ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.188 by root, Thu Dec 20 07:12:57 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
167#endif 205#endif
168 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
169#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 217# include <winsock.h>
171#endif 218#endif
172 219
173/**/ 220/**/
174 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 235
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 236#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 238# define noinline __attribute__ ((noinline))
189#else 239#else
190# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
191# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
192#endif 245#endif
193 246
194#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
196 256
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 259
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
202 262
203typedef struct ev_watcher *W; 263typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
206 266
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 268
209#ifdef _WIN32 269#ifdef _WIN32
210# include "ev_win32.c" 270# include "ev_win32.c"
212 272
213/*****************************************************************************/ 273/*****************************************************************************/
214 274
215static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
216 276
277void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 279{
219 syserr_cb = cb; 280 syserr_cb = cb;
220} 281}
221 282
222static void 283static void noinline
223syserr (const char *msg) 284syserr (const char *msg)
224{ 285{
225 if (!msg) 286 if (!msg)
226 msg = "(libev) system error"; 287 msg = "(libev) system error";
227 288
234 } 295 }
235} 296}
236 297
237static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
238 299
300void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 302{
241 alloc = cb; 303 alloc = cb;
242} 304}
243 305
244static void * 306inline_speed void *
245ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
246{ 308{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 310
249 if (!ptr && size) 311 if (!ptr && size)
273typedef struct 335typedef struct
274{ 336{
275 W w; 337 W w;
276 int events; 338 int events;
277} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
278 347
279#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
280 349
281 struct ev_loop 350 struct ev_loop
282 { 351 {
316 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 387#endif
319} 388}
320 389
321inline ev_tstamp 390ev_tstamp inline_size
322get_clock (void) 391get_clock (void)
323{ 392{
324#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
326 { 395 {
339{ 408{
340 return ev_rt_now; 409 return ev_rt_now;
341} 410}
342#endif 411#endif
343 412
344#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
345 440
346#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
348 { \ 443 { \
349 int newcnt = cur; \ 444 int ocur_ = (cur); \
350 do \ 445 (base) = (type *)array_realloc \
351 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 448 }
360 449
450#if 0
361#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 453 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 457 }
458#endif
368 459
369#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 462
372/*****************************************************************************/ 463/*****************************************************************************/
373 464
374static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
375anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
376{ 495{
377 while (count--) 496 while (count--)
378 { 497 {
379 base->head = 0; 498 base->head = 0;
382 501
383 ++base; 502 ++base;
384 } 503 }
385} 504}
386 505
387void 506void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
415{ 508{
416 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 510 ev_io *w;
418 511
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 513 {
421 int ev = w->events & revents; 514 int ev = w->events & revents;
422 515
423 if (ev) 516 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
426} 519}
427 520
428void 521void
429ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 523{
524 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
432} 526}
433 527
434/*****************************************************************************/ 528void inline_size
435
436inline void
437fd_reify (EV_P) 529fd_reify (EV_P)
438{ 530{
439 int i; 531 int i;
440 532
441 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
442 { 534 {
443 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 537 ev_io *w;
446 538
447 int events = 0; 539 unsigned char events = 0;
448 540
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 542 events |= (unsigned char)w->events;
451 543
452#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
453 if (events) 545 if (events)
454 { 546 {
455 unsigned long argp; 547 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 550 }
459#endif 551#endif
460 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
461 anfd->reify = 0; 557 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
465 } 563 }
466 564
467 fdchangecnt = 0; 565 fdchangecnt = 0;
468} 566}
469 567
470static void 568void inline_size
471fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
472{ 570{
473 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
477 573
574 if (expect_true (!reify))
575 {
478 ++fdchangecnt; 576 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
481} 580}
482 581
483static void 582void inline_speed
484fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
485{ 584{
486 struct ev_io *w; 585 ev_io *w;
487 586
488 while ((w = (struct ev_io *)anfds [fd].head)) 587 while ((w = (ev_io *)anfds [fd].head))
489 { 588 {
490 ev_io_stop (EV_A_ w); 589 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 591 }
493} 592}
494 593
495inline int 594int inline_size
496fd_valid (int fd) 595fd_valid (int fd)
497{ 596{
498#ifdef _WIN32 597#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 598 return _get_osfhandle (fd) != -1;
500#else 599#else
501 return fcntl (fd, F_GETFD) != -1; 600 return fcntl (fd, F_GETFD) != -1;
502#endif 601#endif
503} 602}
504 603
505/* called on EBADF to verify fds */ 604/* called on EBADF to verify fds */
506static void 605static void noinline
507fd_ebadf (EV_P) 606fd_ebadf (EV_P)
508{ 607{
509 int fd; 608 int fd;
510 609
511 for (fd = 0; fd < anfdmax; ++fd) 610 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 612 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 613 fd_kill (EV_A_ fd);
515} 614}
516 615
517/* called on ENOMEM in select/poll to kill some fds and retry */ 616/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 617static void noinline
519fd_enomem (EV_P) 618fd_enomem (EV_P)
520{ 619{
521 int fd; 620 int fd;
522 621
523 for (fd = anfdmax; fd--; ) 622 for (fd = anfdmax; fd--; )
527 return; 626 return;
528 } 627 }
529} 628}
530 629
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 630/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 631static void noinline
533fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
534{ 633{
535 int fd; 634 int fd;
536 635
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 637 if (anfds [fd].events)
540 { 638 {
541 anfds [fd].events = 0; 639 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 641 }
544} 642}
545 643
546/*****************************************************************************/ 644/*****************************************************************************/
547 645
548static void 646void inline_speed
549upheap (WT *heap, int k) 647upheap (WT *heap, int k)
550{ 648{
551 WT w = heap [k]; 649 WT w = heap [k];
552 650
553 while (k && heap [k >> 1]->at > w->at) 651 while (k)
554 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
555 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
557 k >>= 1; 660 k = p;
558 } 661 }
559 662
560 heap [k] = w; 663 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
562
563} 665}
564 666
565static void 667void inline_speed
566downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
567{ 669{
568 WT w = heap [k]; 670 WT w = heap [k];
569 671
570 while (k < (N >> 1)) 672 for (;;)
571 { 673 {
572 int j = k << 1; 674 int c = (k << 1) + 1;
573 675
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 677 break;
579 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
580 heap [k] = heap [j]; 685 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
582 k = j; 688 k = c;
583 } 689 }
584 690
585 heap [k] = w; 691 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
587} 693}
588 694
589inline void 695void inline_size
590adjustheap (WT *heap, int N, int k) 696adjustheap (WT *heap, int N, int k)
591{ 697{
592 upheap (heap, k); 698 upheap (heap, k);
593 downheap (heap, N, k); 699 downheap (heap, N, k);
594} 700}
604static ANSIG *signals; 710static ANSIG *signals;
605static int signalmax; 711static int signalmax;
606 712
607static int sigpipe [2]; 713static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 714static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 715static ev_io sigev;
610 716
611static void 717void inline_size
612signals_init (ANSIG *base, int count) 718signals_init (ANSIG *base, int count)
613{ 719{
614 while (count--) 720 while (count--)
615 { 721 {
616 base->head = 0; 722 base->head = 0;
636 write (sigpipe [1], &signum, 1); 742 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 743 errno = old_errno;
638 } 744 }
639} 745}
640 746
641void 747void noinline
642ev_feed_signal_event (EV_P_ int signum) 748ev_feed_signal_event (EV_P_ int signum)
643{ 749{
644 WL w; 750 WL w;
645 751
646#if EV_MULTIPLICITY 752#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 763 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 765}
660 766
661static void 767static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 768sigcb (EV_P_ ev_io *iow, int revents)
663{ 769{
664 int signum; 770 int signum;
665 771
666 read (sigpipe [0], &revents, 1); 772 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 773 gotsig = 0;
669 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
672} 778}
673 779
674static void 780void inline_speed
675fd_intern (int fd) 781fd_intern (int fd)
676{ 782{
677#ifdef _WIN32 783#ifdef _WIN32
678 int arg = 1; 784 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 787 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 788 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 789#endif
684} 790}
685 791
686static void 792static void noinline
687siginit (EV_P) 793siginit (EV_P)
688{ 794{
689 fd_intern (sigpipe [0]); 795 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 796 fd_intern (sigpipe [1]);
691 797
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 801}
696 802
697/*****************************************************************************/ 803/*****************************************************************************/
698 804
699static struct ev_child *childs [PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
700 806
701#ifndef _WIN32 807#ifndef _WIN32
702 808
703static struct ev_signal childev; 809static ev_signal childev;
810
811void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
813{
814 ev_child *w;
815
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
817 if (w->pid == pid || !w->pid)
818 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
820 w->rpid = pid;
821 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 }
824}
704 825
705#ifndef WCONTINUED 826#ifndef WCONTINUED
706# define WCONTINUED 0 827# define WCONTINUED 0
707#endif 828#endif
708 829
709static void 830static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 831childcb (EV_P_ ev_signal *sw, int revents)
726{ 832{
727 int pid, status; 833 int pid, status;
728 834
835 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 836 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 837 if (!WCONTINUED
838 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return;
841
731 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 843 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 845
735 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 849}
739 850
740#endif 851#endif
741 852
742/*****************************************************************************/ 853/*****************************************************************************/
768{ 879{
769 return EV_VERSION_MINOR; 880 return EV_VERSION_MINOR;
770} 881}
771 882
772/* return true if we are running with elevated privileges and should ignore env variables */ 883/* return true if we are running with elevated privileges and should ignore env variables */
773static int 884int inline_size
774enable_secure (void) 885enable_secure (void)
775{ 886{
776#ifdef _WIN32 887#ifdef _WIN32
777 return 0; 888 return 0;
778#else 889#else
812 923
813 return flags; 924 return flags;
814} 925}
815 926
816unsigned int 927unsigned int
928ev_embeddable_backends (void)
929{
930 return EVBACKEND_EPOLL
931 | EVBACKEND_KQUEUE
932 | EVBACKEND_PORT;
933}
934
935unsigned int
817ev_backend (EV_P) 936ev_backend (EV_P)
818{ 937{
819 return backend; 938 return backend;
820} 939}
821 940
822static void 941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
823loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
824{ 949{
825 if (!backend) 950 if (!backend)
826 { 951 {
827#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
835 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
836 mn_now = get_clock (); 961 mn_now = get_clock ();
837 now_floor = mn_now; 962 now_floor = mn_now;
838 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
839 964
965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
840 if (!(flags & EVFLAG_NOENV) 971 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 972 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 973 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
844 975
845 if (!(flags & 0x0000ffffUL)) 976 if (!(flags & 0x0000ffffUL))
846 flags |= ev_recommended_backends (); 977 flags |= ev_recommended_backends ();
847 978
848 backend = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
849#if EV_USE_PORT 985#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 987#endif
852#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
865 ev_init (&sigev, sigcb); 1001 ev_init (&sigev, sigcb);
866 ev_set_priority (&sigev, EV_MAXPRI); 1002 ev_set_priority (&sigev, EV_MAXPRI);
867 } 1003 }
868} 1004}
869 1005
870static void 1006static void noinline
871loop_destroy (EV_P) 1007loop_destroy (EV_P)
872{ 1008{
873 int i; 1009 int i;
1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
874 1018
875#if EV_USE_PORT 1019#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1021#endif
878#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1031#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1033#endif
890 1034
891 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
892 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
1042
1043 ev_free (anfds); anfdmax = 0;
893 1044
894 /* have to use the microsoft-never-gets-it-right macro */ 1045 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 1046 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1047 array_free (timer, EMPTY);
897#if EV_PERIODICS 1048#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1049 array_free (periodic, EMPTY);
899#endif 1050#endif
1051#if EV_FORK_ENABLE
900 array_free (idle, EMPTY0); 1052 array_free (fork, EMPTY);
1053#endif
901 array_free (prepare, EMPTY0); 1054 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1055 array_free (check, EMPTY);
903 1056
904 backend = 0; 1057 backend = 0;
905} 1058}
906 1059
907static void 1060void inline_size infy_fork (EV_P);
1061
1062void inline_size
908loop_fork (EV_P) 1063loop_fork (EV_P)
909{ 1064{
910#if EV_USE_PORT 1065#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1067#endif
913#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1069 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1070#endif
916#if EV_USE_EPOLL 1071#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1072 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1073#endif
1074#if EV_USE_INOTIFY
1075 infy_fork (EV_A);
918#endif 1076#endif
919 1077
920 if (ev_is_active (&sigev)) 1078 if (ev_is_active (&sigev))
921 { 1079 {
922 /* default loop */ 1080 /* default loop */
1038 postfork = 1; 1196 postfork = 1;
1039} 1197}
1040 1198
1041/*****************************************************************************/ 1199/*****************************************************************************/
1042 1200
1043static int 1201void
1044any_pending (EV_P) 1202ev_invoke (EV_P_ void *w, int revents)
1045{ 1203{
1046 int pri; 1204 EV_CB_INVOKE ((W)w, revents);
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053} 1205}
1054 1206
1055inline void 1207void inline_speed
1056call_pending (EV_P) 1208call_pending (EV_P)
1057{ 1209{
1058 int pri; 1210 int pri;
1059 1211
1060 for (pri = NUMPRI; pri--; ) 1212 for (pri = NUMPRI; pri--; )
1062 { 1214 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1216
1065 if (expect_true (p->w)) 1217 if (expect_true (p->w))
1066 { 1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220
1067 p->w->pending = 0; 1221 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1222 EV_CB_INVOKE (p->w, p->events);
1069 } 1223 }
1070 } 1224 }
1071} 1225}
1072 1226
1073inline void 1227void inline_size
1074timers_reify (EV_P) 1228timers_reify (EV_P)
1075{ 1229{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1077 { 1231 {
1078 struct ev_timer *w = timers [0]; 1232 ev_timer *w = (ev_timer *)timers [0];
1079 1233
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1081 1235
1082 /* first reschedule or stop timer */ 1236 /* first reschedule or stop timer */
1083 if (w->repeat) 1237 if (w->repeat)
1084 { 1238 {
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 1240
1087 ((WT)w)->at += w->repeat; 1241 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now) 1242 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now; 1243 ((WT)w)->at = mn_now;
1090 1244
1091 downheap ((WT *)timers, timercnt, 0); 1245 downheap (timers, timercnt, 0);
1092 } 1246 }
1093 else 1247 else
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 1249
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1251 }
1098} 1252}
1099 1253
1100#if EV_PERIODICS 1254#if EV_PERIODIC_ENABLE
1101inline void 1255void inline_size
1102periodics_reify (EV_P) 1256periodics_reify (EV_P)
1103{ 1257{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1105 { 1259 {
1106 struct ev_periodic *w = periodics [0]; 1260 ev_periodic *w = (ev_periodic *)periodics [0];
1107 1261
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 1263
1110 /* first reschedule or stop timer */ 1264 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1265 if (w->reschedule_cb)
1112 { 1266 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0); 1269 downheap (periodics, periodiccnt, 0);
1116 } 1270 }
1117 else if (w->interval) 1271 else if (w->interval)
1118 { 1272 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0); 1276 downheap (periodics, periodiccnt, 0);
1122 } 1277 }
1123 else 1278 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 1280
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1282 }
1128} 1283}
1129 1284
1130static void 1285static void noinline
1131periodics_reschedule (EV_P) 1286periodics_reschedule (EV_P)
1132{ 1287{
1133 int i; 1288 int i;
1134 1289
1135 /* adjust periodics after time jump */ 1290 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1291 for (i = 0; i < periodiccnt; ++i)
1137 { 1292 {
1138 struct ev_periodic *w = periodics [i]; 1293 ev_periodic *w = (ev_periodic *)periodics [i];
1139 1294
1140 if (w->reschedule_cb) 1295 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1297 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1144 } 1299 }
1145 1300
1146 /* now rebuild the heap */ 1301 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; ) 1302 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1303 downheap (periodics, periodiccnt, i);
1149} 1304}
1150#endif 1305#endif
1151 1306
1152inline int 1307#if EV_IDLE_ENABLE
1153time_update_monotonic (EV_P) 1308void inline_size
1309idle_reify (EV_P)
1154{ 1310{
1311 if (expect_false (idleall))
1312 {
1313 int pri;
1314
1315 for (pri = NUMPRI; pri--; )
1316 {
1317 if (pendingcnt [pri])
1318 break;
1319
1320 if (idlecnt [pri])
1321 {
1322 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1323 break;
1324 }
1325 }
1326 }
1327}
1328#endif
1329
1330void inline_speed
1331time_update (EV_P_ ev_tstamp max_block)
1332{
1333 int i;
1334
1335#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic))
1337 {
1338 ev_tstamp odiff = rtmn_diff;
1339
1155 mn_now = get_clock (); 1340 mn_now = get_clock ();
1156 1341
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1343 /* interpolate in the meantime */
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1344 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 { 1345 {
1159 ev_rt_now = rtmn_diff + mn_now; 1346 ev_rt_now = rtmn_diff + mn_now;
1160 return 0; 1347 return;
1161 } 1348 }
1162 else 1349
1163 {
1164 now_floor = mn_now; 1350 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 1352
1170inline void 1353 /* loop a few times, before making important decisions.
1171time_update (EV_P) 1354 * on the choice of "4": one iteration isn't enough,
1172{ 1355 * in case we get preempted during the calls to
1173 int i; 1356 * ev_time and get_clock. a second call is almost guaranteed
1174 1357 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 1358 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 1359 * in the unlikely event of having been preempted here.
1177 { 1360 */
1178 if (time_update_monotonic (EV_A)) 1361 for (i = 4; --i; )
1179 { 1362 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 1363 rtmn_diff = ev_rt_now - mn_now;
1185 1364
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1187 return; /* all is well */ 1366 return; /* all is well */
1188 1367
1189 ev_rt_now = ev_time (); 1368 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1369 mn_now = get_clock ();
1191 now_floor = mn_now; 1370 now_floor = mn_now;
1192 } 1371 }
1193 1372
1194# if EV_PERIODICS 1373# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A);
1375# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 }
1379 else
1380#endif
1381 {
1382 ev_rt_now = ev_time ();
1383
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 {
1386#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1387 periodics_reschedule (EV_A);
1196# endif 1388#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */ 1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 for (i = 0; i < timercnt; ++i) 1390 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now; 1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 } 1392 }
1216 1393
1217 mn_now = ev_rt_now; 1394 mn_now = ev_rt_now;
1233static int loop_done; 1410static int loop_done;
1234 1411
1235void 1412void
1236ev_loop (EV_P_ int flags) 1413ev_loop (EV_P_ int flags)
1237{ 1414{
1238 double block;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1416 ? EVUNLOOP_ONE
1417 : EVUNLOOP_CANCEL;
1240 1418
1241 while (activecnt) 1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1420
1421 do
1242 { 1422 {
1423#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid))
1426 {
1427 curpid = getpid ();
1428 postfork = 1;
1429 }
1430#endif
1431
1432#if EV_FORK_ENABLE
1433 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork))
1435 if (forkcnt)
1436 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A);
1439 }
1440#endif
1441
1243 /* queue check watchers (and execute them) */ 1442 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1443 if (expect_false (preparecnt))
1245 { 1444 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 1446 call_pending (EV_A);
1248 } 1447 }
1249 1448
1449 if (expect_false (!activecnt))
1450 break;
1451
1250 /* we might have forked, so reify kernel state if necessary */ 1452 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 1453 if (expect_false (postfork))
1252 loop_fork (EV_A); 1454 loop_fork (EV_A);
1253 1455
1254 /* update fd-related kernel structures */ 1456 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1457 fd_reify (EV_A);
1256 1458
1257 /* calculate blocking time */ 1459 /* calculate blocking time */
1460 {
1461 ev_tstamp block;
1258 1462
1259 /* we only need this for !monotonic clock or timers, but as we basically 1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1260 always have timers, we just calculate it always */ 1464 block = 0.; /* do not block at all */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else 1465 else
1265#endif
1266 { 1466 {
1267 ev_rt_now = ev_time (); 1467 /* update time to cancel out callback processing overhead */
1268 mn_now = ev_rt_now; 1468 time_update (EV_A_ 1e100);
1269 }
1270 1469
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1470 block = MAX_BLOCKTIME;
1276 1471
1277 if (timercnt) 1472 if (timercnt)
1278 { 1473 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1280 if (block > to) block = to; 1475 if (block > to) block = to;
1281 } 1476 }
1282 1477
1283#if EV_PERIODICS 1478#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1479 if (periodiccnt)
1285 { 1480 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1482 if (block > to) block = to;
1288 } 1483 }
1289#endif 1484#endif
1290 1485
1291 if (expect_false (block < 0.)) block = 0.; 1486 if (expect_false (block < 0.)) block = 0.;
1292 } 1487 }
1293 1488
1489 ++loop_count;
1294 backend_poll (EV_A_ block); 1490 backend_poll (EV_A_ block);
1295 1491
1296 /* update ev_rt_now, do magic */ 1492 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1493 time_update (EV_A_ block);
1494 }
1298 1495
1299 /* queue pending timers and reschedule them */ 1496 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1497 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1498#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1499 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1500#endif
1304 1501
1502#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 1503 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1504 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1505#endif
1308 1506
1309 /* queue check watchers, to be executed first */ 1507 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1508 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 1510
1313 call_pending (EV_A); 1511 call_pending (EV_A);
1314 1512
1315 if (expect_false (loop_done))
1316 break;
1317 } 1513 }
1514 while (expect_true (activecnt && !loop_done));
1318 1515
1319 if (loop_done != 2) 1516 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1517 loop_done = EVUNLOOP_CANCEL;
1321} 1518}
1322 1519
1323void 1520void
1324ev_unloop (EV_P_ int how) 1521ev_unloop (EV_P_ int how)
1325{ 1522{
1326 loop_done = how; 1523 loop_done = how;
1327} 1524}
1328 1525
1329/*****************************************************************************/ 1526/*****************************************************************************/
1330 1527
1331inline void 1528void inline_size
1332wlist_add (WL *head, WL elem) 1529wlist_add (WL *head, WL elem)
1333{ 1530{
1334 elem->next = *head; 1531 elem->next = *head;
1335 *head = elem; 1532 *head = elem;
1336} 1533}
1337 1534
1338inline void 1535void inline_size
1339wlist_del (WL *head, WL elem) 1536wlist_del (WL *head, WL elem)
1340{ 1537{
1341 while (*head) 1538 while (*head)
1342 { 1539 {
1343 if (*head == elem) 1540 if (*head == elem)
1348 1545
1349 head = &(*head)->next; 1546 head = &(*head)->next;
1350 } 1547 }
1351} 1548}
1352 1549
1353inline void 1550void inline_speed
1354ev_clear_pending (EV_P_ W w) 1551clear_pending (EV_P_ W w)
1355{ 1552{
1356 if (w->pending) 1553 if (w->pending)
1357 { 1554 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1555 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1556 w->pending = 0;
1360 } 1557 }
1361} 1558}
1362 1559
1363inline void 1560int
1561ev_clear_pending (EV_P_ void *w)
1562{
1563 W w_ = (W)w;
1564 int pending = w_->pending;
1565
1566 if (expect_true (pending))
1567 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1569 w_->pending = 0;
1570 p->w = 0;
1571 return p->events;
1572 }
1573 else
1574 return 0;
1575}
1576
1577void inline_size
1578pri_adjust (EV_P_ W w)
1579{
1580 int pri = w->priority;
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri;
1584}
1585
1586void inline_speed
1364ev_start (EV_P_ W w, int active) 1587ev_start (EV_P_ W w, int active)
1365{ 1588{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1589 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 1590 w->active = active;
1370 ev_ref (EV_A); 1591 ev_ref (EV_A);
1371} 1592}
1372 1593
1373inline void 1594void inline_size
1374ev_stop (EV_P_ W w) 1595ev_stop (EV_P_ W w)
1375{ 1596{
1376 ev_unref (EV_A); 1597 ev_unref (EV_A);
1377 w->active = 0; 1598 w->active = 0;
1378} 1599}
1379 1600
1380/*****************************************************************************/ 1601/*****************************************************************************/
1381 1602
1382void 1603void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 1604ev_io_start (EV_P_ ev_io *w)
1384{ 1605{
1385 int fd = w->fd; 1606 int fd = w->fd;
1386 1607
1387 if (expect_false (ev_is_active (w))) 1608 if (expect_false (ev_is_active (w)))
1388 return; 1609 return;
1389 1610
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 1611 assert (("ev_io_start called with negative fd", fd >= 0));
1391 1612
1392 ev_start (EV_A_ (W)w, 1); 1613 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1615 wlist_add (&anfds[fd].head, (WL)w);
1395 1616
1396 fd_change (EV_A_ fd); 1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1618 w->events &= ~EV_IOFDSET;
1397} 1619}
1398 1620
1399void 1621void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 1622ev_io_stop (EV_P_ ev_io *w)
1401{ 1623{
1402 ev_clear_pending (EV_A_ (W)w); 1624 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1625 if (expect_false (!ev_is_active (w)))
1404 return; 1626 return;
1405 1627
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 1629
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1630 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 1631 ev_stop (EV_A_ (W)w);
1410 1632
1411 fd_change (EV_A_ w->fd); 1633 fd_change (EV_A_ w->fd, 1);
1412} 1634}
1413 1635
1414void 1636void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 1637ev_timer_start (EV_P_ ev_timer *w)
1416{ 1638{
1417 if (expect_false (ev_is_active (w))) 1639 if (expect_false (ev_is_active (w)))
1418 return; 1640 return;
1419 1641
1420 ((WT)w)->at += mn_now; 1642 ((WT)w)->at += mn_now;
1421 1643
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1645
1424 ev_start (EV_A_ (W)w, ++timercnt); 1646 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1426 timers [timercnt - 1] = w; 1648 timers [timercnt - 1] = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 1649 upheap (timers, timercnt - 1);
1428 1650
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1430} 1652}
1431 1653
1432void 1654void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1655ev_timer_stop (EV_P_ ev_timer *w)
1434{ 1656{
1435 ev_clear_pending (EV_A_ (W)w); 1657 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 1658 if (expect_false (!ev_is_active (w)))
1437 return; 1659 return;
1438 1660
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1440 1662
1663 {
1664 int active = ((W)w)->active;
1665
1441 if (expect_true (((W)w)->active < timercnt--)) 1666 if (expect_true (--active < --timercnt))
1442 { 1667 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 1668 timers [active] = timers [timercnt];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1669 adjustheap (timers, timercnt, active);
1445 } 1670 }
1671 }
1446 1672
1447 ((WT)w)->at -= mn_now; 1673 ((WT)w)->at -= mn_now;
1448 1674
1449 ev_stop (EV_A_ (W)w); 1675 ev_stop (EV_A_ (W)w);
1450} 1676}
1451 1677
1452void 1678void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 1679ev_timer_again (EV_P_ ev_timer *w)
1454{ 1680{
1455 if (ev_is_active (w)) 1681 if (ev_is_active (w))
1456 { 1682 {
1457 if (w->repeat) 1683 if (w->repeat)
1458 { 1684 {
1459 ((WT)w)->at = mn_now + w->repeat; 1685 ((WT)w)->at = mn_now + w->repeat;
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1686 adjustheap (timers, timercnt, ((W)w)->active - 1);
1461 } 1687 }
1462 else 1688 else
1463 ev_timer_stop (EV_A_ w); 1689 ev_timer_stop (EV_A_ w);
1464 } 1690 }
1465 else if (w->repeat) 1691 else if (w->repeat)
1467 w->at = w->repeat; 1693 w->at = w->repeat;
1468 ev_timer_start (EV_A_ w); 1694 ev_timer_start (EV_A_ w);
1469 } 1695 }
1470} 1696}
1471 1697
1472#if EV_PERIODICS 1698#if EV_PERIODIC_ENABLE
1473void 1699void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1700ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1701{
1476 if (expect_false (ev_is_active (w))) 1702 if (expect_false (ev_is_active (w)))
1477 return; 1703 return;
1478 1704
1479 if (w->reschedule_cb) 1705 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 1707 else if (w->interval)
1482 { 1708 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1710 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 1712 }
1713 else
1714 ((WT)w)->at = w->offset;
1487 1715
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1716 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1718 periodics [periodiccnt - 1] = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1719 upheap (periodics, periodiccnt - 1);
1492 1720
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1494} 1722}
1495 1723
1496void 1724void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1725ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 1726{
1499 ev_clear_pending (EV_A_ (W)w); 1727 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 1728 if (expect_false (!ev_is_active (w)))
1501 return; 1729 return;
1502 1730
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1504 1732
1733 {
1734 int active = ((W)w)->active;
1735
1505 if (expect_true (((W)w)->active < periodiccnt--)) 1736 if (expect_true (--active < --periodiccnt))
1506 { 1737 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1738 periodics [active] = periodics [periodiccnt];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1739 adjustheap (periodics, periodiccnt, active);
1509 } 1740 }
1741 }
1510 1742
1511 ev_stop (EV_A_ (W)w); 1743 ev_stop (EV_A_ (W)w);
1512} 1744}
1513 1745
1514void 1746void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 1747ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 1748{
1517 /* TODO: use adjustheap and recalculation */ 1749 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 1750 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 1751 ev_periodic_start (EV_A_ w);
1520} 1752}
1521#endif 1753#endif
1522 1754
1523void
1524ev_idle_start (EV_P_ struct ev_idle *w)
1525{
1526 if (expect_false (ev_is_active (w)))
1527 return;
1528
1529 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w;
1532}
1533
1534void
1535ev_idle_stop (EV_P_ struct ev_idle *w)
1536{
1537 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w)))
1539 return;
1540
1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1542 ev_stop (EV_A_ (W)w);
1543}
1544
1545void
1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1547{
1548 if (expect_false (ev_is_active (w)))
1549 return;
1550
1551 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w;
1554}
1555
1556void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1558{
1559 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w)))
1561 return;
1562
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1564 ev_stop (EV_A_ (W)w);
1565}
1566
1567void
1568ev_check_start (EV_P_ struct ev_check *w)
1569{
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577
1578void
1579ev_check_stop (EV_P_ struct ev_check *w)
1580{
1581 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w)))
1583 return;
1584
1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1586 ev_stop (EV_A_ (W)w);
1587}
1588
1589#ifndef SA_RESTART 1755#ifndef SA_RESTART
1590# define SA_RESTART 0 1756# define SA_RESTART 0
1591#endif 1757#endif
1592 1758
1593void 1759void noinline
1594ev_signal_start (EV_P_ struct ev_signal *w) 1760ev_signal_start (EV_P_ ev_signal *w)
1595{ 1761{
1596#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1764#endif
1599 if (expect_false (ev_is_active (w))) 1765 if (expect_false (ev_is_active (w)))
1600 return; 1766 return;
1601 1767
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 1769
1770 {
1771#ifndef _WIN32
1772 sigset_t full, prev;
1773 sigfillset (&full);
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1778
1779#ifndef _WIN32
1780 sigprocmask (SIG_SETMASK, &prev, 0);
1781#endif
1782 }
1783
1604 ev_start (EV_A_ (W)w, 1); 1784 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1785 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 1786
1608 if (!((WL)w)->next) 1787 if (!((WL)w)->next)
1609 { 1788 {
1610#if _WIN32 1789#if _WIN32
1611 signal (w->signum, sighandler); 1790 signal (w->signum, sighandler);
1617 sigaction (w->signum, &sa, 0); 1796 sigaction (w->signum, &sa, 0);
1618#endif 1797#endif
1619 } 1798 }
1620} 1799}
1621 1800
1622void 1801void noinline
1623ev_signal_stop (EV_P_ struct ev_signal *w) 1802ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1803{
1625 ev_clear_pending (EV_A_ (W)w); 1804 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1805 if (expect_false (!ev_is_active (w)))
1627 return; 1806 return;
1628 1807
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1808 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 1809 ev_stop (EV_A_ (W)w);
1631 1810
1632 if (!signals [w->signum - 1].head) 1811 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1812 signal (w->signum, SIG_DFL);
1634} 1813}
1635 1814
1636void 1815void
1637ev_child_start (EV_P_ struct ev_child *w) 1816ev_child_start (EV_P_ ev_child *w)
1638{ 1817{
1639#if EV_MULTIPLICITY 1818#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 1820#endif
1642 if (expect_false (ev_is_active (w))) 1821 if (expect_false (ev_is_active (w)))
1643 return; 1822 return;
1644 1823
1645 ev_start (EV_A_ (W)w, 1); 1824 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 1826}
1648 1827
1649void 1828void
1650ev_child_stop (EV_P_ struct ev_child *w) 1829ev_child_stop (EV_P_ ev_child *w)
1651{ 1830{
1652 ev_clear_pending (EV_A_ (W)w); 1831 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1832 if (expect_false (!ev_is_active (w)))
1654 return; 1833 return;
1655 1834
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1836 ev_stop (EV_A_ (W)w);
1658} 1837}
1659 1838
1839#if EV_STAT_ENABLE
1840
1841# ifdef _WIN32
1842# undef lstat
1843# define lstat(a,b) _stati64 (a,b)
1844# endif
1845
1846#define DEF_STAT_INTERVAL 5.0074891
1847#define MIN_STAT_INTERVAL 0.1074891
1848
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850
1851#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192
1853
1854static void noinline
1855infy_add (EV_P_ ev_stat *w)
1856{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1858
1859 if (w->wd < 0)
1860 {
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1862
1863 /* monitor some parent directory for speedup hints */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 {
1866 char path [4096];
1867 strcpy (path, w->path);
1868
1869 do
1870 {
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873
1874 char *pend = strrchr (path, '/');
1875
1876 if (!pend)
1877 break; /* whoops, no '/', complain to your admin */
1878
1879 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 }
1884 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887
1888 if (w->wd >= 0)
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1890}
1891
1892static void noinline
1893infy_del (EV_P_ ev_stat *w)
1894{
1895 int slot;
1896 int wd = w->wd;
1897
1898 if (wd < 0)
1899 return;
1900
1901 w->wd = -2;
1902 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1903 wlist_del (&fs_hash [slot].head, (WL)w);
1904
1905 /* remove this watcher, if others are watching it, they will rearm */
1906 inotify_rm_watch (fs_fd, wd);
1907}
1908
1909static void noinline
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{
1912 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1915 infy_wd (EV_A_ slot, wd, ev);
1916 else
1917 {
1918 WL w_;
1919
1920 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1921 {
1922 ev_stat *w = (ev_stat *)w_;
1923 w_ = w_->next; /* lets us remove this watcher and all before it */
1924
1925 if (w->wd == wd || wd == -1)
1926 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 {
1929 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */
1931 }
1932
1933 stat_timer_cb (EV_A_ &w->timer, 0);
1934 }
1935 }
1936 }
1937}
1938
1939static void
1940infy_cb (EV_P_ ev_io *w, int revents)
1941{
1942 char buf [EV_INOTIFY_BUFSIZE];
1943 struct inotify_event *ev = (struct inotify_event *)buf;
1944 int ofs;
1945 int len = read (fs_fd, buf, sizeof (buf));
1946
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1949}
1950
1951void inline_size
1952infy_init (EV_P)
1953{
1954 if (fs_fd != -2)
1955 return;
1956
1957 fs_fd = inotify_init ();
1958
1959 if (fs_fd >= 0)
1960 {
1961 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1962 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w);
1964 }
1965}
1966
1967void inline_size
1968infy_fork (EV_P)
1969{
1970 int slot;
1971
1972 if (fs_fd < 0)
1973 return;
1974
1975 close (fs_fd);
1976 fs_fd = inotify_init ();
1977
1978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1979 {
1980 WL w_ = fs_hash [slot].head;
1981 fs_hash [slot].head = 0;
1982
1983 while (w_)
1984 {
1985 ev_stat *w = (ev_stat *)w_;
1986 w_ = w_->next; /* lets us add this watcher */
1987
1988 w->wd = -1;
1989
1990 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else
1993 ev_timer_start (EV_A_ &w->timer);
1994 }
1995
1996 }
1997}
1998
1999#endif
2000
2001void
2002ev_stat_stat (EV_P_ ev_stat *w)
2003{
2004 if (lstat (w->path, &w->attr) < 0)
2005 w->attr.st_nlink = 0;
2006 else if (!w->attr.st_nlink)
2007 w->attr.st_nlink = 1;
2008}
2009
2010static void noinline
2011stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2012{
2013 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2014
2015 /* we copy this here each the time so that */
2016 /* prev has the old value when the callback gets invoked */
2017 w->prev = w->attr;
2018 ev_stat_stat (EV_A_ w);
2019
2020 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2021 if (
2022 w->prev.st_dev != w->attr.st_dev
2023 || w->prev.st_ino != w->attr.st_ino
2024 || w->prev.st_mode != w->attr.st_mode
2025 || w->prev.st_nlink != w->attr.st_nlink
2026 || w->prev.st_uid != w->attr.st_uid
2027 || w->prev.st_gid != w->attr.st_gid
2028 || w->prev.st_rdev != w->attr.st_rdev
2029 || w->prev.st_size != w->attr.st_size
2030 || w->prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime
2033 ) {
2034 #if EV_USE_INOTIFY
2035 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */
2038 #endif
2039
2040 ev_feed_event (EV_A_ w, EV_STAT);
2041 }
2042}
2043
2044void
2045ev_stat_start (EV_P_ ev_stat *w)
2046{
2047 if (expect_false (ev_is_active (w)))
2048 return;
2049
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w);
2055
2056 if (w->interval < MIN_STAT_INTERVAL)
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2060 ev_set_priority (&w->timer, ev_priority (w));
2061
2062#if EV_USE_INOTIFY
2063 infy_init (EV_A);
2064
2065 if (fs_fd >= 0)
2066 infy_add (EV_A_ w);
2067 else
2068#endif
2069 ev_timer_start (EV_A_ &w->timer);
2070
2071 ev_start (EV_A_ (W)w, 1);
2072}
2073
2074void
2075ev_stat_stop (EV_P_ ev_stat *w)
2076{
2077 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w)))
2079 return;
2080
2081#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w);
2083#endif
2084 ev_timer_stop (EV_A_ &w->timer);
2085
2086 ev_stop (EV_A_ (W)w);
2087}
2088#endif
2089
2090#if EV_IDLE_ENABLE
2091void
2092ev_idle_start (EV_P_ ev_idle *w)
2093{
2094 if (expect_false (ev_is_active (w)))
2095 return;
2096
2097 pri_adjust (EV_A_ (W)w);
2098
2099 {
2100 int active = ++idlecnt [ABSPRI (w)];
2101
2102 ++idleall;
2103 ev_start (EV_A_ (W)w, active);
2104
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w;
2107 }
2108}
2109
2110void
2111ev_idle_stop (EV_P_ ev_idle *w)
2112{
2113 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w)))
2115 return;
2116
2117 {
2118 int active = ((W)w)->active;
2119
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2122
2123 ev_stop (EV_A_ (W)w);
2124 --idleall;
2125 }
2126}
2127#endif
2128
2129void
2130ev_prepare_start (EV_P_ ev_prepare *w)
2131{
2132 if (expect_false (ev_is_active (w)))
2133 return;
2134
2135 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w;
2138}
2139
2140void
2141ev_prepare_stop (EV_P_ ev_prepare *w)
2142{
2143 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w)))
2145 return;
2146
2147 {
2148 int active = ((W)w)->active;
2149 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active;
2151 }
2152
2153 ev_stop (EV_A_ (W)w);
2154}
2155
2156void
2157ev_check_start (EV_P_ ev_check *w)
2158{
2159 if (expect_false (ev_is_active (w)))
2160 return;
2161
2162 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w;
2165}
2166
2167void
2168ev_check_stop (EV_P_ ev_check *w)
2169{
2170 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w)))
2172 return;
2173
2174 {
2175 int active = ((W)w)->active;
2176 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active;
2178 }
2179
2180 ev_stop (EV_A_ (W)w);
2181}
2182
2183#if EV_EMBED_ENABLE
2184void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w)
2186{
2187 ev_loop (w->other, EVLOOP_NONBLOCK);
2188}
2189
2190static void
2191embed_cb (EV_P_ ev_io *io, int revents)
2192{
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194
2195 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else
2198 ev_embed_sweep (loop, w);
2199}
2200
2201void
2202ev_embed_start (EV_P_ ev_embed *w)
2203{
2204 if (expect_false (ev_is_active (w)))
2205 return;
2206
2207 {
2208 struct ev_loop *loop = w->other;
2209 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2210 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2211 }
2212
2213 ev_set_priority (&w->io, ev_priority (w));
2214 ev_io_start (EV_A_ &w->io);
2215
2216 ev_start (EV_A_ (W)w, 1);
2217}
2218
2219void
2220ev_embed_stop (EV_P_ ev_embed *w)
2221{
2222 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w)))
2224 return;
2225
2226 ev_io_stop (EV_A_ &w->io);
2227
2228 ev_stop (EV_A_ (W)w);
2229}
2230#endif
2231
2232#if EV_FORK_ENABLE
2233void
2234ev_fork_start (EV_P_ ev_fork *w)
2235{
2236 if (expect_false (ev_is_active (w)))
2237 return;
2238
2239 ev_start (EV_A_ (W)w, ++forkcnt);
2240 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2241 forks [forkcnt - 1] = w;
2242}
2243
2244void
2245ev_fork_stop (EV_P_ ev_fork *w)
2246{
2247 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w)))
2249 return;
2250
2251 {
2252 int active = ((W)w)->active;
2253 forks [active - 1] = forks [--forkcnt];
2254 ((W)forks [active - 1])->active = active;
2255 }
2256
2257 ev_stop (EV_A_ (W)w);
2258}
2259#endif
2260
1660/*****************************************************************************/ 2261/*****************************************************************************/
1661 2262
1662struct ev_once 2263struct ev_once
1663{ 2264{
1664 struct ev_io io; 2265 ev_io io;
1665 struct ev_timer to; 2266 ev_timer to;
1666 void (*cb)(int revents, void *arg); 2267 void (*cb)(int revents, void *arg);
1667 void *arg; 2268 void *arg;
1668}; 2269};
1669 2270
1670static void 2271static void
1679 2280
1680 cb (revents, arg); 2281 cb (revents, arg);
1681} 2282}
1682 2283
1683static void 2284static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 2285once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 2286{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 2288}
1688 2289
1689static void 2290static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 2291once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 2292{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2293 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 2294}
1694 2295
1695void 2296void
1719 ev_timer_set (&once->to, timeout, 0.); 2320 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 2321 ev_timer_start (EV_A_ &once->to);
1721 } 2322 }
1722} 2323}
1723 2324
2325#if EV_MULTIPLICITY
2326 #include "ev_wrap.h"
2327#endif
2328
1724#ifdef __cplusplus 2329#ifdef __cplusplus
1725} 2330}
1726#endif 2331#endif
1727 2332

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines