ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.191 by root, Fri Dec 21 02:40:01 2007 UTC vs.
Revision 1.493 by root, Sun Jun 23 02:02:24 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
92# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
93# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
97# endif 136# endif
98 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
99# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
105# endif 145# endif
106 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
110#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
111#include <fcntl.h> 188#include <fcntl.h>
112#include <stddef.h> 189#include <stddef.h>
113 190
114#include <stdio.h> 191#include <stdio.h>
115 192
116#include <assert.h> 193#include <assert.h>
117#include <errno.h> 194#include <errno.h>
118#include <sys/types.h> 195#include <sys/types.h>
119#include <time.h> 196#include <time.h>
197#include <limits.h>
120 198
121#include <signal.h> 199#include <signal.h>
122 200
123#ifdef EV_H 201#ifdef EV_H
124# include EV_H 202# include EV_H
125#else 203#else
126# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
127#endif 216#endif
128 217
129#ifndef _WIN32 218#ifndef _WIN32
130# include <sys/time.h> 219# include <sys/time.h>
131# include <sys/wait.h> 220# include <sys/wait.h>
132# include <unistd.h> 221# include <unistd.h>
133#else 222#else
223# include <io.h>
134# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
135# include <windows.h> 226# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
138# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
139#endif 269# endif
270#endif
140 271
141/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
142 280
143#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
144# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
145#endif 287#endif
146 288
147#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
149#endif 299#endif
150 300
151#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 303#endif
154 304
155#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
156# ifdef _WIN32 306# ifdef _WIN32
157# define EV_USE_POLL 0 307# define EV_USE_POLL 0
158# else 308# else
159# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 310# endif
161#endif 311#endif
162 312
163#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
164# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
165#endif 319#endif
166 320
167#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
169#endif 323#endif
170 324
171#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 326# define EV_USE_PORT 0
173#endif 327#endif
174 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
175#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
176# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
342# endif
177#endif 343#endif
178 344
179#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 356# else
183# define EV_PID_HASHSIZE 16 357# define EV_USE_EVENTFD 0
184# endif 358# endif
185#endif 359#endif
186 360
187#ifndef EV_INOTIFY_HASHSIZE 361#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 363# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 364# else
191# define EV_INOTIFY_HASHSIZE 16 365# define EV_USE_SIGNALFD 0
192# endif 366# endif
193#endif 367#endif
194 368
195/**/ 369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 418
197#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
200#endif 422#endif
207#if !EV_STAT_ENABLE 429#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
210#endif 432#endif
211 433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
212#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
213# include <sys/inotify.h> 451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
214#endif 456# endif
457#endif
215 458
216#if EV_SELECT_IS_WINSOCKET 459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
217# include <winsock.h> 461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
218#endif 495#endif
219 496
220/**/ 497/**/
221 498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
222/* 505/*
223 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */ 508 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 511
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010005
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
236#if __GNUC__ >= 4 573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739#endif
740
741#ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795#endif
796
797#ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813#endif
814
815#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817#endif
818
819#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821#endif
822
823/*****************************************************************************/
824
825#if ECB_CPP
826 #define ecb_inline static inline
827#elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829#elif ECB_C99
830 #define ecb_inline static inline
831#else
832 #define ecb_inline static
833#endif
834
835#if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837#elif ECB_C99
838 #define ecb_restrict restrict
839#else
840 #define ecb_restrict
841#endif
842
843typedef int ecb_bool;
844
845#define ECB_CONCAT_(a, b) a ## b
846#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847#define ECB_STRINGIFY_(a) # a
848#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851#define ecb_function_ ecb_inline
852
853#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855#else
856 #define ecb_attribute(attrlist)
857#endif
858
859#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861#else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867#endif
868
869#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
237# define expect(expr,value) __builtin_expect ((expr),(value)) 870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline))
239#else 871#else
240# define expect(expr,value) (expr) 872 #define ecb_expect(expr,value) (expr)
241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif 873#endif
245#endif
246 874
875#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877#else
878 #define ecb_prefetch(addr,rw,locality)
879#endif
880
881/* no emulation for ecb_decltype */
882#if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888#endif
889
890#if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892#else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894#endif
895
896#if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898#elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900#else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902#endif
903
904#if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906#else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908#endif
909
910#define ecb_unused ecb_attribute ((__unused__))
911#define ecb_const ecb_attribute ((__const__))
912#define ecb_pure ecb_attribute ((__pure__))
913
914#if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917#elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919#elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922#else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924#endif
925
926#if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930#else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934#endif
935
936/* put around conditional expressions if you are very sure that the */
937/* expression is mostly true or mostly false. note that these return */
938/* booleans, not the expression. */
247#define expect_false(expr) expect ((expr) != 0, 0) 939#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 940#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941/* for compatibility to the rest of the world */
942#define ecb_likely(expr) ecb_expect_true (expr)
943#define ecb_unlikely(expr) ecb_expect_false (expr)
944
945/* count trailing zero bits and count # of one bits */
946#if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957#else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966#else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971#if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977#else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983#endif
984
985 return r;
986#endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997#else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000#endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022#else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032#endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042#else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048#endif
1049 }
1050#endif
1051
1052ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059{
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062}
1063
1064ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066{
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073}
1074
1075ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077{
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085}
1086
1087/* popcount64 is only available on 64 bit cpus as gcc builtin */
1088/* so for this version we are lazy */
1089ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090ecb_function_ ecb_const int
1091ecb_popcount64 (uint64_t x)
1092{
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094}
1095
1096ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122#elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127#else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148#endif
1149
1150#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152#else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156#endif
1157
1158/* try to tell the compiler that some condition is definitely true */
1159#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162ecb_inline ecb_const uint32_t
1163ecb_byteorder_helper (void)
1164{
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179#else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186#endif
1187}
1188
1189ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194#if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196#else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198#endif
1199
1200#if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211#else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214#endif
1215
1216#if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223#else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225#endif
1226
1227ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228ecb_function_ ecb_const uint32_t
1229ecb_binary16_to_binary32 (uint32_t x)
1230{
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257}
1258
1259ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260ecb_function_ ecb_const uint16_t
1261ecb_binary32_to_binary16 (uint32_t x)
1262{
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321}
1322
1323/*******************************************************************************/
1324/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326/* basically, everything uses "ieee pure-endian" floating point numbers */
1327/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328#if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345#else
1346 #define ECB_STDFP 0
1347#endif
1348
1349#ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530#endif
1531
1532#endif
1533
1534/* ECB.H END */
1535
1536#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537/* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544# error "memory fences not defined for your architecture, please report"
1545#endif
1546
1547#ifndef ECB_MEMORY_FENCE
1548# define ECB_MEMORY_FENCE do { } while (0)
1549# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551#endif
1552
1553#define expect_false(cond) ecb_expect_false (cond)
1554#define expect_true(cond) ecb_expect_true (cond)
1555#define noinline ecb_noinline
1556
249#define inline_size static inline 1557#define inline_size ecb_inline
250 1558
251#if EV_MINIMAL 1559#if EV_FEATURE_CODE
252# define inline_speed static noinline
253#else
254# define inline_speed static inline 1560# define inline_speed ecb_inline
1561#else
1562# define inline_speed noinline static
255#endif 1563#endif
256 1564
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1565#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567#if EV_MINPRI == EV_MAXPRI
1568# define ABSPRI(w) (((W)w), 0)
1569#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1570# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571#endif
259 1572
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1573#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */
262 1574
263typedef ev_watcher *W; 1575typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 1576typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 1577typedef ev_watcher_time *WT;
266 1578
1579#define ev_active(w) ((W)(w))->active
1580#define ev_at(w) ((WT)(w))->at
1581
1582#if EV_USE_REALTIME
1583/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584/* giving it a reasonably high chance of working on typical architectures */
1585static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586#endif
1587
1588#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1589static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590#endif
1591
1592#ifndef EV_FD_TO_WIN32_HANDLE
1593# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594#endif
1595#ifndef EV_WIN32_HANDLE_TO_FD
1596# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597#endif
1598#ifndef EV_WIN32_CLOSE_FD
1599# define EV_WIN32_CLOSE_FD(fd) close (fd)
1600#endif
268 1601
269#ifdef _WIN32 1602#ifdef _WIN32
270# include "ev_win32.c" 1603# include "ev_win32.c"
271#endif 1604#endif
272 1605
273/*****************************************************************************/ 1606/*****************************************************************************/
274 1607
1608#if EV_USE_LINUXAIO
1609# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1610#endif
1611
1612/* define a suitable floor function (only used by periodics atm) */
1613
1614#if EV_USE_FLOOR
1615# include <math.h>
1616# define ev_floor(v) floor (v)
1617#else
1618
1619#include <float.h>
1620
1621/* a floor() replacement function, should be independent of ev_tstamp type */
1622noinline
1623static ev_tstamp
1624ev_floor (ev_tstamp v)
1625{
1626 /* the choice of shift factor is not terribly important */
1627#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629#else
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631#endif
1632
1633 /* argument too large for an unsigned long? */
1634 if (expect_false (v >= shift))
1635 {
1636 ev_tstamp f;
1637
1638 if (v == v - 1.)
1639 return v; /* very large number */
1640
1641 f = shift * ev_floor (v * (1. / shift));
1642 return f + ev_floor (v - f);
1643 }
1644
1645 /* special treatment for negative args? */
1646 if (expect_false (v < 0.))
1647 {
1648 ev_tstamp f = -ev_floor (-v);
1649
1650 return f - (f == v ? 0 : 1);
1651 }
1652
1653 /* fits into an unsigned long */
1654 return (unsigned long)v;
1655}
1656
1657#endif
1658
1659/*****************************************************************************/
1660
1661#ifdef __linux
1662# include <sys/utsname.h>
1663#endif
1664
1665noinline ecb_cold
1666static unsigned int
1667ev_linux_version (void)
1668{
1669#ifdef __linux
1670 unsigned int v = 0;
1671 struct utsname buf;
1672 int i;
1673 char *p = buf.release;
1674
1675 if (uname (&buf))
1676 return 0;
1677
1678 for (i = 3+1; --i; )
1679 {
1680 unsigned int c = 0;
1681
1682 for (;;)
1683 {
1684 if (*p >= '0' && *p <= '9')
1685 c = c * 10 + *p++ - '0';
1686 else
1687 {
1688 p += *p == '.';
1689 break;
1690 }
1691 }
1692
1693 v = (v << 8) | c;
1694 }
1695
1696 return v;
1697#else
1698 return 0;
1699#endif
1700}
1701
1702/*****************************************************************************/
1703
1704#if EV_AVOID_STDIO
1705noinline ecb_cold
1706static void
1707ev_printerr (const char *msg)
1708{
1709 write (STDERR_FILENO, msg, strlen (msg));
1710}
1711#endif
1712
275static void (*syserr_cb)(const char *msg); 1713static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
276 1714
1715ecb_cold
277void 1716void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1717ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
279{ 1718{
280 syserr_cb = cb; 1719 syserr_cb = cb;
281} 1720}
282 1721
283static void noinline 1722noinline ecb_cold
1723static void
284syserr (const char *msg) 1724ev_syserr (const char *msg)
285{ 1725{
286 if (!msg) 1726 if (!msg)
287 msg = "(libev) system error"; 1727 msg = "(libev) system error";
288 1728
289 if (syserr_cb) 1729 if (syserr_cb)
290 syserr_cb (msg); 1730 syserr_cb (msg);
291 else 1731 else
292 { 1732 {
1733#if EV_AVOID_STDIO
1734 ev_printerr (msg);
1735 ev_printerr (": ");
1736 ev_printerr (strerror (errno));
1737 ev_printerr ("\n");
1738#else
293 perror (msg); 1739 perror (msg);
1740#endif
294 abort (); 1741 abort ();
295 } 1742 }
296} 1743}
297 1744
298static void *(*alloc)(void *ptr, long size); 1745static void *
1746ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1747{
1748 /* some systems, notably openbsd and darwin, fail to properly
1749 * implement realloc (x, 0) (as required by both ansi c-89 and
1750 * the single unix specification, so work around them here.
1751 * recently, also (at least) fedora and debian started breaking it,
1752 * despite documenting it otherwise.
1753 */
299 1754
1755 if (size)
1756 return realloc (ptr, size);
1757
1758 free (ptr);
1759 return 0;
1760}
1761
1762static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1763
1764ecb_cold
300void 1765void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1766ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
302{ 1767{
303 alloc = cb; 1768 alloc = cb;
304} 1769}
305 1770
306inline_speed void * 1771inline_speed void *
307ev_realloc (void *ptr, long size) 1772ev_realloc (void *ptr, long size)
308{ 1773{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1774 ptr = alloc (ptr, size);
310 1775
311 if (!ptr && size) 1776 if (!ptr && size)
312 { 1777 {
1778#if EV_AVOID_STDIO
1779 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1781 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782#endif
314 abort (); 1783 abort ();
315 } 1784 }
316 1785
317 return ptr; 1786 return ptr;
318} 1787}
320#define ev_malloc(size) ev_realloc (0, (size)) 1789#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1790#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1791
323/*****************************************************************************/ 1792/*****************************************************************************/
324 1793
1794/* set in reify when reification needed */
1795#define EV_ANFD_REIFY 1
1796
1797/* file descriptor info structure */
325typedef struct 1798typedef struct
326{ 1799{
327 WL head; 1800 WL head;
328 unsigned char events; 1801 unsigned char events; /* the events watched for */
1802 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1803 unsigned char emask; /* some backends store the actual kernel mask in here */
329 unsigned char reify; 1804 unsigned char unused;
1805#if EV_USE_EPOLL
1806 unsigned int egen; /* generation counter to counter epoll bugs */
1807#endif
330#if EV_SELECT_IS_WINSOCKET 1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1809 SOCKET handle;
332#endif 1810#endif
1811#if EV_USE_IOCP
1812 OVERLAPPED or, ow;
1813#endif
333} ANFD; 1814} ANFD;
334 1815
1816/* stores the pending event set for a given watcher */
335typedef struct 1817typedef struct
336{ 1818{
337 W w; 1819 W w;
338 int events; 1820 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1821} ANPENDING;
340 1822
341#if EV_USE_INOTIFY 1823#if EV_USE_INOTIFY
1824/* hash table entry per inotify-id */
342typedef struct 1825typedef struct
343{ 1826{
344 WL head; 1827 WL head;
345} ANFS; 1828} ANFS;
1829#endif
1830
1831/* Heap Entry */
1832#if EV_HEAP_CACHE_AT
1833 /* a heap element */
1834 typedef struct {
1835 ev_tstamp at;
1836 WT w;
1837 } ANHE;
1838
1839 #define ANHE_w(he) (he).w /* access watcher, read-write */
1840 #define ANHE_at(he) (he).at /* access cached at, read-only */
1841 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1842#else
1843 /* a heap element */
1844 typedef WT ANHE;
1845
1846 #define ANHE_w(he) (he)
1847 #define ANHE_at(he) (he)->at
1848 #define ANHE_at_cache(he)
346#endif 1849#endif
347 1850
348#if EV_MULTIPLICITY 1851#if EV_MULTIPLICITY
349 1852
350 struct ev_loop 1853 struct ev_loop
356 #undef VAR 1859 #undef VAR
357 }; 1860 };
358 #include "ev_wrap.h" 1861 #include "ev_wrap.h"
359 1862
360 static struct ev_loop default_loop_struct; 1863 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1864 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1865
363#else 1866#else
364 1867
365 ev_tstamp ev_rt_now; 1868 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1869 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1870 #include "ev_vars.h"
368 #undef VAR 1871 #undef VAR
369 1872
370 static int ev_default_loop_ptr; 1873 static int ev_default_loop_ptr;
371 1874
372#endif 1875#endif
373 1876
1877#if EV_FEATURE_API
1878# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880# define EV_INVOKE_PENDING invoke_cb (EV_A)
1881#else
1882# define EV_RELEASE_CB (void)0
1883# define EV_ACQUIRE_CB (void)0
1884# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885#endif
1886
1887#define EVBREAK_RECURSE 0x80
1888
374/*****************************************************************************/ 1889/*****************************************************************************/
375 1890
1891#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1892ev_tstamp
377ev_time (void) 1893ev_time (void) EV_NOEXCEPT
378{ 1894{
379#if EV_USE_REALTIME 1895#if EV_USE_REALTIME
1896 if (expect_true (have_realtime))
1897 {
380 struct timespec ts; 1898 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1899 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1900 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1901 }
1902#endif
1903
384 struct timeval tv; 1904 struct timeval tv;
385 gettimeofday (&tv, 0); 1905 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1906 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1907}
1908#endif
389 1909
390ev_tstamp inline_size 1910inline_size ev_tstamp
391get_clock (void) 1911get_clock (void)
392{ 1912{
393#if EV_USE_MONOTONIC 1913#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1914 if (expect_true (have_monotonic))
395 { 1915 {
402 return ev_time (); 1922 return ev_time ();
403} 1923}
404 1924
405#if EV_MULTIPLICITY 1925#if EV_MULTIPLICITY
406ev_tstamp 1926ev_tstamp
407ev_now (EV_P) 1927ev_now (EV_P) EV_NOEXCEPT
408{ 1928{
409 return ev_rt_now; 1929 return ev_rt_now;
410} 1930}
411#endif 1931#endif
412 1932
413int inline_size 1933void
1934ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1935{
1936 if (delay > 0.)
1937 {
1938#if EV_USE_NANOSLEEP
1939 struct timespec ts;
1940
1941 EV_TS_SET (ts, delay);
1942 nanosleep (&ts, 0);
1943#elif defined _WIN32
1944 /* maybe this should round up, as ms is very low resolution */
1945 /* compared to select (µs) or nanosleep (ns) */
1946 Sleep ((unsigned long)(delay * 1e3));
1947#else
1948 struct timeval tv;
1949
1950 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1951 /* something not guaranteed by newer posix versions, but guaranteed */
1952 /* by older ones */
1953 EV_TV_SET (tv, delay);
1954 select (0, 0, 0, 0, &tv);
1955#endif
1956 }
1957}
1958
1959/*****************************************************************************/
1960
1961#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1962
1963/* find a suitable new size for the given array, */
1964/* hopefully by rounding to a nice-to-malloc size */
1965inline_size int
414array_nextsize (int elem, int cur, int cnt) 1966array_nextsize (int elem, int cur, int cnt)
415{ 1967{
416 int ncur = cur + 1; 1968 int ncur = cur + 1;
417 1969
418 do 1970 do
419 ncur <<= 1; 1971 ncur <<= 1;
420 while (cnt > ncur); 1972 while (cnt > ncur);
421 1973
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1974 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1975 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1976 {
425 ncur *= elem; 1977 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1978 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1979 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1980 ncur /= elem;
429 } 1981 }
430 1982
431 return ncur; 1983 return ncur;
432} 1984}
433 1985
434static noinline void * 1986noinline ecb_cold
1987static void *
435array_realloc (int elem, void *base, int *cur, int cnt) 1988array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1989{
437 *cur = array_nextsize (elem, *cur, cnt); 1990 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1991 return ev_realloc (base, elem * *cur);
439} 1992}
1993
1994#define array_needsize_noinit(base,count)
1995
1996#define array_needsize_zerofill(base,count) \
1997 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 1998
441#define array_needsize(type,base,cur,cnt,init) \ 1999#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 2000 if (expect_false ((cnt) > (cur))) \
443 { \ 2001 { \
444 int ocur_ = (cur); \ 2002 ecb_unused int ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 2003 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 2004 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 2005 init ((base) + (ocur_), (cur) - ocur_); \
448 } 2006 }
449 2007
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2014 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 2015 }
458#endif 2016#endif
459 2017
460#define array_free(stem, idx) \ 2018#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2019 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 2020
463/*****************************************************************************/ 2021/*****************************************************************************/
464 2022
2023/* dummy callback for pending events */
465void noinline 2024noinline
2025static void
2026pendingcb (EV_P_ ev_prepare *w, int revents)
2027{
2028}
2029
2030noinline
2031void
466ev_feed_event (EV_P_ void *w, int revents) 2032ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
467{ 2033{
468 W w_ = (W)w; 2034 W w_ = (W)w;
469 int pri = ABSPRI (w_); 2035 int pri = ABSPRI (w_);
470 2036
471 if (expect_false (w_->pending)) 2037 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents; 2038 pendings [pri][w_->pending - 1].events |= revents;
473 else 2039 else
474 { 2040 {
475 w_->pending = ++pendingcnt [pri]; 2041 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
477 pendings [pri][w_->pending - 1].w = w_; 2043 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 2044 pendings [pri][w_->pending - 1].events = revents;
479 } 2045 }
480}
481 2046
482void inline_speed 2047 pendingpri = NUMPRI - 1;
2048}
2049
2050inline_speed void
2051feed_reverse (EV_P_ W w)
2052{
2053 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 rfeeds [rfeedcnt++] = w;
2055}
2056
2057inline_size void
2058feed_reverse_done (EV_P_ int revents)
2059{
2060 do
2061 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062 while (rfeedcnt);
2063}
2064
2065inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 2066queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 2067{
485 int i; 2068 int i;
486 2069
487 for (i = 0; i < eventcnt; ++i) 2070 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 2071 ev_feed_event (EV_A_ events [i], type);
489} 2072}
490 2073
491/*****************************************************************************/ 2074/*****************************************************************************/
492 2075
493void inline_size 2076inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 2077fd_event_nocheck (EV_P_ int fd, int revents)
508{ 2078{
509 ANFD *anfd = anfds + fd; 2079 ANFD *anfd = anfds + fd;
510 ev_io *w; 2080 ev_io *w;
511 2081
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2082 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 2086 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 2087 ev_feed_event (EV_A_ (W)w, ev);
518 } 2088 }
519} 2089}
520 2090
521void 2091/* do not submit kernel events for fds that have reify set */
2092/* because that means they changed while we were polling for new events */
2093inline_speed void
522ev_feed_fd_event (EV_P_ int fd, int revents) 2094fd_event (EV_P_ int fd, int revents)
2095{
2096 ANFD *anfd = anfds + fd;
2097
2098 if (expect_true (!anfd->reify))
2099 fd_event_nocheck (EV_A_ fd, revents);
2100}
2101
2102void
2103ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
523{ 2104{
524 if (fd >= 0 && fd < anfdmax) 2105 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 2106 fd_event_nocheck (EV_A_ fd, revents);
526} 2107}
527 2108
528void inline_size 2109/* make sure the external fd watch events are in-sync */
2110/* with the kernel/libev internal state */
2111inline_size void
529fd_reify (EV_P) 2112fd_reify (EV_P)
530{ 2113{
531 int i; 2114 int i;
2115
2116#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2117 for (i = 0; i < fdchangecnt; ++i)
2118 {
2119 int fd = fdchanges [i];
2120 ANFD *anfd = anfds + fd;
2121
2122 if (anfd->reify & EV__IOFDSET && anfd->head)
2123 {
2124 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125
2126 if (handle != anfd->handle)
2127 {
2128 unsigned long arg;
2129
2130 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131
2132 /* handle changed, but fd didn't - we need to do it in two steps */
2133 backend_modify (EV_A_ fd, anfd->events, 0);
2134 anfd->events = 0;
2135 anfd->handle = handle;
2136 }
2137 }
2138 }
2139#endif
532 2140
533 for (i = 0; i < fdchangecnt; ++i) 2141 for (i = 0; i < fdchangecnt; ++i)
534 { 2142 {
535 int fd = fdchanges [i]; 2143 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 2144 ANFD *anfd = anfds + fd;
537 ev_io *w; 2145 ev_io *w;
538 2146
539 unsigned char events = 0; 2147 unsigned char o_events = anfd->events;
2148 unsigned char o_reify = anfd->reify;
540 2149
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2150 anfd->reify = 0;
542 events |= (unsigned char)w->events;
543 2151
544#if EV_SELECT_IS_WINSOCKET 2152 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 2153 {
547 unsigned long argp; 2154 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 2155
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2156 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2157 anfd->events |= (unsigned char)w->events;
2158
2159 if (o_events != anfd->events)
2160 o_reify = EV__IOFDSET; /* actually |= */
550 } 2161 }
551#endif
552 2162
553 { 2163 if (o_reify & EV__IOFDSET)
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
557 anfd->reify = 0;
558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 2164 backend_modify (EV_A_ fd, o_events, anfd->events);
562 }
563 } 2165 }
564 2166
565 fdchangecnt = 0; 2167 fdchangecnt = 0;
566} 2168}
567 2169
2170/* something about the given fd changed */
568void inline_size 2171inline_size
2172void
569fd_change (EV_P_ int fd, int flags) 2173fd_change (EV_P_ int fd, int flags)
570{ 2174{
571 unsigned char reify = anfds [fd].reify; 2175 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 2176 anfds [fd].reify |= flags;
573 2177
574 if (expect_true (!reify)) 2178 if (expect_true (!reify))
575 { 2179 {
576 ++fdchangecnt; 2180 ++fdchangecnt;
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2181 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
578 fdchanges [fdchangecnt - 1] = fd; 2182 fdchanges [fdchangecnt - 1] = fd;
579 } 2183 }
580} 2184}
581 2185
582void inline_speed 2186/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187inline_speed ecb_cold void
583fd_kill (EV_P_ int fd) 2188fd_kill (EV_P_ int fd)
584{ 2189{
585 ev_io *w; 2190 ev_io *w;
586 2191
587 while ((w = (ev_io *)anfds [fd].head)) 2192 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 2194 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2195 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 2196 }
592} 2197}
593 2198
594int inline_size 2199/* check whether the given fd is actually valid, for error recovery */
2200inline_size ecb_cold int
595fd_valid (int fd) 2201fd_valid (int fd)
596{ 2202{
597#ifdef _WIN32 2203#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 2204 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
599#else 2205#else
600 return fcntl (fd, F_GETFD) != -1; 2206 return fcntl (fd, F_GETFD) != -1;
601#endif 2207#endif
602} 2208}
603 2209
604/* called on EBADF to verify fds */ 2210/* called on EBADF to verify fds */
605static void noinline 2211noinline ecb_cold
2212static void
606fd_ebadf (EV_P) 2213fd_ebadf (EV_P)
607{ 2214{
608 int fd; 2215 int fd;
609 2216
610 for (fd = 0; fd < anfdmax; ++fd) 2217 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 2218 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 2219 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 2220 fd_kill (EV_A_ fd);
614} 2221}
615 2222
616/* called on ENOMEM in select/poll to kill some fds and retry */ 2223/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 2224noinline ecb_cold
2225static void
618fd_enomem (EV_P) 2226fd_enomem (EV_P)
619{ 2227{
620 int fd; 2228 int fd;
621 2229
622 for (fd = anfdmax; fd--; ) 2230 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 2231 if (anfds [fd].events)
624 { 2232 {
625 fd_kill (EV_A_ fd); 2233 fd_kill (EV_A_ fd);
626 return; 2234 break;
627 } 2235 }
628} 2236}
629 2237
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 2238/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 2239noinline
2240static void
632fd_rearm_all (EV_P) 2241fd_rearm_all (EV_P)
633{ 2242{
634 int fd; 2243 int fd;
635 2244
636 for (fd = 0; fd < anfdmax; ++fd) 2245 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 2246 if (anfds [fd].events)
638 { 2247 {
639 anfds [fd].events = 0; 2248 anfds [fd].events = 0;
2249 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 2251 }
642} 2252}
643 2253
2254/* used to prepare libev internal fd's */
2255/* this is not fork-safe */
2256inline_speed void
2257fd_intern (int fd)
2258{
2259#ifdef _WIN32
2260 unsigned long arg = 1;
2261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262#else
2263 fcntl (fd, F_SETFD, FD_CLOEXEC);
2264 fcntl (fd, F_SETFL, O_NONBLOCK);
2265#endif
2266}
2267
644/*****************************************************************************/ 2268/*****************************************************************************/
645 2269
646void inline_speed 2270/*
647upheap (WT *heap, int k) 2271 * the heap functions want a real array index. array index 0 is guaranteed to not
648{ 2272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
649 WT w = heap [k]; 2273 * the branching factor of the d-tree.
2274 */
650 2275
651 while (k) 2276/*
652 { 2277 * at the moment we allow libev the luxury of two heaps,
653 int p = (k - 1) >> 1; 2278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2279 * which is more cache-efficient.
2280 * the difference is about 5% with 50000+ watchers.
2281 */
2282#if EV_USE_4HEAP
654 2283
655 if (heap [p]->at <= w->at) 2284#define DHEAP 4
2285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2287#define UPHEAP_DONE(p,k) ((p) == (k))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294 ANHE *E = heap + N + HEAP0;
2295
2296 for (;;)
2297 {
2298 ev_tstamp minat;
2299 ANHE *minpos;
2300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2301
2302 /* find minimum child */
2303 if (expect_true (pos + DHEAP - 1 < E))
2304 {
2305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2309 }
2310 else if (pos < E)
2311 {
2312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2316 }
2317 else
656 break; 2318 break;
657 2319
2320 if (ANHE_at (he) <= minat)
2321 break;
2322
2323 heap [k] = *minpos;
2324 ev_active (ANHE_w (*minpos)) = k;
2325
2326 k = minpos - heap;
2327 }
2328
2329 heap [k] = he;
2330 ev_active (ANHE_w (he)) = k;
2331}
2332
2333#else /* 4HEAP */
2334
2335#define HEAP0 1
2336#define HPARENT(k) ((k) >> 1)
2337#define UPHEAP_DONE(p,k) (!(p))
2338
2339/* away from the root */
2340inline_speed void
2341downheap (ANHE *heap, int N, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int c = k << 1;
2348
2349 if (c >= N + HEAP0)
2350 break;
2351
2352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2353 ? 1 : 0;
2354
2355 if (ANHE_at (he) <= ANHE_at (heap [c]))
2356 break;
2357
2358 heap [k] = heap [c];
2359 ev_active (ANHE_w (heap [k])) = k;
2360
2361 k = c;
2362 }
2363
2364 heap [k] = he;
2365 ev_active (ANHE_w (he)) = k;
2366}
2367#endif
2368
2369/* towards the root */
2370inline_speed void
2371upheap (ANHE *heap, int k)
2372{
2373 ANHE he = heap [k];
2374
2375 for (;;)
2376 {
2377 int p = HPARENT (k);
2378
2379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2380 break;
2381
658 heap [k] = heap [p]; 2382 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 2383 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 2384 k = p;
661 } 2385 }
662 2386
663 heap [k] = w; 2387 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 2388 ev_active (ANHE_w (he)) = k;
665} 2389}
666 2390
667void inline_speed 2391/* move an element suitably so it is in a correct place */
668downheap (WT *heap, int N, int k) 2392inline_size void
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k) 2393adjustheap (ANHE *heap, int N, int k)
697{ 2394{
2395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
698 upheap (heap, k); 2396 upheap (heap, k);
2397 else
699 downheap (heap, N, k); 2398 downheap (heap, N, k);
2399}
2400
2401/* rebuild the heap: this function is used only once and executed rarely */
2402inline_size void
2403reheap (ANHE *heap, int N)
2404{
2405 int i;
2406
2407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2409 for (i = 0; i < N; ++i)
2410 upheap (heap, i + HEAP0);
700} 2411}
701 2412
702/*****************************************************************************/ 2413/*****************************************************************************/
703 2414
2415/* associate signal watchers to a signal signal */
704typedef struct 2416typedef struct
705{ 2417{
2418 EV_ATOMIC_T pending;
2419#if EV_MULTIPLICITY
2420 EV_P;
2421#endif
706 WL head; 2422 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG; 2423} ANSIG;
709 2424
710static ANSIG *signals; 2425static ANSIG signals [EV_NSIG - 1];
711static int signalmax;
712 2426
713static int sigpipe [2]; 2427/*****************************************************************************/
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 2428
717void inline_size 2429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724 2430
725 ++base; 2431noinline ecb_cold
726 }
727}
728
729static void 2432static void
730sighandler (int signum) 2433evpipe_init (EV_P)
731{ 2434{
732#if _WIN32 2435 if (!ev_is_active (&pipe_w))
733 signal (signum, sighandler); 2436 {
2437 int fds [2];
2438
2439# if EV_USE_EVENTFD
2440 fds [0] = -1;
2441 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442 if (fds [1] < 0 && errno == EINVAL)
2443 fds [1] = eventfd (0, 0);
2444
2445 if (fds [1] < 0)
734#endif 2446# endif
2447 {
2448 while (pipe (fds))
2449 ev_syserr ("(libev) error creating signal/async pipe");
735 2450
736 signals [signum - 1].gotsig = 1; 2451 fd_intern (fds [0]);
2452 }
737 2453
738 if (!gotsig) 2454 evpipe [0] = fds [0];
2455
2456 if (evpipe [1] < 0)
2457 evpipe [1] = fds [1]; /* first call, set write fd */
2458 else
2459 {
2460 /* on subsequent calls, do not change evpipe [1] */
2461 /* so that evpipe_write can always rely on its value. */
2462 /* this branch does not do anything sensible on windows, */
2463 /* so must not be executed on windows */
2464
2465 dup2 (fds [1], evpipe [1]);
2466 close (fds [1]);
2467 }
2468
2469 fd_intern (evpipe [1]);
2470
2471 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 ev_io_start (EV_A_ &pipe_w);
2473 ev_unref (EV_A); /* watcher should not keep loop alive */
739 { 2474 }
2475}
2476
2477inline_speed void
2478evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479{
2480 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481
2482 if (expect_true (*flag))
2483 return;
2484
2485 *flag = 1;
2486 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487
2488 pipe_write_skipped = 1;
2489
2490 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491
2492 if (pipe_write_wanted)
2493 {
740 int old_errno = errno; 2494 int old_errno;
741 gotsig = 1; 2495
742 write (sigpipe [1], &signum, 1); 2496 pipe_write_skipped = 0;
2497 ECB_MEMORY_FENCE_RELEASE;
2498
2499 old_errno = errno; /* save errno because write will clobber it */
2500
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter = 1;
2505 write (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510#ifdef _WIN32
2511 WSABUF buf;
2512 DWORD sent;
2513 buf.buf = (char *)&buf;
2514 buf.len = 1;
2515 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516#else
2517 write (evpipe [1], &(evpipe [1]), 1);
2518#endif
2519 }
2520
743 errno = old_errno; 2521 errno = old_errno;
744 } 2522 }
745} 2523}
746 2524
2525/* called whenever the libev signal pipe */
2526/* got some events (signal, async) */
2527static void
2528pipecb (EV_P_ ev_io *iow, int revents)
2529{
2530 int i;
2531
2532 if (revents & EV_READ)
2533 {
2534#if EV_USE_EVENTFD
2535 if (evpipe [0] < 0)
2536 {
2537 uint64_t counter;
2538 read (evpipe [1], &counter, sizeof (uint64_t));
2539 }
2540 else
2541#endif
2542 {
2543 char dummy[4];
2544#ifdef _WIN32
2545 WSABUF buf;
2546 DWORD recvd;
2547 DWORD flags = 0;
2548 buf.buf = dummy;
2549 buf.len = sizeof (dummy);
2550 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551#else
2552 read (evpipe [0], &dummy, sizeof (dummy));
2553#endif
2554 }
2555 }
2556
2557 pipe_write_skipped = 0;
2558
2559 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2560
2561#if EV_SIGNAL_ENABLE
2562 if (sig_pending)
2563 {
2564 sig_pending = 0;
2565
2566 ECB_MEMORY_FENCE;
2567
2568 for (i = EV_NSIG - 1; i--; )
2569 if (expect_false (signals [i].pending))
2570 ev_feed_signal_event (EV_A_ i + 1);
2571 }
2572#endif
2573
2574#if EV_ASYNC_ENABLE
2575 if (async_pending)
2576 {
2577 async_pending = 0;
2578
2579 ECB_MEMORY_FENCE;
2580
2581 for (i = asynccnt; i--; )
2582 if (asyncs [i]->sent)
2583 {
2584 asyncs [i]->sent = 0;
2585 ECB_MEMORY_FENCE_RELEASE;
2586 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2587 }
2588 }
2589#endif
2590}
2591
2592/*****************************************************************************/
2593
2594void
2595ev_feed_signal (int signum) EV_NOEXCEPT
2596{
2597#if EV_MULTIPLICITY
2598 EV_P;
2599 ECB_MEMORY_FENCE_ACQUIRE;
2600 EV_A = signals [signum - 1].loop;
2601
2602 if (!EV_A)
2603 return;
2604#endif
2605
2606 signals [signum - 1].pending = 1;
2607 evpipe_write (EV_A_ &sig_pending);
2608}
2609
2610static void
2611ev_sighandler (int signum)
2612{
2613#ifdef _WIN32
2614 signal (signum, ev_sighandler);
2615#endif
2616
2617 ev_feed_signal (signum);
2618}
2619
747void noinline 2620noinline
2621void
748ev_feed_signal_event (EV_P_ int signum) 2622ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
749{ 2623{
750 WL w; 2624 WL w;
751 2625
2626 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 return;
2628
2629 --signum;
2630
752#if EV_MULTIPLICITY 2631#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2632 /* it is permissible to try to feed a signal to the wrong loop */
754#endif 2633 /* or, likely more useful, feeding a signal nobody is waiting for */
755 2634
756 --signum; 2635 if (expect_false (signals [signum].loop != EV_A))
757
758 if (signum < 0 || signum >= signalmax)
759 return; 2636 return;
2637#endif
760 2638
761 signals [signum].gotsig = 0; 2639 signals [signum].pending = 0;
2640 ECB_MEMORY_FENCE_RELEASE;
762 2641
763 for (w = signals [signum].head; w; w = w->next) 2642 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2643 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765} 2644}
766 2645
2646#if EV_USE_SIGNALFD
767static void 2647static void
768sigcb (EV_P_ ev_io *iow, int revents) 2648sigfdcb (EV_P_ ev_io *iow, int revents)
769{ 2649{
770 int signum; 2650 struct signalfd_siginfo si[2], *sip; /* these structs are big */
771 2651
772 read (sigpipe [0], &revents, 1); 2652 for (;;)
773 gotsig = 0; 2653 {
2654 ssize_t res = read (sigfd, si, sizeof (si));
774 2655
775 for (signum = signalmax; signum--; ) 2656 /* not ISO-C, as res might be -1, but works with SuS */
776 if (signals [signum].gotsig) 2657 for (sip = si; (char *)sip < (char *)si + res; ++sip)
777 ev_feed_signal_event (EV_A_ signum + 1); 2658 ev_feed_signal_event (EV_A_ sip->ssi_signo);
778}
779 2659
780void inline_speed 2660 if (res < (ssize_t)sizeof (si))
781fd_intern (int fd) 2661 break;
782{ 2662 }
783#ifdef _WIN32
784 int arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif
790} 2663}
2664#endif
791 2665
792static void noinline 2666#endif
793siginit (EV_P)
794{
795 fd_intern (sigpipe [0]);
796 fd_intern (sigpipe [1]);
797
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */
801}
802 2667
803/*****************************************************************************/ 2668/*****************************************************************************/
804 2669
2670#if EV_CHILD_ENABLE
805static WL childs [EV_PID_HASHSIZE]; 2671static WL childs [EV_PID_HASHSIZE];
806 2672
807#ifndef _WIN32
808
809static ev_signal childev; 2673static ev_signal childev;
810 2674
811void inline_speed 2675#ifndef WIFCONTINUED
2676# define WIFCONTINUED(status) 0
2677#endif
2678
2679/* handle a single child status event */
2680inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2681child_reap (EV_P_ int chain, int pid, int status)
813{ 2682{
814 ev_child *w; 2683 ev_child *w;
2684 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 2685
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2687 {
817 if (w->pid == pid || !w->pid) 2688 if ((w->pid == pid || !w->pid)
2689 && (!traced || (w->flags & 1)))
818 { 2690 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2691 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 2692 w->rpid = pid;
821 w->rstatus = status; 2693 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2694 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 2695 }
2696 }
824} 2697}
825 2698
826#ifndef WCONTINUED 2699#ifndef WCONTINUED
827# define WCONTINUED 0 2700# define WCONTINUED 0
828#endif 2701#endif
829 2702
2703/* called on sigchld etc., calls waitpid */
830static void 2704static void
831childcb (EV_P_ ev_signal *sw, int revents) 2705childcb (EV_P_ ev_signal *sw, int revents)
832{ 2706{
833 int pid, status; 2707 int pid, status;
834 2708
837 if (!WCONTINUED 2711 if (!WCONTINUED
838 || errno != EINVAL 2712 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2713 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 2714 return;
841 2715
842 /* make sure we are called again until all childs have been reaped */ 2716 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 2717 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2718 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 2719
846 child_reap (EV_A_ sw, pid, pid, status); 2720 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 2721 if ((EV_PID_HASHSIZE) > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2722 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 2723}
850 2724
851#endif 2725#endif
852 2726
853/*****************************************************************************/ 2727/*****************************************************************************/
854 2728
2729#if EV_USE_IOCP
2730# include "ev_iocp.c"
2731#endif
855#if EV_USE_PORT 2732#if EV_USE_PORT
856# include "ev_port.c" 2733# include "ev_port.c"
857#endif 2734#endif
858#if EV_USE_KQUEUE 2735#if EV_USE_KQUEUE
859# include "ev_kqueue.c" 2736# include "ev_kqueue.c"
860#endif 2737#endif
861#if EV_USE_EPOLL 2738#if EV_USE_EPOLL
862# include "ev_epoll.c" 2739# include "ev_epoll.c"
863#endif 2740#endif
2741#if EV_USE_LINUXAIO
2742# include "ev_linuxaio.c"
2743#endif
864#if EV_USE_POLL 2744#if EV_USE_POLL
865# include "ev_poll.c" 2745# include "ev_poll.c"
866#endif 2746#endif
867#if EV_USE_SELECT 2747#if EV_USE_SELECT
868# include "ev_select.c" 2748# include "ev_select.c"
869#endif 2749#endif
870 2750
871int 2751ecb_cold int
872ev_version_major (void) 2752ev_version_major (void) EV_NOEXCEPT
873{ 2753{
874 return EV_VERSION_MAJOR; 2754 return EV_VERSION_MAJOR;
875} 2755}
876 2756
877int 2757ecb_cold int
878ev_version_minor (void) 2758ev_version_minor (void) EV_NOEXCEPT
879{ 2759{
880 return EV_VERSION_MINOR; 2760 return EV_VERSION_MINOR;
881} 2761}
882 2762
883/* return true if we are running with elevated privileges and should ignore env variables */ 2763/* return true if we are running with elevated privileges and should ignore env variables */
884int inline_size 2764inline_size ecb_cold int
885enable_secure (void) 2765enable_secure (void)
886{ 2766{
887#ifdef _WIN32 2767#ifdef _WIN32
888 return 0; 2768 return 0;
889#else 2769#else
890 return getuid () != geteuid () 2770 return getuid () != geteuid ()
891 || getgid () != getegid (); 2771 || getgid () != getegid ();
892#endif 2772#endif
893} 2773}
894 2774
2775ecb_cold
895unsigned int 2776unsigned int
896ev_supported_backends (void) 2777ev_supported_backends (void) EV_NOEXCEPT
897{ 2778{
898 unsigned int flags = 0; 2779 unsigned int flags = 0;
899 2780
900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2781 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2782 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
902 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2783 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
903 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2785 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2786 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
905 2787
906 return flags; 2788 return flags;
907} 2789}
908 2790
2791ecb_cold
909unsigned int 2792unsigned int
910ev_recommended_backends (void) 2793ev_recommended_backends (void) EV_NOEXCEPT
911{ 2794{
912 unsigned int flags = ev_supported_backends (); 2795 unsigned int flags = ev_supported_backends ();
913 2796
914#ifndef __NetBSD__ 2797#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */ 2798 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 2799 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 2800 flags &= ~EVBACKEND_KQUEUE;
918#endif 2801#endif
919#ifdef __APPLE__ 2802#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 2803 /* only select works correctly on that "unix-certified" platform */
2804 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2805 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2806#endif
2807#ifdef __FreeBSD__
2808 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809#endif
2810
2811 /* TODO: linuxaio is very experimental */
921 flags &= ~EVBACKEND_POLL; 2812 flags &= ~EVBACKEND_LINUXAIO;
922#endif
923 2813
924 return flags; 2814 return flags;
925} 2815}
926 2816
2817ecb_cold
927unsigned int 2818unsigned int
928ev_embeddable_backends (void) 2819ev_embeddable_backends (void) EV_NOEXCEPT
929{ 2820{
930 return EVBACKEND_EPOLL 2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 2822
932 | EVBACKEND_PORT; 2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2825 flags &= ~EVBACKEND_EPOLL;
2826
2827 return flags;
933} 2828}
934 2829
935unsigned int 2830unsigned int
936ev_backend (EV_P) 2831ev_backend (EV_P) EV_NOEXCEPT
937{ 2832{
938 return backend; 2833 return backend;
939} 2834}
940 2835
2836#if EV_FEATURE_API
941unsigned int 2837unsigned int
942ev_loop_count (EV_P) 2838ev_iteration (EV_P) EV_NOEXCEPT
943{ 2839{
944 return loop_count; 2840 return loop_count;
945} 2841}
946 2842
947static void noinline 2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
2849void
2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2851{
2852 io_blocktime = interval;
2853}
2854
2855void
2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2857{
2858 timeout_blocktime = interval;
2859}
2860
2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888noinline ecb_cold
2889static void
948loop_init (EV_P_ unsigned int flags) 2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
949{ 2891{
950 if (!backend) 2892 if (!backend)
951 { 2893 {
2894 origflags = flags;
2895
2896#if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904#endif
2905
952#if EV_USE_MONOTONIC 2906#if EV_USE_MONOTONIC
2907 if (!have_monotonic)
953 { 2908 {
954 struct timespec ts; 2909 struct timespec ts;
2910
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 2912 have_monotonic = 1;
957 } 2913 }
958#endif 2914#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 2915
965 /* pid check not overridable via env */ 2916 /* pid check not overridable via env */
966#ifndef _WIN32 2917#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 2918 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 2919 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 2922 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 2923 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 2924 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 2925 flags = atoi (getenv ("LIBEV_FLAGS"));
975 2926
976 if (!(flags & 0x0000ffffUL)) 2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
977 flags |= ev_recommended_backends (); 2955 flags |= ev_recommended_backends ();
978 2956
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY 2957#if EV_USE_IOCP
982 fs_fd = -2; 2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
983#endif 2959#endif
984
985#if EV_USE_PORT 2960#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 2962#endif
988#if EV_USE_KQUEUE 2963#if EV_USE_KQUEUE
989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
990#endif 2968#endif
991#if EV_USE_EPOLL 2969#if EV_USE_EPOLL
992 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
993#endif 2971#endif
994#if EV_USE_POLL 2972#if EV_USE_POLL
995 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
996#endif 2974#endif
997#if EV_USE_SELECT 2975#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
999#endif 2977#endif
1000 2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1001 ev_init (&sigev, sigcb); 2982 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
1003 } 2985 }
1004} 2986}
1005 2987
1006static void noinline 2988/* free up a loop structure */
2989ecb_cold
2990void
1007loop_destroy (EV_P) 2991ev_loop_destroy (EV_P)
1008{ 2992{
1009 int i; 2993 int i;
2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
3018 if (ev_is_active (&pipe_w))
3019 {
3020 /*ev_ref (EV_A);*/
3021 /*ev_io_stop (EV_A_ &pipe_w);*/
3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
3027#if EV_USE_SIGNALFD
3028 if (ev_is_active (&sigfd_w))
3029 close (sigfd);
3030#endif
1010 3031
1011#if EV_USE_INOTIFY 3032#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 3033 if (fs_fd >= 0)
1013 close (fs_fd); 3034 close (fs_fd);
1014#endif 3035#endif
1015 3036
1016 if (backend_fd >= 0) 3037 if (backend_fd >= 0)
1017 close (backend_fd); 3038 close (backend_fd);
1018 3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
1019#if EV_USE_PORT 3043#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1021#endif 3045#endif
1022#if EV_USE_KQUEUE 3046#if EV_USE_KQUEUE
1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1024#endif 3051#endif
1025#if EV_USE_EPOLL 3052#if EV_USE_EPOLL
1026 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1027#endif 3054#endif
1028#if EV_USE_POLL 3055#if EV_USE_POLL
1029 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1030#endif 3057#endif
1031#if EV_USE_SELECT 3058#if EV_USE_SELECT
1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1033#endif 3060#endif
1034 3061
1035 for (i = NUMPRI; i--; ) 3062 for (i = NUMPRI; i--; )
1036 { 3063 {
1037 array_free (pending, [i]); 3064 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE 3065#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 3066 array_free (idle, [i]);
1040#endif 3067#endif
1041 } 3068 }
1042 3069
1043 ev_free (anfds); anfdmax = 0; 3070 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 3071
1045 /* have to use the microsoft-never-gets-it-right macro */ 3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 3074 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 3075 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 3076#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 3077 array_free (periodic, EMPTY);
1050#endif 3078#endif
1051#if EV_FORK_ENABLE 3079#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 3080 array_free (fork, EMPTY);
1053#endif 3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
1054 array_free (prepare, EMPTY); 3085 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 3086 array_free (check, EMPTY);
3087#if EV_ASYNC_ENABLE
3088 array_free (async, EMPTY);
3089#endif
1056 3090
1057 backend = 0; 3091 backend = 0;
1058}
1059 3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
3101}
3102
3103#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 3104inline_size void infy_fork (EV_P);
3105#endif
1061 3106
1062void inline_size 3107inline_size void
1063loop_fork (EV_P) 3108loop_fork (EV_P)
1064{ 3109{
1065#if EV_USE_PORT 3110#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 3112#endif
1068#if EV_USE_KQUEUE 3113#if EV_USE_KQUEUE
1069 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1070#endif 3118#endif
1071#if EV_USE_EPOLL 3119#if EV_USE_EPOLL
1072 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1073#endif 3121#endif
1074#if EV_USE_INOTIFY 3122#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 3123 infy_fork (EV_A);
1076#endif 3124#endif
1077 3125
1078 if (ev_is_active (&sigev)) 3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
1079 { 3128 {
1080 /* default loop */ 3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1081 3130
1082 ev_ref (EV_A); 3131 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 3132 ev_io_stop (EV_A_ &pipe_w);
1084 close (sigpipe [0]);
1085 close (sigpipe [1]);
1086 3133
1087 while (pipe (sigpipe)) 3134 if (evpipe [0] >= 0)
1088 syserr ("(libev) error creating pipe"); 3135 EV_WIN32_CLOSE_FD (evpipe [0]);
1089 3136
1090 siginit (EV_A); 3137 evpipe_init (EV_A);
3138 /* iterate over everything, in case we missed something before */
3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1091 } 3140 }
3141#endif
1092 3142
1093 postfork = 0; 3143 postfork = 0;
1094} 3144}
1095 3145
1096#if EV_MULTIPLICITY 3146#if EV_MULTIPLICITY
3147
3148ecb_cold
1097struct ev_loop * 3149struct ev_loop *
1098ev_loop_new (unsigned int flags) 3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
1099{ 3151{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 3153
1102 memset (loop, 0, sizeof (struct ev_loop)); 3154 memset (EV_A, 0, sizeof (struct ev_loop));
1103
1104 loop_init (EV_A_ flags); 3155 loop_init (EV_A_ flags);
1105 3156
1106 if (ev_backend (EV_A)) 3157 if (ev_backend (EV_A))
1107 return loop; 3158 return EV_A;
1108 3159
3160 ev_free (EV_A);
1109 return 0; 3161 return 0;
1110} 3162}
1111 3163
1112void 3164#endif /* multiplicity */
1113ev_loop_destroy (EV_P)
1114{
1115 loop_destroy (EV_A);
1116 ev_free (loop);
1117}
1118 3165
1119void 3166#if EV_VERIFY
1120ev_loop_fork (EV_P) 3167noinline ecb_cold
3168static void
3169verify_watcher (EV_P_ W w)
1121{ 3170{
1122 postfork = 1; 3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1123}
1124 3172
3173 if (w->pending)
3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175}
3176
3177noinline ecb_cold
3178static void
3179verify_heap (EV_P_ ANHE *heap, int N)
3180{
3181 int i;
3182
3183 for (i = HEAP0; i < N + HEAP0; ++i)
3184 {
3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188
3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190 }
3191}
3192
3193noinline ecb_cold
3194static void
3195array_verify (EV_P_ W *ws, int cnt)
3196{
3197 while (cnt--)
3198 {
3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 verify_watcher (EV_A_ ws [cnt]);
3201 }
3202}
3203#endif
3204
3205#if EV_FEATURE_API
3206void ecb_cold
3207ev_verify (EV_P) EV_NOEXCEPT
3208{
3209#if EV_VERIFY
3210 int i;
3211 WL w, w2;
3212
3213 assert (activecnt >= -1);
3214
3215 assert (fdchangemax >= fdchangecnt);
3216 for (i = 0; i < fdchangecnt; ++i)
3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218
3219 assert (anfdmax >= 0);
3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
3224 for (w = w2 = anfds [i].head; w; w = w->next)
3225 {
3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236 }
3237 }
3238
3239 assert (timermax >= timercnt);
3240 verify_heap (EV_A_ timers, timercnt);
3241
3242#if EV_PERIODIC_ENABLE
3243 assert (periodicmax >= periodiccnt);
3244 verify_heap (EV_A_ periodics, periodiccnt);
3245#endif
3246
3247 for (i = NUMPRI; i--; )
3248 {
3249 assert (pendingmax [i] >= pendingcnt [i]);
3250#if EV_IDLE_ENABLE
3251 assert (idleall >= 0);
3252 assert (idlemax [i] >= idlecnt [i]);
3253 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254#endif
3255 }
3256
3257#if EV_FORK_ENABLE
3258 assert (forkmax >= forkcnt);
3259 array_verify (EV_A_ (W *)forks, forkcnt);
3260#endif
3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
3267#if EV_ASYNC_ENABLE
3268 assert (asyncmax >= asynccnt);
3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
3270#endif
3271
3272#if EV_PREPARE_ENABLE
3273 assert (preparemax >= preparecnt);
3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
3276
3277#if EV_CHECK_ENABLE
3278 assert (checkmax >= checkcnt);
3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
3281
3282# if 0
3283#if EV_CHILD_ENABLE
3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
3287# endif
3288#endif
3289}
1125#endif 3290#endif
1126 3291
1127#if EV_MULTIPLICITY 3292#if EV_MULTIPLICITY
3293ecb_cold
1128struct ev_loop * 3294struct ev_loop *
1129ev_default_loop_init (unsigned int flags)
1130#else 3295#else
1131int 3296int
3297#endif
1132ev_default_loop (unsigned int flags) 3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
1133#endif
1134{ 3299{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 3300 if (!ev_default_loop_ptr)
1140 { 3301 {
1141#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
1143#else 3304#else
1144 ev_default_loop_ptr = 1; 3305 ev_default_loop_ptr = 1;
1145#endif 3306#endif
1146 3307
1147 loop_init (EV_A_ flags); 3308 loop_init (EV_A_ flags);
1148 3309
1149 if (ev_backend (EV_A)) 3310 if (ev_backend (EV_A))
1150 { 3311 {
1151 siginit (EV_A); 3312#if EV_CHILD_ENABLE
1152
1153#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
1158#endif 3317#endif
1163 3322
1164 return ev_default_loop_ptr; 3323 return ev_default_loop_ptr;
1165} 3324}
1166 3325
1167void 3326void
1168ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
1169{ 3328{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif
1173
1174#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev);
1177#endif
1178
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A);
1186}
1187
1188void
1189ev_default_fork (void)
1190{
1191#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif
1194
1195 if (backend)
1196 postfork = 1; 3329 postfork = 1;
1197} 3330}
1198 3331
1199/*****************************************************************************/ 3332/*****************************************************************************/
1200 3333
1201void 3334void
1202ev_invoke (EV_P_ void *w, int revents) 3335ev_invoke (EV_P_ void *w, int revents)
1203{ 3336{
1204 EV_CB_INVOKE ((W)w, revents); 3337 EV_CB_INVOKE ((W)w, revents);
1205} 3338}
1206 3339
1207void inline_speed 3340unsigned int
1208call_pending (EV_P) 3341ev_pending_count (EV_P) EV_NOEXCEPT
1209{ 3342{
1210 int pri; 3343 int pri;
3344 unsigned int count = 0;
1211 3345
1212 for (pri = NUMPRI; pri--; ) 3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350}
3351
3352noinline
3353void
3354ev_invoke_pending (EV_P)
3355{
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
1213 while (pendingcnt [pri]) 3363 while (pendingcnt [pendingpri])
1214 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220
1221 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events);
1223 }
1224 }
1225}
1226
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 { 3364 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1240 3366
1241 ((WT)w)->at += w->repeat; 3367 p->w->pending = 0;
1242 if (((WT)w)->at < mn_now) 3368 EV_CB_INVOKE (p->w, p->events);
1243 ((WT)w)->at = mn_now; 3369 EV_FREQUENT_CHECK;
1244
1245 downheap (timers, timercnt, 0);
1246 } 3370 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 { 3371 }
1260 ev_periodic *w = (ev_periodic *)periodics [0]; 3372 while (pendingpri);
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283} 3373}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306 3374
1307#if EV_IDLE_ENABLE 3375#if EV_IDLE_ENABLE
1308void inline_size 3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
1309idle_reify (EV_P) 3379idle_reify (EV_P)
1310{ 3380{
1311 if (expect_false (idleall)) 3381 if (expect_false (idleall))
1312 { 3382 {
1313 int pri; 3383 int pri;
1325 } 3395 }
1326 } 3396 }
1327} 3397}
1328#endif 3398#endif
1329 3399
1330void inline_speed 3400/* make timers pending */
3401inline_size void
3402timers_reify (EV_P)
3403{
3404 EV_FREQUENT_CHECK;
3405
3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3407 {
3408 do
3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
3417 ev_at (w) += w->repeat;
3418 if (ev_at (w) < mn_now)
3419 ev_at (w) = mn_now;
3420
3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3422
3423 ANHE_at_cache (timers [HEAP0]);
3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
3431 }
3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3433
3434 feed_reverse_done (EV_A_ EV_TIMER);
3435 }
3436}
3437
3438#if EV_PERIODIC_ENABLE
3439
3440noinline
3441static void
3442periodic_recalc (EV_P_ ev_periodic *w)
3443{
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
3449 {
3450 ev_tstamp nat = at + w->interval;
3451
3452 /* when resolution fails us, we use ev_rt_now */
3453 if (expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
3466inline_size void
3467periodics_reify (EV_P)
3468{
3469 EV_FREQUENT_CHECK;
3470
3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3472 {
3473 do
3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483
3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485
3486 ANHE_at_cache (periodics [HEAP0]);
3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
3500 }
3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3502
3503 feed_reverse_done (EV_A_ EV_PERIODIC);
3504 }
3505}
3506
3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509noinline ecb_cold
3510static void
3511periodics_reschedule (EV_P)
3512{
3513 int i;
3514
3515 /* adjust periodics after time jump */
3516 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3517 {
3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3519
3520 if (w->reschedule_cb)
3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3522 else if (w->interval)
3523 periodic_recalc (EV_A_ w);
3524
3525 ANHE_at_cache (periodics [i]);
3526 }
3527
3528 reheap (periodics, periodiccnt);
3529}
3530#endif
3531
3532/* adjust all timers by a given offset */
3533noinline ecb_cold
3534static void
3535timers_reschedule (EV_P_ ev_tstamp adjust)
3536{
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545}
3546
3547/* fetch new monotonic and realtime times from the kernel */
3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 3550time_update (EV_P_ ev_tstamp max_block)
1332{ 3551{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 3552#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 3553 if (expect_true (have_monotonic))
1337 { 3554 {
3555 int i;
1338 ev_tstamp odiff = rtmn_diff; 3556 ev_tstamp odiff = rtmn_diff;
1339 3557
1340 mn_now = get_clock (); 3558 mn_now = get_clock ();
1341 3559
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1358 * doesn't hurt either as we only do this on time-jumps or 3576 * doesn't hurt either as we only do this on time-jumps or
1359 * in the unlikely event of having been preempted here. 3577 * in the unlikely event of having been preempted here.
1360 */ 3578 */
1361 for (i = 4; --i; ) 3579 for (i = 4; --i; )
1362 { 3580 {
3581 ev_tstamp diff;
1363 rtmn_diff = ev_rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1364 3583
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3584 diff = odiff - rtmn_diff;
3585
3586 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 3587 return; /* all is well */
1367 3588
1368 ev_rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 3590 mn_now = get_clock ();
1370 now_floor = mn_now; 3591 now_floor = mn_now;
1371 } 3592 }
1372 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 3596# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 3597 periodics_reschedule (EV_A);
1375# endif 3598# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 3599 }
1379 else 3600 else
1380#endif 3601#endif
1381 { 3602 {
1382 ev_rt_now = ev_time (); 3603 ev_rt_now = ev_time ();
1383 3604
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3605 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 3609#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1388#endif 3611#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 3612 }
1393 3613
1394 mn_now = ev_rt_now; 3614 mn_now = ev_rt_now;
1395 } 3615 }
1396} 3616}
1397 3617
1398void 3618int
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1414{ 3620{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3621#if EV_FEATURE_API
1416 ? EVUNLOOP_ONE 3622 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 3623#endif
1418 3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
3627 loop_done = EVBREAK_CANCEL;
3628
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 3630
1421 do 3631 do
1422 { 3632 {
3633#if EV_VERIFY >= 2
3634 ev_verify (EV_A);
3635#endif
3636
1423#ifndef _WIN32 3637#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 3638 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 3639 if (expect_false (getpid () != curpid))
1426 { 3640 {
1427 curpid = getpid (); 3641 curpid = getpid ();
1433 /* we might have forked, so queue fork handlers */ 3647 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 3648 if (expect_false (postfork))
1435 if (forkcnt) 3649 if (forkcnt)
1436 { 3650 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 3652 EV_INVOKE_PENDING;
1439 } 3653 }
1440#endif 3654#endif
1441 3655
3656#if EV_PREPARE_ENABLE
1442 /* queue prepare watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 3658 if (expect_false (preparecnt))
1444 { 3659 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
1447 } 3662 }
3663#endif
1448 3664
1449 if (expect_false (!activecnt)) 3665 if (expect_false (loop_done))
1450 break; 3666 break;
1451 3667
1452 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 3669 if (expect_false (postfork))
1454 loop_fork (EV_A); 3670 loop_fork (EV_A);
1456 /* update fd-related kernel structures */ 3672 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 3673 fd_reify (EV_A);
1458 3674
1459 /* calculate blocking time */ 3675 /* calculate blocking time */
1460 { 3676 {
1461 ev_tstamp block; 3677 ev_tstamp waittime = 0.;
3678 ev_tstamp sleeptime = 0.;
1462 3679
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3680 /* remember old timestamp for io_blocktime calculation */
1464 block = 0.; /* do not block at all */ 3681 ev_tstamp prev_mn_now = mn_now;
1465 else 3682
3683 /* update time to cancel out callback processing overhead */
3684 time_update (EV_A_ 1e100);
3685
3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
3691 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1466 { 3692 {
1467 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100);
1469
1470 block = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
1471 3694
1472 if (timercnt) 3695 if (timercnt)
1473 { 3696 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1475 if (block > to) block = to; 3698 if (waittime > to) waittime = to;
1476 } 3699 }
1477 3700
1478#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 3702 if (periodiccnt)
1480 { 3703 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1482 if (block > to) block = to; 3705 if (waittime > to) waittime = to;
1483 } 3706 }
1484#endif 3707#endif
1485 3708
3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
3710 if (expect_false (waittime < timeout_blocktime))
3711 waittime = timeout_blocktime;
3712
3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
3717
3718 /* extra check because io_blocktime is commonly 0 */
1486 if (expect_false (block < 0.)) block = 0.; 3719 if (expect_false (io_blocktime))
3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (expect_true (sleeptime > 0.))
3727 {
3728 ev_sleep (sleeptime);
3729 waittime -= sleeptime;
3730 }
3731 }
1487 } 3732 }
1488 3733
3734#if EV_FEATURE_API
1489 ++loop_count; 3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
3749
1491 3750
1492 /* update ev_rt_now, do magic */ 3751 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 3752 time_update (EV_A_ waittime + sleeptime);
1494 } 3753 }
1495 3754
1496 /* queue pending timers and reschedule them */ 3755 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 3756 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 3757#if EV_PERIODIC_ENABLE
1502#if EV_IDLE_ENABLE 3761#if EV_IDLE_ENABLE
1503 /* queue idle watchers unless other events are pending */ 3762 /* queue idle watchers unless other events are pending */
1504 idle_reify (EV_A); 3763 idle_reify (EV_A);
1505#endif 3764#endif
1506 3765
3766#if EV_CHECK_ENABLE
1507 /* queue check watchers, to be executed first */ 3767 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 3768 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3769 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3770#endif
1510 3771
1511 call_pending (EV_A); 3772 EV_INVOKE_PENDING;
1512
1513 } 3773 }
1514 while (expect_true (activecnt && !loop_done)); 3774 while (expect_true (
3775 activecnt
3776 && !loop_done
3777 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3778 ));
1515 3779
1516 if (loop_done == EVUNLOOP_ONE) 3780 if (loop_done == EVBREAK_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 3781 loop_done = EVBREAK_CANCEL;
1518}
1519 3782
3783#if EV_FEATURE_API
3784 --loop_depth;
3785#endif
3786
3787 return activecnt;
3788}
3789
1520void 3790void
1521ev_unloop (EV_P_ int how) 3791ev_break (EV_P_ int how) EV_NOEXCEPT
1522{ 3792{
1523 loop_done = how; 3793 loop_done = how;
1524} 3794}
1525 3795
3796void
3797ev_ref (EV_P) EV_NOEXCEPT
3798{
3799 ++activecnt;
3800}
3801
3802void
3803ev_unref (EV_P) EV_NOEXCEPT
3804{
3805 --activecnt;
3806}
3807
3808void
3809ev_now_update (EV_P) EV_NOEXCEPT
3810{
3811 time_update (EV_A_ 1e100);
3812}
3813
3814void
3815ev_suspend (EV_P) EV_NOEXCEPT
3816{
3817 ev_now_update (EV_A);
3818}
3819
3820void
3821ev_resume (EV_P) EV_NOEXCEPT
3822{
3823 ev_tstamp mn_prev = mn_now;
3824
3825 ev_now_update (EV_A);
3826 timers_reschedule (EV_A_ mn_now - mn_prev);
3827#if EV_PERIODIC_ENABLE
3828 /* TODO: really do this? */
3829 periodics_reschedule (EV_A);
3830#endif
3831}
3832
1526/*****************************************************************************/ 3833/*****************************************************************************/
3834/* singly-linked list management, used when the expected list length is short */
1527 3835
1528void inline_size 3836inline_size void
1529wlist_add (WL *head, WL elem) 3837wlist_add (WL *head, WL elem)
1530{ 3838{
1531 elem->next = *head; 3839 elem->next = *head;
1532 *head = elem; 3840 *head = elem;
1533} 3841}
1534 3842
1535void inline_size 3843inline_size void
1536wlist_del (WL *head, WL elem) 3844wlist_del (WL *head, WL elem)
1537{ 3845{
1538 while (*head) 3846 while (*head)
1539 { 3847 {
1540 if (*head == elem) 3848 if (expect_true (*head == elem))
1541 { 3849 {
1542 *head = elem->next; 3850 *head = elem->next;
1543 return; 3851 break;
1544 } 3852 }
1545 3853
1546 head = &(*head)->next; 3854 head = &(*head)->next;
1547 } 3855 }
1548} 3856}
1549 3857
1550void inline_speed 3858/* internal, faster, version of ev_clear_pending */
3859inline_speed void
1551clear_pending (EV_P_ W w) 3860clear_pending (EV_P_ W w)
1552{ 3861{
1553 if (w->pending) 3862 if (w->pending)
1554 { 3863 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3864 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 3865 w->pending = 0;
1557 } 3866 }
1558} 3867}
1559 3868
1560int 3869int
1561ev_clear_pending (EV_P_ void *w) 3870ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1562{ 3871{
1563 W w_ = (W)w; 3872 W w_ = (W)w;
1564 int pending = w_->pending; 3873 int pending = w_->pending;
1565 3874
1566 if (expect_true (pending)) 3875 if (expect_true (pending))
1567 { 3876 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3877 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3878 p->w = (W)&pending_w;
1569 w_->pending = 0; 3879 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 3880 return p->events;
1572 } 3881 }
1573 else 3882 else
1574 return 0; 3883 return 0;
1575} 3884}
1576 3885
1577void inline_size 3886inline_size void
1578pri_adjust (EV_P_ W w) 3887pri_adjust (EV_P_ W w)
1579{ 3888{
1580 int pri = w->priority; 3889 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3890 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3891 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 3892 ev_set_priority (w, pri);
1584} 3893}
1585 3894
1586void inline_speed 3895inline_speed void
1587ev_start (EV_P_ W w, int active) 3896ev_start (EV_P_ W w, int active)
1588{ 3897{
1589 pri_adjust (EV_A_ w); 3898 pri_adjust (EV_A_ w);
1590 w->active = active; 3899 w->active = active;
1591 ev_ref (EV_A); 3900 ev_ref (EV_A);
1592} 3901}
1593 3902
1594void inline_size 3903inline_size void
1595ev_stop (EV_P_ W w) 3904ev_stop (EV_P_ W w)
1596{ 3905{
1597 ev_unref (EV_A); 3906 ev_unref (EV_A);
1598 w->active = 0; 3907 w->active = 0;
1599} 3908}
1600 3909
1601/*****************************************************************************/ 3910/*****************************************************************************/
1602 3911
1603void noinline 3912noinline
3913void
1604ev_io_start (EV_P_ ev_io *w) 3914ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1605{ 3915{
1606 int fd = w->fd; 3916 int fd = w->fd;
1607 3917
1608 if (expect_false (ev_is_active (w))) 3918 if (expect_false (ev_is_active (w)))
1609 return; 3919 return;
1610 3920
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 3921 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3922 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3923
3924 EV_FREQUENT_CHECK;
1612 3925
1613 ev_start (EV_A_ (W)w, 1); 3926 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3927 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1615 wlist_add (&anfds[fd].head, (WL)w); 3928 wlist_add (&anfds[fd].head, (WL)w);
1616 3929
3930 /* common bug, apparently */
3931 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3932
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3933 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 3934 w->events &= ~EV__IOFDSET;
1619}
1620 3935
3936 EV_FREQUENT_CHECK;
3937}
3938
1621void noinline 3939noinline
3940void
1622ev_io_stop (EV_P_ ev_io *w) 3941ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1623{ 3942{
1624 clear_pending (EV_A_ (W)w); 3943 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 3944 if (expect_false (!ev_is_active (w)))
1626 return; 3945 return;
1627 3946
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3947 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3948
3949 EV_FREQUENT_CHECK;
1629 3950
1630 wlist_del (&anfds[w->fd].head, (WL)w); 3951 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 3952 ev_stop (EV_A_ (W)w);
1632 3953
1633 fd_change (EV_A_ w->fd, 1); 3954 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1634}
1635 3955
3956 EV_FREQUENT_CHECK;
3957}
3958
1636void noinline 3959noinline
3960void
1637ev_timer_start (EV_P_ ev_timer *w) 3961ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1638{ 3962{
1639 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
1640 return; 3964 return;
1641 3965
1642 ((WT)w)->at += mn_now; 3966 ev_at (w) += mn_now;
1643 3967
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3968 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 3969
3970 EV_FREQUENT_CHECK;
3971
3972 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 3973 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3974 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1648 timers [timercnt - 1] = (WT)w; 3975 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 3976 ANHE_at_cache (timers [ev_active (w)]);
3977 upheap (timers, ev_active (w));
1650 3978
3979 EV_FREQUENT_CHECK;
3980
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3981 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 3982}
1653 3983
1654void noinline 3984noinline
3985void
1655ev_timer_stop (EV_P_ ev_timer *w) 3986ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1656{ 3987{
1657 clear_pending (EV_A_ (W)w); 3988 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 3989 if (expect_false (!ev_is_active (w)))
1659 return; 3990 return;
1660 3991
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3992 EV_FREQUENT_CHECK;
1662 3993
1663 { 3994 {
1664 int active = ((W)w)->active; 3995 int active = ev_active (w);
1665 3996
3997 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3998
3999 --timercnt;
4000
1666 if (expect_true (--active < --timercnt)) 4001 if (expect_true (active < timercnt + HEAP0))
1667 { 4002 {
1668 timers [active] = timers [timercnt]; 4003 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 4004 adjustheap (timers, timercnt, active);
1670 } 4005 }
1671 } 4006 }
1672 4007
1673 ((WT)w)->at -= mn_now; 4008 ev_at (w) -= mn_now;
1674 4009
1675 ev_stop (EV_A_ (W)w); 4010 ev_stop (EV_A_ (W)w);
1676}
1677 4011
4012 EV_FREQUENT_CHECK;
4013}
4014
1678void noinline 4015noinline
4016void
1679ev_timer_again (EV_P_ ev_timer *w) 4017ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1680{ 4018{
4019 EV_FREQUENT_CHECK;
4020
4021 clear_pending (EV_A_ (W)w);
4022
1681 if (ev_is_active (w)) 4023 if (ev_is_active (w))
1682 { 4024 {
1683 if (w->repeat) 4025 if (w->repeat)
1684 { 4026 {
1685 ((WT)w)->at = mn_now + w->repeat; 4027 ev_at (w) = mn_now + w->repeat;
4028 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 4029 adjustheap (timers, timercnt, ev_active (w));
1687 } 4030 }
1688 else 4031 else
1689 ev_timer_stop (EV_A_ w); 4032 ev_timer_stop (EV_A_ w);
1690 } 4033 }
1691 else if (w->repeat) 4034 else if (w->repeat)
1692 { 4035 {
1693 w->at = w->repeat; 4036 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 4037 ev_timer_start (EV_A_ w);
1695 } 4038 }
4039
4040 EV_FREQUENT_CHECK;
4041}
4042
4043ev_tstamp
4044ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4045{
4046 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1696} 4047}
1697 4048
1698#if EV_PERIODIC_ENABLE 4049#if EV_PERIODIC_ENABLE
1699void noinline 4050noinline
4051void
1700ev_periodic_start (EV_P_ ev_periodic *w) 4052ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1701{ 4053{
1702 if (expect_false (ev_is_active (w))) 4054 if (expect_false (ev_is_active (w)))
1703 return; 4055 return;
1704 4056
1705 if (w->reschedule_cb) 4057 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4058 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 4059 else if (w->interval)
1708 { 4060 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4061 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 4062 periodic_recalc (EV_A_ w);
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 4063 }
1713 else 4064 else
1714 ((WT)w)->at = w->offset; 4065 ev_at (w) = w->offset;
1715 4066
4067 EV_FREQUENT_CHECK;
4068
4069 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 4070 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4071 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1718 periodics [periodiccnt - 1] = (WT)w; 4072 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 4073 ANHE_at_cache (periodics [ev_active (w)]);
4074 upheap (periodics, ev_active (w));
1720 4075
4076 EV_FREQUENT_CHECK;
4077
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4078 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 4079}
1723 4080
1724void noinline 4081noinline
4082void
1725ev_periodic_stop (EV_P_ ev_periodic *w) 4083ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1726{ 4084{
1727 clear_pending (EV_A_ (W)w); 4085 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 4086 if (expect_false (!ev_is_active (w)))
1729 return; 4087 return;
1730 4088
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4089 EV_FREQUENT_CHECK;
1732 4090
1733 { 4091 {
1734 int active = ((W)w)->active; 4092 int active = ev_active (w);
1735 4093
4094 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4095
4096 --periodiccnt;
4097
1736 if (expect_true (--active < --periodiccnt)) 4098 if (expect_true (active < periodiccnt + HEAP0))
1737 { 4099 {
1738 periodics [active] = periodics [periodiccnt]; 4100 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 4101 adjustheap (periodics, periodiccnt, active);
1740 } 4102 }
1741 } 4103 }
1742 4104
1743 ev_stop (EV_A_ (W)w); 4105 ev_stop (EV_A_ (W)w);
1744}
1745 4106
4107 EV_FREQUENT_CHECK;
4108}
4109
1746void noinline 4110noinline
4111void
1747ev_periodic_again (EV_P_ ev_periodic *w) 4112ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1748{ 4113{
1749 /* TODO: use adjustheap and recalculation */ 4114 /* TODO: use adjustheap and recalculation */
1750 ev_periodic_stop (EV_A_ w); 4115 ev_periodic_stop (EV_A_ w);
1751 ev_periodic_start (EV_A_ w); 4116 ev_periodic_start (EV_A_ w);
1752} 4117}
1754 4119
1755#ifndef SA_RESTART 4120#ifndef SA_RESTART
1756# define SA_RESTART 0 4121# define SA_RESTART 0
1757#endif 4122#endif
1758 4123
4124#if EV_SIGNAL_ENABLE
4125
1759void noinline 4126noinline
4127void
1760ev_signal_start (EV_P_ ev_signal *w) 4128ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1761{ 4129{
1762#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif
1765 if (expect_false (ev_is_active (w))) 4130 if (expect_false (ev_is_active (w)))
1766 return; 4131 return;
1767 4132
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4133 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1769 4134
4135#if EV_MULTIPLICITY
4136 assert (("libev: a signal must not be attached to two different loops",
4137 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4138
4139 signals [w->signum - 1].loop = EV_A;
4140 ECB_MEMORY_FENCE_RELEASE;
4141#endif
4142
4143 EV_FREQUENT_CHECK;
4144
4145#if EV_USE_SIGNALFD
4146 if (sigfd == -2)
1770 { 4147 {
1771#ifndef _WIN32 4148 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1772 sigset_t full, prev; 4149 if (sigfd < 0 && errno == EINVAL)
1773 sigfillset (&full); 4150 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776 4151
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4152 if (sigfd >= 0)
4153 {
4154 fd_intern (sigfd); /* doing it twice will not hurt */
1778 4155
1779#ifndef _WIN32 4156 sigemptyset (&sigfd_set);
1780 sigprocmask (SIG_SETMASK, &prev, 0); 4157
1781#endif 4158 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4159 ev_set_priority (&sigfd_w, EV_MAXPRI);
4160 ev_io_start (EV_A_ &sigfd_w);
4161 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4162 }
1782 } 4163 }
4164
4165 if (sigfd >= 0)
4166 {
4167 /* TODO: check .head */
4168 sigaddset (&sigfd_set, w->signum);
4169 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4170
4171 signalfd (sigfd, &sigfd_set, 0);
4172 }
4173#endif
1783 4174
1784 ev_start (EV_A_ (W)w, 1); 4175 ev_start (EV_A_ (W)w, 1);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 4176 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 4177
1787 if (!((WL)w)->next) 4178 if (!((WL)w)->next)
4179# if EV_USE_SIGNALFD
4180 if (sigfd < 0) /*TODO*/
4181# endif
1788 { 4182 {
1789#if _WIN32 4183# ifdef _WIN32
4184 evpipe_init (EV_A);
4185
1790 signal (w->signum, sighandler); 4186 signal (w->signum, ev_sighandler);
1791#else 4187# else
1792 struct sigaction sa; 4188 struct sigaction sa;
4189
4190 evpipe_init (EV_A);
4191
1793 sa.sa_handler = sighandler; 4192 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 4193 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4194 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 4195 sigaction (w->signum, &sa, 0);
4196
4197 if (origflags & EVFLAG_NOSIGMASK)
4198 {
4199 sigemptyset (&sa.sa_mask);
4200 sigaddset (&sa.sa_mask, w->signum);
4201 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4202 }
1797#endif 4203#endif
1798 } 4204 }
1799}
1800 4205
4206 EV_FREQUENT_CHECK;
4207}
4208
1801void noinline 4209noinline
4210void
1802ev_signal_stop (EV_P_ ev_signal *w) 4211ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1803{ 4212{
1804 clear_pending (EV_A_ (W)w); 4213 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 4214 if (expect_false (!ev_is_active (w)))
1806 return; 4215 return;
1807 4216
4217 EV_FREQUENT_CHECK;
4218
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 4219 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 4220 ev_stop (EV_A_ (W)w);
1810 4221
1811 if (!signals [w->signum - 1].head) 4222 if (!signals [w->signum - 1].head)
1812 signal (w->signum, SIG_DFL); 4223 {
1813}
1814
1815void
1816ev_child_start (EV_P_ ev_child *w)
1817{
1818#if EV_MULTIPLICITY 4224#if EV_MULTIPLICITY
4225 signals [w->signum - 1].loop = 0; /* unattach from signal */
4226#endif
4227#if EV_USE_SIGNALFD
4228 if (sigfd >= 0)
4229 {
4230 sigset_t ss;
4231
4232 sigemptyset (&ss);
4233 sigaddset (&ss, w->signum);
4234 sigdelset (&sigfd_set, w->signum);
4235
4236 signalfd (sigfd, &sigfd_set, 0);
4237 sigprocmask (SIG_UNBLOCK, &ss, 0);
4238 }
4239 else
4240#endif
4241 signal (w->signum, SIG_DFL);
4242 }
4243
4244 EV_FREQUENT_CHECK;
4245}
4246
4247#endif
4248
4249#if EV_CHILD_ENABLE
4250
4251void
4252ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4253{
4254#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4255 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 4256#endif
1821 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
1822 return; 4258 return;
1823 4259
4260 EV_FREQUENT_CHECK;
4261
1824 ev_start (EV_A_ (W)w, 1); 4262 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4263 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1826}
1827 4264
4265 EV_FREQUENT_CHECK;
4266}
4267
1828void 4268void
1829ev_child_stop (EV_P_ ev_child *w) 4269ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1830{ 4270{
1831 clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 4272 if (expect_false (!ev_is_active (w)))
1833 return; 4273 return;
1834 4274
4275 EV_FREQUENT_CHECK;
4276
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4277 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 4278 ev_stop (EV_A_ (W)w);
4279
4280 EV_FREQUENT_CHECK;
1837} 4281}
4282
4283#endif
1838 4284
1839#if EV_STAT_ENABLE 4285#if EV_STAT_ENABLE
1840 4286
1841# ifdef _WIN32 4287# ifdef _WIN32
1842# undef lstat 4288# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 4289# define lstat(a,b) _stati64 (a,b)
1844# endif 4290# endif
1845 4291
1846#define DEF_STAT_INTERVAL 5.0074891 4292#define DEF_STAT_INTERVAL 5.0074891
4293#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 4294#define MIN_STAT_INTERVAL 0.1074891
1848 4295
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4296noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 4297
1851#if EV_USE_INOTIFY 4298#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192
1853 4299
1854static void noinline 4300/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4301# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4302
4303noinline
4304static void
1855infy_add (EV_P_ ev_stat *w) 4305infy_add (EV_P_ ev_stat *w)
1856{ 4306{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4307 w->wd = inotify_add_watch (fs_fd, w->path,
4308 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4309 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4310 | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 4311
1859 if (w->wd < 0) 4312 if (w->wd >= 0)
4313 {
4314 struct statfs sfs;
4315
4316 /* now local changes will be tracked by inotify, but remote changes won't */
4317 /* unless the filesystem is known to be local, we therefore still poll */
4318 /* also do poll on <2.6.25, but with normal frequency */
4319
4320 if (!fs_2625)
4321 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4322 else if (!statfs (w->path, &sfs)
4323 && (sfs.f_type == 0x1373 /* devfs */
4324 || sfs.f_type == 0x4006 /* fat */
4325 || sfs.f_type == 0x4d44 /* msdos */
4326 || sfs.f_type == 0xEF53 /* ext2/3 */
4327 || sfs.f_type == 0x72b6 /* jffs2 */
4328 || sfs.f_type == 0x858458f6 /* ramfs */
4329 || sfs.f_type == 0x5346544e /* ntfs */
4330 || sfs.f_type == 0x3153464a /* jfs */
4331 || sfs.f_type == 0x9123683e /* btrfs */
4332 || sfs.f_type == 0x52654973 /* reiser3 */
4333 || sfs.f_type == 0x01021994 /* tmpfs */
4334 || sfs.f_type == 0x58465342 /* xfs */))
4335 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4336 else
4337 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1860 { 4338 }
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4339 else
4340 {
4341 /* can't use inotify, continue to stat */
4342 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1862 4343
1863 /* monitor some parent directory for speedup hints */ 4344 /* if path is not there, monitor some parent directory for speedup hints */
4345 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4346 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4347 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 4348 {
1866 char path [4096]; 4349 char path [4096];
1867 strcpy (path, w->path); 4350 strcpy (path, w->path);
1868 4351
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4354 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4355 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 4356
1874 char *pend = strrchr (path, '/'); 4357 char *pend = strrchr (path, '/');
1875 4358
1876 if (!pend) 4359 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 4360 break;
1878 4361
1879 *pend = 0; 4362 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 4363 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 4364 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4365 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 4366 }
1884 } 4367 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 4368
1888 if (w->wd >= 0) 4369 if (w->wd >= 0)
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4370 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1890}
1891 4371
1892static void noinline 4372 /* now re-arm timer, if required */
4373 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4374 ev_timer_again (EV_A_ &w->timer);
4375 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4376}
4377
4378noinline
4379static void
1893infy_del (EV_P_ ev_stat *w) 4380infy_del (EV_P_ ev_stat *w)
1894{ 4381{
1895 int slot; 4382 int slot;
1896 int wd = w->wd; 4383 int wd = w->wd;
1897 4384
1898 if (wd < 0) 4385 if (wd < 0)
1899 return; 4386 return;
1900 4387
1901 w->wd = -2; 4388 w->wd = -2;
1902 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4389 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1903 wlist_del (&fs_hash [slot].head, (WL)w); 4390 wlist_del (&fs_hash [slot].head, (WL)w);
1904 4391
1905 /* remove this watcher, if others are watching it, they will rearm */ 4392 /* remove this watcher, if others are watching it, they will rearm */
1906 inotify_rm_watch (fs_fd, wd); 4393 inotify_rm_watch (fs_fd, wd);
1907} 4394}
1908 4395
1909static void noinline 4396noinline
4397static void
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4398infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 4399{
1912 if (slot < 0) 4400 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 4401 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4402 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 4403 infy_wd (EV_A_ slot, wd, ev);
1916 else 4404 else
1917 { 4405 {
1918 WL w_; 4406 WL w_;
1919 4407
1920 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4408 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1921 { 4409 {
1922 ev_stat *w = (ev_stat *)w_; 4410 ev_stat *w = (ev_stat *)w_;
1923 w_ = w_->next; /* lets us remove this watcher and all before it */ 4411 w_ = w_->next; /* lets us remove this watcher and all before it */
1924 4412
1925 if (w->wd == wd || wd == -1) 4413 if (w->wd == wd || wd == -1)
1926 { 4414 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4415 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 4416 {
4417 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1929 w->wd = -1; 4418 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 4419 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 4420 }
1932 4421
1933 stat_timer_cb (EV_A_ &w->timer, 0); 4422 stat_timer_cb (EV_A_ &w->timer, 0);
1938 4427
1939static void 4428static void
1940infy_cb (EV_P_ ev_io *w, int revents) 4429infy_cb (EV_P_ ev_io *w, int revents)
1941{ 4430{
1942 char buf [EV_INOTIFY_BUFSIZE]; 4431 char buf [EV_INOTIFY_BUFSIZE];
1943 struct inotify_event *ev = (struct inotify_event *)buf;
1944 int ofs; 4432 int ofs;
1945 int len = read (fs_fd, buf, sizeof (buf)); 4433 int len = read (fs_fd, buf, sizeof (buf));
1946 4434
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4435 for (ofs = 0; ofs < len; )
4436 {
4437 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4438 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4439 ofs += sizeof (struct inotify_event) + ev->len;
4440 }
1949} 4441}
1950 4442
1951void inline_size 4443inline_size ecb_cold
4444void
4445ev_check_2625 (EV_P)
4446{
4447 /* kernels < 2.6.25 are borked
4448 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4449 */
4450 if (ev_linux_version () < 0x020619)
4451 return;
4452
4453 fs_2625 = 1;
4454}
4455
4456inline_size int
4457infy_newfd (void)
4458{
4459#if defined IN_CLOEXEC && defined IN_NONBLOCK
4460 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4461 if (fd >= 0)
4462 return fd;
4463#endif
4464 return inotify_init ();
4465}
4466
4467inline_size void
1952infy_init (EV_P) 4468infy_init (EV_P)
1953{ 4469{
1954 if (fs_fd != -2) 4470 if (fs_fd != -2)
1955 return; 4471 return;
1956 4472
4473 fs_fd = -1;
4474
4475 ev_check_2625 (EV_A);
4476
1957 fs_fd = inotify_init (); 4477 fs_fd = infy_newfd ();
1958 4478
1959 if (fs_fd >= 0) 4479 if (fs_fd >= 0)
1960 { 4480 {
4481 fd_intern (fs_fd);
1961 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4482 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1962 ev_set_priority (&fs_w, EV_MAXPRI); 4483 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 4484 ev_io_start (EV_A_ &fs_w);
4485 ev_unref (EV_A);
1964 } 4486 }
1965} 4487}
1966 4488
1967void inline_size 4489inline_size void
1968infy_fork (EV_P) 4490infy_fork (EV_P)
1969{ 4491{
1970 int slot; 4492 int slot;
1971 4493
1972 if (fs_fd < 0) 4494 if (fs_fd < 0)
1973 return; 4495 return;
1974 4496
4497 ev_ref (EV_A);
4498 ev_io_stop (EV_A_ &fs_w);
1975 close (fs_fd); 4499 close (fs_fd);
1976 fs_fd = inotify_init (); 4500 fs_fd = infy_newfd ();
1977 4501
4502 if (fs_fd >= 0)
4503 {
4504 fd_intern (fs_fd);
4505 ev_io_set (&fs_w, fs_fd, EV_READ);
4506 ev_io_start (EV_A_ &fs_w);
4507 ev_unref (EV_A);
4508 }
4509
1978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4510 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1979 { 4511 {
1980 WL w_ = fs_hash [slot].head; 4512 WL w_ = fs_hash [slot].head;
1981 fs_hash [slot].head = 0; 4513 fs_hash [slot].head = 0;
1982 4514
1983 while (w_) 4515 while (w_)
1988 w->wd = -1; 4520 w->wd = -1;
1989 4521
1990 if (fs_fd >= 0) 4522 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 4523 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 4524 else
4525 {
4526 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4527 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1993 ev_timer_start (EV_A_ &w->timer); 4528 ev_timer_again (EV_A_ &w->timer);
4529 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4530 }
1994 } 4531 }
1995
1996 } 4532 }
1997} 4533}
1998 4534
1999#endif 4535#endif
2000 4536
4537#ifdef _WIN32
4538# define EV_LSTAT(p,b) _stati64 (p, b)
4539#else
4540# define EV_LSTAT(p,b) lstat (p, b)
4541#endif
4542
2001void 4543void
2002ev_stat_stat (EV_P_ ev_stat *w) 4544ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2003{ 4545{
2004 if (lstat (w->path, &w->attr) < 0) 4546 if (lstat (w->path, &w->attr) < 0)
2005 w->attr.st_nlink = 0; 4547 w->attr.st_nlink = 0;
2006 else if (!w->attr.st_nlink) 4548 else if (!w->attr.st_nlink)
2007 w->attr.st_nlink = 1; 4549 w->attr.st_nlink = 1;
2008} 4550}
2009 4551
2010static void noinline 4552noinline
4553static void
2011stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4554stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2012{ 4555{
2013 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4556 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2014 4557
2015 /* we copy this here each the time so that */ 4558 ev_statdata prev = w->attr;
2016 /* prev has the old value when the callback gets invoked */
2017 w->prev = w->attr;
2018 ev_stat_stat (EV_A_ w); 4559 ev_stat_stat (EV_A_ w);
2019 4560
2020 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4561 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2021 if ( 4562 if (
2022 w->prev.st_dev != w->attr.st_dev 4563 prev.st_dev != w->attr.st_dev
2023 || w->prev.st_ino != w->attr.st_ino 4564 || prev.st_ino != w->attr.st_ino
2024 || w->prev.st_mode != w->attr.st_mode 4565 || prev.st_mode != w->attr.st_mode
2025 || w->prev.st_nlink != w->attr.st_nlink 4566 || prev.st_nlink != w->attr.st_nlink
2026 || w->prev.st_uid != w->attr.st_uid 4567 || prev.st_uid != w->attr.st_uid
2027 || w->prev.st_gid != w->attr.st_gid 4568 || prev.st_gid != w->attr.st_gid
2028 || w->prev.st_rdev != w->attr.st_rdev 4569 || prev.st_rdev != w->attr.st_rdev
2029 || w->prev.st_size != w->attr.st_size 4570 || prev.st_size != w->attr.st_size
2030 || w->prev.st_atime != w->attr.st_atime 4571 || prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 4572 || prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 4573 || prev.st_ctime != w->attr.st_ctime
2033 ) { 4574 ) {
4575 /* we only update w->prev on actual differences */
4576 /* in case we test more often than invoke the callback, */
4577 /* to ensure that prev is always different to attr */
4578 w->prev = prev;
4579
2034 #if EV_USE_INOTIFY 4580 #if EV_USE_INOTIFY
4581 if (fs_fd >= 0)
4582 {
2035 infy_del (EV_A_ w); 4583 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 4584 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 4585 ev_stat_stat (EV_A_ w); /* avoid race... */
4586 }
2038 #endif 4587 #endif
2039 4588
2040 ev_feed_event (EV_A_ w, EV_STAT); 4589 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 4590 }
2042} 4591}
2043 4592
2044void 4593void
2045ev_stat_start (EV_P_ ev_stat *w) 4594ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2046{ 4595{
2047 if (expect_false (ev_is_active (w))) 4596 if (expect_false (ev_is_active (w)))
2048 return; 4597 return;
2049 4598
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 4599 ev_stat_stat (EV_A_ w);
2055 4600
4601 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 4602 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 4603
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4604 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 4605 ev_set_priority (&w->timer, ev_priority (w));
2061 4606
2062#if EV_USE_INOTIFY 4607#if EV_USE_INOTIFY
2063 infy_init (EV_A); 4608 infy_init (EV_A);
2064 4609
2065 if (fs_fd >= 0) 4610 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 4611 infy_add (EV_A_ w);
2067 else 4612 else
2068#endif 4613#endif
4614 {
2069 ev_timer_start (EV_A_ &w->timer); 4615 ev_timer_again (EV_A_ &w->timer);
4616 ev_unref (EV_A);
4617 }
2070 4618
2071 ev_start (EV_A_ (W)w, 1); 4619 ev_start (EV_A_ (W)w, 1);
2072}
2073 4620
4621 EV_FREQUENT_CHECK;
4622}
4623
2074void 4624void
2075ev_stat_stop (EV_P_ ev_stat *w) 4625ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2076{ 4626{
2077 clear_pending (EV_A_ (W)w); 4627 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 4628 if (expect_false (!ev_is_active (w)))
2079 return; 4629 return;
2080 4630
4631 EV_FREQUENT_CHECK;
4632
2081#if EV_USE_INOTIFY 4633#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 4634 infy_del (EV_A_ w);
2083#endif 4635#endif
4636
4637 if (ev_is_active (&w->timer))
4638 {
4639 ev_ref (EV_A);
2084 ev_timer_stop (EV_A_ &w->timer); 4640 ev_timer_stop (EV_A_ &w->timer);
4641 }
2085 4642
2086 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
4644
4645 EV_FREQUENT_CHECK;
2087} 4646}
2088#endif 4647#endif
2089 4648
2090#if EV_IDLE_ENABLE 4649#if EV_IDLE_ENABLE
2091void 4650void
2092ev_idle_start (EV_P_ ev_idle *w) 4651ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2093{ 4652{
2094 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
2095 return; 4654 return;
2096 4655
2097 pri_adjust (EV_A_ (W)w); 4656 pri_adjust (EV_A_ (W)w);
2098 4657
4658 EV_FREQUENT_CHECK;
4659
2099 { 4660 {
2100 int active = ++idlecnt [ABSPRI (w)]; 4661 int active = ++idlecnt [ABSPRI (w)];
2101 4662
2102 ++idleall; 4663 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 4664 ev_start (EV_A_ (W)w, active);
2104 4665
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4666 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2106 idles [ABSPRI (w)][active - 1] = w; 4667 idles [ABSPRI (w)][active - 1] = w;
2107 } 4668 }
2108}
2109 4669
4670 EV_FREQUENT_CHECK;
4671}
4672
2110void 4673void
2111ev_idle_stop (EV_P_ ev_idle *w) 4674ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2112{ 4675{
2113 clear_pending (EV_A_ (W)w); 4676 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 4677 if (expect_false (!ev_is_active (w)))
2115 return; 4678 return;
2116 4679
4680 EV_FREQUENT_CHECK;
4681
2117 { 4682 {
2118 int active = ((W)w)->active; 4683 int active = ev_active (w);
2119 4684
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4685 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4686 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 4687
2123 ev_stop (EV_A_ (W)w); 4688 ev_stop (EV_A_ (W)w);
2124 --idleall; 4689 --idleall;
2125 } 4690 }
2126}
2127#endif
2128 4691
4692 EV_FREQUENT_CHECK;
4693}
4694#endif
4695
4696#if EV_PREPARE_ENABLE
2129void 4697void
2130ev_prepare_start (EV_P_ ev_prepare *w) 4698ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2131{ 4699{
2132 if (expect_false (ev_is_active (w))) 4700 if (expect_false (ev_is_active (w)))
2133 return; 4701 return;
2134 4702
4703 EV_FREQUENT_CHECK;
4704
2135 ev_start (EV_A_ (W)w, ++preparecnt); 4705 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4706 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2137 prepares [preparecnt - 1] = w; 4707 prepares [preparecnt - 1] = w;
2138}
2139 4708
4709 EV_FREQUENT_CHECK;
4710}
4711
2140void 4712void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 4713ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2142{ 4714{
2143 clear_pending (EV_A_ (W)w); 4715 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 4716 if (expect_false (!ev_is_active (w)))
2145 return; 4717 return;
2146 4718
4719 EV_FREQUENT_CHECK;
4720
2147 { 4721 {
2148 int active = ((W)w)->active; 4722 int active = ev_active (w);
4723
2149 prepares [active - 1] = prepares [--preparecnt]; 4724 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 4725 ev_active (prepares [active - 1]) = active;
2151 } 4726 }
2152 4727
2153 ev_stop (EV_A_ (W)w); 4728 ev_stop (EV_A_ (W)w);
2154}
2155 4729
4730 EV_FREQUENT_CHECK;
4731}
4732#endif
4733
4734#if EV_CHECK_ENABLE
2156void 4735void
2157ev_check_start (EV_P_ ev_check *w) 4736ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2158{ 4737{
2159 if (expect_false (ev_is_active (w))) 4738 if (expect_false (ev_is_active (w)))
2160 return; 4739 return;
2161 4740
4741 EV_FREQUENT_CHECK;
4742
2162 ev_start (EV_A_ (W)w, ++checkcnt); 4743 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4744 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2164 checks [checkcnt - 1] = w; 4745 checks [checkcnt - 1] = w;
2165}
2166 4746
4747 EV_FREQUENT_CHECK;
4748}
4749
2167void 4750void
2168ev_check_stop (EV_P_ ev_check *w) 4751ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2169{ 4752{
2170 clear_pending (EV_A_ (W)w); 4753 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 4754 if (expect_false (!ev_is_active (w)))
2172 return; 4755 return;
2173 4756
4757 EV_FREQUENT_CHECK;
4758
2174 { 4759 {
2175 int active = ((W)w)->active; 4760 int active = ev_active (w);
4761
2176 checks [active - 1] = checks [--checkcnt]; 4762 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 4763 ev_active (checks [active - 1]) = active;
2178 } 4764 }
2179 4765
2180 ev_stop (EV_A_ (W)w); 4766 ev_stop (EV_A_ (W)w);
4767
4768 EV_FREQUENT_CHECK;
2181} 4769}
4770#endif
2182 4771
2183#if EV_EMBED_ENABLE 4772#if EV_EMBED_ENABLE
2184void noinline 4773noinline
4774void
2185ev_embed_sweep (EV_P_ ev_embed *w) 4775ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2186{ 4776{
2187 ev_loop (w->other, EVLOOP_NONBLOCK); 4777 ev_run (w->other, EVRUN_NOWAIT);
2188} 4778}
2189 4779
2190static void 4780static void
2191embed_io_cb (EV_P_ ev_io *io, int revents) 4781embed_io_cb (EV_P_ ev_io *io, int revents)
2192{ 4782{
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4783 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 4784
2195 if (ev_cb (w)) 4785 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4786 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 4787 else
2198 ev_embed_sweep (loop, w); 4788 ev_run (w->other, EVRUN_NOWAIT);
2199} 4789}
2200 4790
2201static void 4791static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4792embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 4793{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4794 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 4795
2206 fd_reify (w->other); 4796 {
2207} 4797 EV_P = w->other;
2208 4798
4799 while (fdchangecnt)
4800 {
4801 fd_reify (EV_A);
4802 ev_run (EV_A_ EVRUN_NOWAIT);
4803 }
4804 }
4805}
4806
4807static void
4808embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4809{
4810 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4811
4812 ev_embed_stop (EV_A_ w);
4813
4814 {
4815 EV_P = w->other;
4816
4817 ev_loop_fork (EV_A);
4818 ev_run (EV_A_ EVRUN_NOWAIT);
4819 }
4820
4821 ev_embed_start (EV_A_ w);
4822}
4823
4824#if 0
4825static void
4826embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4827{
4828 ev_idle_stop (EV_A_ idle);
4829}
4830#endif
4831
2209void 4832void
2210ev_embed_start (EV_P_ ev_embed *w) 4833ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2211{ 4834{
2212 if (expect_false (ev_is_active (w))) 4835 if (expect_false (ev_is_active (w)))
2213 return; 4836 return;
2214 4837
2215 { 4838 {
2216 struct ev_loop *loop = w->other; 4839 EV_P = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4840 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4841 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 4842 }
4843
4844 EV_FREQUENT_CHECK;
2220 4845
2221 ev_set_priority (&w->io, ev_priority (w)); 4846 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 4847 ev_io_start (EV_A_ &w->io);
2223 4848
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 4849 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 4850 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 4851 ev_prepare_start (EV_A_ &w->prepare);
2227 4852
4853 ev_fork_init (&w->fork, embed_fork_cb);
4854 ev_fork_start (EV_A_ &w->fork);
4855
4856 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4857
2228 ev_start (EV_A_ (W)w, 1); 4858 ev_start (EV_A_ (W)w, 1);
2229}
2230 4859
4860 EV_FREQUENT_CHECK;
4861}
4862
2231void 4863void
2232ev_embed_stop (EV_P_ ev_embed *w) 4864ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2233{ 4865{
2234 clear_pending (EV_A_ (W)w); 4866 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 4867 if (expect_false (!ev_is_active (w)))
2236 return; 4868 return;
2237 4869
4870 EV_FREQUENT_CHECK;
4871
2238 ev_io_stop (EV_A_ &w->io); 4872 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 4873 ev_prepare_stop (EV_A_ &w->prepare);
4874 ev_fork_stop (EV_A_ &w->fork);
2240 4875
2241 ev_stop (EV_A_ (W)w); 4876 ev_stop (EV_A_ (W)w);
4877
4878 EV_FREQUENT_CHECK;
2242} 4879}
2243#endif 4880#endif
2244 4881
2245#if EV_FORK_ENABLE 4882#if EV_FORK_ENABLE
2246void 4883void
2247ev_fork_start (EV_P_ ev_fork *w) 4884ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2248{ 4885{
2249 if (expect_false (ev_is_active (w))) 4886 if (expect_false (ev_is_active (w)))
2250 return; 4887 return;
2251 4888
4889 EV_FREQUENT_CHECK;
4890
2252 ev_start (EV_A_ (W)w, ++forkcnt); 4891 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4892 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2254 forks [forkcnt - 1] = w; 4893 forks [forkcnt - 1] = w;
2255}
2256 4894
4895 EV_FREQUENT_CHECK;
4896}
4897
2257void 4898void
2258ev_fork_stop (EV_P_ ev_fork *w) 4899ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2259{ 4900{
2260 clear_pending (EV_A_ (W)w); 4901 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 4902 if (expect_false (!ev_is_active (w)))
2262 return; 4903 return;
2263 4904
4905 EV_FREQUENT_CHECK;
4906
2264 { 4907 {
2265 int active = ((W)w)->active; 4908 int active = ev_active (w);
4909
2266 forks [active - 1] = forks [--forkcnt]; 4910 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 4911 ev_active (forks [active - 1]) = active;
2268 } 4912 }
2269 4913
2270 ev_stop (EV_A_ (W)w); 4914 ev_stop (EV_A_ (W)w);
4915
4916 EV_FREQUENT_CHECK;
4917}
4918#endif
4919
4920#if EV_CLEANUP_ENABLE
4921void
4922ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4923{
4924 if (expect_false (ev_is_active (w)))
4925 return;
4926
4927 EV_FREQUENT_CHECK;
4928
4929 ev_start (EV_A_ (W)w, ++cleanupcnt);
4930 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4931 cleanups [cleanupcnt - 1] = w;
4932
4933 /* cleanup watchers should never keep a refcount on the loop */
4934 ev_unref (EV_A);
4935 EV_FREQUENT_CHECK;
4936}
4937
4938void
4939ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4940{
4941 clear_pending (EV_A_ (W)w);
4942 if (expect_false (!ev_is_active (w)))
4943 return;
4944
4945 EV_FREQUENT_CHECK;
4946 ev_ref (EV_A);
4947
4948 {
4949 int active = ev_active (w);
4950
4951 cleanups [active - 1] = cleanups [--cleanupcnt];
4952 ev_active (cleanups [active - 1]) = active;
4953 }
4954
4955 ev_stop (EV_A_ (W)w);
4956
4957 EV_FREQUENT_CHECK;
4958}
4959#endif
4960
4961#if EV_ASYNC_ENABLE
4962void
4963ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4964{
4965 if (expect_false (ev_is_active (w)))
4966 return;
4967
4968 w->sent = 0;
4969
4970 evpipe_init (EV_A);
4971
4972 EV_FREQUENT_CHECK;
4973
4974 ev_start (EV_A_ (W)w, ++asynccnt);
4975 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4976 asyncs [asynccnt - 1] = w;
4977
4978 EV_FREQUENT_CHECK;
4979}
4980
4981void
4982ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4983{
4984 clear_pending (EV_A_ (W)w);
4985 if (expect_false (!ev_is_active (w)))
4986 return;
4987
4988 EV_FREQUENT_CHECK;
4989
4990 {
4991 int active = ev_active (w);
4992
4993 asyncs [active - 1] = asyncs [--asynccnt];
4994 ev_active (asyncs [active - 1]) = active;
4995 }
4996
4997 ev_stop (EV_A_ (W)w);
4998
4999 EV_FREQUENT_CHECK;
5000}
5001
5002void
5003ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5004{
5005 w->sent = 1;
5006 evpipe_write (EV_A_ &async_pending);
2271} 5007}
2272#endif 5008#endif
2273 5009
2274/*****************************************************************************/ 5010/*****************************************************************************/
2275 5011
2285once_cb (EV_P_ struct ev_once *once, int revents) 5021once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 5022{
2287 void (*cb)(int revents, void *arg) = once->cb; 5023 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 5024 void *arg = once->arg;
2289 5025
2290 ev_io_stop (EV_A_ &once->io); 5026 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 5027 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 5028 ev_free (once);
2293 5029
2294 cb (revents, arg); 5030 cb (revents, arg);
2295} 5031}
2296 5032
2297static void 5033static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 5034once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 5035{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5036 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5037
5038 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 5039}
2302 5040
2303static void 5041static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 5042once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 5043{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5044 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2307}
2308 5045
5046 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5047}
5048
2309void 5049void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5050ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2311{ 5051{
2312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5052 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2313
2314 if (expect_false (!once))
2315 {
2316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2317 return;
2318 }
2319 5053
2320 once->cb = cb; 5054 once->cb = cb;
2321 once->arg = arg; 5055 once->arg = arg;
2322 5056
2323 ev_init (&once->io, once_cb_io); 5057 ev_init (&once->io, once_cb_io);
2333 ev_timer_set (&once->to, timeout, 0.); 5067 ev_timer_set (&once->to, timeout, 0.);
2334 ev_timer_start (EV_A_ &once->to); 5068 ev_timer_start (EV_A_ &once->to);
2335 } 5069 }
2336} 5070}
2337 5071
5072/*****************************************************************************/
5073
5074#if EV_WALK_ENABLE
5075ecb_cold
5076void
5077ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5078{
5079 int i, j;
5080 ev_watcher_list *wl, *wn;
5081
5082 if (types & (EV_IO | EV_EMBED))
5083 for (i = 0; i < anfdmax; ++i)
5084 for (wl = anfds [i].head; wl; )
5085 {
5086 wn = wl->next;
5087
5088#if EV_EMBED_ENABLE
5089 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5090 {
5091 if (types & EV_EMBED)
5092 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5093 }
5094 else
5095#endif
5096#if EV_USE_INOTIFY
5097 if (ev_cb ((ev_io *)wl) == infy_cb)
5098 ;
5099 else
5100#endif
5101 if ((ev_io *)wl != &pipe_w)
5102 if (types & EV_IO)
5103 cb (EV_A_ EV_IO, wl);
5104
5105 wl = wn;
5106 }
5107
5108 if (types & (EV_TIMER | EV_STAT))
5109 for (i = timercnt + HEAP0; i-- > HEAP0; )
5110#if EV_STAT_ENABLE
5111 /*TODO: timer is not always active*/
5112 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5113 {
5114 if (types & EV_STAT)
5115 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5116 }
5117 else
5118#endif
5119 if (types & EV_TIMER)
5120 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5121
5122#if EV_PERIODIC_ENABLE
5123 if (types & EV_PERIODIC)
5124 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5125 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5126#endif
5127
5128#if EV_IDLE_ENABLE
5129 if (types & EV_IDLE)
5130 for (j = NUMPRI; j--; )
5131 for (i = idlecnt [j]; i--; )
5132 cb (EV_A_ EV_IDLE, idles [j][i]);
5133#endif
5134
5135#if EV_FORK_ENABLE
5136 if (types & EV_FORK)
5137 for (i = forkcnt; i--; )
5138 if (ev_cb (forks [i]) != embed_fork_cb)
5139 cb (EV_A_ EV_FORK, forks [i]);
5140#endif
5141
5142#if EV_ASYNC_ENABLE
5143 if (types & EV_ASYNC)
5144 for (i = asynccnt; i--; )
5145 cb (EV_A_ EV_ASYNC, asyncs [i]);
5146#endif
5147
5148#if EV_PREPARE_ENABLE
5149 if (types & EV_PREPARE)
5150 for (i = preparecnt; i--; )
5151# if EV_EMBED_ENABLE
5152 if (ev_cb (prepares [i]) != embed_prepare_cb)
5153# endif
5154 cb (EV_A_ EV_PREPARE, prepares [i]);
5155#endif
5156
5157#if EV_CHECK_ENABLE
5158 if (types & EV_CHECK)
5159 for (i = checkcnt; i--; )
5160 cb (EV_A_ EV_CHECK, checks [i]);
5161#endif
5162
5163#if EV_SIGNAL_ENABLE
5164 if (types & EV_SIGNAL)
5165 for (i = 0; i < EV_NSIG - 1; ++i)
5166 for (wl = signals [i].head; wl; )
5167 {
5168 wn = wl->next;
5169 cb (EV_A_ EV_SIGNAL, wl);
5170 wl = wn;
5171 }
5172#endif
5173
5174#if EV_CHILD_ENABLE
5175 if (types & EV_CHILD)
5176 for (i = (EV_PID_HASHSIZE); i--; )
5177 for (wl = childs [i]; wl; )
5178 {
5179 wn = wl->next;
5180 cb (EV_A_ EV_CHILD, wl);
5181 wl = wn;
5182 }
5183#endif
5184/* EV_STAT 0x00001000 /* stat data changed */
5185/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5186}
5187#endif
5188
2338#if EV_MULTIPLICITY 5189#if EV_MULTIPLICITY
2339 #include "ev_wrap.h" 5190 #include "ev_wrap.h"
2340#endif 5191#endif
2341 5192
2342#ifdef __cplusplus
2343}
2344#endif
2345

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines