1096
1097 memset (loop, 0, sizeof (struct ev_loop));
1098
677 loop_init (EV_A_ methods); 1099 loop_init (EV_A_ flags);
678 1100
679 if (ev_method (EV_A)) 1101 if (ev_backend (EV_A))
680 return loop; 1102 return loop;
681 1103
682 return 0; 1104 return 0;
683} 1105}
684 1106
685void 1107void
686ev_loop_destroy (EV_P) 1108ev_loop_destroy (EV_P)
687{ 1109{
688 loop_destroy (EV_A); 1110 loop_destroy (EV_A);
689 free (loop); 1111 ev_free (loop);
690} 1112}
691 1113
692void 1114void
693ev_loop_fork (EV_P) 1115ev_loop_fork (EV_P)
694{ 1116{
695 loop_fork (EV_A); 1117 postfork = 1;
696} 1118}
697 1119
698#endif 1120#endif
699 1121
700#if EV_MULTIPLICITY 1122#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop * 1123struct ev_loop *
1124ev_default_loop_init (unsigned int flags)
705#else 1125#else
706static int default_loop;
707
708int 1126int
1127ev_default_loop (unsigned int flags)
709#endif 1128#endif
710ev_default_loop (int methods)
711{ 1129{
712 if (sigpipe [0] == sigpipe [1]) 1130 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe)) 1131 if (pipe (sigpipe))
714 return 0; 1132 return 0;
715 1133
716 if (!default_loop) 1134 if (!ev_default_loop_ptr)
717 { 1135 {
718#if EV_MULTIPLICITY 1136#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct; 1137 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
720#else 1138#else
721 default_loop = 1; 1139 ev_default_loop_ptr = 1;
722#endif 1140#endif
723 1141
724 loop_init (EV_A_ methods); 1142 loop_init (EV_A_ flags);
725 1143
726 if (ev_method (EV_A)) 1144 if (ev_backend (EV_A))
727 { 1145 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A); 1146 siginit (EV_A);
731 1147
732#ifndef WIN32 1148#ifndef _WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 1149 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 1150 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 1151 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1152 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 1153#endif
738 } 1154 }
739 else 1155 else
740 default_loop = 0; 1156 ev_default_loop_ptr = 0;
741 } 1157 }
742 1158
743 return default_loop; 1159 return ev_default_loop_ptr;
744} 1160}
745 1161
746void 1162void
747ev_default_destroy (void) 1163ev_default_destroy (void)
748{ 1164{
749#if EV_MULTIPLICITY 1165#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop; 1166 struct ev_loop *loop = ev_default_loop_ptr;
751#endif 1167#endif
752 1168
1169#ifndef _WIN32
753 ev_ref (EV_A); /* child watcher */ 1170 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev); 1171 ev_signal_stop (EV_A_ &childev);
1172#endif
755 1173
756 ev_ref (EV_A); /* signal watcher */ 1174 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev); 1175 ev_io_stop (EV_A_ &sigev);
758 1176
759 close (sigpipe [0]); sigpipe [0] = 0; 1177 close (sigpipe [0]); sigpipe [0] = 0;
764 1182
765void 1183void
766ev_default_fork (void) 1184ev_default_fork (void)
767{ 1185{
768#if EV_MULTIPLICITY 1186#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop; 1187 struct ev_loop *loop = ev_default_loop_ptr;
770#endif 1188#endif
771 1189
772 loop_fork (EV_A); 1190 if (backend)
773 1191 postfork = 1;
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 1192}
782 1193
783/*****************************************************************************/ 1194/*****************************************************************************/
784 1195
785static void 1196void
1197ev_invoke (EV_P_ void *w, int revents)
1198{
1199 EV_CB_INVOKE ((W)w, revents);
1200}
1201
1202void inline_speed
786call_pending (EV_P) 1203call_pending (EV_P)
787{ 1204{
788 int pri; 1205 int pri;
789 1206
790 for (pri = NUMPRI; pri--; ) 1207 for (pri = NUMPRI; pri--; )
791 while (pendingcnt [pri]) 1208 while (pendingcnt [pri])
792 { 1209 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1210 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794 1211
795 if (p->w) 1212 if (expect_true (p->w))
796 { 1213 {
1214 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1215
797 p->w->pending = 0; 1216 p->w->pending = 0;
798 1217 EV_CB_INVOKE (p->w, p->events);
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 } 1218 }
801 } 1219 }
802} 1220}
803 1221
804static void 1222void inline_size
805timers_reify (EV_P) 1223timers_reify (EV_P)
806{ 1224{
807 while (timercnt && ((WT)timers [0])->at <= mn_now) 1225 while (timercnt && ((WT)timers [0])->at <= mn_now)
808 { 1226 {
809 struct ev_timer *w = timers [0]; 1227 ev_timer *w = (ev_timer *)timers [0];
810 1228
811 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1229 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
812 1230
813 /* first reschedule or stop timer */ 1231 /* first reschedule or stop timer */
814 if (w->repeat) 1232 if (w->repeat)
815 { 1233 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1234 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1235
817 ((WT)w)->at = mn_now + w->repeat; 1236 ((WT)w)->at += w->repeat;
1237 if (((WT)w)->at < mn_now)
1238 ((WT)w)->at = mn_now;
1239
818 downheap ((WT *)timers, timercnt, 0); 1240 downheap (timers, timercnt, 0);
819 } 1241 }
820 else 1242 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1243 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822 1244
823 event (EV_A_ (W)w, EV_TIMEOUT); 1245 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
824 } 1246 }
825} 1247}
826 1248
827static void 1249#if EV_PERIODIC_ENABLE
1250void inline_size
828periodics_reify (EV_P) 1251periodics_reify (EV_P)
829{ 1252{
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1253 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
831 { 1254 {
832 struct ev_periodic *w = periodics [0]; 1255 ev_periodic *w = (ev_periodic *)periodics [0];
833 1256
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1257 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
835 1258
836 /* first reschedule or stop timer */ 1259 /* first reschedule or stop timer */
837 if (w->interval) 1260 if (w->reschedule_cb)
838 { 1261 {
1262 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1263 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1264 downheap (periodics, periodiccnt, 0);
1265 }
1266 else if (w->interval)
1267 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1268 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1269 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1270 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
841 downheap ((WT *)periodics, periodiccnt, 0); 1271 downheap (periodics, periodiccnt, 0);
842 } 1272 }
843 else 1273 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1274 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 1275
846 event (EV_A_ (W)w, EV_PERIODIC); 1276 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
847 } 1277 }
848} 1278}
849 1279
850static void 1280static void noinline
851periodics_reschedule (EV_P) 1281periodics_reschedule (EV_P)
852{ 1282{
853 int i; 1283 int i;
854 1284
855 /* adjust periodics after time jump */ 1285 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i) 1286 for (i = 0; i < periodiccnt; ++i)
857 { 1287 {
858 struct ev_periodic *w = periodics [i]; 1288 ev_periodic *w = (ev_periodic *)periodics [i];
859 1289
1290 if (w->reschedule_cb)
1291 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
860 if (w->interval) 1292 else if (w->interval)
1293 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1294 }
1295
1296 /* now rebuild the heap */
1297 for (i = periodiccnt >> 1; i--; )
1298 downheap (periodics, periodiccnt, i);
1299}
1300#endif
1301
1302#if EV_IDLE_ENABLE
1303void inline_size
1304idle_reify (EV_P)
1305{
1306 if (expect_false (idleall))
1307 {
1308 int pri;
1309
1310 for (pri = NUMPRI; pri--; )
861 { 1311 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1312 if (pendingcnt [pri])
1313 break;
863 1314
864 if (fabs (diff) >= 1e-4) 1315 if (idlecnt [pri])
865 { 1316 {
866 ev_periodic_stop (EV_A_ w); 1317 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
867 ev_periodic_start (EV_A_ w); 1318 break;
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 } 1319 }
871 } 1320 }
872 } 1321 }
873} 1322}
1323#endif
874 1324
875inline int 1325void inline_speed
876time_update_monotonic (EV_P) 1326time_update (EV_P_ ev_tstamp max_block)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
893static void
894time_update (EV_P)
895{ 1327{
896 int i; 1328 int i;
897 1329
898#if EV_USE_MONOTONIC 1330#if EV_USE_MONOTONIC
899 if (expect_true (have_monotonic)) 1331 if (expect_true (have_monotonic))
900 { 1332 {
901 if (time_update_monotonic (EV_A)) 1333 ev_tstamp odiff = rtmn_diff;
1334
1335 mn_now = get_clock ();
1336
1337 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1338 /* interpolate in the meantime */
1339 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
902 { 1340 {
903 ev_tstamp odiff = rtmn_diff; 1341 ev_rt_now = rtmn_diff + mn_now;
1342 return;
1343 }
904 1344
1345 now_floor = mn_now;
1346 ev_rt_now = ev_time ();
1347
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1348 /* loop a few times, before making important decisions.
1349 * on the choice of "4": one iteration isn't enough,
1350 * in case we get preempted during the calls to
1351 * ev_time and get_clock. a second call is almost guaranteed
1352 * to succeed in that case, though. and looping a few more times
1353 * doesn't hurt either as we only do this on time-jumps or
1354 * in the unlikely event of having been preempted here.
1355 */
1356 for (i = 4; --i; )
906 { 1357 {
907 rtmn_diff = rt_now - mn_now; 1358 rtmn_diff = ev_rt_now - mn_now;
908 1359
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1360 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */ 1361 return; /* all is well */
911 1362
912 rt_now = ev_time (); 1363 ev_rt_now = ev_time ();
913 mn_now = get_clock (); 1364 mn_now = get_clock ();
914 now_floor = mn_now; 1365 now_floor = mn_now;
915 } 1366 }
916 1367
1368# if EV_PERIODIC_ENABLE
1369 periodics_reschedule (EV_A);
1370# endif
1371 /* no timer adjustment, as the monotonic clock doesn't jump */
1372 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373 }
1374 else
1375#endif
1376 {
1377 ev_rt_now = ev_time ();
1378
1379 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1380 {
1381#if EV_PERIODIC_ENABLE
917 periodics_reschedule (EV_A); 1382 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */ 1383#endif
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1384 /* adjust timers. this is easy, as the offset is the same for all of them */
1385 for (i = 0; i < timercnt; ++i)
1386 ((WT)timers [i])->at += ev_rt_now - mn_now;
920 } 1387 }
921 }
922 else
923#endif
924 {
925 rt_now = ev_time ();
926 1388
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 {
929 periodics_reschedule (EV_A);
930
931 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now;
934 }
935
936 mn_now = rt_now; 1389 mn_now = ev_rt_now;
937 } 1390 }
938} 1391}
939 1392
940void 1393void
941ev_ref (EV_P) 1394ev_ref (EV_P)
952static int loop_done; 1405static int loop_done;
953 1406
954void 1407void
955ev_loop (EV_P_ int flags) 1408ev_loop (EV_P_ int flags)
956{ 1409{
957 double block;
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1410 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1411 ? EVUNLOOP_ONE
1412 : EVUNLOOP_CANCEL;
1413
1414 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
959 1415
960 do 1416 do
961 { 1417 {
1418#ifndef _WIN32
1419 if (expect_false (curpid)) /* penalise the forking check even more */
1420 if (expect_false (getpid () != curpid))
1421 {
1422 curpid = getpid ();
1423 postfork = 1;
1424 }
1425#endif
1426
1427#if EV_FORK_ENABLE
1428 /* we might have forked, so queue fork handlers */
1429 if (expect_false (postfork))
1430 if (forkcnt)
1431 {
1432 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1433 call_pending (EV_A);
1434 }
1435#endif
1436
962 /* queue check watchers (and execute them) */ 1437 /* queue prepare watchers (and execute them) */
963 if (expect_false (preparecnt)) 1438 if (expect_false (preparecnt))
964 { 1439 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1440 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 1441 call_pending (EV_A);
967 } 1442 }
968 1443
1444 if (expect_false (!activecnt))
1445 break;
1446
1447 /* we might have forked, so reify kernel state if necessary */
1448 if (expect_false (postfork))
1449 loop_fork (EV_A);
1450
969 /* update fd-related kernel structures */ 1451 /* update fd-related kernel structures */
970 fd_reify (EV_A); 1452 fd_reify (EV_A);
971 1453
972 /* calculate blocking time */ 1454 /* calculate blocking time */
1455 {
1456 ev_tstamp block;
973 1457
974 /* we only need this for !monotonic clockor timers, but as we basically 1458 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
975 always have timers, we just calculate it always */ 1459 block = 0.; /* do not block at all */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else 1460 else
980#endif
981 { 1461 {
982 rt_now = ev_time (); 1462 /* update time to cancel out callback processing overhead */
983 mn_now = rt_now; 1463 time_update (EV_A_ 1e100);
984 }
985 1464
986 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.;
988 else
989 {
990 block = MAX_BLOCKTIME; 1465 block = MAX_BLOCKTIME;
991 1466
992 if (timercnt) 1467 if (timercnt)
993 { 1468 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
995 if (block > to) block = to; 1470 if (block > to) block = to;
996 } 1471 }
997 1472
1473#if EV_PERIODIC_ENABLE
998 if (periodiccnt) 1474 if (periodiccnt)
999 { 1475 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1001 if (block > to) block = to; 1477 if (block > to) block = to;
1002 } 1478 }
1479#endif
1003 1480
1004 if (block < 0.) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1005 } 1482 }
1006 1483
1484 ++loop_count;
1007 method_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1008 1486
1009 /* update rt_now, do magic */ 1487 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 1488 time_update (EV_A_ block);
1489 }
1011 1490
1012 /* queue pending timers and reschedule them */ 1491 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE
1014 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1495#endif
1015 1496
1497#if EV_IDLE_ENABLE
1016 /* queue idle watchers unless io or timers are pending */ 1498 /* queue idle watchers unless other events are pending */
1017 if (!pendingcnt) 1499 idle_reify (EV_A);
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1019 1501
1020 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1021 if (checkcnt) 1503 if (expect_false (checkcnt))
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1023 1505
1024 call_pending (EV_A); 1506 call_pending (EV_A);
1507
1025 } 1508 }
1026 while (activecnt && !loop_done); 1509 while (expect_true (activecnt && !loop_done));
1027 1510
1028 if (loop_done != 2) 1511 if (loop_done == EVUNLOOP_ONE)
1029 loop_done = 0; 1512 loop_done = EVUNLOOP_CANCEL;
1030} 1513}
1031 1514
1032void 1515void
1033ev_unloop (EV_P_ int how) 1516ev_unloop (EV_P_ int how)
1034{ 1517{
1035 loop_done = how; 1518 loop_done = how;
1036} 1519}
1037 1520
1038/*****************************************************************************/ 1521/*****************************************************************************/
1039 1522
1040inline void 1523void inline_size
1041wlist_add (WL *head, WL elem) 1524wlist_add (WL *head, WL elem)
1042{ 1525{
1043 elem->next = *head; 1526 elem->next = *head;
1044 *head = elem; 1527 *head = elem;
1045} 1528}
1046 1529
1047inline void 1530void inline_size
1048wlist_del (WL *head, WL elem) 1531wlist_del (WL *head, WL elem)
1049{ 1532{
1050 while (*head) 1533 while (*head)
1051 { 1534 {
1052 if (*head == elem) 1535 if (*head == elem)
1057 1540
1058 head = &(*head)->next; 1541 head = &(*head)->next;
1059 } 1542 }
1060} 1543}
1061 1544
1062inline void 1545void inline_speed
1063ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1064{ 1547{
1065 if (w->pending) 1548 if (w->pending)
1066 { 1549 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1068 w->pending = 0; 1551 w->pending = 0;
1069 } 1552 }
1070} 1553}
1071 1554
1072inline void 1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1581void inline_speed
1073ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1074{ 1583{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
1078 w->active = active; 1585 w->active = active;
1079 ev_ref (EV_A); 1586 ev_ref (EV_A);
1080} 1587}
1081 1588
1082inline void 1589void inline_size
1083ev_stop (EV_P_ W w) 1590ev_stop (EV_P_ W w)
1084{ 1591{
1085 ev_unref (EV_A); 1592 ev_unref (EV_A);
1086 w->active = 0; 1593 w->active = 0;
1087} 1594}
1088 1595
1089/*****************************************************************************/ 1596/*****************************************************************************/
1090 1597
1091void 1598void noinline
1092ev_io_start (EV_P_ struct ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1093{ 1600{
1094 int fd = w->fd; 1601 int fd = w->fd;
1095 1602
1096 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1097 return; 1604 return;
1098 1605
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 1606 assert (("ev_io_start called with negative fd", fd >= 0));
1100 1607
1101 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add (&anfds[fd].head, (WL)w);
1104 1611
1105 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1613 w->events &= ~EV_IOFDSET;
1106} 1614}
1107 1615
1108void 1616void noinline
1109ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1110{ 1618{
1111 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 1620 if (expect_false (!ev_is_active (w)))
1113 return; 1621 return;
1114 1622
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del (&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1117 1627
1118 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd, 1);
1119} 1629}
1120 1630
1121void 1631void noinline
1122ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1123{ 1633{
1124 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1125 return; 1635 return;
1126 1636
1127 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1128 1638
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 1640
1131 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1132 array_needsize (timers, timermax, timercnt, ); 1642 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1133 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = (WT)w;
1134 upheap ((WT *)timers, timercnt - 1); 1644 upheap (timers, timercnt - 1);
1135 1645
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1137} 1647}
1138 1648
1139void 1649void noinline
1140ev_timer_stop (EV_P_ struct ev_timer *w) 1650ev_timer_stop (EV_P_ ev_timer *w)
1141{ 1651{
1142 ev_clear_pending (EV_A_ (W)w); 1652 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1653 if (expect_false (!ev_is_active (w)))
1144 return; 1654 return;
1145 1655
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1147 1657
1148 if (((W)w)->active < timercnt--) 1658 {
1659 int active = ((W)w)->active;
1660
1661 if (expect_true (--active < --timercnt))
1149 { 1662 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap (timers, timercnt, active);
1152 } 1665 }
1666 }
1153 1667
1154 ((WT)w)->at = w->repeat; 1668 ((WT)w)->at -= mn_now;
1155 1669
1156 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1157} 1671}
1158 1672
1159void 1673void noinline
1160ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1161{ 1675{
1162 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1163 { 1677 {
1164 if (w->repeat) 1678 if (w->repeat)
1165 { 1679 {
1166 ((WT)w)->at = mn_now + w->repeat; 1680 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1681 adjustheap (timers, timercnt, ((W)w)->active - 1);
1168 } 1682 }
1169 else 1683 else
1170 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1171 } 1685 }
1172 else if (w->repeat) 1686 else if (w->repeat)
1687 {
1688 w->at = w->repeat;
1173 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1690 }
1174} 1691}
1175 1692
1176void 1693#if EV_PERIODIC_ENABLE
1694void noinline
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1178{ 1696{
1179 if (ev_is_active (w)) 1697 if (expect_false (ev_is_active (w)))
1180 return; 1698 return;
1181 1699
1700 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval)
1703 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1187 1710
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 1712 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1190 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = (WT)w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap (periodics, periodiccnt - 1);
1192 1715
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1194} 1717}
1195 1718
1196void 1719void noinline
1197ev_periodic_stop (EV_P_ struct ev_periodic *w) 1720ev_periodic_stop (EV_P_ ev_periodic *w)
1198{ 1721{
1199 ev_clear_pending (EV_A_ (W)w); 1722 clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w)) 1723 if (expect_false (!ev_is_active (w)))
1201 return; 1724 return;
1202 1725
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1204 1727
1205 if (((W)w)->active < periodiccnt--) 1728 {
1729 int active = ((W)w)->active;
1730
1731 if (expect_true (--active < --periodiccnt))
1206 { 1732 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap (periodics, periodiccnt, active);
1209 } 1735 }
1736 }
1210 1737
1211 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1212} 1739}
1213 1740
1214void 1741void noinline
1215ev_idle_start (EV_P_ struct ev_idle *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1216{ 1743{
1217 if (ev_is_active (w)) 1744 /* TODO: use adjustheap and recalculation */
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 1745 ev_periodic_stop (EV_A_ w);
1746 ev_periodic_start (EV_A_ w);
1234} 1747}
1235 1748#endif
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279 1749
1280#ifndef SA_RESTART 1750#ifndef SA_RESTART
1281# define SA_RESTART 0 1751# define SA_RESTART 0
1282#endif 1752#endif
1283 1753
1284void 1754void noinline
1285ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1286{ 1756{
1287#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1289#endif 1759#endif
1290 if (ev_is_active (w)) 1760 if (expect_false (ev_is_active (w)))
1291 return; 1761 return;
1292 1762
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294 1764
1765 {
1766#ifndef _WIN32
1767 sigset_t full, prev;
1768 sigfillset (&full);
1769 sigprocmask (SIG_SETMASK, &full, &prev);
1770#endif
1771
1772 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1773
1774#ifndef _WIN32
1775 sigprocmask (SIG_SETMASK, &prev, 0);
1776#endif
1777 }
1778
1295 ev_start (EV_A_ (W)w, 1); 1779 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1298 1781
1299 if (!((WL)w)->next) 1782 if (!((WL)w)->next)
1300 { 1783 {
1784#if _WIN32
1785 signal (w->signum, sighandler);
1786#else
1301 struct sigaction sa; 1787 struct sigaction sa;
1302 sa.sa_handler = sighandler; 1788 sa.sa_handler = sighandler;
1303 sigfillset (&sa.sa_mask); 1789 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1790 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0); 1791 sigaction (w->signum, &sa, 0);
1792#endif
1306 } 1793 }
1307} 1794}
1308 1795
1309void 1796void noinline
1310ev_signal_stop (EV_P_ struct ev_signal *w) 1797ev_signal_stop (EV_P_ ev_signal *w)
1311{ 1798{
1312 ev_clear_pending (EV_A_ (W)w); 1799 clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w)) 1800 if (expect_false (!ev_is_active (w)))
1314 return; 1801 return;
1315 1802
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1803 wlist_del (&signals [w->signum - 1].head, (WL)w);
1317 ev_stop (EV_A_ (W)w); 1804 ev_stop (EV_A_ (W)w);
1318 1805
1319 if (!signals [w->signum - 1].head) 1806 if (!signals [w->signum - 1].head)
1320 signal (w->signum, SIG_DFL); 1807 signal (w->signum, SIG_DFL);
1321} 1808}
1322 1809
1323void 1810void
1324ev_child_start (EV_P_ struct ev_child *w) 1811ev_child_start (EV_P_ ev_child *w)
1325{ 1812{
1326#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1814 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1328#endif 1815#endif
1329 if (ev_is_active (w)) 1816 if (expect_false (ev_is_active (w)))
1330 return; 1817 return;
1331 1818
1332 ev_start (EV_A_ (W)w, 1); 1819 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1334} 1821}
1335 1822
1336void 1823void
1337ev_child_stop (EV_P_ struct ev_child *w) 1824ev_child_stop (EV_P_ ev_child *w)
1338{ 1825{
1339 ev_clear_pending (EV_A_ (W)w); 1826 clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 1827 if (expect_false (!ev_is_active (w)))
1341 return; 1828 return;
1342 1829
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1830 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w); 1831 ev_stop (EV_A_ (W)w);
1345} 1832}
1346 1833
1834#if EV_STAT_ENABLE
1835
1836# ifdef _WIN32
1837# undef lstat
1838# define lstat(a,b) _stati64 (a,b)
1839# endif
1840
1841#define DEF_STAT_INTERVAL 5.0074891
1842#define MIN_STAT_INTERVAL 0.1074891
1843
1844static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1845
1846#if EV_USE_INOTIFY
1847# define EV_INOTIFY_BUFSIZE 8192
1848
1849static void noinline
1850infy_add (EV_P_ ev_stat *w)
1851{
1852 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1853
1854 if (w->wd < 0)
1855 {
1856 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1857
1858 /* monitor some parent directory for speedup hints */
1859 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1860 {
1861 char path [4096];
1862 strcpy (path, w->path);
1863
1864 do
1865 {
1866 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1867 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1868
1869 char *pend = strrchr (path, '/');
1870
1871 if (!pend)
1872 break; /* whoops, no '/', complain to your admin */
1873
1874 *pend = 0;
1875 w->wd = inotify_add_watch (fs_fd, path, mask);
1876 }
1877 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1878 }
1879 }
1880 else
1881 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1882
1883 if (w->wd >= 0)
1884 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1885}
1886
1887static void noinline
1888infy_del (EV_P_ ev_stat *w)
1889{
1890 int slot;
1891 int wd = w->wd;
1892
1893 if (wd < 0)
1894 return;
1895
1896 w->wd = -2;
1897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1898 wlist_del (&fs_hash [slot].head, (WL)w);
1899
1900 /* remove this watcher, if others are watching it, they will rearm */
1901 inotify_rm_watch (fs_fd, wd);
1902}
1903
1904static void noinline
1905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1906{
1907 if (slot < 0)
1908 /* overflow, need to check for all hahs slots */
1909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1910 infy_wd (EV_A_ slot, wd, ev);
1911 else
1912 {
1913 WL w_;
1914
1915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1916 {
1917 ev_stat *w = (ev_stat *)w_;
1918 w_ = w_->next; /* lets us remove this watcher and all before it */
1919
1920 if (w->wd == wd || wd == -1)
1921 {
1922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1923 {
1924 w->wd = -1;
1925 infy_add (EV_A_ w); /* re-add, no matter what */
1926 }
1927
1928 stat_timer_cb (EV_A_ &w->timer, 0);
1929 }
1930 }
1931 }
1932}
1933
1934static void
1935infy_cb (EV_P_ ev_io *w, int revents)
1936{
1937 char buf [EV_INOTIFY_BUFSIZE];
1938 struct inotify_event *ev = (struct inotify_event *)buf;
1939 int ofs;
1940 int len = read (fs_fd, buf, sizeof (buf));
1941
1942 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1943 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1944}
1945
1946void inline_size
1947infy_init (EV_P)
1948{
1949 if (fs_fd != -2)
1950 return;
1951
1952 fs_fd = inotify_init ();
1953
1954 if (fs_fd >= 0)
1955 {
1956 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1957 ev_set_priority (&fs_w, EV_MAXPRI);
1958 ev_io_start (EV_A_ &fs_w);
1959 }
1960}
1961
1962void inline_size
1963infy_fork (EV_P)
1964{
1965 int slot;
1966
1967 if (fs_fd < 0)
1968 return;
1969
1970 close (fs_fd);
1971 fs_fd = inotify_init ();
1972
1973 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1974 {
1975 WL w_ = fs_hash [slot].head;
1976 fs_hash [slot].head = 0;
1977
1978 while (w_)
1979 {
1980 ev_stat *w = (ev_stat *)w_;
1981 w_ = w_->next; /* lets us add this watcher */
1982
1983 w->wd = -1;
1984
1985 if (fs_fd >= 0)
1986 infy_add (EV_A_ w); /* re-add, no matter what */
1987 else
1988 ev_timer_start (EV_A_ &w->timer);
1989 }
1990
1991 }
1992}
1993
1994#endif
1995
1996void
1997ev_stat_stat (EV_P_ ev_stat *w)
1998{
1999 if (lstat (w->path, &w->attr) < 0)
2000 w->attr.st_nlink = 0;
2001 else if (!w->attr.st_nlink)
2002 w->attr.st_nlink = 1;
2003}
2004
2005static void noinline
2006stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2007{
2008 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2009
2010 /* we copy this here each the time so that */
2011 /* prev has the old value when the callback gets invoked */
2012 w->prev = w->attr;
2013 ev_stat_stat (EV_A_ w);
2014
2015 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2016 if (
2017 w->prev.st_dev != w->attr.st_dev
2018 || w->prev.st_ino != w->attr.st_ino
2019 || w->prev.st_mode != w->attr.st_mode
2020 || w->prev.st_nlink != w->attr.st_nlink
2021 || w->prev.st_uid != w->attr.st_uid
2022 || w->prev.st_gid != w->attr.st_gid
2023 || w->prev.st_rdev != w->attr.st_rdev
2024 || w->prev.st_size != w->attr.st_size
2025 || w->prev.st_atime != w->attr.st_atime
2026 || w->prev.st_mtime != w->attr.st_mtime
2027 || w->prev.st_ctime != w->attr.st_ctime
2028 ) {
2029 #if EV_USE_INOTIFY
2030 infy_del (EV_A_ w);
2031 infy_add (EV_A_ w);
2032 ev_stat_stat (EV_A_ w); /* avoid race... */
2033 #endif
2034
2035 ev_feed_event (EV_A_ w, EV_STAT);
2036 }
2037}
2038
2039void
2040ev_stat_start (EV_P_ ev_stat *w)
2041{
2042 if (expect_false (ev_is_active (w)))
2043 return;
2044
2045 /* since we use memcmp, we need to clear any padding data etc. */
2046 memset (&w->prev, 0, sizeof (ev_statdata));
2047 memset (&w->attr, 0, sizeof (ev_statdata));
2048
2049 ev_stat_stat (EV_A_ w);
2050
2051 if (w->interval < MIN_STAT_INTERVAL)
2052 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2053
2054 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2055 ev_set_priority (&w->timer, ev_priority (w));
2056
2057#if EV_USE_INOTIFY
2058 infy_init (EV_A);
2059
2060 if (fs_fd >= 0)
2061 infy_add (EV_A_ w);
2062 else
2063#endif
2064 ev_timer_start (EV_A_ &w->timer);
2065
2066 ev_start (EV_A_ (W)w, 1);
2067}
2068
2069void
2070ev_stat_stop (EV_P_ ev_stat *w)
2071{
2072 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w)))
2074 return;
2075
2076#if EV_USE_INOTIFY
2077 infy_del (EV_A_ w);
2078#endif
2079 ev_timer_stop (EV_A_ &w->timer);
2080
2081 ev_stop (EV_A_ (W)w);
2082}
2083#endif
2084
2085#if EV_IDLE_ENABLE
2086void
2087ev_idle_start (EV_P_ ev_idle *w)
2088{
2089 if (expect_false (ev_is_active (w)))
2090 return;
2091
2092 pri_adjust (EV_A_ (W)w);
2093
2094 {
2095 int active = ++idlecnt [ABSPRI (w)];
2096
2097 ++idleall;
2098 ev_start (EV_A_ (W)w, active);
2099
2100 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2101 idles [ABSPRI (w)][active - 1] = w;
2102 }
2103}
2104
2105void
2106ev_idle_stop (EV_P_ ev_idle *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114
2115 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2116 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2117
2118 ev_stop (EV_A_ (W)w);
2119 --idleall;
2120 }
2121}
2122#endif
2123
2124void
2125ev_prepare_start (EV_P_ ev_prepare *w)
2126{
2127 if (expect_false (ev_is_active (w)))
2128 return;
2129
2130 ev_start (EV_A_ (W)w, ++preparecnt);
2131 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2132 prepares [preparecnt - 1] = w;
2133}
2134
2135void
2136ev_prepare_stop (EV_P_ ev_prepare *w)
2137{
2138 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w)))
2140 return;
2141
2142 {
2143 int active = ((W)w)->active;
2144 prepares [active - 1] = prepares [--preparecnt];
2145 ((W)prepares [active - 1])->active = active;
2146 }
2147
2148 ev_stop (EV_A_ (W)w);
2149}
2150
2151void
2152ev_check_start (EV_P_ ev_check *w)
2153{
2154 if (expect_false (ev_is_active (w)))
2155 return;
2156
2157 ev_start (EV_A_ (W)w, ++checkcnt);
2158 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2159 checks [checkcnt - 1] = w;
2160}
2161
2162void
2163ev_check_stop (EV_P_ ev_check *w)
2164{
2165 clear_pending (EV_A_ (W)w);
2166 if (expect_false (!ev_is_active (w)))
2167 return;
2168
2169 {
2170 int active = ((W)w)->active;
2171 checks [active - 1] = checks [--checkcnt];
2172 ((W)checks [active - 1])->active = active;
2173 }
2174
2175 ev_stop (EV_A_ (W)w);
2176}
2177
2178#if EV_EMBED_ENABLE
2179void noinline
2180ev_embed_sweep (EV_P_ ev_embed *w)
2181{
2182 ev_loop (w->loop, EVLOOP_NONBLOCK);
2183}
2184
2185static void
2186embed_cb (EV_P_ ev_io *io, int revents)
2187{
2188 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2189
2190 if (ev_cb (w))
2191 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2192 else
2193 ev_embed_sweep (loop, w);
2194}
2195
2196void
2197ev_embed_start (EV_P_ ev_embed *w)
2198{
2199 if (expect_false (ev_is_active (w)))
2200 return;
2201
2202 {
2203 struct ev_loop *loop = w->loop;
2204 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2205 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2206 }
2207
2208 ev_set_priority (&w->io, ev_priority (w));
2209 ev_io_start (EV_A_ &w->io);
2210
2211 ev_start (EV_A_ (W)w, 1);
2212}
2213
2214void
2215ev_embed_stop (EV_P_ ev_embed *w)
2216{
2217 clear_pending (EV_A_ (W)w);
2218 if (expect_false (!ev_is_active (w)))
2219 return;
2220
2221 ev_io_stop (EV_A_ &w->io);
2222
2223 ev_stop (EV_A_ (W)w);
2224}
2225#endif
2226
2227#if EV_FORK_ENABLE
2228void
2229ev_fork_start (EV_P_ ev_fork *w)
2230{
2231 if (expect_false (ev_is_active (w)))
2232 return;
2233
2234 ev_start (EV_A_ (W)w, ++forkcnt);
2235 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2236 forks [forkcnt - 1] = w;
2237}
2238
2239void
2240ev_fork_stop (EV_P_ ev_fork *w)
2241{
2242 clear_pending (EV_A_ (W)w);
2243 if (expect_false (!ev_is_active (w)))
2244 return;
2245
2246 {
2247 int active = ((W)w)->active;
2248 forks [active - 1] = forks [--forkcnt];
2249 ((W)forks [active - 1])->active = active;
2250 }
2251
2252 ev_stop (EV_A_ (W)w);
2253}
2254#endif
2255
1347/*****************************************************************************/ 2256/*****************************************************************************/
1348 2257
1349struct ev_once 2258struct ev_once
1350{ 2259{
1351 struct ev_io io; 2260 ev_io io;
1352 struct ev_timer to; 2261 ev_timer to;
1353 void (*cb)(int revents, void *arg); 2262 void (*cb)(int revents, void *arg);
1354 void *arg; 2263 void *arg;
1355}; 2264};
1356 2265
1357static void 2266static void
1360 void (*cb)(int revents, void *arg) = once->cb; 2269 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 2270 void *arg = once->arg;
1362 2271
1363 ev_io_stop (EV_A_ &once->io); 2272 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 2273 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 2274 ev_free (once);
1366 2275
1367 cb (revents, arg); 2276 cb (revents, arg);
1368} 2277}
1369 2278
1370static void 2279static void
1371once_cb_io (EV_P_ struct ev_io *w, int revents) 2280once_cb_io (EV_P_ ev_io *w, int revents)
1372{ 2281{
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2282 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1374} 2283}
1375 2284
1376static void 2285static void
1377once_cb_to (EV_P_ struct ev_timer *w, int revents) 2286once_cb_to (EV_P_ ev_timer *w, int revents)
1378{ 2287{
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2288 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1380} 2289}
1381 2290
1382void 2291void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2292ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{ 2293{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 2294 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 2295
1387 if (!once) 2296 if (expect_false (!once))
2297 {
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2298 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else 2299 return;
1390 { 2300 }
2301
1391 once->cb = cb; 2302 once->cb = cb;
1392 once->arg = arg; 2303 once->arg = arg;
1393 2304
1394 ev_watcher_init (&once->io, once_cb_io); 2305 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 2306 if (fd >= 0)
1396 { 2307 {
1397 ev_io_set (&once->io, fd, events); 2308 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io); 2309 ev_io_start (EV_A_ &once->io);
1399 } 2310 }
1400 2311
1401 ev_watcher_init (&once->to, once_cb_to); 2312 ev_init (&once->to, once_cb_to);
1402 if (timeout >= 0.) 2313 if (timeout >= 0.)
1403 { 2314 {
1404 ev_timer_set (&once->to, timeout, 0.); 2315 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to); 2316 ev_timer_start (EV_A_ &once->to);
1406 }
1407 } 2317 }
1408} 2318}
1409 2319
2320#ifdef __cplusplus
2321}
2322#endif
2323

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines