ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.190 by root, Fri Dec 21 01:26:04 2007 UTC vs.
Revision 1.275 by root, Fri Dec 12 20:35:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
207#if !EV_STAT_ENABLE 299#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 300# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 301# define EV_USE_INOTIFY 0
210#endif 302#endif
211 303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
212#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
213# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
214#endif 319#endif
215 320
216#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 322# include <winsock.h>
218#endif 323#endif
219 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
220/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
221 353
222/* 354/*
223 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
237# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
239#else 371#else
240# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
241# define noinline 373# define noinline
242# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 375# define inline
244# endif 376# endif
245#endif 377#endif
246 378
247#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
262 394
263typedef ev_watcher *W; 395typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
266 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
268 407
269#ifdef _WIN32 408#ifdef _WIN32
270# include "ev_win32.c" 409# include "ev_win32.c"
271#endif 410#endif
272 411
279{ 418{
280 syserr_cb = cb; 419 syserr_cb = cb;
281} 420}
282 421
283static void noinline 422static void noinline
284syserr (const char *msg) 423ev_syserr (const char *msg)
285{ 424{
286 if (!msg) 425 if (!msg)
287 msg = "(libev) system error"; 426 msg = "(libev) system error";
288 427
289 if (syserr_cb) 428 if (syserr_cb)
293 perror (msg); 432 perror (msg);
294 abort (); 433 abort ();
295 } 434 }
296} 435}
297 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
298static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 453
300void 454void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 456{
303 alloc = cb; 457 alloc = cb;
304} 458}
305 459
306inline_speed void * 460inline_speed void *
307ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
308{ 462{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
310 464
311 if (!ptr && size) 465 if (!ptr && size)
312 { 466 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 468 abort ();
325typedef struct 479typedef struct
326{ 480{
327 WL head; 481 WL head;
328 unsigned char events; 482 unsigned char events;
329 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
330#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 490 SOCKET handle;
332#endif 491#endif
333} ANFD; 492} ANFD;
334 493
337 W w; 496 W w;
338 int events; 497 int events;
339} ANPENDING; 498} ANPENDING;
340 499
341#if EV_USE_INOTIFY 500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
342typedef struct 502typedef struct
343{ 503{
344 WL head; 504 WL head;
345} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
346#endif 524#endif
347 525
348#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
349 527
350 struct ev_loop 528 struct ev_loop
408{ 586{
409 return ev_rt_now; 587 return ev_rt_now;
410} 588}
411#endif 589#endif
412 590
591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
413int inline_size 623int inline_size
414array_nextsize (int elem, int cur, int cnt) 624array_nextsize (int elem, int cur, int cnt)
415{ 625{
416 int ncur = cur + 1; 626 int ncur = cur + 1;
417 627
418 do 628 do
419 ncur <<= 1; 629 ncur <<= 1;
420 while (cnt > ncur); 630 while (cnt > ncur);
421 631
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 634 {
425 ncur *= elem; 635 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 637 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 638 ncur /= elem;
429 } 639 }
430 640
431 return ncur; 641 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 645array_realloc (int elem, void *base, int *cur, int cnt)
436{ 646{
437 *cur = array_nextsize (elem, *cur, cnt); 647 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 648 return ev_realloc (base, elem * *cur);
439} 649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 653
441#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 655 if (expect_false ((cnt) > (cur))) \
443 { \ 656 { \
444 int ocur_ = (cur); \ 657 int ocur_ = (cur); \
488 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
489} 702}
490 703
491/*****************************************************************************/ 704/*****************************************************************************/
492 705
493void inline_size
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed 706void inline_speed
507fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
508{ 708{
509 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
510 ev_io *w; 710 ev_io *w;
542 events |= (unsigned char)w->events; 742 events |= (unsigned char)w->events;
543 743
544#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
545 if (events) 745 if (events)
546 { 746 {
547 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
548 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 754 }
551#endif 755#endif
552 756
553 { 757 {
554 unsigned char o_events = anfd->events; 758 unsigned char o_events = anfd->events;
607{ 811{
608 int fd; 812 int fd;
609 813
610 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 815 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
614} 818}
615 819
616/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 821static void noinline
635 839
636 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 841 if (anfds [fd].events)
638 { 842 {
639 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
641 } 846 }
642} 847}
643 848
644/*****************************************************************************/ 849/*****************************************************************************/
645 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
646void inline_speed 871void inline_speed
647upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
648{ 873{
649 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
650 876
651 while (k) 877 for (;;)
652 { 878 {
653 int p = (k - 1) >> 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
654 882
655 if (heap [p]->at <= w->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
656 break; 899 break;
657 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
658 heap [k] = heap [p]; 963 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 964 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 965 k = p;
661 } 966 }
662 967
663 heap [k] = w; 968 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 969 ev_active (ANHE_w (he)) = k;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693} 970}
694 971
695void inline_size 972void inline_size
696adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
697{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
698 upheap (heap, k); 976 upheap (heap, k);
977 else
699 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
700} 991}
701 992
702/*****************************************************************************/ 993/*****************************************************************************/
703 994
704typedef struct 995typedef struct
705{ 996{
706 WL head; 997 WL head;
707 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
708} ANSIG; 999} ANSIG;
709 1000
710static ANSIG *signals; 1001static ANSIG *signals;
711static int signalmax; 1002static int signalmax;
712 1003
713static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 1005
717void inline_size 1006/*****************************************************************************/
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724
725 ++base;
726 }
727}
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779 1007
780void inline_speed 1008void inline_speed
781fd_intern (int fd) 1009fd_intern (int fd)
782{ 1010{
783#ifdef _WIN32 1011#ifdef _WIN32
784 int arg = 1; 1012 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else 1014#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 1017#endif
790} 1018}
791 1019
792static void noinline 1020static void noinline
793siginit (EV_P) 1021evpipe_init (EV_P)
794{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
795 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
797 1042
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
801} 1111}
802 1112
803/*****************************************************************************/ 1113/*****************************************************************************/
804 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
805static WL childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
806 1153
807#ifndef _WIN32 1154#ifndef _WIN32
808 1155
809static ev_signal childev; 1156static ev_signal childev;
810 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
811void inline_speed 1162void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
813{ 1164{
814 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1167
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
817 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
818 { 1172 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1174 w->rpid = pid;
821 w->rstatus = status; 1175 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1177 }
1178 }
824} 1179}
825 1180
826#ifndef WCONTINUED 1181#ifndef WCONTINUED
827# define WCONTINUED 0 1182# define WCONTINUED 0
828#endif 1183#endif
837 if (!WCONTINUED 1192 if (!WCONTINUED
838 || errno != EINVAL 1193 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1195 return;
841 1196
842 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1200
846 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1204}
850 1205
851#endif 1206#endif
852 1207
853/*****************************************************************************/ 1208/*****************************************************************************/
925} 1280}
926 1281
927unsigned int 1282unsigned int
928ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
929{ 1284{
930 return EVBACKEND_EPOLL 1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 1286
932 | EVBACKEND_PORT; 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
933} 1292}
934 1293
935unsigned int 1294unsigned int
936ev_backend (EV_P) 1295ev_backend (EV_P)
937{ 1296{
940 1299
941unsigned int 1300unsigned int
942ev_loop_count (EV_P) 1301ev_loop_count (EV_P)
943{ 1302{
944 return loop_count; 1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
945} 1316}
946 1317
947static void noinline 1318static void noinline
948loop_init (EV_P_ unsigned int flags) 1319loop_init (EV_P_ unsigned int flags)
949{ 1320{
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1327 have_monotonic = 1;
957 } 1328 }
958#endif 1329#endif
959 1330
960 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
961 mn_now = get_clock (); 1332 mn_now = get_clock ();
962 now_floor = mn_now; 1333 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
964 1344
965 /* pid check not overridable via env */ 1345 /* pid check not overridable via env */
966#ifndef _WIN32 1346#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1347 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1348 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1352 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1355
976 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984 1358
985#if EV_USE_PORT 1359#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1361#endif
988#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
996#endif 1370#endif
997#if EV_USE_SELECT 1371#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1373#endif
1000 1374
1001 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
1003 } 1377 }
1004} 1378}
1005 1379
1006static void noinline 1380static void noinline
1007loop_destroy (EV_P) 1381loop_destroy (EV_P)
1008{ 1382{
1009 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1010 1401
1011#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
1013 close (fs_fd); 1404 close (fs_fd);
1014#endif 1405#endif
1051#if EV_FORK_ENABLE 1442#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 1443 array_free (fork, EMPTY);
1053#endif 1444#endif
1054 array_free (prepare, EMPTY); 1445 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1056 1450
1057 backend = 0; 1451 backend = 0;
1058} 1452}
1059 1453
1454#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 1455void inline_size infy_fork (EV_P);
1456#endif
1061 1457
1062void inline_size 1458void inline_size
1063loop_fork (EV_P) 1459loop_fork (EV_P)
1064{ 1460{
1065#if EV_USE_PORT 1461#if EV_USE_PORT
1073#endif 1469#endif
1074#if EV_USE_INOTIFY 1470#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 1471 infy_fork (EV_A);
1076#endif 1472#endif
1077 1473
1078 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1079 { 1475 {
1080 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1081 1482
1082 ev_ref (EV_A); 1483 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1084 close (sigpipe [0]); 1493 close (evpipe [0]);
1085 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1086 1496
1087 while (pipe (sigpipe))
1088 syserr ("(libev) error creating pipe");
1089
1090 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1091 } 1500 }
1092 1501
1093 postfork = 0; 1502 postfork = 0;
1094} 1503}
1095 1504
1096#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1097struct ev_loop * 1507struct ev_loop *
1098ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1099{ 1509{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 1511
1117} 1527}
1118 1528
1119void 1529void
1120ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1121{ 1531{
1122 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1123} 1533}
1124 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1125#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1126 1635
1127#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1128struct ev_loop * 1637struct ev_loop *
1129ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1130#else 1639#else
1131int 1640int
1132ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1133#endif 1642#endif
1134{ 1643{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1140 { 1645 {
1141#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1143#else 1648#else
1146 1651
1147 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1148 1653
1149 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1150 { 1655 {
1151 siginit (EV_A);
1152
1153#ifndef _WIN32 1656#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1169{ 1672{
1170#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1675#endif
1173 1676
1677 ev_default_loop_ptr = 0;
1678
1174#ifndef _WIN32 1679#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1177#endif 1682#endif
1178 1683
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1186} 1685}
1187 1686
1188void 1687void
1189ev_default_fork (void) 1688ev_default_fork (void)
1190{ 1689{
1191#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif 1692#endif
1194 1693
1195 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1196 postfork = 1;
1197} 1695}
1198 1696
1199/*****************************************************************************/ 1697/*****************************************************************************/
1200 1698
1201void 1699void
1218 { 1716 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220 1718
1221 p->w->pending = 0; 1719 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1223 } 1722 }
1224 } 1723 }
1225} 1724}
1226
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1240
1241 ((WT)w)->at += w->repeat;
1242 if (((WT)w)->at < mn_now)
1243 ((WT)w)->at = mn_now;
1244
1245 downheap (timers, timercnt, 0);
1246 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 {
1260 ev_periodic *w = (ev_periodic *)periodics [0];
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306 1725
1307#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1308void inline_size 1727void inline_size
1309idle_reify (EV_P) 1728idle_reify (EV_P)
1310{ 1729{
1322 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1323 break; 1742 break;
1324 } 1743 }
1325 } 1744 }
1326 } 1745 }
1746}
1747#endif
1748
1749void inline_size
1750timers_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0);
1771 }
1772 else
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778}
1779
1780#if EV_PERIODIC_ENABLE
1781void inline_size
1782periodics_reify (EV_P)
1783{
1784 EV_FREQUENT_CHECK;
1785
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1826 }
1827}
1828
1829static void noinline
1830periodics_reschedule (EV_P)
1831{
1832 int i;
1833
1834 /* adjust periodics after time jump */
1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1836 {
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1327} 1848}
1328#endif 1849#endif
1329 1850
1330void inline_speed 1851void inline_speed
1331time_update (EV_P_ ev_tstamp max_block) 1852time_update (EV_P_ ev_tstamp max_block)
1360 */ 1881 */
1361 for (i = 4; --i; ) 1882 for (i = 4; --i; )
1362 { 1883 {
1363 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1364 1885
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 1887 return; /* all is well */
1367 1888
1368 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 1890 mn_now = get_clock ();
1370 now_floor = mn_now; 1891 now_floor = mn_now;
1386#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1388#endif 1909#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1391 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1392 } 1917 }
1393 1918
1394 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1395 } 1920 }
1396} 1921}
1405ev_unref (EV_P) 1930ev_unref (EV_P)
1406{ 1931{
1407 --activecnt; 1932 --activecnt;
1408} 1933}
1409 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1410static int loop_done; 1941static int loop_done;
1411 1942
1412void 1943void
1413ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1414{ 1945{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1416 ? EVUNLOOP_ONE
1417 : EVUNLOOP_CANCEL;
1418 1947
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1420 1949
1421 do 1950 do
1422 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1423#ifndef _WIN32 1956#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 1957 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 1958 if (expect_false (getpid () != curpid))
1426 { 1959 {
1427 curpid = getpid (); 1960 curpid = getpid ();
1456 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 1990 fd_reify (EV_A);
1458 1991
1459 /* calculate blocking time */ 1992 /* calculate blocking time */
1460 { 1993 {
1461 ev_tstamp block; 1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1462 1996
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1464 block = 0.; /* do not block at all */
1465 else
1466 { 1998 {
1467 /* update time to cancel out callback processing overhead */ 1999 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100); 2000 time_update (EV_A_ 1e100);
1469 2001
1470 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1471 2003
1472 if (timercnt) 2004 if (timercnt)
1473 { 2005 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1475 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
1476 } 2008 }
1477 2009
1478#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 2011 if (periodiccnt)
1480 { 2012 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1482 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
1483 } 2015 }
1484#endif 2016#endif
1485 2017
1486 if (expect_false (block < 0.)) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
1487 } 2031 }
1488 2032
1489 ++loop_count; 2033 ++loop_count;
1490 backend_poll (EV_A_ block); 2034 backend_poll (EV_A_ waittime);
1491 2035
1492 /* update ev_rt_now, do magic */ 2036 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 2037 time_update (EV_A_ waittime + sleeptime);
1494 } 2038 }
1495 2039
1496 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 2041 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 2042#if EV_PERIODIC_ENABLE
1507 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1510 2054
1511 call_pending (EV_A); 2055 call_pending (EV_A);
1512
1513 } 2056 }
1514 while (expect_true (activecnt && !loop_done)); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1515 2062
1516 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1518} 2065}
1519 2066
1607 2154
1608 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1609 return; 2156 return;
1610 2157
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1612 2162
1613 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1615 wlist_add (&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1616 2166
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1618 w->events &= ~EV_IOFDSET; 2168 w->events &= ~EV_IOFDSET;
2169
2170 EV_FREQUENT_CHECK;
1619} 2171}
1620 2172
1621void noinline 2173void noinline
1622ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1623{ 2175{
1624 clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1626 return; 2178 return;
1627 2179
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
1629 2183
1630 wlist_del (&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1632 2186
1633 fd_change (EV_A_ w->fd, 1); 2187 fd_change (EV_A_ w->fd, 1);
2188
2189 EV_FREQUENT_CHECK;
1634} 2190}
1635 2191
1636void noinline 2192void noinline
1637ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1638{ 2194{
1639 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1640 return; 2196 return;
1641 2197
1642 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1643 2199
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1648 timers [timercnt - 1] = (WT)w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1650 2210
2211 EV_FREQUENT_CHECK;
2212
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 2214}
1653 2215
1654void noinline 2216void noinline
1655ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1656{ 2218{
1657 clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1659 return; 2221 return;
1660 2222
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2223 EV_FREQUENT_CHECK;
1662 2224
1663 { 2225 {
1664 int active = ((W)w)->active; 2226 int active = ev_active (w);
1665 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1666 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1667 { 2233 {
1668 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1670 } 2236 }
1671 } 2237 }
1672 2238
1673 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1674 2242
1675 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1676} 2244}
1677 2245
1678void noinline 2246void noinline
1679ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1680{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1681 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1682 { 2252 {
1683 if (w->repeat) 2253 if (w->repeat)
1684 { 2254 {
1685 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1687 } 2258 }
1688 else 2259 else
1689 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1690 } 2261 }
1691 else if (w->repeat) 2262 else if (w->repeat)
1692 { 2263 {
1693 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1695 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1696} 2269}
1697 2270
1698#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1699void noinline 2272void noinline
1700ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1701{ 2274{
1702 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1703 return; 2276 return;
1704 2277
1705 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 2280 else if (w->interval)
1708 { 2281 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 2285 }
1713 else 2286 else
1714 ((WT)w)->at = w->offset; 2287 ev_at (w) = w->offset;
1715 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1718 periodics [periodiccnt - 1] = (WT)w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1720 2297
2298 EV_FREQUENT_CHECK;
2299
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 2301}
1723 2302
1724void noinline 2303void noinline
1725ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1726{ 2305{
1727 clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1729 return; 2308 return;
1730 2309
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2310 EV_FREQUENT_CHECK;
1732 2311
1733 { 2312 {
1734 int active = ((W)w)->active; 2313 int active = ev_active (w);
1735 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1736 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1737 { 2320 {
1738 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1740 } 2323 }
1741 } 2324 }
1742 2325
2326 EV_FREQUENT_CHECK;
2327
1743 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1744} 2329}
1745 2330
1746void noinline 2331void noinline
1747ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1764#endif 2349#endif
1765 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1766 return; 2351 return;
1767 2352
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
1769 2358
1770 { 2359 {
1771#ifndef _WIN32 2360#ifndef _WIN32
1772 sigset_t full, prev; 2361 sigset_t full, prev;
1773 sigfillset (&full); 2362 sigfillset (&full);
1774 sigprocmask (SIG_SETMASK, &full, &prev); 2363 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif 2364#endif
1776 2365
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1778 2367
1779#ifndef _WIN32 2368#ifndef _WIN32
1780 sigprocmask (SIG_SETMASK, &prev, 0); 2369 sigprocmask (SIG_SETMASK, &prev, 0);
1781#endif 2370#endif
1782 } 2371 }
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 2375
1787 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1788 { 2377 {
1789#if _WIN32 2378#if _WIN32
1790 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1791#else 2380#else
1792 struct sigaction sa; 2381 struct sigaction sa;
1793 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1797#endif 2386#endif
1798 } 2387 }
2388
2389 EV_FREQUENT_CHECK;
1799} 2390}
1800 2391
1801void noinline 2392void noinline
1802ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1803{ 2394{
1804 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1806 return; 2397 return;
1807 2398
2399 EV_FREQUENT_CHECK;
2400
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1810 2403
1811 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1812 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1813} 2408}
1814 2409
1815void 2410void
1816ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1817{ 2412{
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 2415#endif
1821 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1822 return; 2417 return;
1823 2418
2419 EV_FREQUENT_CHECK;
2420
1824 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1826} 2425}
1827 2426
1828void 2427void
1829ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1830{ 2429{
1831 clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1833 return; 2432 return;
1834 2433
2434 EV_FREQUENT_CHECK;
2435
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1837} 2440}
1838 2441
1839#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1840 2443
1841# ifdef _WIN32 2444# ifdef _WIN32
1842# undef lstat 2445# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1844# endif 2447# endif
1845 2448
1846#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1848 2452
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 2454
1851#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192 2456# define EV_INOTIFY_BUFSIZE 8192
1856{ 2460{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 2462
1859 if (w->wd < 0) 2463 if (w->wd < 0)
1860 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1862 2467
1863 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 2472 {
1866 char path [4096]; 2473 char path [4096];
1867 strcpy (path, w->path); 2474 strcpy (path, w->path);
1868 2475
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 2480
1874 char *pend = strrchr (path, '/'); 2481 char *pend = strrchr (path, '/');
1875 2482
1876 if (!pend) 2483 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 2484 break;
1878 2485
1879 *pend = 0; 2486 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 2487 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 2488 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 2490 }
1884 } 2491 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 2492
1888 if (w->wd >= 0) 2493 if (w->wd >= 0)
2494 {
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
1890} 2514}
1891 2515
1892static void noinline 2516static void noinline
1893infy_del (EV_P_ ev_stat *w) 2517infy_del (EV_P_ ev_stat *w)
1894{ 2518{
1908 2532
1909static void noinline 2533static void noinline
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 2535{
1912 if (slot < 0) 2536 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 2537 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 2539 infy_wd (EV_A_ slot, wd, ev);
1916 else 2540 else
1917 { 2541 {
1918 WL w_; 2542 WL w_;
1924 2548
1925 if (w->wd == wd || wd == -1) 2549 if (w->wd == wd || wd == -1)
1926 { 2550 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1929 w->wd = -1; 2554 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 2555 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 2556 }
1932 2557
1933 stat_timer_cb (EV_A_ &w->timer, 0); 2558 stat_timer_cb (EV_A_ &w->timer, 0);
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1949} 2574}
1950 2575
1951void inline_size 2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
1952infy_init (EV_P) 2600infy_init (EV_P)
1953{ 2601{
1954 if (fs_fd != -2) 2602 if (fs_fd != -2)
1955 return; 2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
1956 2608
1957 fs_fd = inotify_init (); 2609 fs_fd = inotify_init ();
1958 2610
1959 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1960 { 2612 {
1988 w->wd = -1; 2640 w->wd = -1;
1989 2641
1990 if (fs_fd >= 0) 2642 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 2643 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 2644 else
1993 ev_timer_start (EV_A_ &w->timer); 2645 ev_timer_again (EV_A_ &w->timer);
1994 } 2646 }
1995
1996 } 2647 }
1997} 2648}
1998 2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
1999#endif 2656#endif
2000 2657
2001void 2658void
2002ev_stat_stat (EV_P_ ev_stat *w) 2659ev_stat_stat (EV_P_ ev_stat *w)
2003{ 2660{
2030 || w->prev.st_atime != w->attr.st_atime 2687 || w->prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 2688 || w->prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 2689 || w->prev.st_ctime != w->attr.st_ctime
2033 ) { 2690 ) {
2034 #if EV_USE_INOTIFY 2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
2035 infy_del (EV_A_ w); 2694 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 2695 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
2038 #endif 2698 #endif
2039 2699
2040 ev_feed_event (EV_A_ w, EV_STAT); 2700 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 2701 }
2042} 2702}
2045ev_stat_start (EV_P_ ev_stat *w) 2705ev_stat_start (EV_P_ ev_stat *w)
2046{ 2706{
2047 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
2048 return; 2708 return;
2049 2709
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 2710 ev_stat_stat (EV_A_ w);
2055 2711
2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 2713 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 2714
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 2716 ev_set_priority (&w->timer, ev_priority (w));
2061 2717
2062#if EV_USE_INOTIFY 2718#if EV_USE_INOTIFY
2063 infy_init (EV_A); 2719 infy_init (EV_A);
2064 2720
2065 if (fs_fd >= 0) 2721 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 2722 infy_add (EV_A_ w);
2067 else 2723 else
2068#endif 2724#endif
2069 ev_timer_start (EV_A_ &w->timer); 2725 ev_timer_again (EV_A_ &w->timer);
2070 2726
2071 ev_start (EV_A_ (W)w, 1); 2727 ev_start (EV_A_ (W)w, 1);
2728
2729 EV_FREQUENT_CHECK;
2072} 2730}
2073 2731
2074void 2732void
2075ev_stat_stop (EV_P_ ev_stat *w) 2733ev_stat_stop (EV_P_ ev_stat *w)
2076{ 2734{
2077 clear_pending (EV_A_ (W)w); 2735 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 2736 if (expect_false (!ev_is_active (w)))
2079 return; 2737 return;
2080 2738
2739 EV_FREQUENT_CHECK;
2740
2081#if EV_USE_INOTIFY 2741#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 2742 infy_del (EV_A_ w);
2083#endif 2743#endif
2084 ev_timer_stop (EV_A_ &w->timer); 2744 ev_timer_stop (EV_A_ &w->timer);
2085 2745
2086 ev_stop (EV_A_ (W)w); 2746 ev_stop (EV_A_ (W)w);
2747
2748 EV_FREQUENT_CHECK;
2087} 2749}
2088#endif 2750#endif
2089 2751
2090#if EV_IDLE_ENABLE 2752#if EV_IDLE_ENABLE
2091void 2753void
2093{ 2755{
2094 if (expect_false (ev_is_active (w))) 2756 if (expect_false (ev_is_active (w)))
2095 return; 2757 return;
2096 2758
2097 pri_adjust (EV_A_ (W)w); 2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2098 2762
2099 { 2763 {
2100 int active = ++idlecnt [ABSPRI (w)]; 2764 int active = ++idlecnt [ABSPRI (w)];
2101 2765
2102 ++idleall; 2766 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 2767 ev_start (EV_A_ (W)w, active);
2104 2768
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w; 2770 idles [ABSPRI (w)][active - 1] = w;
2107 } 2771 }
2772
2773 EV_FREQUENT_CHECK;
2108} 2774}
2109 2775
2110void 2776void
2111ev_idle_stop (EV_P_ ev_idle *w) 2777ev_idle_stop (EV_P_ ev_idle *w)
2112{ 2778{
2113 clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2115 return; 2781 return;
2116 2782
2783 EV_FREQUENT_CHECK;
2784
2117 { 2785 {
2118 int active = ((W)w)->active; 2786 int active = ev_active (w);
2119 2787
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 2790
2123 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2124 --idleall; 2792 --idleall;
2125 } 2793 }
2794
2795 EV_FREQUENT_CHECK;
2126} 2796}
2127#endif 2797#endif
2128 2798
2129void 2799void
2130ev_prepare_start (EV_P_ ev_prepare *w) 2800ev_prepare_start (EV_P_ ev_prepare *w)
2131{ 2801{
2132 if (expect_false (ev_is_active (w))) 2802 if (expect_false (ev_is_active (w)))
2133 return; 2803 return;
2804
2805 EV_FREQUENT_CHECK;
2134 2806
2135 ev_start (EV_A_ (W)w, ++preparecnt); 2807 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w; 2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
2138} 2812}
2139 2813
2140void 2814void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 2815ev_prepare_stop (EV_P_ ev_prepare *w)
2142{ 2816{
2143 clear_pending (EV_A_ (W)w); 2817 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2818 if (expect_false (!ev_is_active (w)))
2145 return; 2819 return;
2146 2820
2821 EV_FREQUENT_CHECK;
2822
2147 { 2823 {
2148 int active = ((W)w)->active; 2824 int active = ev_active (w);
2825
2149 prepares [active - 1] = prepares [--preparecnt]; 2826 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 2827 ev_active (prepares [active - 1]) = active;
2151 } 2828 }
2152 2829
2153 ev_stop (EV_A_ (W)w); 2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2154} 2833}
2155 2834
2156void 2835void
2157ev_check_start (EV_P_ ev_check *w) 2836ev_check_start (EV_P_ ev_check *w)
2158{ 2837{
2159 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2160 return; 2839 return;
2840
2841 EV_FREQUENT_CHECK;
2161 2842
2162 ev_start (EV_A_ (W)w, ++checkcnt); 2843 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w; 2845 checks [checkcnt - 1] = w;
2846
2847 EV_FREQUENT_CHECK;
2165} 2848}
2166 2849
2167void 2850void
2168ev_check_stop (EV_P_ ev_check *w) 2851ev_check_stop (EV_P_ ev_check *w)
2169{ 2852{
2170 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2172 return; 2855 return;
2173 2856
2857 EV_FREQUENT_CHECK;
2858
2174 { 2859 {
2175 int active = ((W)w)->active; 2860 int active = ev_active (w);
2861
2176 checks [active - 1] = checks [--checkcnt]; 2862 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 2863 ev_active (checks [active - 1]) = active;
2178 } 2864 }
2179 2865
2180 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2181} 2869}
2182 2870
2183#if EV_EMBED_ENABLE 2871#if EV_EMBED_ENABLE
2184void noinline 2872void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w) 2873ev_embed_sweep (EV_P_ ev_embed *w)
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 2882
2195 if (ev_cb (w)) 2883 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2884 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 2885 else
2198 ev_embed_sweep (loop, w); 2886 ev_loop (w->other, EVLOOP_NONBLOCK);
2199} 2887}
2200 2888
2201static void 2889static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 2891{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 2893
2206 fd_reify (w->other); 2894 {
2895 struct ev_loop *loop = w->other;
2896
2897 while (fdchangecnt)
2898 {
2899 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2901 }
2902 }
2207} 2903}
2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 {
2911 struct ev_loop *loop = w->other;
2912
2913 ev_loop_fork (EV_A);
2914 }
2915}
2916
2917#if 0
2918static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2920{
2921 ev_idle_stop (EV_A_ idle);
2922}
2923#endif
2208 2924
2209void 2925void
2210ev_embed_start (EV_P_ ev_embed *w) 2926ev_embed_start (EV_P_ ev_embed *w)
2211{ 2927{
2212 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2213 return; 2929 return;
2214 2930
2215 { 2931 {
2216 struct ev_loop *loop = w->other; 2932 struct ev_loop *loop = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_WRITE); 2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 2935 }
2936
2937 EV_FREQUENT_CHECK;
2220 2938
2221 ev_set_priority (&w->io, ev_priority (w)); 2939 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 2940 ev_io_start (EV_A_ &w->io);
2223 2941
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 2942 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 2943 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 2944 ev_prepare_start (EV_A_ &w->prepare);
2227 2945
2946 ev_fork_init (&w->fork, embed_fork_cb);
2947 ev_fork_start (EV_A_ &w->fork);
2948
2949 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2950
2228 ev_start (EV_A_ (W)w, 1); 2951 ev_start (EV_A_ (W)w, 1);
2952
2953 EV_FREQUENT_CHECK;
2229} 2954}
2230 2955
2231void 2956void
2232ev_embed_stop (EV_P_ ev_embed *w) 2957ev_embed_stop (EV_P_ ev_embed *w)
2233{ 2958{
2234 clear_pending (EV_A_ (W)w); 2959 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 2960 if (expect_false (!ev_is_active (w)))
2236 return; 2961 return;
2237 2962
2963 EV_FREQUENT_CHECK;
2964
2238 ev_io_stop (EV_A_ &w->io); 2965 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 2966 ev_prepare_stop (EV_A_ &w->prepare);
2967 ev_fork_stop (EV_A_ &w->fork);
2240 2968
2241 ev_stop (EV_A_ (W)w); 2969 EV_FREQUENT_CHECK;
2242} 2970}
2243#endif 2971#endif
2244 2972
2245#if EV_FORK_ENABLE 2973#if EV_FORK_ENABLE
2246void 2974void
2247ev_fork_start (EV_P_ ev_fork *w) 2975ev_fork_start (EV_P_ ev_fork *w)
2248{ 2976{
2249 if (expect_false (ev_is_active (w))) 2977 if (expect_false (ev_is_active (w)))
2250 return; 2978 return;
2979
2980 EV_FREQUENT_CHECK;
2251 2981
2252 ev_start (EV_A_ (W)w, ++forkcnt); 2982 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2983 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2254 forks [forkcnt - 1] = w; 2984 forks [forkcnt - 1] = w;
2985
2986 EV_FREQUENT_CHECK;
2255} 2987}
2256 2988
2257void 2989void
2258ev_fork_stop (EV_P_ ev_fork *w) 2990ev_fork_stop (EV_P_ ev_fork *w)
2259{ 2991{
2260 clear_pending (EV_A_ (W)w); 2992 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 2993 if (expect_false (!ev_is_active (w)))
2262 return; 2994 return;
2263 2995
2996 EV_FREQUENT_CHECK;
2997
2264 { 2998 {
2265 int active = ((W)w)->active; 2999 int active = ev_active (w);
3000
2266 forks [active - 1] = forks [--forkcnt]; 3001 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 3002 ev_active (forks [active - 1]) = active;
2268 } 3003 }
2269 3004
2270 ev_stop (EV_A_ (W)w); 3005 ev_stop (EV_A_ (W)w);
3006
3007 EV_FREQUENT_CHECK;
3008}
3009#endif
3010
3011#if EV_ASYNC_ENABLE
3012void
3013ev_async_start (EV_P_ ev_async *w)
3014{
3015 if (expect_false (ev_is_active (w)))
3016 return;
3017
3018 evpipe_init (EV_A);
3019
3020 EV_FREQUENT_CHECK;
3021
3022 ev_start (EV_A_ (W)w, ++asynccnt);
3023 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3024 asyncs [asynccnt - 1] = w;
3025
3026 EV_FREQUENT_CHECK;
3027}
3028
3029void
3030ev_async_stop (EV_P_ ev_async *w)
3031{
3032 clear_pending (EV_A_ (W)w);
3033 if (expect_false (!ev_is_active (w)))
3034 return;
3035
3036 EV_FREQUENT_CHECK;
3037
3038 {
3039 int active = ev_active (w);
3040
3041 asyncs [active - 1] = asyncs [--asynccnt];
3042 ev_active (asyncs [active - 1]) = active;
3043 }
3044
3045 ev_stop (EV_A_ (W)w);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049
3050void
3051ev_async_send (EV_P_ ev_async *w)
3052{
3053 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync);
2271} 3055}
2272#endif 3056#endif
2273 3057
2274/*****************************************************************************/ 3058/*****************************************************************************/
2275 3059
2285once_cb (EV_P_ struct ev_once *once, int revents) 3069once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 3070{
2287 void (*cb)(int revents, void *arg) = once->cb; 3071 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 3072 void *arg = once->arg;
2289 3073
2290 ev_io_stop (EV_A_ &once->io); 3074 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 3075 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 3076 ev_free (once);
2293 3077
2294 cb (revents, arg); 3078 cb (revents, arg);
2295} 3079}
2296 3080
2297static void 3081static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 3082once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 3083{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3084 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3085
3086 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 3087}
2302 3088
2303static void 3089static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 3090once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 3091{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3092 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3093
3094 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2307} 3095}
2308 3096
2309void 3097void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3098ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2311{ 3099{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines