ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.189 by root, Thu Dec 20 10:12:22 2007 UTC vs.
Revision 1.262 by root, Wed Oct 1 04:25:25 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
207#if !EV_STAT_ENABLE 279#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 280# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
210#endif 282#endif
211 283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
212#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
213# include <sys/inotify.h> 291# include <sys/inotify.h>
214#endif 292#endif
215 293
216#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 295# include <winsock.h>
218#endif 296#endif
219 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
220/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
221 317
222/* 318/*
223 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
237# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
239#else 335#else
240# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
241# define noinline 337# define noinline
242# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 339# define inline
244# endif 340# endif
245#endif 341#endif
246 342
247#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
262 358
263typedef ev_watcher *W; 359typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
266 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
268 371
269#ifdef _WIN32 372#ifdef _WIN32
270# include "ev_win32.c" 373# include "ev_win32.c"
271#endif 374#endif
272 375
293 perror (msg); 396 perror (msg);
294 abort (); 397 abort ();
295 } 398 }
296} 399}
297 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
298static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 417
300void 418void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 420{
303 alloc = cb; 421 alloc = cb;
304} 422}
305 423
306inline_speed void * 424inline_speed void *
307ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
308{ 426{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
310 428
311 if (!ptr && size) 429 if (!ptr && size)
312 { 430 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 432 abort ();
337 W w; 455 W w;
338 int events; 456 int events;
339} ANPENDING; 457} ANPENDING;
340 458
341#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
342typedef struct 461typedef struct
343{ 462{
344 WL head; 463 WL head;
345} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
346#endif 483#endif
347 484
348#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
349 486
350 struct ev_loop 487 struct ev_loop
408{ 545{
409 return ev_rt_now; 546 return ev_rt_now;
410} 547}
411#endif 548#endif
412 549
550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
413int inline_size 582int inline_size
414array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
415{ 584{
416 int ncur = cur + 1; 585 int ncur = cur + 1;
417 586
418 do 587 do
419 ncur <<= 1; 588 ncur <<= 1;
420 while (cnt > ncur); 589 while (cnt > ncur);
421 590
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 593 {
425 ncur *= elem; 594 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 597 ncur /= elem;
429 } 598 }
430 599
431 return ncur; 600 return ncur;
542 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
543 712
544#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
545 if (events) 714 if (events)
546 { 715 {
547 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
548 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 723 }
551#endif 724#endif
552 725
553 { 726 {
554 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
607{ 780{
608 int fd; 781 int fd;
609 782
610 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 784 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
614} 787}
615 788
616/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 790static void noinline
641 } 814 }
642} 815}
643 816
644/*****************************************************************************/ 817/*****************************************************************************/
645 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
646void inline_speed 839void inline_speed
647upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
648{ 841{
649 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
650 844
651 while (k) 845 for (;;)
652 { 846 {
653 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
654 850
655 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
656 break; 867 break;
657 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
658 heap [k] = heap [p]; 931 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 933 k = p;
661 } 934 }
662 935
663 heap [k] = w; 936 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693} 938}
694 939
695void inline_size 940void inline_size
696adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
697{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
698 upheap (heap, k); 944 upheap (heap, k);
945 else
699 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
700} 959}
701 960
702/*****************************************************************************/ 961/*****************************************************************************/
703 962
704typedef struct 963typedef struct
705{ 964{
706 WL head; 965 WL head;
707 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
708} ANSIG; 967} ANSIG;
709 968
710static ANSIG *signals; 969static ANSIG *signals;
711static int signalmax; 970static int signalmax;
712 971
713static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 973
717void inline_size 974void inline_size
718signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
719{ 976{
720 while (count--) 977 while (count--)
724 981
725 ++base; 982 ++base;
726 } 983 }
727} 984}
728 985
729static void 986/*****************************************************************************/
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779 987
780void inline_speed 988void inline_speed
781fd_intern (int fd) 989fd_intern (int fd)
782{ 990{
783#ifdef _WIN32 991#ifdef _WIN32
784 int arg = 1; 992 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else 994#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 997#endif
790} 998}
791 999
792static void noinline 1000static void noinline
793siginit (EV_P) 1001evpipe_init (EV_P)
794{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
795 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
797 1022
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
801} 1091}
802 1092
803/*****************************************************************************/ 1093/*****************************************************************************/
804 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
805static WL childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
806 1133
807#ifndef _WIN32 1134#ifndef _WIN32
808 1135
809static ev_signal childev; 1136static ev_signal childev;
810 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
811void inline_speed 1142void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
813{ 1144{
814 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1147
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
817 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
818 { 1152 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1154 w->rpid = pid;
821 w->rstatus = status; 1155 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1157 }
1158 }
824} 1159}
825 1160
826#ifndef WCONTINUED 1161#ifndef WCONTINUED
827# define WCONTINUED 0 1162# define WCONTINUED 0
828#endif 1163#endif
837 if (!WCONTINUED 1172 if (!WCONTINUED
838 || errno != EINVAL 1173 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1175 return;
841 1176
842 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1180
846 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1184}
850 1185
851#endif 1186#endif
852 1187
853/*****************************************************************************/ 1188/*****************************************************************************/
925} 1260}
926 1261
927unsigned int 1262unsigned int
928ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
929{ 1264{
930 return EVBACKEND_EPOLL 1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 1266
932 | EVBACKEND_PORT; 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
933} 1272}
934 1273
935unsigned int 1274unsigned int
936ev_backend (EV_P) 1275ev_backend (EV_P)
937{ 1276{
940 1279
941unsigned int 1280unsigned int
942ev_loop_count (EV_P) 1281ev_loop_count (EV_P)
943{ 1282{
944 return loop_count; 1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
945} 1296}
946 1297
947static void noinline 1298static void noinline
948loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
949{ 1300{
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1307 have_monotonic = 1;
957 } 1308 }
958#endif 1309#endif
959 1310
960 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
961 mn_now = get_clock (); 1312 mn_now = get_clock ();
962 now_floor = mn_now; 1313 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
964 1324
965 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
966#ifndef _WIN32 1326#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1328 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1332 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1335
976 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984 1338
985#if EV_USE_PORT 1339#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1341#endif
988#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
996#endif 1350#endif
997#if EV_USE_SELECT 1351#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1353#endif
1000 1354
1001 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
1003 } 1357 }
1004} 1358}
1005 1359
1006static void noinline 1360static void noinline
1007loop_destroy (EV_P) 1361loop_destroy (EV_P)
1008{ 1362{
1009 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
1010 1381
1011#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
1013 close (fs_fd); 1384 close (fs_fd);
1014#endif 1385#endif
1051#if EV_FORK_ENABLE 1422#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 1423 array_free (fork, EMPTY);
1053#endif 1424#endif
1054 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1056 1430
1057 backend = 0; 1431 backend = 0;
1058} 1432}
1059 1433
1434#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1061 1437
1062void inline_size 1438void inline_size
1063loop_fork (EV_P) 1439loop_fork (EV_P)
1064{ 1440{
1065#if EV_USE_PORT 1441#if EV_USE_PORT
1073#endif 1449#endif
1074#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 1451 infy_fork (EV_A);
1076#endif 1452#endif
1077 1453
1078 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1079 { 1455 {
1080 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1081 1462
1082 ev_ref (EV_A); 1463 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1084 close (sigpipe [0]); 1473 close (evpipe [0]);
1085 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1086 1476
1087 while (pipe (sigpipe))
1088 syserr ("(libev) error creating pipe");
1089
1090 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1091 } 1480 }
1092 1481
1093 postfork = 0; 1482 postfork = 0;
1094} 1483}
1095 1484
1096#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1097struct ev_loop * 1487struct ev_loop *
1098ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1099{ 1489{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 1491
1117} 1507}
1118 1508
1119void 1509void
1120ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1121{ 1511{
1122 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1123} 1513}
1124 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1125#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1126 1615
1127#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1128struct ev_loop * 1617struct ev_loop *
1129ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1130#else 1619#else
1131int 1620int
1132ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1133#endif 1622#endif
1134{ 1623{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1140 { 1625 {
1141#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1143#else 1628#else
1146 1631
1147 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1148 1633
1149 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1150 { 1635 {
1151 siginit (EV_A);
1152
1153#ifndef _WIN32 1636#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1174#ifndef _WIN32 1657#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1177#endif 1660#endif
1178 1661
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1186} 1663}
1187 1664
1188void 1665void
1189ev_default_fork (void) 1666ev_default_fork (void)
1191#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif 1670#endif
1194 1671
1195 if (backend) 1672 if (backend)
1196 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1197} 1674}
1198 1675
1199/*****************************************************************************/ 1676/*****************************************************************************/
1200 1677
1201void 1678void
1218 { 1695 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220 1697
1221 p->w->pending = 0; 1698 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1223 } 1701 }
1224 } 1702 }
1225} 1703}
1226
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1240
1241 ((WT)w)->at += w->repeat;
1242 if (((WT)w)->at < mn_now)
1243 ((WT)w)->at = mn_now;
1244
1245 downheap (timers, timercnt, 0);
1246 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 {
1260 ev_periodic *w = (ev_periodic *)periodics [0];
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306 1704
1307#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1308void inline_size 1706void inline_size
1309idle_reify (EV_P) 1707idle_reify (EV_P)
1310{ 1708{
1322 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1323 break; 1721 break;
1324 } 1722 }
1325 } 1723 }
1326 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1327} 1827}
1328#endif 1828#endif
1329 1829
1330void inline_speed 1830void inline_speed
1331time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1360 */ 1860 */
1361 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1362 { 1862 {
1363 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1364 1864
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 1866 return; /* all is well */
1367 1867
1368 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 1869 mn_now = get_clock ();
1370 now_floor = mn_now; 1870 now_floor = mn_now;
1386#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1388#endif 1888#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1391 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1392 } 1896 }
1393 1897
1394 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1395 } 1899 }
1396} 1900}
1405ev_unref (EV_P) 1909ev_unref (EV_P)
1406{ 1910{
1407 --activecnt; 1911 --activecnt;
1408} 1912}
1409 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1410static int loop_done; 1920static int loop_done;
1411 1921
1412void 1922void
1413ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1414{ 1924{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1416 ? EVUNLOOP_ONE
1417 : EVUNLOOP_CANCEL;
1418 1926
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1420 1928
1421 do 1929 do
1422 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1423#ifndef _WIN32 1935#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1426 { 1938 {
1427 curpid = getpid (); 1939 curpid = getpid ();
1456 /* update fd-related kernel structures */ 1968 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 1969 fd_reify (EV_A);
1458 1970
1459 /* calculate blocking time */ 1971 /* calculate blocking time */
1460 { 1972 {
1461 ev_tstamp block; 1973 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.;
1462 1975
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1464 block = 0.; /* do not block at all */
1465 else
1466 { 1977 {
1467 /* update time to cancel out callback processing overhead */ 1978 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100); 1979 time_update (EV_A_ 1e100);
1469 1980
1470 block = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1471 1982
1472 if (timercnt) 1983 if (timercnt)
1473 { 1984 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1475 if (block > to) block = to; 1986 if (waittime > to) waittime = to;
1476 } 1987 }
1477 1988
1478#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 1990 if (periodiccnt)
1480 { 1991 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1482 if (block > to) block = to; 1993 if (waittime > to) waittime = to;
1483 } 1994 }
1484#endif 1995#endif
1485 1996
1486 if (expect_false (block < 0.)) block = 0.; 1997 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime;
1999
2000 sleeptime = waittime - backend_fudge;
2001
2002 if (expect_true (sleeptime > io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 {
2007 ev_sleep (sleeptime);
2008 waittime -= sleeptime;
2009 }
1487 } 2010 }
1488 2011
1489 ++loop_count; 2012 ++loop_count;
1490 backend_poll (EV_A_ block); 2013 backend_poll (EV_A_ waittime);
1491 2014
1492 /* update ev_rt_now, do magic */ 2015 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 2016 time_update (EV_A_ waittime + sleeptime);
1494 } 2017 }
1495 2018
1496 /* queue pending timers and reschedule them */ 2019 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 2020 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 2021#if EV_PERIODIC_ENABLE
1507 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1510 2033
1511 call_pending (EV_A); 2034 call_pending (EV_A);
1512
1513 } 2035 }
1514 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1515 2041
1516 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1518} 2044}
1519 2045
1608 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1609 return; 2135 return;
1610 2136
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1612 2138
2139 EV_FREQUENT_CHECK;
2140
1613 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1615 wlist_add (&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1616 2144
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1618 w->events &= ~EV_IOFDSET; 2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1619} 2149}
1620 2150
1621void noinline 2151void noinline
1622ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1623{ 2153{
1624 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1626 return; 2156 return;
1627 2157
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2159
2160 EV_FREQUENT_CHECK;
1629 2161
1630 wlist_del (&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1632 2164
1633 fd_change (EV_A_ w->fd, 1); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1634} 2168}
1635 2169
1636void noinline 2170void noinline
1637ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1638{ 2172{
1639 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1640 return; 2174 return;
1641 2175
1642 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1643 2177
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1648 timers [timercnt - 1] = (WT)w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1650 2188
2189 EV_FREQUENT_CHECK;
2190
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 2192}
1653 2193
1654void noinline 2194void noinline
1655ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1656{ 2196{
1657 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1659 return; 2199 return;
1660 2200
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2201 EV_FREQUENT_CHECK;
1662 2202
1663 { 2203 {
1664 int active = ((W)w)->active; 2204 int active = ev_active (w);
1665 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1666 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1667 { 2211 {
1668 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1670 } 2214 }
1671 } 2215 }
1672 2216
1673 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1674 2220
1675 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1676} 2222}
1677 2223
1678void noinline 2224void noinline
1679ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1680{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1681 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1682 { 2230 {
1683 if (w->repeat) 2231 if (w->repeat)
1684 { 2232 {
1685 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1687 } 2236 }
1688 else 2237 else
1689 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1690 } 2239 }
1691 else if (w->repeat) 2240 else if (w->repeat)
1692 { 2241 {
1693 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1695 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1696} 2247}
1697 2248
1698#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1699void noinline 2250void noinline
1700ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1701{ 2252{
1702 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1703 return; 2254 return;
1704 2255
1705 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 2258 else if (w->interval)
1708 { 2259 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 2263 }
1713 else 2264 else
1714 ((WT)w)->at = w->offset; 2265 ev_at (w) = w->offset;
1715 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1718 periodics [periodiccnt - 1] = (WT)w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1720 2275
2276 EV_FREQUENT_CHECK;
2277
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 2279}
1723 2280
1724void noinline 2281void noinline
1725ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1726{ 2283{
1727 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1729 return; 2286 return;
1730 2287
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2288 EV_FREQUENT_CHECK;
1732 2289
1733 { 2290 {
1734 int active = ((W)w)->active; 2291 int active = ev_active (w);
1735 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1736 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1737 { 2298 {
1738 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1740 } 2301 }
1741 } 2302 }
1742 2303
2304 EV_FREQUENT_CHECK;
2305
1743 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1744} 2307}
1745 2308
1746void noinline 2309void noinline
1747ev_periodic_again (EV_P_ ev_periodic *w) 2310ev_periodic_again (EV_P_ ev_periodic *w)
1764#endif 2327#endif
1765 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1766 return; 2329 return;
1767 2330
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
1769 2336
1770 { 2337 {
1771#ifndef _WIN32 2338#ifndef _WIN32
1772 sigset_t full, prev; 2339 sigset_t full, prev;
1773 sigfillset (&full); 2340 sigfillset (&full);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 2353
1787 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1788 { 2355 {
1789#if _WIN32 2356#if _WIN32
1790 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1791#else 2358#else
1792 struct sigaction sa; 2359 struct sigaction sa;
1793 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1797#endif 2364#endif
1798 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
1799} 2368}
1800 2369
1801void noinline 2370void noinline
1802ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1803{ 2372{
1804 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1806 return; 2375 return;
1807 2376
2377 EV_FREQUENT_CHECK;
2378
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1810 2381
1811 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1812 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1813} 2386}
1814 2387
1815void 2388void
1816ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1817{ 2390{
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 2393#endif
1821 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1822 return; 2395 return;
1823 2396
2397 EV_FREQUENT_CHECK;
2398
1824 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1826} 2403}
1827 2404
1828void 2405void
1829ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1830{ 2407{
1831 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1833 return; 2410 return;
1834 2411
2412 EV_FREQUENT_CHECK;
2413
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1837} 2418}
1838 2419
1839#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1840 2421
1841# ifdef _WIN32 2422# ifdef _WIN32
1859 if (w->wd < 0) 2440 if (w->wd < 0)
1860 { 2441 {
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1862 2443
1863 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 2448 {
1866 char path [4096]; 2449 char path [4096];
1867 strcpy (path, w->path); 2450 strcpy (path, w->path);
1868 2451
1994 } 2577 }
1995 2578
1996 } 2579 }
1997} 2580}
1998 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
1999#endif 2588#endif
2000 2589
2001void 2590void
2002ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
2003{ 2592{
2067 else 2656 else
2068#endif 2657#endif
2069 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2070 2659
2071 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2072} 2663}
2073 2664
2074void 2665void
2075ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2076{ 2667{
2077 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2079 return; 2670 return;
2080 2671
2672 EV_FREQUENT_CHECK;
2673
2081#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2083#endif 2676#endif
2084 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2085 2678
2086 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2087} 2682}
2088#endif 2683#endif
2089 2684
2090#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2091void 2686void
2093{ 2688{
2094 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2095 return; 2690 return;
2096 2691
2097 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2098 2695
2099 { 2696 {
2100 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2101 2698
2102 ++idleall; 2699 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2104 2701
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2107 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2108} 2707}
2109 2708
2110void 2709void
2111ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2112{ 2711{
2113 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2115 return; 2714 return;
2116 2715
2716 EV_FREQUENT_CHECK;
2717
2117 { 2718 {
2118 int active = ((W)w)->active; 2719 int active = ev_active (w);
2119 2720
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 2723
2123 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2124 --idleall; 2725 --idleall;
2125 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2126} 2729}
2127#endif 2730#endif
2128 2731
2129void 2732void
2130ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2131{ 2734{
2132 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2133 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2134 2739
2135 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2138} 2745}
2139 2746
2140void 2747void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2142{ 2749{
2143 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2145 return; 2752 return;
2146 2753
2754 EV_FREQUENT_CHECK;
2755
2147 { 2756 {
2148 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2149 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2151 } 2761 }
2152 2762
2153 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2154} 2766}
2155 2767
2156void 2768void
2157ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2158{ 2770{
2159 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2160 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2161 2775
2162 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2165} 2781}
2166 2782
2167void 2783void
2168ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2169{ 2785{
2170 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2172 return; 2788 return;
2173 2789
2790 EV_FREQUENT_CHECK;
2791
2174 { 2792 {
2175 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2176 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2178 } 2797 }
2179 2798
2180 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2181} 2802}
2182 2803
2183#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2184void noinline 2805void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 2815
2195 if (ev_cb (w)) 2816 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 2818 else
2198 ev_embed_sweep (loop, w); 2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2199} 2820}
2200 2821
2201static void 2822static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 2824{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 2826
2206 fd_reify (w->other); 2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2207} 2836}
2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2850#if 0
2851static void
2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2853{
2854 ev_idle_stop (EV_A_ idle);
2855}
2856#endif
2208 2857
2209void 2858void
2210ev_embed_start (EV_P_ ev_embed *w) 2859ev_embed_start (EV_P_ ev_embed *w)
2211{ 2860{
2212 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2216 struct ev_loop *loop = w->other; 2865 struct ev_loop *loop = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 2868 }
2220 2869
2870 EV_FREQUENT_CHECK;
2871
2221 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2223 2874
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 2876 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 2877 ev_prepare_start (EV_A_ &w->prepare);
2227 2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2883
2228 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2229} 2887}
2230 2888
2231void 2889void
2232ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2233{ 2891{
2234 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2236 return; 2894 return;
2237 2895
2896 EV_FREQUENT_CHECK;
2897
2238 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2240 2901
2241 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2242} 2903}
2243#endif 2904#endif
2244 2905
2245#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2246void 2907void
2247ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2248{ 2909{
2249 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2250 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2251 2914
2252 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2254 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2255} 2920}
2256 2921
2257void 2922void
2258ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2259{ 2924{
2260 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2262 return; 2927 return;
2263 2928
2929 EV_FREQUENT_CHECK;
2930
2264 { 2931 {
2265 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2266 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2268 } 2936 }
2269 2937
2270 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2941}
2942#endif
2943
2944#if EV_ASYNC_ENABLE
2945void
2946ev_async_start (EV_P_ ev_async *w)
2947{
2948 if (expect_false (ev_is_active (w)))
2949 return;
2950
2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++asynccnt);
2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_async_stop (EV_P_ ev_async *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 asyncs [active - 1] = asyncs [--asynccnt];
2975 ev_active (asyncs [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983void
2984ev_async_send (EV_P_ ev_async *w)
2985{
2986 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync);
2271} 2988}
2272#endif 2989#endif
2273 2990
2274/*****************************************************************************/ 2991/*****************************************************************************/
2275 2992
2285once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 3003{
2287 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 3005 void *arg = once->arg;
2289 3006
2290 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 3009 ev_free (once);
2293 3010
2294 cb (revents, arg); 3011 cb (revents, arg);
2295} 3012}
2296 3013
2297static void 3014static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 3015once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 3016{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3017 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3018
3019 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 3020}
2302 3021
2303static void 3022static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 3023once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 3024{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3025 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3026
3027 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2307} 3028}
2308 3029
2309void 3030void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3031ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2311{ 3032{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines