ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.19 by root, Wed Oct 31 17:55:55 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
75/**/
76
44#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
45# ifdef CLOCK_MONOTONIC
46# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
47# endif 102# endif
48#endif 103#endif
49 104
50#ifndef HAVE_SELECT
51# define HAVE_SELECT 1
52#endif
53
54#ifndef HAVE_EPOLL
55# define HAVE_EPOLL 0
56#endif
57
58#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
60#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
61 122
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
64 127
65#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
66 143
67typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
68typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
70 147
71static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
72ev_tstamp ev_now;
73int ev_method;
74 149
75static int have_monotonic; /* runtime */ 150#if WIN32
76 151/* note: the comment below could not be substantiated, but what would I care */
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
78static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
79static void (*method_poll)(ev_tstamp timeout); 154#endif
80 155
81/*****************************************************************************/ 156/*****************************************************************************/
82 157
83ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
84ev_time (void) 192ev_time (void)
85{ 193{
86#if HAVE_REALTIME 194#if EV_USE_REALTIME
87 struct timespec ts; 195 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 198#else
91 struct timeval tv; 199 struct timeval tv;
92 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 202#endif
95} 203}
96 204
97static ev_tstamp 205inline ev_tstamp
98get_clock (void) 206get_clock (void)
99{ 207{
100#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
101 if (have_monotonic) 209 if (expect_true (have_monotonic))
102 { 210 {
103 struct timespec ts; 211 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 214 }
107#endif 215#endif
108 216
109 return ev_time (); 217 return ev_time ();
110} 218}
111 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
112#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
113 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
114 { \ 230 { \
115 int newcnt = cur ? cur << 1 : 16; \ 231 int newcnt = cur; \
232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
117 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
118 cur = newcnt; \ 240 cur = newcnt; \
119 } 241 }
120 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
121/*****************************************************************************/ 254/*****************************************************************************/
122 255
123typedef struct
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void 256static void
136anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
137{ 258{
138 while (count--) 259 while (count--)
139 { 260 {
140 base->head = 0; 261 base->head = 0;
141 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
142 ++base; 265 ++base;
143 } 266 }
144} 267}
145 268
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void 269static void
156event (W w, int events) 270event (EV_P_ W w, int events)
157{ 271{
158 if (w->active) 272 if (w->pending)
159 { 273 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
164 } 276 }
165}
166 277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
167static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
168fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
169{ 295{
170 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 297 struct ev_io *w;
172 298
173 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
174 { 300 {
175 int ev = w->events & events; 301 int ev = w->events & events;
176 302
177 if (ev) 303 if (ev)
178 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
179 } 305 }
180} 306}
181 307
308/*****************************************************************************/
309
182static void 310static void
183queue_events (W *events, int eventcnt, int type) 311fd_reify (EV_P)
184{ 312{
185 int i; 313 int i;
186 314
187 for (i = 0; i < eventcnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
188 event (events [i], type); 316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
189} 358}
190 359
191/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
192static void 361static void
193fd_recheck () 362fd_ebadf (EV_P)
194{ 363{
195 int fd; 364 int fd;
196 365
197 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev) 367 if (anfds [fd].events)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
201 evio_stop (anfds [fd].head); 370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 close (fd);
382 fd_kill (EV_A_ fd);
383 return;
384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
202} 400}
203 401
204/*****************************************************************************/ 402/*****************************************************************************/
205 403
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void 404static void
213upheap (WT *timers, int k) 405upheap (WT *heap, int k)
214{ 406{
215 WT w = timers [k]; 407 WT w = heap [k];
216 408
217 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
218 { 410 {
219 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
220 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
221 k >>= 1; 413 k >>= 1;
222 } 414 }
223 415
224 timers [k] = w; 416 heap [k] = w;
225 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
226 418
227} 419}
228 420
229static void 421static void
230downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
231{ 423{
232 WT w = timers [k]; 424 WT w = heap [k];
233 425
234 while (k < (N >> 1)) 426 while (k < (N >> 1))
235 { 427 {
236 int j = k << 1; 428 int j = k << 1;
237 429
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
239 ++j; 431 ++j;
240 432
241 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
242 break; 434 break;
243 435
244 timers [k] = timers [j]; 436 heap [k] = heap [j];
245 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
246 k = j; 438 k = j;
247 } 439 }
248 440
249 timers [k] = w; 441 heap [k] = w;
250 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
251} 443}
252 444
253/*****************************************************************************/ 445/*****************************************************************************/
254 446
255typedef struct 447typedef struct
256{ 448{
257 struct ev_signal *head; 449 struct ev_watcher_list *head;
258 sig_atomic_t gotsig; 450 sig_atomic_t volatile gotsig;
259} ANSIG; 451} ANSIG;
260 452
261static ANSIG *signals; 453static ANSIG *signals;
262static int signalmax; 454static int signalmax;
263 455
264static int sigpipe [2]; 456static int sigpipe [2];
265static sig_atomic_t gotsig; 457static sig_atomic_t volatile gotsig;
266static struct ev_io sigev; 458static struct ev_io sigev;
267 459
268static void 460static void
269signals_init (ANSIG *base, int count) 461signals_init (ANSIG *base, int count)
270{ 462{
271 while (count--) 463 while (count--)
272 { 464 {
273 base->head = 0; 465 base->head = 0;
274 base->gotsig = 0; 466 base->gotsig = 0;
467
275 ++base; 468 ++base;
276 } 469 }
277} 470}
278 471
279static void 472static void
280sighandler (int signum) 473sighandler (int signum)
281{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
282 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
283 480
284 if (!gotsig) 481 if (!gotsig)
285 { 482 {
483 int old_errno = errno;
286 gotsig = 1; 484 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
288 } 487 }
289} 488}
290 489
291static void 490static void
292sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
293{ 492{
294 struct ev_signal *w; 493 struct ev_watcher_list *w;
295 int sig; 494 int signum;
296 495
496 read (sigpipe [0], &revents, 1);
297 gotsig = 0; 497 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299 498
300 for (sig = signalmax; sig--; ) 499 for (signum = signalmax; signum--; )
301 if (signals [sig].gotsig) 500 if (signals [signum].gotsig)
302 { 501 {
303 signals [sig].gotsig = 0; 502 signals [signum].gotsig = 0;
304 503
305 for (w = signals [sig].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
307 } 506 }
308} 507}
309 508
310static void 509static void
311siginit (void) 510siginit (EV_P)
312{ 511{
512#ifndef WIN32
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 515
316 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
319 520
320 evio_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
322} 524}
323 525
324/*****************************************************************************/ 526/*****************************************************************************/
325 527
326static struct ev_idle **idles; 528#ifndef WIN32
327static int idlemax, idlecnt;
328 529
329static struct ev_check **checks; 530static struct ev_child *childs [PID_HASHSIZE];
330static int checkmax, checkcnt; 531static struct ev_signal childev;
532
533#ifndef WCONTINUED
534# define WCONTINUED 0
535#endif
536
537static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
555 int pid, status;
556
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 {
559 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL);
561
562 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
565}
566
567#endif
331 568
332/*****************************************************************************/ 569/*****************************************************************************/
333 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
334#if HAVE_EPOLL 574#if EV_USE_EPOLL
335# include "ev_epoll.c" 575# include "ev_epoll.c"
336#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
337#if HAVE_SELECT 580#if EV_USE_SELECT
338# include "ev_select.c" 581# include "ev_select.c"
339#endif 582#endif
340 583
341int ev_init (int flags) 584int
585ev_version_major (void)
342{ 586{
587 return EV_VERSION_MAJOR;
588}
589
590int
591ev_version_minor (void)
592{
593 return EV_VERSION_MINOR;
594}
595
596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
617 if (!method)
618 {
343#if HAVE_MONOTONIC 619#if EV_USE_MONOTONIC
344 { 620 {
345 struct timespec ts; 621 struct timespec ts;
346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
347 have_monotonic = 1; 623 have_monotonic = 1;
348 } 624 }
349#endif 625#endif
350 626
351 ev_now = ev_time (); 627 rt_now = ev_time ();
352 now = get_clock (); 628 mn_now = get_clock ();
353 diff = ev_now - now; 629 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now;
354 631
632 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
645#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif
651#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif
654 }
655}
656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
355 if (pipe (sigpipe)) 746 if (pipe (sigpipe))
356 return 0; 747 return 0;
357 748
358 ev_method = EVMETHOD_NONE; 749 if (!default_loop)
359#if HAVE_EPOLL
360 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
361#endif
362#if HAVE_SELECT
363 if (ev_method == EVMETHOD_NONE) select_init (flags);
364#endif
365
366 if (ev_method)
367 { 750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
759 if (ev_method (EV_A))
760 {
368 evw_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
369 siginit (); 763 siginit (EV_A);
370 }
371 764
372 return ev_method; 765#ifndef WIN32
373} 766 ev_signal_init (&childev, childcb, SIGCHLD);
374 767 ev_set_priority (&childev, EV_MAXPRI);
375/*****************************************************************************/ 768 ev_signal_start (EV_A_ &childev);
376 769 ev_unref (EV_A); /* child watcher should not keep loop alive */
377void ev_prefork (void)
378{
379 /* nop */
380}
381
382void ev_postfork_parent (void)
383{
384 /* nop */
385}
386
387void ev_postfork_child (void)
388{
389#if HAVE_EPOLL
390 if (ev_method == EVMETHOD_EPOLL)
391 epoll_postfork_child ();
392#endif 770#endif
771 }
772 else
773 default_loop = 0;
774 }
393 775
776 return default_loop;
777}
778
779void
780ev_default_destroy (void)
781{
782#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop;
784#endif
785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
394 evio_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
395 close (sigpipe [0]); 808 close (sigpipe [0]);
396 close (sigpipe [1]); 809 close (sigpipe [1]);
397 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
398 siginit (); 813 siginit (EV_A);
399} 814}
400 815
401/*****************************************************************************/ 816/*****************************************************************************/
402 817
403static void 818static void
404fd_reify (void) 819call_pending (EV_P)
405{ 820{
406 int i; 821 int pri;
407 822
408 for (i = 0; i < fdchangecnt; ++i) 823 for (pri = NUMPRI; pri--; )
409 { 824 while (pendingcnt [pri])
410 int fd = fdchanges [i];
411 ANFD *anfd = anfds + fd;
412 struct ev_io *w;
413
414 int wev = 0;
415
416 for (w = anfd->head; w; w = w->next)
417 wev |= w->events;
418
419 if (anfd->wev != wev)
420 { 825 {
421 method_modify (fd, anfd->wev, wev);
422 anfd->wev = wev;
423 }
424 }
425
426 fdchangecnt = 0;
427}
428
429static void
430call_pending ()
431{
432 while (pendingcnt)
433 {
434 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
435 827
436 if (p->w) 828 if (p->w)
437 { 829 {
438 p->w->pending = 0; 830 p->w->pending = 0;
439 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
440 } 832 }
441 } 833 }
442} 834}
443 835
444static void 836static void
445timers_reify () 837timers_reify (EV_P)
446{ 838{
447 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
448 { 840 {
449 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
450 842
451 event ((W)w, EV_TIMEOUT); 843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
452 844
453 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
454 if (w->repeat) 846 if (w->repeat)
455 { 847 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
456 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
457 assert (("timer timeout in the past, negative repeat?", w->at > now));
458 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
459 } 851 }
460 else 852 else
461 evtimer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
462 }
463}
464 854
855 event (EV_A_ (W)w, EV_TIMEOUT);
856 }
857}
858
465static void 859static void
466periodics_reify () 860periodics_reify (EV_P)
467{ 861{
468 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
469 { 863 {
470 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
471 867
472 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
473 if (w->interval) 869 if (w->interval)
474 { 870 {
475 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
476 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
477 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
478 } 874 }
479 else 875 else
480 evperiodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
481 877
482 event ((W)w, EV_TIMEOUT); 878 event (EV_A_ (W)w, EV_PERIODIC);
483 } 879 }
484} 880}
485 881
486static void 882static void
487periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
488{ 884{
489 int i; 885 int i;
490 886
491 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
492 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
493 { 889 {
494 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
495 891
496 if (w->interval) 892 if (w->interval)
497 { 893 {
498 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
499 895
500 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
501 { 897 {
502 evperiodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
503 evperiodic_start (w); 899 ev_periodic_start (EV_A_ w);
504 900
505 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
506 } 902 }
507 } 903 }
508 } 904 }
509} 905}
510 906
907inline int
908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
511static void 925static void
512time_update () 926time_update (EV_P)
513{ 927{
514 int i; 928 int i;
515 929
516 ev_now = ev_time (); 930#if EV_USE_MONOTONIC
517
518 if (have_monotonic) 931 if (expect_true (have_monotonic))
519 { 932 {
520 ev_tstamp odiff = diff; 933 if (time_update_monotonic (EV_A))
521
522 for (i = 4; --i; ) /* loop a few times, before making important decisions */
523 { 934 {
524 now = get_clock (); 935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
525 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
526 940
527 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
528 return; /* all is well */ 942 return; /* all is well */
529 943
530 ev_now = ev_time (); 944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
531 } 952 }
532
533 periodics_reschedule (diff - odiff);
534 /* no timer adjustment, as the monotonic clock doesn't jump */
535 } 953 }
536 else 954 else
955#endif
537 { 956 {
538 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
539 { 960 {
540 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
541 962
542 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
543 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
544 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
545 } 966 }
546 967
547 now = ev_now; 968 mn_now = rt_now;
548 } 969 }
549} 970}
550 971
551int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
552 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
553void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
554{ 988{
555 double block; 989 double block;
556 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
557
558 if (checkcnt)
559 {
560 queue_events ((W *)checks, checkcnt, EV_CHECK);
561 call_pending ();
562 }
563 991
564 do 992 do
565 { 993 {
994 /* queue check watchers (and execute them) */
995 if (expect_false (preparecnt))
996 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A);
999 }
1000
566 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
567 fd_reify (); 1002 fd_reify (EV_A);
568 1003
569 /* calculate blocking time */ 1004 /* calculate blocking time */
570 1005
571 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1006 /* we only need this for !monotonic clockor timers, but as we basically
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
572 ev_now = ev_time (); 1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
573 1017
574 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
575 block = 0.; 1019 block = 0.;
576 else 1020 else
577 { 1021 {
578 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
579 1023
580 if (timercnt) 1024 if (timercnt)
581 { 1025 {
582 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
583 if (block > to) block = to; 1027 if (block > to) block = to;
584 } 1028 }
585 1029
586 if (periodiccnt) 1030 if (periodiccnt)
587 { 1031 {
588 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
589 if (block > to) block = to; 1033 if (block > to) block = to;
590 } 1034 }
591 1035
592 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
593 } 1037 }
594 1038
595 method_poll (block); 1039 method_poll (EV_A_ block);
596 1040
597 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
598 time_update (); 1042 time_update (EV_A);
599 1043
600 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */
601 periodics_reify (); /* absolute timers first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
602 timers_reify (); /* relative timers second */
603 1047
604 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
605 if (!pendingcnt) 1049 if (!pendingcnt)
606 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
607 1051
608 /* queue check and possibly idle watchers */ 1052 /* queue check watchers, to be executed first */
1053 if (checkcnt)
609 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
610 1055
611 call_pending (); 1056 call_pending (EV_A);
612 } 1057 }
613 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
614 1059
615 if (ev_loop_done != 2) 1060 if (loop_done != 2)
616 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
617} 1068}
618 1069
619/*****************************************************************************/ 1070/*****************************************************************************/
620 1071
621static void 1072inline void
622wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
623{ 1074{
624 elem->next = *head; 1075 elem->next = *head;
625 *head = elem; 1076 *head = elem;
626} 1077}
627 1078
628static void 1079inline void
629wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
630{ 1081{
631 while (*head) 1082 while (*head)
632 { 1083 {
633 if (*head == elem) 1084 if (*head == elem)
638 1089
639 head = &(*head)->next; 1090 head = &(*head)->next;
640 } 1091 }
641} 1092}
642 1093
643static void 1094inline void
644ev_clear (W w) 1095ev_clear_pending (EV_P_ W w)
645{ 1096{
646 if (w->pending) 1097 if (w->pending)
647 { 1098 {
648 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
649 w->pending = 0; 1100 w->pending = 0;
650 } 1101 }
651} 1102}
652 1103
653static void 1104inline void
654ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
655{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
656 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
657} 1112}
658 1113
659static void 1114inline void
660ev_stop (W w) 1115ev_stop (EV_P_ W w)
661{ 1116{
1117 ev_unref (EV_A);
662 w->active = 0; 1118 w->active = 0;
663} 1119}
664 1120
665/*****************************************************************************/ 1121/*****************************************************************************/
666 1122
667void 1123void
668evio_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
669{ 1125{
1126 int fd = w->fd;
1127
670 if (ev_is_active (w)) 1128 if (ev_is_active (w))
671 return; 1129 return;
672 1130
673 int fd = w->fd; 1131 assert (("ev_io_start called with negative fd", fd >= 0));
674 1132
675 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
676 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
677 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
678 1136
679 ++fdchangecnt; 1137 fd_change (EV_A_ fd);
680 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
681 fdchanges [fdchangecnt - 1] = fd;
682} 1138}
683 1139
684void 1140void
685evio_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
686{ 1142{
687 ev_clear ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
688 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
689 return; 1145 return;
690 1146
691 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
692 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
693 1149
694 ++fdchangecnt; 1150 fd_change (EV_A_ w->fd);
695 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
696 fdchanges [fdchangecnt - 1] = w->fd;
697} 1151}
698 1152
699void 1153void
700evtimer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
701{ 1155{
702 if (ev_is_active (w)) 1156 if (ev_is_active (w))
703 return; 1157 return;
704 1158
705 w->at += now; 1159 ((WT)w)->at += mn_now;
706 1160
707 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
708 1162
709 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
710 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
711 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
712 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
713}
714 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
715void 1171void
716evtimer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
717{ 1173{
718 ev_clear ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
719 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
720 return; 1176 return;
721 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
722 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
723 { 1181 {
724 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
725 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
726 } 1184 }
727 1185
728 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
729 1187
730 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
731} 1189}
732 1190
733void 1191void
734evtimer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
735{ 1193{
736 if (ev_is_active (w)) 1194 if (ev_is_active (w))
737 { 1195 {
738 if (w->repeat) 1196 if (w->repeat)
739 { 1197 {
740 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
741 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
742 } 1200 }
743 else 1201 else
744 evtimer_stop (w); 1202 ev_timer_stop (EV_A_ w);
745 } 1203 }
746 else if (w->repeat) 1204 else if (w->repeat)
747 evtimer_start (w); 1205 ev_timer_start (EV_A_ w);
748} 1206}
749 1207
750void 1208void
751evperiodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
752{ 1210{
753 if (ev_is_active (w)) 1211 if (ev_is_active (w))
754 return; 1212 return;
755 1213
756 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
757 1215
758 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
759 if (w->interval) 1217 if (w->interval)
760 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
761 1219
762 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
763 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
764 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
765 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
766}
767 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
768void 1228void
769evperiodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
770{ 1230{
771 ev_clear ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
773 return; 1233 return;
774 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
775 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
776 { 1238 {
777 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
778 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
779 } 1241 }
780 1242
781 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
782} 1244}
783 1245
784void 1246void
785evsignal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
786{ 1248{
787 if (ev_is_active (w)) 1249 if (ev_is_active (w))
788 return; 1250 return;
789 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
790 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
791 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
792 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
793 1330
794 if (!w->next) 1331 if (!((WL)w)->next)
795 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
796 struct sigaction sa; 1336 struct sigaction sa;
797 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
798 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
799 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
800 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
801 } 1342 }
802} 1343}
803 1344
804void 1345void
805evsignal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
806{ 1347{
807 ev_clear ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
808 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
809 return; 1350 return;
810 1351
811 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
812 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
813 1354
814 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
815 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
816} 1357}
817 1358
818void evidle_start (struct ev_idle *w) 1359void
1360ev_child_start (EV_P_ struct ev_child *w)
819{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
820 if (ev_is_active (w)) 1365 if (ev_is_active (w))
821 return; 1366 return;
822 1367
823 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
824 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
825 idles [idlecnt - 1] = w;
826} 1370}
827 1371
828void evidle_stop (struct ev_idle *w) 1372void
1373ev_child_stop (EV_P_ struct ev_child *w)
829{ 1374{
830 ev_clear ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
831 if (ev_is_active (w)) 1376 if (ev_is_active (w))
832 return; 1377 return;
833 1378
834 idles [w->active - 1] = idles [--idlecnt]; 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
835 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
836}
837
838void evcheck_start (struct ev_check *w)
839{
840 if (ev_is_active (w))
841 return;
842
843 ev_start ((W)w, ++checkcnt);
844 array_needsize (checks, checkmax, checkcnt, );
845 checks [checkcnt - 1] = w;
846}
847
848void evcheck_stop (struct ev_check *w)
849{
850 ev_clear ((W)w);
851 if (ev_is_active (w))
852 return;
853
854 checks [w->active - 1] = checks [--checkcnt];
855 ev_stop ((W)w);
856} 1381}
857 1382
858/*****************************************************************************/ 1383/*****************************************************************************/
859 1384
860struct ev_once 1385struct ev_once
864 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
865 void *arg; 1390 void *arg;
866}; 1391};
867 1392
868static void 1393static void
869once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
870{ 1395{
871 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
872 void *arg = once->arg; 1397 void *arg = once->arg;
873 1398
874 evio_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
875 evtimer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
876 free (once); 1401 free (once);
877 1402
878 cb (revents, arg); 1403 cb (revents, arg);
879} 1404}
880 1405
881static void 1406static void
882once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
883{ 1408{
884 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
885} 1410}
886 1411
887static void 1412static void
888once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
889{ 1414{
890 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
891} 1416}
892 1417
893void 1418void
894ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
895{ 1420{
896 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
897 1422
898 if (!once) 1423 if (!once)
899 cb (EV_ERROR, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
900 else 1425 else
901 { 1426 {
902 once->cb = cb; 1427 once->cb = cb;
903 once->arg = arg; 1428 once->arg = arg;
904 1429
905 evw_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
906
907 if (fd >= 0) 1431 if (fd >= 0)
908 { 1432 {
909 evio_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
910 evio_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
911 } 1435 }
912 1436
913 evw_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
914
915 if (timeout >= 0.) 1438 if (timeout >= 0.)
916 { 1439 {
917 evtimer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
918 evtimer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
919 } 1442 }
920 } 1443 }
921} 1444}
922 1445
923/*****************************************************************************/
924
925#if 0
926
927struct ev_io wio;
928
929static void
930sin_cb (struct ev_io *w, int revents)
931{
932 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
933}
934
935static void
936ocb (struct ev_timer *w, int revents)
937{
938 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
939 evtimer_stop (w);
940 evtimer_start (w);
941}
942
943static void
944scb (struct ev_signal *w, int revents)
945{
946 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
947 evio_stop (&wio);
948 evio_start (&wio);
949}
950
951static void
952gcb (struct ev_signal *w, int revents)
953{
954 fprintf (stderr, "generic %x\n", revents);
955
956}
957
958int main (void)
959{
960 ev_init (0);
961
962 evio_init (&wio, sin_cb, 0, EV_READ);
963 evio_start (&wio);
964
965 struct ev_timer t[10000];
966
967#if 0
968 int i;
969 for (i = 0; i < 10000; ++i)
970 {
971 struct ev_timer *w = t + i;
972 evw_init (w, ocb, i);
973 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
974 evtimer_start (w);
975 if (drand48 () < 0.5)
976 evtimer_stop (w);
977 }
978#endif
979
980 struct ev_timer t1;
981 evtimer_init (&t1, ocb, 5, 10);
982 evtimer_start (&t1);
983
984 struct ev_signal sig;
985 evsignal_init (&sig, scb, SIGQUIT);
986 evsignal_start (&sig);
987
988 struct ev_check cw;
989 evcheck_init (&cw, gcb);
990 evcheck_start (&cw);
991
992 struct ev_idle iw;
993 evidle_init (&iw, gcb);
994 evidle_start (&iw);
995
996 ev_loop (0);
997
998 return 0;
999}
1000
1001#endif
1002
1003
1004
1005

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines