ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.186 by root, Sat Dec 15 23:14:38 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
171#endif 205#endif
172 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
173#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 217# include <winsock.h>
175#endif 218#endif
176 219
177/**/ 220/**/
178 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 235
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 236#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 238# define noinline __attribute__ ((noinline))
193#else 239#else
194# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
195# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
196#endif 245#endif
197 246
198#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
200 256
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 259
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
206 262
207typedef struct ev_watcher *W; 263typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
210 266
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 268
213#ifdef _WIN32 269#ifdef _WIN32
214# include "ev_win32.c" 270# include "ev_win32.c"
216 272
217/*****************************************************************************/ 273/*****************************************************************************/
218 274
219static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
220 276
277void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 279{
223 syserr_cb = cb; 280 syserr_cb = cb;
224} 281}
225 282
226static void 283static void noinline
227syserr (const char *msg) 284syserr (const char *msg)
228{ 285{
229 if (!msg) 286 if (!msg)
230 msg = "(libev) system error"; 287 msg = "(libev) system error";
231 288
238 } 295 }
239} 296}
240 297
241static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
242 299
300void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 302{
245 alloc = cb; 303 alloc = cb;
246} 304}
247 305
248static void * 306inline_speed void *
249ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
250{ 308{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 310
253 if (!ptr && size) 311 if (!ptr && size)
277typedef struct 335typedef struct
278{ 336{
279 W w; 337 W w;
280 int events; 338 int events;
281} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
282 347
283#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
284 349
285 struct ev_loop 350 struct ev_loop
286 { 351 {
320 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 387#endif
323} 388}
324 389
325inline ev_tstamp 390ev_tstamp inline_size
326get_clock (void) 391get_clock (void)
327{ 392{
328#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
330 { 395 {
343{ 408{
344 return ev_rt_now; 409 return ev_rt_now;
345} 410}
346#endif 411#endif
347 412
348#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
349 440
350#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
352 { \ 443 { \
353 int newcnt = cur; \ 444 int ocur_ = (cur); \
354 do \ 445 (base) = (type *)array_realloc \
355 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 448 }
364 449
450#if 0
365#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 453 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 457 }
458#endif
372 459
373#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 462
376/*****************************************************************************/ 463/*****************************************************************************/
377 464
378static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
379anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
380{ 495{
381 while (count--) 496 while (count--)
382 { 497 {
383 base->head = 0; 498 base->head = 0;
386 501
387 ++base; 502 ++base;
388 } 503 }
389} 504}
390 505
391void 506void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
422{ 508{
423 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 510 ev_io *w;
425 511
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 513 {
428 int ev = w->events & revents; 514 int ev = w->events & revents;
429 515
430 if (ev) 516 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
433} 519}
434 520
435void 521void
436ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 523{
524 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
439} 526}
440 527
441/*****************************************************************************/ 528void inline_size
442
443inline void
444fd_reify (EV_P) 529fd_reify (EV_P)
445{ 530{
446 int i; 531 int i;
447 532
448 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
449 { 534 {
450 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 537 ev_io *w;
453 538
454 int events = 0; 539 unsigned char events = 0;
455 540
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 542 events |= (unsigned char)w->events;
458 543
459#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
460 if (events) 545 if (events)
461 { 546 {
462 unsigned long argp; 547 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 550 }
466#endif 551#endif
467 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
468 anfd->reify = 0; 557 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
472 } 563 }
473 564
474 fdchangecnt = 0; 565 fdchangecnt = 0;
475} 566}
476 567
477static void 568void inline_size
478fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
479{ 570{
480 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
484 573
574 if (expect_true (!reify))
575 {
485 ++fdchangecnt; 576 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
488} 580}
489 581
490static void 582void inline_speed
491fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
492{ 584{
493 struct ev_io *w; 585 ev_io *w;
494 586
495 while ((w = (struct ev_io *)anfds [fd].head)) 587 while ((w = (ev_io *)anfds [fd].head))
496 { 588 {
497 ev_io_stop (EV_A_ w); 589 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 591 }
500} 592}
501 593
502inline int 594int inline_size
503fd_valid (int fd) 595fd_valid (int fd)
504{ 596{
505#ifdef _WIN32 597#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 598 return _get_osfhandle (fd) != -1;
507#else 599#else
508 return fcntl (fd, F_GETFD) != -1; 600 return fcntl (fd, F_GETFD) != -1;
509#endif 601#endif
510} 602}
511 603
512/* called on EBADF to verify fds */ 604/* called on EBADF to verify fds */
513static void 605static void noinline
514fd_ebadf (EV_P) 606fd_ebadf (EV_P)
515{ 607{
516 int fd; 608 int fd;
517 609
518 for (fd = 0; fd < anfdmax; ++fd) 610 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 612 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 613 fd_kill (EV_A_ fd);
522} 614}
523 615
524/* called on ENOMEM in select/poll to kill some fds and retry */ 616/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 617static void noinline
526fd_enomem (EV_P) 618fd_enomem (EV_P)
527{ 619{
528 int fd; 620 int fd;
529 621
530 for (fd = anfdmax; fd--; ) 622 for (fd = anfdmax; fd--; )
534 return; 626 return;
535 } 627 }
536} 628}
537 629
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 630/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 631static void noinline
540fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
541{ 633{
542 int fd; 634 int fd;
543 635
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 637 if (anfds [fd].events)
547 { 638 {
548 anfds [fd].events = 0; 639 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 641 }
551} 642}
552 643
553/*****************************************************************************/ 644/*****************************************************************************/
554 645
555static void 646void inline_speed
556upheap (WT *heap, int k) 647upheap (WT *heap, int k)
557{ 648{
558 WT w = heap [k]; 649 WT w = heap [k];
559 650
560 while (k && heap [k >> 1]->at > w->at) 651 while (k)
561 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
562 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
564 k >>= 1; 660 k = p;
565 } 661 }
566 662
567 heap [k] = w; 663 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
569
570} 665}
571 666
572static void 667void inline_speed
573downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
574{ 669{
575 WT w = heap [k]; 670 WT w = heap [k];
576 671
577 while (k < (N >> 1)) 672 for (;;)
578 { 673 {
579 int j = k << 1; 674 int c = (k << 1) + 1;
580 675
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 677 break;
586 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
587 heap [k] = heap [j]; 685 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
589 k = j; 688 k = c;
590 } 689 }
591 690
592 heap [k] = w; 691 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
594} 693}
595 694
596inline void 695void inline_size
597adjustheap (WT *heap, int N, int k) 696adjustheap (WT *heap, int N, int k)
598{ 697{
599 upheap (heap, k); 698 upheap (heap, k);
600 downheap (heap, N, k); 699 downheap (heap, N, k);
601} 700}
611static ANSIG *signals; 710static ANSIG *signals;
612static int signalmax; 711static int signalmax;
613 712
614static int sigpipe [2]; 713static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 714static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 715static ev_io sigev;
617 716
618static void 717void inline_size
619signals_init (ANSIG *base, int count) 718signals_init (ANSIG *base, int count)
620{ 719{
621 while (count--) 720 while (count--)
622 { 721 {
623 base->head = 0; 722 base->head = 0;
643 write (sigpipe [1], &signum, 1); 742 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 743 errno = old_errno;
645 } 744 }
646} 745}
647 746
648void 747void noinline
649ev_feed_signal_event (EV_P_ int signum) 748ev_feed_signal_event (EV_P_ int signum)
650{ 749{
651 WL w; 750 WL w;
652 751
653#if EV_MULTIPLICITY 752#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 763 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 765}
667 766
668static void 767static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 768sigcb (EV_P_ ev_io *iow, int revents)
670{ 769{
671 int signum; 770 int signum;
672 771
673 read (sigpipe [0], &revents, 1); 772 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 773 gotsig = 0;
676 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
679} 778}
680 779
681static void 780void inline_speed
682fd_intern (int fd) 781fd_intern (int fd)
683{ 782{
684#ifdef _WIN32 783#ifdef _WIN32
685 int arg = 1; 784 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 787 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 788 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 789#endif
691} 790}
692 791
693static void 792static void noinline
694siginit (EV_P) 793siginit (EV_P)
695{ 794{
696 fd_intern (sigpipe [0]); 795 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 796 fd_intern (sigpipe [1]);
698 797
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 801}
703 802
704/*****************************************************************************/ 803/*****************************************************************************/
705 804
706static struct ev_child *childs [PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
707 806
708#ifndef _WIN32 807#ifndef _WIN32
709 808
710static struct ev_signal childev; 809static ev_signal childev;
810
811void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
813{
814 ev_child *w;
815
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
817 if (w->pid == pid || !w->pid)
818 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
820 w->rpid = pid;
821 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 }
824}
711 825
712#ifndef WCONTINUED 826#ifndef WCONTINUED
713# define WCONTINUED 0 827# define WCONTINUED 0
714#endif 828#endif
715 829
716static void 830static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 831childcb (EV_P_ ev_signal *sw, int revents)
733{ 832{
734 int pid, status; 833 int pid, status;
735 834
835 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 836 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 837 if (!WCONTINUED
838 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return;
841
738 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 843 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 845
742 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 849}
746 850
747#endif 851#endif
748 852
749/*****************************************************************************/ 853/*****************************************************************************/
775{ 879{
776 return EV_VERSION_MINOR; 880 return EV_VERSION_MINOR;
777} 881}
778 882
779/* return true if we are running with elevated privileges and should ignore env variables */ 883/* return true if we are running with elevated privileges and should ignore env variables */
780static int 884int inline_size
781enable_secure (void) 885enable_secure (void)
782{ 886{
783#ifdef _WIN32 887#ifdef _WIN32
784 return 0; 888 return 0;
785#else 889#else
832ev_backend (EV_P) 936ev_backend (EV_P)
833{ 937{
834 return backend; 938 return backend;
835} 939}
836 940
837static void 941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
838loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
839{ 949{
840 if (!backend) 950 if (!backend)
841 { 951 {
842#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 961 mn_now = get_clock ();
852 now_floor = mn_now; 962 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
854 964
965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
855 if (!(flags & EVFLAG_NOENV) 971 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 972 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 973 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
859 975
860 if (!(flags & 0x0000ffffUL)) 976 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 977 flags |= ev_recommended_backends ();
862 978
863 backend = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
864#if EV_USE_PORT 985#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 987#endif
867#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 1001 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1002 ev_set_priority (&sigev, EV_MAXPRI);
882 } 1003 }
883} 1004}
884 1005
885static void 1006static void noinline
886loop_destroy (EV_P) 1007loop_destroy (EV_P)
887{ 1008{
888 int i; 1009 int i;
1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
889 1018
890#if EV_USE_PORT 1019#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1021#endif
893#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1031#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1033#endif
905 1034
906 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
907 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
1042
1043 ev_free (anfds); anfdmax = 0;
908 1044
909 /* have to use the microsoft-never-gets-it-right macro */ 1045 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1046 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1047 array_free (timer, EMPTY);
912#if EV_PERIODICS 1048#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1049 array_free (periodic, EMPTY);
914#endif 1050#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 1051 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1052 array_free (check, EMPTY);
1053 array_free (fork, EMPTY);
918 1054
919 backend = 0; 1055 backend = 0;
920} 1056}
921 1057
922static void 1058void inline_size infy_fork (EV_P);
1059
1060void inline_size
923loop_fork (EV_P) 1061loop_fork (EV_P)
924{ 1062{
925#if EV_USE_PORT 1063#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1064 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1065#endif
928#if EV_USE_KQUEUE 1066#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1067 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1068#endif
931#if EV_USE_EPOLL 1069#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1070 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1071#endif
1072#if EV_USE_INOTIFY
1073 infy_fork (EV_A);
933#endif 1074#endif
934 1075
935 if (ev_is_active (&sigev)) 1076 if (ev_is_active (&sigev))
936 { 1077 {
937 /* default loop */ 1078 /* default loop */
1053 postfork = 1; 1194 postfork = 1;
1054} 1195}
1055 1196
1056/*****************************************************************************/ 1197/*****************************************************************************/
1057 1198
1058static int 1199void
1059any_pending (EV_P) 1200ev_invoke (EV_P_ void *w, int revents)
1060{ 1201{
1061 int pri; 1202 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1203}
1069 1204
1070inline void 1205void inline_speed
1071call_pending (EV_P) 1206call_pending (EV_P)
1072{ 1207{
1073 int pri; 1208 int pri;
1074 1209
1075 for (pri = NUMPRI; pri--; ) 1210 for (pri = NUMPRI; pri--; )
1077 { 1212 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1213 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1214
1080 if (expect_true (p->w)) 1215 if (expect_true (p->w))
1081 { 1216 {
1217 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1218
1082 p->w->pending = 0; 1219 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1220 EV_CB_INVOKE (p->w, p->events);
1084 } 1221 }
1085 } 1222 }
1086} 1223}
1087 1224
1088inline void 1225void inline_size
1089timers_reify (EV_P) 1226timers_reify (EV_P)
1090{ 1227{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1228 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1229 {
1093 struct ev_timer *w = timers [0]; 1230 ev_timer *w = (ev_timer *)timers [0];
1094 1231
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1232 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1233
1097 /* first reschedule or stop timer */ 1234 /* first reschedule or stop timer */
1098 if (w->repeat) 1235 if (w->repeat)
1099 { 1236 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1237 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1238
1102 ((WT)w)->at += w->repeat; 1239 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now) 1240 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now; 1241 ((WT)w)->at = mn_now;
1105 1242
1106 downheap ((WT *)timers, timercnt, 0); 1243 downheap (timers, timercnt, 0);
1107 } 1244 }
1108 else 1245 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1247
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1248 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1249 }
1113} 1250}
1114 1251
1115#if EV_PERIODICS 1252#if EV_PERIODIC_ENABLE
1116inline void 1253void inline_size
1117periodics_reify (EV_P) 1254periodics_reify (EV_P)
1118{ 1255{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1256 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1257 {
1121 struct ev_periodic *w = periodics [0]; 1258 ev_periodic *w = (ev_periodic *)periodics [0];
1122 1259
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1260 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1261
1125 /* first reschedule or stop timer */ 1262 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1263 if (w->reschedule_cb)
1127 { 1264 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1265 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1266 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1267 downheap (periodics, periodiccnt, 0);
1131 } 1268 }
1132 else if (w->interval) 1269 else if (w->interval)
1133 { 1270 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1271 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1272 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1273 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1274 downheap (periodics, periodiccnt, 0);
1137 } 1275 }
1138 else 1276 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1277 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1278
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1279 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1280 }
1143} 1281}
1144 1282
1145static void 1283static void noinline
1146periodics_reschedule (EV_P) 1284periodics_reschedule (EV_P)
1147{ 1285{
1148 int i; 1286 int i;
1149 1287
1150 /* adjust periodics after time jump */ 1288 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1289 for (i = 0; i < periodiccnt; ++i)
1152 { 1290 {
1153 struct ev_periodic *w = periodics [i]; 1291 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1292
1155 if (w->reschedule_cb) 1293 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1294 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1295 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1296 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1297 }
1160 1298
1161 /* now rebuild the heap */ 1299 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1300 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1301 downheap (periodics, periodiccnt, i);
1164} 1302}
1165#endif 1303#endif
1166 1304
1167inline int 1305#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1306void inline_size
1307idle_reify (EV_P)
1169{ 1308{
1309 if (expect_false (idleall))
1310 {
1311 int pri;
1312
1313 for (pri = NUMPRI; pri--; )
1314 {
1315 if (pendingcnt [pri])
1316 break;
1317
1318 if (idlecnt [pri])
1319 {
1320 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1321 break;
1322 }
1323 }
1324 }
1325}
1326#endif
1327
1328void inline_speed
1329time_update (EV_P_ ev_tstamp max_block)
1330{
1331 int i;
1332
1333#if EV_USE_MONOTONIC
1334 if (expect_true (have_monotonic))
1335 {
1336 ev_tstamp odiff = rtmn_diff;
1337
1170 mn_now = get_clock (); 1338 mn_now = get_clock ();
1171 1339
1340 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1341 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1342 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1343 {
1174 ev_rt_now = rtmn_diff + mn_now; 1344 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1345 return;
1176 } 1346 }
1177 else 1347
1178 {
1179 now_floor = mn_now; 1348 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1349 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1350
1185inline void 1351 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1352 * on the choice of "4": one iteration isn't enough,
1187{ 1353 * in case we get preempted during the calls to
1188 int i; 1354 * ev_time and get_clock. a second call is almost guaranteed
1189 1355 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1356 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1357 * in the unlikely event of having been preempted here.
1192 { 1358 */
1193 if (time_update_monotonic (EV_A)) 1359 for (i = 4; --i; )
1194 { 1360 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1361 rtmn_diff = ev_rt_now - mn_now;
1200 1362
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1363 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1364 return; /* all is well */
1203 1365
1204 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1367 mn_now = get_clock ();
1206 now_floor = mn_now; 1368 now_floor = mn_now;
1207 } 1369 }
1208 1370
1209# if EV_PERIODICS 1371# if EV_PERIODIC_ENABLE
1372 periodics_reschedule (EV_A);
1373# endif
1374 /* no timer adjustment, as the monotonic clock doesn't jump */
1375 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1376 }
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381
1382 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1383 {
1384#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1385 periodics_reschedule (EV_A);
1211# endif 1386#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1387 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1388 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1389 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1390 }
1231 1391
1232 mn_now = ev_rt_now; 1392 mn_now = ev_rt_now;
1252{ 1412{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1413 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE 1414 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL; 1415 : EVUNLOOP_CANCEL;
1256 1416
1257 while (activecnt) 1417 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1418
1419 do
1258 { 1420 {
1421#ifndef _WIN32
1422 if (expect_false (curpid)) /* penalise the forking check even more */
1423 if (expect_false (getpid () != curpid))
1424 {
1425 curpid = getpid ();
1426 postfork = 1;
1427 }
1428#endif
1429
1430#if EV_FORK_ENABLE
1431 /* we might have forked, so queue fork handlers */
1432 if (expect_false (postfork))
1433 if (forkcnt)
1434 {
1435 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1436 call_pending (EV_A);
1437 }
1438#endif
1439
1259 /* queue check watchers (and execute them) */ 1440 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1441 if (expect_false (preparecnt))
1261 { 1442 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1444 call_pending (EV_A);
1264 } 1445 }
1265 1446
1447 if (expect_false (!activecnt))
1448 break;
1449
1266 /* we might have forked, so reify kernel state if necessary */ 1450 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1451 if (expect_false (postfork))
1268 loop_fork (EV_A); 1452 loop_fork (EV_A);
1269 1453
1270 /* update fd-related kernel structures */ 1454 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1455 fd_reify (EV_A);
1272 1456
1273 /* calculate blocking time */ 1457 /* calculate blocking time */
1274 { 1458 {
1275 double block; 1459 ev_tstamp block;
1276 1460
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1461 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1278 block = 0.; /* do not block at all */ 1462 block = 0.; /* do not block at all */
1279 else 1463 else
1280 { 1464 {
1281 /* update time to cancel out callback processing overhead */ 1465 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1466 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1467
1292 block = MAX_BLOCKTIME; 1468 block = MAX_BLOCKTIME;
1293 1469
1294 if (timercnt) 1470 if (timercnt)
1295 { 1471 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1472 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1473 if (block > to) block = to;
1298 } 1474 }
1299 1475
1300#if EV_PERIODICS 1476#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1477 if (periodiccnt)
1302 { 1478 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1479 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1480 if (block > to) block = to;
1305 } 1481 }
1306#endif 1482#endif
1307 1483
1308 if (expect_false (block < 0.)) block = 0.; 1484 if (expect_false (block < 0.)) block = 0.;
1309 } 1485 }
1310 1486
1487 ++loop_count;
1311 backend_poll (EV_A_ block); 1488 backend_poll (EV_A_ block);
1489
1490 /* update ev_rt_now, do magic */
1491 time_update (EV_A_ block);
1312 } 1492 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1493
1317 /* queue pending timers and reschedule them */ 1494 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1495 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1496#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1497 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1498#endif
1322 1499
1500#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1501 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1502 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1503#endif
1326 1504
1327 /* queue check watchers, to be executed first */ 1505 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1506 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1507 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1508
1331 call_pending (EV_A); 1509 call_pending (EV_A);
1332 1510
1333 if (expect_false (loop_done))
1334 break;
1335 } 1511 }
1512 while (expect_true (activecnt && !loop_done));
1336 1513
1337 if (loop_done == EVUNLOOP_ONE) 1514 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1515 loop_done = EVUNLOOP_CANCEL;
1339} 1516}
1340 1517
1344 loop_done = how; 1521 loop_done = how;
1345} 1522}
1346 1523
1347/*****************************************************************************/ 1524/*****************************************************************************/
1348 1525
1349inline void 1526void inline_size
1350wlist_add (WL *head, WL elem) 1527wlist_add (WL *head, WL elem)
1351{ 1528{
1352 elem->next = *head; 1529 elem->next = *head;
1353 *head = elem; 1530 *head = elem;
1354} 1531}
1355 1532
1356inline void 1533void inline_size
1357wlist_del (WL *head, WL elem) 1534wlist_del (WL *head, WL elem)
1358{ 1535{
1359 while (*head) 1536 while (*head)
1360 { 1537 {
1361 if (*head == elem) 1538 if (*head == elem)
1366 1543
1367 head = &(*head)->next; 1544 head = &(*head)->next;
1368 } 1545 }
1369} 1546}
1370 1547
1371inline void 1548void inline_speed
1372ev_clear_pending (EV_P_ W w) 1549clear_pending (EV_P_ W w)
1373{ 1550{
1374 if (w->pending) 1551 if (w->pending)
1375 { 1552 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1553 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1554 w->pending = 0;
1378 } 1555 }
1379} 1556}
1380 1557
1381inline void 1558int
1559ev_clear_pending (EV_P_ void *w)
1560{
1561 W w_ = (W)w;
1562 int pending = w_->pending;
1563
1564 if (expect_true (pending))
1565 {
1566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1567 w_->pending = 0;
1568 p->w = 0;
1569 return p->events;
1570 }
1571 else
1572 return 0;
1573}
1574
1575void inline_size
1576pri_adjust (EV_P_ W w)
1577{
1578 int pri = w->priority;
1579 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1581 w->priority = pri;
1582}
1583
1584void inline_speed
1382ev_start (EV_P_ W w, int active) 1585ev_start (EV_P_ W w, int active)
1383{ 1586{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1587 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1588 w->active = active;
1388 ev_ref (EV_A); 1589 ev_ref (EV_A);
1389} 1590}
1390 1591
1391inline void 1592void inline_size
1392ev_stop (EV_P_ W w) 1593ev_stop (EV_P_ W w)
1393{ 1594{
1394 ev_unref (EV_A); 1595 ev_unref (EV_A);
1395 w->active = 0; 1596 w->active = 0;
1396} 1597}
1397 1598
1398/*****************************************************************************/ 1599/*****************************************************************************/
1399 1600
1400void 1601void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1602ev_io_start (EV_P_ ev_io *w)
1402{ 1603{
1403 int fd = w->fd; 1604 int fd = w->fd;
1404 1605
1405 if (expect_false (ev_is_active (w))) 1606 if (expect_false (ev_is_active (w)))
1406 return; 1607 return;
1407 1608
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 1609 assert (("ev_io_start called with negative fd", fd >= 0));
1409 1610
1410 ev_start (EV_A_ (W)w, 1); 1611 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1612 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1613 wlist_add (&anfds[fd].head, (WL)w);
1413 1614
1414 fd_change (EV_A_ fd); 1615 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1616 w->events &= ~EV_IOFDSET;
1415} 1617}
1416 1618
1417void 1619void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1620ev_io_stop (EV_P_ ev_io *w)
1419{ 1621{
1420 ev_clear_pending (EV_A_ (W)w); 1622 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1623 if (expect_false (!ev_is_active (w)))
1422 return; 1624 return;
1423 1625
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1626 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1627
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1628 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 1629 ev_stop (EV_A_ (W)w);
1428 1630
1429 fd_change (EV_A_ w->fd); 1631 fd_change (EV_A_ w->fd, 1);
1430} 1632}
1431 1633
1432void 1634void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1635ev_timer_start (EV_P_ ev_timer *w)
1434{ 1636{
1435 if (expect_false (ev_is_active (w))) 1637 if (expect_false (ev_is_active (w)))
1436 return; 1638 return;
1437 1639
1438 ((WT)w)->at += mn_now; 1640 ((WT)w)->at += mn_now;
1439 1641
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1642 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1643
1442 ev_start (EV_A_ (W)w, ++timercnt); 1644 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1645 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1646 timers [timercnt - 1] = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 1647 upheap (timers, timercnt - 1);
1446 1648
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1448} 1650}
1449 1651
1450void 1652void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1653ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1654{
1453 ev_clear_pending (EV_A_ (W)w); 1655 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1656 if (expect_false (!ev_is_active (w)))
1455 return; 1657 return;
1456 1658
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1659 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1458 1660
1661 {
1662 int active = ((W)w)->active;
1663
1459 if (expect_true (((W)w)->active < timercnt--)) 1664 if (expect_true (--active < --timercnt))
1460 { 1665 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1666 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1667 adjustheap (timers, timercnt, active);
1463 } 1668 }
1669 }
1464 1670
1465 ((WT)w)->at -= mn_now; 1671 ((WT)w)->at -= mn_now;
1466 1672
1467 ev_stop (EV_A_ (W)w); 1673 ev_stop (EV_A_ (W)w);
1468} 1674}
1469 1675
1470void 1676void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 1677ev_timer_again (EV_P_ ev_timer *w)
1472{ 1678{
1473 if (ev_is_active (w)) 1679 if (ev_is_active (w))
1474 { 1680 {
1475 if (w->repeat) 1681 if (w->repeat)
1476 { 1682 {
1477 ((WT)w)->at = mn_now + w->repeat; 1683 ((WT)w)->at = mn_now + w->repeat;
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1684 adjustheap (timers, timercnt, ((W)w)->active - 1);
1479 } 1685 }
1480 else 1686 else
1481 ev_timer_stop (EV_A_ w); 1687 ev_timer_stop (EV_A_ w);
1482 } 1688 }
1483 else if (w->repeat) 1689 else if (w->repeat)
1485 w->at = w->repeat; 1691 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1692 ev_timer_start (EV_A_ w);
1487 } 1693 }
1488} 1694}
1489 1695
1490#if EV_PERIODICS 1696#if EV_PERIODIC_ENABLE
1491void 1697void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1698ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1699{
1494 if (expect_false (ev_is_active (w))) 1700 if (expect_false (ev_is_active (w)))
1495 return; 1701 return;
1496 1702
1497 if (w->reschedule_cb) 1703 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1704 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 1705 else if (w->interval)
1500 { 1706 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1707 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1708 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 1710 }
1711 else
1712 ((WT)w)->at = w->offset;
1505 1713
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1714 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1715 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1716 periodics [periodiccnt - 1] = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1717 upheap (periodics, periodiccnt - 1);
1510 1718
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1720}
1513 1721
1514void 1722void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1723ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1724{
1517 ev_clear_pending (EV_A_ (W)w); 1725 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1726 if (expect_false (!ev_is_active (w)))
1519 return; 1727 return;
1520 1728
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1729 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1522 1730
1731 {
1732 int active = ((W)w)->active;
1733
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1734 if (expect_true (--active < --periodiccnt))
1524 { 1735 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1736 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1737 adjustheap (periodics, periodiccnt, active);
1527 } 1738 }
1739 }
1528 1740
1529 ev_stop (EV_A_ (W)w); 1741 ev_stop (EV_A_ (W)w);
1530} 1742}
1531 1743
1532void 1744void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1745ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1746{
1535 /* TODO: use adjustheap and recalculation */ 1747 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1748 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1749 ev_periodic_start (EV_A_ w);
1538} 1750}
1539#endif 1751#endif
1540 1752
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1753#ifndef SA_RESTART
1608# define SA_RESTART 0 1754# define SA_RESTART 0
1609#endif 1755#endif
1610 1756
1611void 1757void noinline
1612ev_signal_start (EV_P_ struct ev_signal *w) 1758ev_signal_start (EV_P_ ev_signal *w)
1613{ 1759{
1614#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1761 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1762#endif
1617 if (expect_false (ev_is_active (w))) 1763 if (expect_false (ev_is_active (w)))
1618 return; 1764 return;
1619 1765
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1766 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 1767
1768 {
1769#ifndef _WIN32
1770 sigset_t full, prev;
1771 sigfillset (&full);
1772 sigprocmask (SIG_SETMASK, &full, &prev);
1773#endif
1774
1775 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1776
1777#ifndef _WIN32
1778 sigprocmask (SIG_SETMASK, &prev, 0);
1779#endif
1780 }
1781
1622 ev_start (EV_A_ (W)w, 1); 1782 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1783 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 1784
1626 if (!((WL)w)->next) 1785 if (!((WL)w)->next)
1627 { 1786 {
1628#if _WIN32 1787#if _WIN32
1629 signal (w->signum, sighandler); 1788 signal (w->signum, sighandler);
1635 sigaction (w->signum, &sa, 0); 1794 sigaction (w->signum, &sa, 0);
1636#endif 1795#endif
1637 } 1796 }
1638} 1797}
1639 1798
1640void 1799void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1800ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1801{
1643 ev_clear_pending (EV_A_ (W)w); 1802 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1803 if (expect_false (!ev_is_active (w)))
1645 return; 1804 return;
1646 1805
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1806 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 1807 ev_stop (EV_A_ (W)w);
1649 1808
1650 if (!signals [w->signum - 1].head) 1809 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1810 signal (w->signum, SIG_DFL);
1652} 1811}
1653 1812
1654void 1813void
1655ev_child_start (EV_P_ struct ev_child *w) 1814ev_child_start (EV_P_ ev_child *w)
1656{ 1815{
1657#if EV_MULTIPLICITY 1816#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1817 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1818#endif
1660 if (expect_false (ev_is_active (w))) 1819 if (expect_false (ev_is_active (w)))
1661 return; 1820 return;
1662 1821
1663 ev_start (EV_A_ (W)w, 1); 1822 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 1824}
1666 1825
1667void 1826void
1668ev_child_stop (EV_P_ struct ev_child *w) 1827ev_child_stop (EV_P_ ev_child *w)
1669{ 1828{
1670 ev_clear_pending (EV_A_ (W)w); 1829 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1830 if (expect_false (!ev_is_active (w)))
1672 return; 1831 return;
1673 1832
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1833 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1676} 1835}
1677 1836
1678#if EV_MULTIPLICITY 1837#if EV_STAT_ENABLE
1838
1839# ifdef _WIN32
1840# undef lstat
1841# define lstat(a,b) _stati64 (a,b)
1842# endif
1843
1844#define DEF_STAT_INTERVAL 5.0074891
1845#define MIN_STAT_INTERVAL 0.1074891
1846
1847static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1848
1849#if EV_USE_INOTIFY
1850# define EV_INOTIFY_BUFSIZE 8192
1851
1852static void noinline
1853infy_add (EV_P_ ev_stat *w)
1854{
1855 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1856
1857 if (w->wd < 0)
1858 {
1859 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1860
1861 /* monitor some parent directory for speedup hints */
1862 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1863 {
1864 char path [4096];
1865 strcpy (path, w->path);
1866
1867 do
1868 {
1869 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1870 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1871
1872 char *pend = strrchr (path, '/');
1873
1874 if (!pend)
1875 break; /* whoops, no '/', complain to your admin */
1876
1877 *pend = 0;
1878 w->wd = inotify_add_watch (fs_fd, path, mask);
1879 }
1880 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1881 }
1882 }
1883 else
1884 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1885
1886 if (w->wd >= 0)
1887 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1888}
1889
1890static void noinline
1891infy_del (EV_P_ ev_stat *w)
1892{
1893 int slot;
1894 int wd = w->wd;
1895
1896 if (wd < 0)
1897 return;
1898
1899 w->wd = -2;
1900 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1901 wlist_del (&fs_hash [slot].head, (WL)w);
1902
1903 /* remove this watcher, if others are watching it, they will rearm */
1904 inotify_rm_watch (fs_fd, wd);
1905}
1906
1907static void noinline
1908infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1909{
1910 if (slot < 0)
1911 /* overflow, need to check for all hahs slots */
1912 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1913 infy_wd (EV_A_ slot, wd, ev);
1914 else
1915 {
1916 WL w_;
1917
1918 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1919 {
1920 ev_stat *w = (ev_stat *)w_;
1921 w_ = w_->next; /* lets us remove this watcher and all before it */
1922
1923 if (w->wd == wd || wd == -1)
1924 {
1925 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1926 {
1927 w->wd = -1;
1928 infy_add (EV_A_ w); /* re-add, no matter what */
1929 }
1930
1931 stat_timer_cb (EV_A_ &w->timer, 0);
1932 }
1933 }
1934 }
1935}
1936
1679static void 1937static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1938infy_cb (EV_P_ ev_io *w, int revents)
1681{ 1939{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1940 char buf [EV_INOTIFY_BUFSIZE];
1941 struct inotify_event *ev = (struct inotify_event *)buf;
1942 int ofs;
1943 int len = read (fs_fd, buf, sizeof (buf));
1683 1944
1945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1947}
1948
1949void inline_size
1950infy_init (EV_P)
1951{
1952 if (fs_fd != -2)
1953 return;
1954
1955 fs_fd = inotify_init ();
1956
1957 if (fs_fd >= 0)
1958 {
1959 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1960 ev_set_priority (&fs_w, EV_MAXPRI);
1961 ev_io_start (EV_A_ &fs_w);
1962 }
1963}
1964
1965void inline_size
1966infy_fork (EV_P)
1967{
1968 int slot;
1969
1970 if (fs_fd < 0)
1971 return;
1972
1973 close (fs_fd);
1974 fs_fd = inotify_init ();
1975
1976 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1977 {
1978 WL w_ = fs_hash [slot].head;
1979 fs_hash [slot].head = 0;
1980
1981 while (w_)
1982 {
1983 ev_stat *w = (ev_stat *)w_;
1984 w_ = w_->next; /* lets us add this watcher */
1985
1986 w->wd = -1;
1987
1988 if (fs_fd >= 0)
1989 infy_add (EV_A_ w); /* re-add, no matter what */
1990 else
1991 ev_timer_start (EV_A_ &w->timer);
1992 }
1993
1994 }
1995}
1996
1997#endif
1998
1999void
2000ev_stat_stat (EV_P_ ev_stat *w)
2001{
2002 if (lstat (w->path, &w->attr) < 0)
2003 w->attr.st_nlink = 0;
2004 else if (!w->attr.st_nlink)
2005 w->attr.st_nlink = 1;
2006}
2007
2008static void noinline
2009stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2010{
2011 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2012
2013 /* we copy this here each the time so that */
2014 /* prev has the old value when the callback gets invoked */
2015 w->prev = w->attr;
2016 ev_stat_stat (EV_A_ w);
2017
2018 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2019 if (
2020 w->prev.st_dev != w->attr.st_dev
2021 || w->prev.st_ino != w->attr.st_ino
2022 || w->prev.st_mode != w->attr.st_mode
2023 || w->prev.st_nlink != w->attr.st_nlink
2024 || w->prev.st_uid != w->attr.st_uid
2025 || w->prev.st_gid != w->attr.st_gid
2026 || w->prev.st_rdev != w->attr.st_rdev
2027 || w->prev.st_size != w->attr.st_size
2028 || w->prev.st_atime != w->attr.st_atime
2029 || w->prev.st_mtime != w->attr.st_mtime
2030 || w->prev.st_ctime != w->attr.st_ctime
2031 ) {
2032 #if EV_USE_INOTIFY
2033 infy_del (EV_A_ w);
2034 infy_add (EV_A_ w);
2035 ev_stat_stat (EV_A_ w); /* avoid race... */
2036 #endif
2037
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2038 ev_feed_event (EV_A_ w, EV_STAT);
2039 }
2040}
2041
2042void
2043ev_stat_start (EV_P_ ev_stat *w)
2044{
2045 if (expect_false (ev_is_active (w)))
2046 return;
2047
2048 /* since we use memcmp, we need to clear any padding data etc. */
2049 memset (&w->prev, 0, sizeof (ev_statdata));
2050 memset (&w->attr, 0, sizeof (ev_statdata));
2051
2052 ev_stat_stat (EV_A_ w);
2053
2054 if (w->interval < MIN_STAT_INTERVAL)
2055 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2056
2057 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2058 ev_set_priority (&w->timer, ev_priority (w));
2059
2060#if EV_USE_INOTIFY
2061 infy_init (EV_A);
2062
2063 if (fs_fd >= 0)
2064 infy_add (EV_A_ w);
2065 else
2066#endif
2067 ev_timer_start (EV_A_ &w->timer);
2068
2069 ev_start (EV_A_ (W)w, 1);
2070}
2071
2072void
2073ev_stat_stop (EV_P_ ev_stat *w)
2074{
2075 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w)))
2077 return;
2078
2079#if EV_USE_INOTIFY
2080 infy_del (EV_A_ w);
2081#endif
2082 ev_timer_stop (EV_A_ &w->timer);
2083
2084 ev_stop (EV_A_ (W)w);
2085}
2086#endif
2087
2088#if EV_IDLE_ENABLE
2089void
2090ev_idle_start (EV_P_ ev_idle *w)
2091{
2092 if (expect_false (ev_is_active (w)))
2093 return;
2094
2095 pri_adjust (EV_A_ (W)w);
2096
2097 {
2098 int active = ++idlecnt [ABSPRI (w)];
2099
2100 ++idleall;
2101 ev_start (EV_A_ (W)w, active);
2102
2103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2104 idles [ABSPRI (w)][active - 1] = w;
2105 }
2106}
2107
2108void
2109ev_idle_stop (EV_P_ ev_idle *w)
2110{
2111 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w)))
2113 return;
2114
2115 {
2116 int active = ((W)w)->active;
2117
2118 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2119 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2120
2121 ev_stop (EV_A_ (W)w);
2122 --idleall;
2123 }
2124}
2125#endif
2126
2127void
2128ev_prepare_start (EV_P_ ev_prepare *w)
2129{
2130 if (expect_false (ev_is_active (w)))
2131 return;
2132
2133 ev_start (EV_A_ (W)w, ++preparecnt);
2134 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2135 prepares [preparecnt - 1] = w;
2136}
2137
2138void
2139ev_prepare_stop (EV_P_ ev_prepare *w)
2140{
2141 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w)))
2143 return;
2144
2145 {
2146 int active = ((W)w)->active;
2147 prepares [active - 1] = prepares [--preparecnt];
2148 ((W)prepares [active - 1])->active = active;
2149 }
2150
2151 ev_stop (EV_A_ (W)w);
2152}
2153
2154void
2155ev_check_start (EV_P_ ev_check *w)
2156{
2157 if (expect_false (ev_is_active (w)))
2158 return;
2159
2160 ev_start (EV_A_ (W)w, ++checkcnt);
2161 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2162 checks [checkcnt - 1] = w;
2163}
2164
2165void
2166ev_check_stop (EV_P_ ev_check *w)
2167{
2168 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w)))
2170 return;
2171
2172 {
2173 int active = ((W)w)->active;
2174 checks [active - 1] = checks [--checkcnt];
2175 ((W)checks [active - 1])->active = active;
2176 }
2177
2178 ev_stop (EV_A_ (W)w);
2179}
2180
2181#if EV_EMBED_ENABLE
2182void noinline
2183ev_embed_sweep (EV_P_ ev_embed *w)
2184{
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2185 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 2186}
1687 2187
2188static void
2189embed_cb (EV_P_ ev_io *io, int revents)
2190{
2191 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2192
2193 if (ev_cb (w))
2194 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2195 else
2196 ev_embed_sweep (loop, w);
2197}
2198
1688void 2199void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2200ev_embed_start (EV_P_ ev_embed *w)
1690{ 2201{
1691 if (expect_false (ev_is_active (w))) 2202 if (expect_false (ev_is_active (w)))
1692 return; 2203 return;
1693 2204
1694 { 2205 {
1695 struct ev_loop *loop = w->loop; 2206 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2207 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2208 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 2209 }
1699 2210
2211 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2212 ev_io_start (EV_A_ &w->io);
2213
1701 ev_start (EV_A_ (W)w, 1); 2214 ev_start (EV_A_ (W)w, 1);
1702} 2215}
1703 2216
1704void 2217void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2218ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2219{
1707 ev_clear_pending (EV_A_ (W)w); 2220 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2221 if (expect_false (!ev_is_active (w)))
1709 return; 2222 return;
1710 2223
1711 ev_io_stop (EV_A_ &w->io); 2224 ev_io_stop (EV_A_ &w->io);
2225
1712 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1713} 2227}
1714#endif 2228#endif
1715 2229
2230#if EV_FORK_ENABLE
2231void
2232ev_fork_start (EV_P_ ev_fork *w)
2233{
2234 if (expect_false (ev_is_active (w)))
2235 return;
2236
2237 ev_start (EV_A_ (W)w, ++forkcnt);
2238 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2239 forks [forkcnt - 1] = w;
2240}
2241
2242void
2243ev_fork_stop (EV_P_ ev_fork *w)
2244{
2245 clear_pending (EV_A_ (W)w);
2246 if (expect_false (!ev_is_active (w)))
2247 return;
2248
2249 {
2250 int active = ((W)w)->active;
2251 forks [active - 1] = forks [--forkcnt];
2252 ((W)forks [active - 1])->active = active;
2253 }
2254
2255 ev_stop (EV_A_ (W)w);
2256}
2257#endif
2258
1716/*****************************************************************************/ 2259/*****************************************************************************/
1717 2260
1718struct ev_once 2261struct ev_once
1719{ 2262{
1720 struct ev_io io; 2263 ev_io io;
1721 struct ev_timer to; 2264 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2265 void (*cb)(int revents, void *arg);
1723 void *arg; 2266 void *arg;
1724}; 2267};
1725 2268
1726static void 2269static void
1735 2278
1736 cb (revents, arg); 2279 cb (revents, arg);
1737} 2280}
1738 2281
1739static void 2282static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2283once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2284{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2285 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2286}
1744 2287
1745static void 2288static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2289once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2290{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2291 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2292}
1750 2293
1751void 2294void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines