ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.191 by root, Fri Dec 21 02:40:01 2007 UTC vs.
Revision 1.500 by root, Mon Jul 1 20:47:37 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT 129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
92# if HAVE_PORT_H && HAVE_PORT_CREATE 130# ifndef EV_USE_KQUEUE
93# define EV_USE_PORT 1 131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
97# endif 136# endif
98 137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
99# ifndef EV_USE_INOTIFY 139# ifndef EV_USE_PORT
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 140# define EV_USE_PORT EV_FEATURE_BACKENDS
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif 141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
105# endif 145# endif
106 146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
110#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
111#include <fcntl.h> 188#include <fcntl.h>
112#include <stddef.h> 189#include <stddef.h>
113 190
114#include <stdio.h> 191#include <stdio.h>
115 192
116#include <assert.h> 193#include <assert.h>
117#include <errno.h> 194#include <errno.h>
118#include <sys/types.h> 195#include <sys/types.h>
119#include <time.h> 196#include <time.h>
197#include <limits.h>
120 198
121#include <signal.h> 199#include <signal.h>
122 200
123#ifdef EV_H 201#ifdef EV_H
124# include EV_H 202# include EV_H
125#else 203#else
126# include "ev.h" 204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
127#endif 216#endif
128 217
129#ifndef _WIN32 218#ifndef _WIN32
130# include <sys/time.h> 219# include <sys/time.h>
131# include <sys/wait.h> 220# include <sys/wait.h>
132# include <unistd.h> 221# include <unistd.h>
133#else 222#else
223# include <io.h>
134# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
135# include <windows.h> 226# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
138# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
139#endif 269# endif
270#endif
140 271
141/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
142 280
143#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
144# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
145#endif 287#endif
146 288
147#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
149#endif 299#endif
150 300
151#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 303#endif
154 304
155#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
156# ifdef _WIN32 306# ifdef _WIN32
157# define EV_USE_POLL 0 307# define EV_USE_POLL 0
158# else 308# else
159# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 310# endif
161#endif 311#endif
162 312
163#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
164# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
165#endif 319#endif
166 320
167#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
169#endif 323#endif
170 324
171#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 326# define EV_USE_PORT 0
173#endif 327#endif
174 328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
175#ifndef EV_USE_INOTIFY 337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
176# define EV_USE_INOTIFY 0 341# define EV_USE_INOTIFY 0
342# endif
177#endif 343#endif
178 344
179#ifndef EV_PID_HASHSIZE 345#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 356# else
183# define EV_PID_HASHSIZE 16 357# define EV_USE_EVENTFD 0
184# endif 358# endif
185#endif 359#endif
186 360
187#ifndef EV_INOTIFY_HASHSIZE 361#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 363# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 364# else
191# define EV_INOTIFY_HASHSIZE 16 365# define EV_USE_SIGNALFD 0
192# endif 366# endif
193#endif 367#endif
194 368
195/**/ 369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 418
197#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
200#endif 422#endif
207#if !EV_STAT_ENABLE 429#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 430# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 431# define EV_USE_INOTIFY 0
210#endif 432#endif
211 433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
212#if EV_USE_INOTIFY 449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
213# include <sys/inotify.h> 451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
214#endif 456# endif
457#endif
215 458
216#if EV_SELECT_IS_WINSOCKET 459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
217# include <winsock.h> 461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
218#endif 495#endif
219 496
220/**/ 497/**/
221 498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
222/* 505/*
223 * This is used to avoid floating point rounding problems. 506 * This is used to work around floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000. 507 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */ 508 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 511
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 514
515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
236#if __GNUC__ >= 4 573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
663
664/*****************************************************************************/
665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
237# define expect(expr,value) __builtin_expect ((expr),(value)) 872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline))
239#else 873#else
240# define expect(expr,value) (expr) 874 #define ecb_expect(expr,value) (expr)
241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif 875#endif
245#endif
246 876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
247#define expect_false(expr) expect ((expr) != 0, 0) 941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
249#define inline_size static inline 1555#define inline_size ecb_inline
250 1556
251#if EV_MINIMAL 1557#if EV_FEATURE_CODE
252# define inline_speed static noinline
253#else
254# define inline_speed static inline 1558# define inline_speed ecb_inline
1559#else
1560# define inline_speed ecb_noinline static
255#endif 1561#endif
256 1562
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1563#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1564
1565#if EV_MINPRI == EV_MAXPRI
1566# define ABSPRI(w) (((W)w), 0)
1567#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1568# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1569#endif
259 1570
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1571#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */
262 1572
263typedef ev_watcher *W; 1573typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 1574typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 1575typedef ev_watcher_time *WT;
266 1576
1577#define ev_active(w) ((W)(w))->active
1578#define ev_at(w) ((WT)(w))->at
1579
1580#if EV_USE_REALTIME
1581/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1582/* giving it a reasonably high chance of working on typical architectures */
1583static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1584#endif
1585
1586#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1587static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1588#endif
1589
1590#ifndef EV_FD_TO_WIN32_HANDLE
1591# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1592#endif
1593#ifndef EV_WIN32_HANDLE_TO_FD
1594# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1595#endif
1596#ifndef EV_WIN32_CLOSE_FD
1597# define EV_WIN32_CLOSE_FD(fd) close (fd)
1598#endif
268 1599
269#ifdef _WIN32 1600#ifdef _WIN32
270# include "ev_win32.c" 1601# include "ev_win32.c"
271#endif 1602#endif
272 1603
273/*****************************************************************************/ 1604/*****************************************************************************/
274 1605
1606#if EV_USE_LINUXAIO
1607# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1608#endif
1609
1610/* define a suitable floor function (only used by periodics atm) */
1611
1612#if EV_USE_FLOOR
1613# include <math.h>
1614# define ev_floor(v) floor (v)
1615#else
1616
1617#include <float.h>
1618
1619/* a floor() replacement function, should be independent of ev_tstamp type */
1620ecb_noinline
1621static ev_tstamp
1622ev_floor (ev_tstamp v)
1623{
1624 /* the choice of shift factor is not terribly important */
1625#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1626 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1627#else
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1629#endif
1630
1631 /* argument too large for an unsigned long? */
1632 if (ecb_expect_false (v >= shift))
1633 {
1634 ev_tstamp f;
1635
1636 if (v == v - 1.)
1637 return v; /* very large number */
1638
1639 f = shift * ev_floor (v * (1. / shift));
1640 return f + ev_floor (v - f);
1641 }
1642
1643 /* special treatment for negative args? */
1644 if (ecb_expect_false (v < 0.))
1645 {
1646 ev_tstamp f = -ev_floor (-v);
1647
1648 return f - (f == v ? 0 : 1);
1649 }
1650
1651 /* fits into an unsigned long */
1652 return (unsigned long)v;
1653}
1654
1655#endif
1656
1657/*****************************************************************************/
1658
1659#ifdef __linux
1660# include <sys/utsname.h>
1661#endif
1662
1663ecb_noinline ecb_cold
1664static unsigned int
1665ev_linux_version (void)
1666{
1667#ifdef __linux
1668 unsigned int v = 0;
1669 struct utsname buf;
1670 int i;
1671 char *p = buf.release;
1672
1673 if (uname (&buf))
1674 return 0;
1675
1676 for (i = 3+1; --i; )
1677 {
1678 unsigned int c = 0;
1679
1680 for (;;)
1681 {
1682 if (*p >= '0' && *p <= '9')
1683 c = c * 10 + *p++ - '0';
1684 else
1685 {
1686 p += *p == '.';
1687 break;
1688 }
1689 }
1690
1691 v = (v << 8) | c;
1692 }
1693
1694 return v;
1695#else
1696 return 0;
1697#endif
1698}
1699
1700/*****************************************************************************/
1701
1702#if EV_AVOID_STDIO
1703ecb_noinline ecb_cold
1704static void
1705ev_printerr (const char *msg)
1706{
1707 write (STDERR_FILENO, msg, strlen (msg));
1708}
1709#endif
1710
275static void (*syserr_cb)(const char *msg); 1711static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
276 1712
1713ecb_cold
277void 1714void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1715ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
279{ 1716{
280 syserr_cb = cb; 1717 syserr_cb = cb;
281} 1718}
282 1719
283static void noinline 1720ecb_noinline ecb_cold
1721static void
284syserr (const char *msg) 1722ev_syserr (const char *msg)
285{ 1723{
286 if (!msg) 1724 if (!msg)
287 msg = "(libev) system error"; 1725 msg = "(libev) system error";
288 1726
289 if (syserr_cb) 1727 if (syserr_cb)
290 syserr_cb (msg); 1728 syserr_cb (msg);
291 else 1729 else
292 { 1730 {
1731#if EV_AVOID_STDIO
1732 ev_printerr (msg);
1733 ev_printerr (": ");
1734 ev_printerr (strerror (errno));
1735 ev_printerr ("\n");
1736#else
293 perror (msg); 1737 perror (msg);
1738#endif
294 abort (); 1739 abort ();
295 } 1740 }
296} 1741}
297 1742
298static void *(*alloc)(void *ptr, long size); 1743static void *
1744ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1745{
1746 /* some systems, notably openbsd and darwin, fail to properly
1747 * implement realloc (x, 0) (as required by both ansi c-89 and
1748 * the single unix specification, so work around them here.
1749 * recently, also (at least) fedora and debian started breaking it,
1750 * despite documenting it otherwise.
1751 */
299 1752
1753 if (size)
1754 return realloc (ptr, size);
1755
1756 free (ptr);
1757 return 0;
1758}
1759
1760static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1761
1762ecb_cold
300void 1763void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1764ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
302{ 1765{
303 alloc = cb; 1766 alloc = cb;
304} 1767}
305 1768
306inline_speed void * 1769inline_speed void *
307ev_realloc (void *ptr, long size) 1770ev_realloc (void *ptr, long size)
308{ 1771{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1772 ptr = alloc (ptr, size);
310 1773
311 if (!ptr && size) 1774 if (!ptr && size)
312 { 1775 {
1776#if EV_AVOID_STDIO
1777 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1778#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1779 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1780#endif
314 abort (); 1781 abort ();
315 } 1782 }
316 1783
317 return ptr; 1784 return ptr;
318} 1785}
320#define ev_malloc(size) ev_realloc (0, (size)) 1787#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1788#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1789
323/*****************************************************************************/ 1790/*****************************************************************************/
324 1791
1792/* set in reify when reification needed */
1793#define EV_ANFD_REIFY 1
1794
1795/* file descriptor info structure */
325typedef struct 1796typedef struct
326{ 1797{
327 WL head; 1798 WL head;
328 unsigned char events; 1799 unsigned char events; /* the events watched for */
1800 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1801 unsigned char emask; /* some backends store the actual kernel mask in here */
329 unsigned char reify; 1802 unsigned char unused;
1803#if EV_USE_EPOLL
1804 unsigned int egen; /* generation counter to counter epoll bugs */
1805#endif
330#if EV_SELECT_IS_WINSOCKET 1806#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1807 SOCKET handle;
332#endif 1808#endif
1809#if EV_USE_IOCP
1810 OVERLAPPED or, ow;
1811#endif
333} ANFD; 1812} ANFD;
334 1813
1814/* stores the pending event set for a given watcher */
335typedef struct 1815typedef struct
336{ 1816{
337 W w; 1817 W w;
338 int events; 1818 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1819} ANPENDING;
340 1820
341#if EV_USE_INOTIFY 1821#if EV_USE_INOTIFY
1822/* hash table entry per inotify-id */
342typedef struct 1823typedef struct
343{ 1824{
344 WL head; 1825 WL head;
345} ANFS; 1826} ANFS;
1827#endif
1828
1829/* Heap Entry */
1830#if EV_HEAP_CACHE_AT
1831 /* a heap element */
1832 typedef struct {
1833 ev_tstamp at;
1834 WT w;
1835 } ANHE;
1836
1837 #define ANHE_w(he) (he).w /* access watcher, read-write */
1838 #define ANHE_at(he) (he).at /* access cached at, read-only */
1839 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1840#else
1841 /* a heap element */
1842 typedef WT ANHE;
1843
1844 #define ANHE_w(he) (he)
1845 #define ANHE_at(he) (he)->at
1846 #define ANHE_at_cache(he)
346#endif 1847#endif
347 1848
348#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
349 1850
350 struct ev_loop 1851 struct ev_loop
356 #undef VAR 1857 #undef VAR
357 }; 1858 };
358 #include "ev_wrap.h" 1859 #include "ev_wrap.h"
359 1860
360 static struct ev_loop default_loop_struct; 1861 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1862 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1863
363#else 1864#else
364 1865
365 ev_tstamp ev_rt_now; 1866 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1867 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1868 #include "ev_vars.h"
368 #undef VAR 1869 #undef VAR
369 1870
370 static int ev_default_loop_ptr; 1871 static int ev_default_loop_ptr;
371 1872
372#endif 1873#endif
373 1874
1875#if EV_FEATURE_API
1876# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1877# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1878# define EV_INVOKE_PENDING invoke_cb (EV_A)
1879#else
1880# define EV_RELEASE_CB (void)0
1881# define EV_ACQUIRE_CB (void)0
1882# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1883#endif
1884
1885#define EVBREAK_RECURSE 0x80
1886
374/*****************************************************************************/ 1887/*****************************************************************************/
375 1888
1889#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1890ev_tstamp
377ev_time (void) 1891ev_time (void) EV_NOEXCEPT
378{ 1892{
379#if EV_USE_REALTIME 1893#if EV_USE_REALTIME
1894 if (ecb_expect_true (have_realtime))
1895 {
380 struct timespec ts; 1896 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1897 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1898 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1899 }
1900#endif
1901
384 struct timeval tv; 1902 struct timeval tv;
385 gettimeofday (&tv, 0); 1903 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1904 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1905}
1906#endif
389 1907
390ev_tstamp inline_size 1908inline_size ev_tstamp
391get_clock (void) 1909get_clock (void)
392{ 1910{
393#if EV_USE_MONOTONIC 1911#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1912 if (ecb_expect_true (have_monotonic))
395 { 1913 {
396 struct timespec ts; 1914 struct timespec ts;
397 clock_gettime (CLOCK_MONOTONIC, &ts); 1915 clock_gettime (CLOCK_MONOTONIC, &ts);
398 return ts.tv_sec + ts.tv_nsec * 1e-9; 1916 return ts.tv_sec + ts.tv_nsec * 1e-9;
399 } 1917 }
402 return ev_time (); 1920 return ev_time ();
403} 1921}
404 1922
405#if EV_MULTIPLICITY 1923#if EV_MULTIPLICITY
406ev_tstamp 1924ev_tstamp
407ev_now (EV_P) 1925ev_now (EV_P) EV_NOEXCEPT
408{ 1926{
409 return ev_rt_now; 1927 return ev_rt_now;
410} 1928}
411#endif 1929#endif
412 1930
413int inline_size 1931void
1932ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1933{
1934 if (delay > 0.)
1935 {
1936#if EV_USE_NANOSLEEP
1937 struct timespec ts;
1938
1939 EV_TS_SET (ts, delay);
1940 nanosleep (&ts, 0);
1941#elif defined _WIN32
1942 /* maybe this should round up, as ms is very low resolution */
1943 /* compared to select (µs) or nanosleep (ns) */
1944 Sleep ((unsigned long)(delay * 1e3));
1945#else
1946 struct timeval tv;
1947
1948 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1949 /* something not guaranteed by newer posix versions, but guaranteed */
1950 /* by older ones */
1951 EV_TV_SET (tv, delay);
1952 select (0, 0, 0, 0, &tv);
1953#endif
1954 }
1955}
1956
1957/*****************************************************************************/
1958
1959#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1960
1961/* find a suitable new size for the given array, */
1962/* hopefully by rounding to a nice-to-malloc size */
1963inline_size int
414array_nextsize (int elem, int cur, int cnt) 1964array_nextsize (int elem, int cur, int cnt)
415{ 1965{
416 int ncur = cur + 1; 1966 int ncur = cur + 1;
417 1967
418 do 1968 do
419 ncur <<= 1; 1969 ncur <<= 1;
420 while (cnt > ncur); 1970 while (cnt > ncur);
421 1971
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1972 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1973 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1974 {
425 ncur *= elem; 1975 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1976 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1977 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1978 ncur /= elem;
429 } 1979 }
430 1980
431 return ncur; 1981 return ncur;
432} 1982}
433 1983
434static noinline void * 1984ecb_noinline ecb_cold
1985static void *
435array_realloc (int elem, void *base, int *cur, int cnt) 1986array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1987{
437 *cur = array_nextsize (elem, *cur, cnt); 1988 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1989 return ev_realloc (base, elem * *cur);
439} 1990}
440 1991
1992#define array_needsize_noinit(base,offset,count)
1993
1994#define array_needsize_zerofill(base,offset,count) \
1995 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
1996
441#define array_needsize(type,base,cur,cnt,init) \ 1997#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 1998 if (ecb_expect_false ((cnt) > (cur))) \
443 { \ 1999 { \
444 int ocur_ = (cur); \ 2000 ecb_unused int ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 2001 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 2002 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 2003 init ((base), ocur_, ((cur) - ocur_)); \
448 } 2004 }
449 2005
450#if 0 2006#if 0
451#define array_slim(type,stem) \ 2007#define array_slim(type,stem) \
452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2008 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2012 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 2013 }
458#endif 2014#endif
459 2015
460#define array_free(stem, idx) \ 2016#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2017 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 2018
463/*****************************************************************************/ 2019/*****************************************************************************/
464 2020
465void noinline 2021/* dummy callback for pending events */
2022ecb_noinline
2023static void
2024pendingcb (EV_P_ ev_prepare *w, int revents)
2025{
2026}
2027
2028ecb_noinline
2029void
466ev_feed_event (EV_P_ void *w, int revents) 2030ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
467{ 2031{
468 W w_ = (W)w; 2032 W w_ = (W)w;
469 int pri = ABSPRI (w_); 2033 int pri = ABSPRI (w_);
470 2034
471 if (expect_false (w_->pending)) 2035 if (ecb_expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents; 2036 pendings [pri][w_->pending - 1].events |= revents;
473 else 2037 else
474 { 2038 {
475 w_->pending = ++pendingcnt [pri]; 2039 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2040 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
477 pendings [pri][w_->pending - 1].w = w_; 2041 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 2042 pendings [pri][w_->pending - 1].events = revents;
479 } 2043 }
480}
481 2044
482void inline_speed 2045 pendingpri = NUMPRI - 1;
2046}
2047
2048inline_speed void
2049feed_reverse (EV_P_ W w)
2050{
2051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2052 rfeeds [rfeedcnt++] = w;
2053}
2054
2055inline_size void
2056feed_reverse_done (EV_P_ int revents)
2057{
2058 do
2059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2060 while (rfeedcnt);
2061}
2062
2063inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 2064queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 2065{
485 int i; 2066 int i;
486 2067
487 for (i = 0; i < eventcnt; ++i) 2068 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 2069 ev_feed_event (EV_A_ events [i], type);
489} 2070}
490 2071
491/*****************************************************************************/ 2072/*****************************************************************************/
492 2073
493void inline_size 2074inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 2075fd_event_nocheck (EV_P_ int fd, int revents)
508{ 2076{
509 ANFD *anfd = anfds + fd; 2077 ANFD *anfd = anfds + fd;
510 ev_io *w; 2078 ev_io *w;
511 2079
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 2084 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 2085 ev_feed_event (EV_A_ (W)w, ev);
518 } 2086 }
519} 2087}
520 2088
521void 2089/* do not submit kernel events for fds that have reify set */
2090/* because that means they changed while we were polling for new events */
2091inline_speed void
522ev_feed_fd_event (EV_P_ int fd, int revents) 2092fd_event (EV_P_ int fd, int revents)
2093{
2094 ANFD *anfd = anfds + fd;
2095
2096 if (ecb_expect_true (!anfd->reify))
2097 fd_event_nocheck (EV_A_ fd, revents);
2098}
2099
2100void
2101ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
523{ 2102{
524 if (fd >= 0 && fd < anfdmax) 2103 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 2104 fd_event_nocheck (EV_A_ fd, revents);
526} 2105}
527 2106
528void inline_size 2107/* make sure the external fd watch events are in-sync */
2108/* with the kernel/libev internal state */
2109inline_size void
529fd_reify (EV_P) 2110fd_reify (EV_P)
530{ 2111{
531 int i; 2112 int i;
2113
2114#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2115 for (i = 0; i < fdchangecnt; ++i)
2116 {
2117 int fd = fdchanges [i];
2118 ANFD *anfd = anfds + fd;
2119
2120 if (anfd->reify & EV__IOFDSET && anfd->head)
2121 {
2122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2123
2124 if (handle != anfd->handle)
2125 {
2126 unsigned long arg;
2127
2128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2129
2130 /* handle changed, but fd didn't - we need to do it in two steps */
2131 backend_modify (EV_A_ fd, anfd->events, 0);
2132 anfd->events = 0;
2133 anfd->handle = handle;
2134 }
2135 }
2136 }
2137#endif
532 2138
533 for (i = 0; i < fdchangecnt; ++i) 2139 for (i = 0; i < fdchangecnt; ++i)
534 { 2140 {
535 int fd = fdchanges [i]; 2141 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 2142 ANFD *anfd = anfds + fd;
537 ev_io *w; 2143 ev_io *w;
538 2144
539 unsigned char events = 0; 2145 unsigned char o_events = anfd->events;
2146 unsigned char o_reify = anfd->reify;
540 2147
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2148 anfd->reify = 0;
542 events |= (unsigned char)w->events;
543 2149
544#if EV_SELECT_IS_WINSOCKET 2150 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 2151 {
547 unsigned long argp; 2152 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 2153
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2155 anfd->events |= (unsigned char)w->events;
2156
2157 if (o_events != anfd->events)
2158 o_reify = EV__IOFDSET; /* actually |= */
550 } 2159 }
551#endif
552 2160
553 { 2161 if (o_reify & EV__IOFDSET)
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
557 anfd->reify = 0;
558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 2162 backend_modify (EV_A_ fd, o_events, anfd->events);
562 }
563 } 2163 }
564 2164
565 fdchangecnt = 0; 2165 fdchangecnt = 0;
566} 2166}
567 2167
2168/* something about the given fd changed */
568void inline_size 2169inline_size
2170void
569fd_change (EV_P_ int fd, int flags) 2171fd_change (EV_P_ int fd, int flags)
570{ 2172{
571 unsigned char reify = anfds [fd].reify; 2173 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 2174 anfds [fd].reify |= flags;
573 2175
574 if (expect_true (!reify)) 2176 if (ecb_expect_true (!reify))
575 { 2177 {
576 ++fdchangecnt; 2178 ++fdchangecnt;
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2179 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
578 fdchanges [fdchangecnt - 1] = fd; 2180 fdchanges [fdchangecnt - 1] = fd;
579 } 2181 }
580} 2182}
581 2183
582void inline_speed 2184/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2185inline_speed ecb_cold void
583fd_kill (EV_P_ int fd) 2186fd_kill (EV_P_ int fd)
584{ 2187{
585 ev_io *w; 2188 ev_io *w;
586 2189
587 while ((w = (ev_io *)anfds [fd].head)) 2190 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 2192 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2193 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 2194 }
592} 2195}
593 2196
594int inline_size 2197/* check whether the given fd is actually valid, for error recovery */
2198inline_size ecb_cold int
595fd_valid (int fd) 2199fd_valid (int fd)
596{ 2200{
597#ifdef _WIN32 2201#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 2202 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
599#else 2203#else
600 return fcntl (fd, F_GETFD) != -1; 2204 return fcntl (fd, F_GETFD) != -1;
601#endif 2205#endif
602} 2206}
603 2207
604/* called on EBADF to verify fds */ 2208/* called on EBADF to verify fds */
605static void noinline 2209ecb_noinline ecb_cold
2210static void
606fd_ebadf (EV_P) 2211fd_ebadf (EV_P)
607{ 2212{
608 int fd; 2213 int fd;
609 2214
610 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 2216 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 2217 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 2218 fd_kill (EV_A_ fd);
614} 2219}
615 2220
616/* called on ENOMEM in select/poll to kill some fds and retry */ 2221/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 2222ecb_noinline ecb_cold
2223static void
618fd_enomem (EV_P) 2224fd_enomem (EV_P)
619{ 2225{
620 int fd; 2226 int fd;
621 2227
622 for (fd = anfdmax; fd--; ) 2228 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 2229 if (anfds [fd].events)
624 { 2230 {
625 fd_kill (EV_A_ fd); 2231 fd_kill (EV_A_ fd);
626 return; 2232 break;
627 } 2233 }
628} 2234}
629 2235
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 2236/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 2237ecb_noinline
2238static void
632fd_rearm_all (EV_P) 2239fd_rearm_all (EV_P)
633{ 2240{
634 int fd; 2241 int fd;
635 2242
636 for (fd = 0; fd < anfdmax; ++fd) 2243 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 2244 if (anfds [fd].events)
638 { 2245 {
639 anfds [fd].events = 0; 2246 anfds [fd].events = 0;
2247 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2248 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 2249 }
642} 2250}
643 2251
2252/* used to prepare libev internal fd's */
2253/* this is not fork-safe */
2254inline_speed void
2255fd_intern (int fd)
2256{
2257#ifdef _WIN32
2258 unsigned long arg = 1;
2259 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2260#else
2261 fcntl (fd, F_SETFD, FD_CLOEXEC);
2262 fcntl (fd, F_SETFL, O_NONBLOCK);
2263#endif
2264}
2265
644/*****************************************************************************/ 2266/*****************************************************************************/
645 2267
646void inline_speed 2268/*
647upheap (WT *heap, int k) 2269 * the heap functions want a real array index. array index 0 is guaranteed to not
648{ 2270 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
649 WT w = heap [k]; 2271 * the branching factor of the d-tree.
2272 */
650 2273
651 while (k) 2274/*
652 { 2275 * at the moment we allow libev the luxury of two heaps,
653 int p = (k - 1) >> 1; 2276 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2277 * which is more cache-efficient.
2278 * the difference is about 5% with 50000+ watchers.
2279 */
2280#if EV_USE_4HEAP
654 2281
655 if (heap [p]->at <= w->at) 2282#define DHEAP 4
2283#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2284#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2285#define UPHEAP_DONE(p,k) ((p) == (k))
2286
2287/* away from the root */
2288inline_speed void
2289downheap (ANHE *heap, int N, int k)
2290{
2291 ANHE he = heap [k];
2292 ANHE *E = heap + N + HEAP0;
2293
2294 for (;;)
2295 {
2296 ev_tstamp minat;
2297 ANHE *minpos;
2298 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2299
2300 /* find minimum child */
2301 if (ecb_expect_true (pos + DHEAP - 1 < E))
2302 {
2303 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2304 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2305 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2307 }
2308 else if (pos < E)
2309 {
2310 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2311 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2312 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2313 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2314 }
2315 else
656 break; 2316 break;
657 2317
2318 if (ANHE_at (he) <= minat)
2319 break;
2320
2321 heap [k] = *minpos;
2322 ev_active (ANHE_w (*minpos)) = k;
2323
2324 k = minpos - heap;
2325 }
2326
2327 heap [k] = he;
2328 ev_active (ANHE_w (he)) = k;
2329}
2330
2331#else /* 4HEAP */
2332
2333#define HEAP0 1
2334#define HPARENT(k) ((k) >> 1)
2335#define UPHEAP_DONE(p,k) (!(p))
2336
2337/* away from the root */
2338inline_speed void
2339downheap (ANHE *heap, int N, int k)
2340{
2341 ANHE he = heap [k];
2342
2343 for (;;)
2344 {
2345 int c = k << 1;
2346
2347 if (c >= N + HEAP0)
2348 break;
2349
2350 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2351 ? 1 : 0;
2352
2353 if (ANHE_at (he) <= ANHE_at (heap [c]))
2354 break;
2355
2356 heap [k] = heap [c];
2357 ev_active (ANHE_w (heap [k])) = k;
2358
2359 k = c;
2360 }
2361
2362 heap [k] = he;
2363 ev_active (ANHE_w (he)) = k;
2364}
2365#endif
2366
2367/* towards the root */
2368inline_speed void
2369upheap (ANHE *heap, int k)
2370{
2371 ANHE he = heap [k];
2372
2373 for (;;)
2374 {
2375 int p = HPARENT (k);
2376
2377 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2378 break;
2379
658 heap [k] = heap [p]; 2380 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 2381 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 2382 k = p;
661 } 2383 }
662 2384
663 heap [k] = w; 2385 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 2386 ev_active (ANHE_w (he)) = k;
665} 2387}
666 2388
667void inline_speed 2389/* move an element suitably so it is in a correct place */
668downheap (WT *heap, int N, int k) 2390inline_size void
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k) 2391adjustheap (ANHE *heap, int N, int k)
697{ 2392{
2393 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
698 upheap (heap, k); 2394 upheap (heap, k);
2395 else
699 downheap (heap, N, k); 2396 downheap (heap, N, k);
2397}
2398
2399/* rebuild the heap: this function is used only once and executed rarely */
2400inline_size void
2401reheap (ANHE *heap, int N)
2402{
2403 int i;
2404
2405 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2406 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2407 for (i = 0; i < N; ++i)
2408 upheap (heap, i + HEAP0);
700} 2409}
701 2410
702/*****************************************************************************/ 2411/*****************************************************************************/
703 2412
2413/* associate signal watchers to a signal signal */
704typedef struct 2414typedef struct
705{ 2415{
2416 EV_ATOMIC_T pending;
2417#if EV_MULTIPLICITY
2418 EV_P;
2419#endif
706 WL head; 2420 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG; 2421} ANSIG;
709 2422
710static ANSIG *signals; 2423static ANSIG signals [EV_NSIG - 1];
711static int signalmax;
712 2424
713static int sigpipe [2]; 2425/*****************************************************************************/
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 2426
717void inline_size 2427#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724 2428
725 ++base; 2429ecb_noinline ecb_cold
726 }
727}
728
729static void 2430static void
730sighandler (int signum) 2431evpipe_init (EV_P)
731{ 2432{
732#if _WIN32 2433 if (!ev_is_active (&pipe_w))
733 signal (signum, sighandler); 2434 {
2435 int fds [2];
2436
2437# if EV_USE_EVENTFD
2438 fds [0] = -1;
2439 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2440 if (fds [1] < 0 && errno == EINVAL)
2441 fds [1] = eventfd (0, 0);
2442
2443 if (fds [1] < 0)
734#endif 2444# endif
2445 {
2446 while (pipe (fds))
2447 ev_syserr ("(libev) error creating signal/async pipe");
735 2448
736 signals [signum - 1].gotsig = 1; 2449 fd_intern (fds [0]);
2450 }
737 2451
738 if (!gotsig) 2452 evpipe [0] = fds [0];
2453
2454 if (evpipe [1] < 0)
2455 evpipe [1] = fds [1]; /* first call, set write fd */
2456 else
2457 {
2458 /* on subsequent calls, do not change evpipe [1] */
2459 /* so that evpipe_write can always rely on its value. */
2460 /* this branch does not do anything sensible on windows, */
2461 /* so must not be executed on windows */
2462
2463 dup2 (fds [1], evpipe [1]);
2464 close (fds [1]);
2465 }
2466
2467 fd_intern (evpipe [1]);
2468
2469 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2470 ev_io_start (EV_A_ &pipe_w);
2471 ev_unref (EV_A); /* watcher should not keep loop alive */
739 { 2472 }
2473}
2474
2475inline_speed void
2476evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2477{
2478 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2479
2480 if (ecb_expect_true (*flag))
2481 return;
2482
2483 *flag = 1;
2484 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2485
2486 pipe_write_skipped = 1;
2487
2488 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2489
2490 if (pipe_write_wanted)
2491 {
740 int old_errno = errno; 2492 int old_errno;
741 gotsig = 1; 2493
742 write (sigpipe [1], &signum, 1); 2494 pipe_write_skipped = 0;
2495 ECB_MEMORY_FENCE_RELEASE;
2496
2497 old_errno = errno; /* save errno because write will clobber it */
2498
2499#if EV_USE_EVENTFD
2500 if (evpipe [0] < 0)
2501 {
2502 uint64_t counter = 1;
2503 write (evpipe [1], &counter, sizeof (uint64_t));
2504 }
2505 else
2506#endif
2507 {
2508#ifdef _WIN32
2509 WSABUF buf;
2510 DWORD sent;
2511 buf.buf = (char *)&buf;
2512 buf.len = 1;
2513 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2514#else
2515 write (evpipe [1], &(evpipe [1]), 1);
2516#endif
2517 }
2518
743 errno = old_errno; 2519 errno = old_errno;
744 } 2520 }
745} 2521}
746 2522
747void noinline 2523/* called whenever the libev signal pipe */
2524/* got some events (signal, async) */
2525static void
2526pipecb (EV_P_ ev_io *iow, int revents)
2527{
2528 int i;
2529
2530 if (revents & EV_READ)
2531 {
2532#if EV_USE_EVENTFD
2533 if (evpipe [0] < 0)
2534 {
2535 uint64_t counter;
2536 read (evpipe [1], &counter, sizeof (uint64_t));
2537 }
2538 else
2539#endif
2540 {
2541 char dummy[4];
2542#ifdef _WIN32
2543 WSABUF buf;
2544 DWORD recvd;
2545 DWORD flags = 0;
2546 buf.buf = dummy;
2547 buf.len = sizeof (dummy);
2548 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2549#else
2550 read (evpipe [0], &dummy, sizeof (dummy));
2551#endif
2552 }
2553 }
2554
2555 pipe_write_skipped = 0;
2556
2557 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2558
2559#if EV_SIGNAL_ENABLE
2560 if (sig_pending)
2561 {
2562 sig_pending = 0;
2563
2564 ECB_MEMORY_FENCE;
2565
2566 for (i = EV_NSIG - 1; i--; )
2567 if (ecb_expect_false (signals [i].pending))
2568 ev_feed_signal_event (EV_A_ i + 1);
2569 }
2570#endif
2571
2572#if EV_ASYNC_ENABLE
2573 if (async_pending)
2574 {
2575 async_pending = 0;
2576
2577 ECB_MEMORY_FENCE;
2578
2579 for (i = asynccnt; i--; )
2580 if (asyncs [i]->sent)
2581 {
2582 asyncs [i]->sent = 0;
2583 ECB_MEMORY_FENCE_RELEASE;
2584 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2585 }
2586 }
2587#endif
2588}
2589
2590/*****************************************************************************/
2591
2592void
2593ev_feed_signal (int signum) EV_NOEXCEPT
2594{
2595#if EV_MULTIPLICITY
2596 EV_P;
2597 ECB_MEMORY_FENCE_ACQUIRE;
2598 EV_A = signals [signum - 1].loop;
2599
2600 if (!EV_A)
2601 return;
2602#endif
2603
2604 signals [signum - 1].pending = 1;
2605 evpipe_write (EV_A_ &sig_pending);
2606}
2607
2608static void
2609ev_sighandler (int signum)
2610{
2611#ifdef _WIN32
2612 signal (signum, ev_sighandler);
2613#endif
2614
2615 ev_feed_signal (signum);
2616}
2617
2618ecb_noinline
2619void
748ev_feed_signal_event (EV_P_ int signum) 2620ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
749{ 2621{
750 WL w; 2622 WL w;
751 2623
2624 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2625 return;
2626
2627 --signum;
2628
752#if EV_MULTIPLICITY 2629#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2630 /* it is permissible to try to feed a signal to the wrong loop */
754#endif 2631 /* or, likely more useful, feeding a signal nobody is waiting for */
755 2632
756 --signum; 2633 if (ecb_expect_false (signals [signum].loop != EV_A))
757
758 if (signum < 0 || signum >= signalmax)
759 return; 2634 return;
2635#endif
760 2636
761 signals [signum].gotsig = 0; 2637 signals [signum].pending = 0;
2638 ECB_MEMORY_FENCE_RELEASE;
762 2639
763 for (w = signals [signum].head; w; w = w->next) 2640 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2641 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765} 2642}
766 2643
2644#if EV_USE_SIGNALFD
767static void 2645static void
768sigcb (EV_P_ ev_io *iow, int revents) 2646sigfdcb (EV_P_ ev_io *iow, int revents)
769{ 2647{
770 int signum; 2648 struct signalfd_siginfo si[2], *sip; /* these structs are big */
771 2649
772 read (sigpipe [0], &revents, 1); 2650 for (;;)
773 gotsig = 0; 2651 {
2652 ssize_t res = read (sigfd, si, sizeof (si));
774 2653
775 for (signum = signalmax; signum--; ) 2654 /* not ISO-C, as res might be -1, but works with SuS */
776 if (signals [signum].gotsig) 2655 for (sip = si; (char *)sip < (char *)si + res; ++sip)
777 ev_feed_signal_event (EV_A_ signum + 1); 2656 ev_feed_signal_event (EV_A_ sip->ssi_signo);
778}
779 2657
780void inline_speed 2658 if (res < (ssize_t)sizeof (si))
781fd_intern (int fd) 2659 break;
782{ 2660 }
783#ifdef _WIN32
784 int arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif
790} 2661}
2662#endif
791 2663
792static void noinline 2664#endif
793siginit (EV_P)
794{
795 fd_intern (sigpipe [0]);
796 fd_intern (sigpipe [1]);
797
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */
801}
802 2665
803/*****************************************************************************/ 2666/*****************************************************************************/
804 2667
2668#if EV_CHILD_ENABLE
805static WL childs [EV_PID_HASHSIZE]; 2669static WL childs [EV_PID_HASHSIZE];
806 2670
807#ifndef _WIN32
808
809static ev_signal childev; 2671static ev_signal childev;
810 2672
811void inline_speed 2673#ifndef WIFCONTINUED
2674# define WIFCONTINUED(status) 0
2675#endif
2676
2677/* handle a single child status event */
2678inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2679child_reap (EV_P_ int chain, int pid, int status)
813{ 2680{
814 ev_child *w; 2681 ev_child *w;
2682 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 2683
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2684 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2685 {
817 if (w->pid == pid || !w->pid) 2686 if ((w->pid == pid || !w->pid)
2687 && (!traced || (w->flags & 1)))
818 { 2688 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2689 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 2690 w->rpid = pid;
821 w->rstatus = status; 2691 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 2693 }
2694 }
824} 2695}
825 2696
826#ifndef WCONTINUED 2697#ifndef WCONTINUED
827# define WCONTINUED 0 2698# define WCONTINUED 0
828#endif 2699#endif
829 2700
2701/* called on sigchld etc., calls waitpid */
830static void 2702static void
831childcb (EV_P_ ev_signal *sw, int revents) 2703childcb (EV_P_ ev_signal *sw, int revents)
832{ 2704{
833 int pid, status; 2705 int pid, status;
834 2706
837 if (!WCONTINUED 2709 if (!WCONTINUED
838 || errno != EINVAL 2710 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2711 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 2712 return;
841 2713
842 /* make sure we are called again until all childs have been reaped */ 2714 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 2715 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2716 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 2717
846 child_reap (EV_A_ sw, pid, pid, status); 2718 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 2719 if ((EV_PID_HASHSIZE) > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2720 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 2721}
850 2722
851#endif 2723#endif
852 2724
853/*****************************************************************************/ 2725/*****************************************************************************/
854 2726
2727#if EV_USE_IOCP
2728# include "ev_iocp.c"
2729#endif
855#if EV_USE_PORT 2730#if EV_USE_PORT
856# include "ev_port.c" 2731# include "ev_port.c"
857#endif 2732#endif
858#if EV_USE_KQUEUE 2733#if EV_USE_KQUEUE
859# include "ev_kqueue.c" 2734# include "ev_kqueue.c"
860#endif 2735#endif
861#if EV_USE_EPOLL 2736#if EV_USE_EPOLL
862# include "ev_epoll.c" 2737# include "ev_epoll.c"
863#endif 2738#endif
2739#if EV_USE_LINUXAIO
2740# include "ev_linuxaio.c"
2741#endif
864#if EV_USE_POLL 2742#if EV_USE_POLL
865# include "ev_poll.c" 2743# include "ev_poll.c"
866#endif 2744#endif
867#if EV_USE_SELECT 2745#if EV_USE_SELECT
868# include "ev_select.c" 2746# include "ev_select.c"
869#endif 2747#endif
870 2748
871int 2749ecb_cold int
872ev_version_major (void) 2750ev_version_major (void) EV_NOEXCEPT
873{ 2751{
874 return EV_VERSION_MAJOR; 2752 return EV_VERSION_MAJOR;
875} 2753}
876 2754
877int 2755ecb_cold int
878ev_version_minor (void) 2756ev_version_minor (void) EV_NOEXCEPT
879{ 2757{
880 return EV_VERSION_MINOR; 2758 return EV_VERSION_MINOR;
881} 2759}
882 2760
883/* return true if we are running with elevated privileges and should ignore env variables */ 2761/* return true if we are running with elevated privileges and should ignore env variables */
884int inline_size 2762inline_size ecb_cold int
885enable_secure (void) 2763enable_secure (void)
886{ 2764{
887#ifdef _WIN32 2765#ifdef _WIN32
888 return 0; 2766 return 0;
889#else 2767#else
890 return getuid () != geteuid () 2768 return getuid () != geteuid ()
891 || getgid () != getegid (); 2769 || getgid () != getegid ();
892#endif 2770#endif
893} 2771}
894 2772
2773ecb_cold
895unsigned int 2774unsigned int
896ev_supported_backends (void) 2775ev_supported_backends (void) EV_NOEXCEPT
897{ 2776{
898 unsigned int flags = 0; 2777 unsigned int flags = 0;
899 2778
900 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2779 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
901 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2780 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
902 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2781 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2782 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
903 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2783 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
904 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2784 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
905 2785
906 return flags; 2786 return flags;
907} 2787}
908 2788
2789ecb_cold
909unsigned int 2790unsigned int
910ev_recommended_backends (void) 2791ev_recommended_backends (void) EV_NOEXCEPT
911{ 2792{
912 unsigned int flags = ev_supported_backends (); 2793 unsigned int flags = ev_supported_backends ();
913 2794
914#ifndef __NetBSD__ 2795#ifndef __NetBSD__
915 /* kqueue is borked on everything but netbsd apparently */ 2796 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 2797 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 2798 flags &= ~EVBACKEND_KQUEUE;
918#endif 2799#endif
919#ifdef __APPLE__ 2800#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 2801 /* only select works correctly on that "unix-certified" platform */
2802 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2803 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2804#endif
2805#ifdef __FreeBSD__
2806 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2807#endif
2808
2809 /* TODO: linuxaio is very experimental */
2810#if !EV_RECOMMEND_LINUXAIO
921 flags &= ~EVBACKEND_POLL; 2811 flags &= ~EVBACKEND_LINUXAIO;
922#endif 2812#endif
923 2813
924 return flags; 2814 return flags;
925} 2815}
926 2816
2817ecb_cold
927unsigned int 2818unsigned int
928ev_embeddable_backends (void) 2819ev_embeddable_backends (void) EV_NOEXCEPT
929{ 2820{
930 return EVBACKEND_EPOLL 2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 2822
932 | EVBACKEND_PORT; 2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2825 flags &= ~EVBACKEND_EPOLL;
2826
2827 return flags;
933} 2828}
934 2829
935unsigned int 2830unsigned int
936ev_backend (EV_P) 2831ev_backend (EV_P) EV_NOEXCEPT
937{ 2832{
938 return backend; 2833 return backend;
939} 2834}
940 2835
2836#if EV_FEATURE_API
941unsigned int 2837unsigned int
942ev_loop_count (EV_P) 2838ev_iteration (EV_P) EV_NOEXCEPT
943{ 2839{
944 return loop_count; 2840 return loop_count;
945} 2841}
946 2842
947static void noinline 2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
2849void
2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2851{
2852 io_blocktime = interval;
2853}
2854
2855void
2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2857{
2858 timeout_blocktime = interval;
2859}
2860
2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888ecb_noinline ecb_cold
2889static void
948loop_init (EV_P_ unsigned int flags) 2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
949{ 2891{
950 if (!backend) 2892 if (!backend)
951 { 2893 {
2894 origflags = flags;
2895
2896#if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904#endif
2905
952#if EV_USE_MONOTONIC 2906#if EV_USE_MONOTONIC
2907 if (!have_monotonic)
953 { 2908 {
954 struct timespec ts; 2909 struct timespec ts;
2910
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 2912 have_monotonic = 1;
957 } 2913 }
958#endif 2914#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 2915
965 /* pid check not overridable via env */ 2916 /* pid check not overridable via env */
966#ifndef _WIN32 2917#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 2918 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 2919 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 2922 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 2923 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 2924 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 2925 flags = atoi (getenv ("LIBEV_FLAGS"));
975 2926
976 if (!(flags & 0x0000ffffUL)) 2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
977 flags |= ev_recommended_backends (); 2955 flags |= ev_recommended_backends ();
978 2956
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY 2957#if EV_USE_IOCP
982 fs_fd = -2; 2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
983#endif 2959#endif
984
985#if EV_USE_PORT 2960#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 2962#endif
988#if EV_USE_KQUEUE 2963#if EV_USE_KQUEUE
989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
990#endif 2968#endif
991#if EV_USE_EPOLL 2969#if EV_USE_EPOLL
992 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
993#endif 2971#endif
994#if EV_USE_POLL 2972#if EV_USE_POLL
995 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
996#endif 2974#endif
997#if EV_USE_SELECT 2975#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
999#endif 2977#endif
1000 2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1001 ev_init (&sigev, sigcb); 2982 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
1003 } 2985 }
1004} 2986}
1005 2987
1006static void noinline 2988/* free up a loop structure */
2989ecb_cold
2990void
1007loop_destroy (EV_P) 2991ev_loop_destroy (EV_P)
1008{ 2992{
1009 int i; 2993 int i;
2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (ecb_expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
3018 if (ev_is_active (&pipe_w))
3019 {
3020 /*ev_ref (EV_A);*/
3021 /*ev_io_stop (EV_A_ &pipe_w);*/
3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
3027#if EV_USE_SIGNALFD
3028 if (ev_is_active (&sigfd_w))
3029 close (sigfd);
3030#endif
1010 3031
1011#if EV_USE_INOTIFY 3032#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 3033 if (fs_fd >= 0)
1013 close (fs_fd); 3034 close (fs_fd);
1014#endif 3035#endif
1015 3036
1016 if (backend_fd >= 0) 3037 if (backend_fd >= 0)
1017 close (backend_fd); 3038 close (backend_fd);
1018 3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
1019#if EV_USE_PORT 3043#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1021#endif 3045#endif
1022#if EV_USE_KQUEUE 3046#if EV_USE_KQUEUE
1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1024#endif 3051#endif
1025#if EV_USE_EPOLL 3052#if EV_USE_EPOLL
1026 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1027#endif 3054#endif
1028#if EV_USE_POLL 3055#if EV_USE_POLL
1029 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1030#endif 3057#endif
1031#if EV_USE_SELECT 3058#if EV_USE_SELECT
1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1033#endif 3060#endif
1034 3061
1035 for (i = NUMPRI; i--; ) 3062 for (i = NUMPRI; i--; )
1036 { 3063 {
1037 array_free (pending, [i]); 3064 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE 3065#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 3066 array_free (idle, [i]);
1040#endif 3067#endif
1041 } 3068 }
1042 3069
1043 ev_free (anfds); anfdmax = 0; 3070 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 3071
1045 /* have to use the microsoft-never-gets-it-right macro */ 3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 3074 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 3075 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 3076#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 3077 array_free (periodic, EMPTY);
1050#endif 3078#endif
1051#if EV_FORK_ENABLE 3079#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 3080 array_free (fork, EMPTY);
1053#endif 3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
1054 array_free (prepare, EMPTY); 3085 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 3086 array_free (check, EMPTY);
3087#if EV_ASYNC_ENABLE
3088 array_free (async, EMPTY);
3089#endif
1056 3090
1057 backend = 0; 3091 backend = 0;
1058}
1059 3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
3101}
3102
3103#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 3104inline_size void infy_fork (EV_P);
3105#endif
1061 3106
1062void inline_size 3107inline_size void
1063loop_fork (EV_P) 3108loop_fork (EV_P)
1064{ 3109{
1065#if EV_USE_PORT 3110#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 3112#endif
1068#if EV_USE_KQUEUE 3113#if EV_USE_KQUEUE
1069 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1070#endif 3118#endif
1071#if EV_USE_EPOLL 3119#if EV_USE_EPOLL
1072 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1073#endif 3121#endif
1074#if EV_USE_INOTIFY 3122#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 3123 infy_fork (EV_A);
1076#endif 3124#endif
1077 3125
1078 if (ev_is_active (&sigev)) 3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
1079 { 3128 {
1080 /* default loop */ 3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1081 3130
1082 ev_ref (EV_A); 3131 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 3132 ev_io_stop (EV_A_ &pipe_w);
1084 close (sigpipe [0]);
1085 close (sigpipe [1]);
1086 3133
1087 while (pipe (sigpipe)) 3134 if (evpipe [0] >= 0)
1088 syserr ("(libev) error creating pipe"); 3135 EV_WIN32_CLOSE_FD (evpipe [0]);
1089 3136
1090 siginit (EV_A); 3137 evpipe_init (EV_A);
3138 /* iterate over everything, in case we missed something before */
3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1091 } 3140 }
3141#endif
1092 3142
1093 postfork = 0; 3143 postfork = 0;
1094} 3144}
1095 3145
1096#if EV_MULTIPLICITY 3146#if EV_MULTIPLICITY
3147
3148ecb_cold
1097struct ev_loop * 3149struct ev_loop *
1098ev_loop_new (unsigned int flags) 3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
1099{ 3151{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 3153
1102 memset (loop, 0, sizeof (struct ev_loop)); 3154 memset (EV_A, 0, sizeof (struct ev_loop));
1103
1104 loop_init (EV_A_ flags); 3155 loop_init (EV_A_ flags);
1105 3156
1106 if (ev_backend (EV_A)) 3157 if (ev_backend (EV_A))
1107 return loop; 3158 return EV_A;
1108 3159
3160 ev_free (EV_A);
1109 return 0; 3161 return 0;
1110} 3162}
1111 3163
1112void 3164#endif /* multiplicity */
1113ev_loop_destroy (EV_P)
1114{
1115 loop_destroy (EV_A);
1116 ev_free (loop);
1117}
1118 3165
1119void 3166#if EV_VERIFY
1120ev_loop_fork (EV_P) 3167ecb_noinline ecb_cold
3168static void
3169verify_watcher (EV_P_ W w)
1121{ 3170{
1122 postfork = 1; 3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1123}
1124 3172
3173 if (w->pending)
3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175}
3176
3177ecb_noinline ecb_cold
3178static void
3179verify_heap (EV_P_ ANHE *heap, int N)
3180{
3181 int i;
3182
3183 for (i = HEAP0; i < N + HEAP0; ++i)
3184 {
3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188
3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190 }
3191}
3192
3193ecb_noinline ecb_cold
3194static void
3195array_verify (EV_P_ W *ws, int cnt)
3196{
3197 while (cnt--)
3198 {
3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 verify_watcher (EV_A_ ws [cnt]);
3201 }
3202}
3203#endif
3204
3205#if EV_FEATURE_API
3206void ecb_cold
3207ev_verify (EV_P) EV_NOEXCEPT
3208{
3209#if EV_VERIFY
3210 int i;
3211 WL w, w2;
3212
3213 assert (activecnt >= -1);
3214
3215 assert (fdchangemax >= fdchangecnt);
3216 for (i = 0; i < fdchangecnt; ++i)
3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218
3219 assert (anfdmax >= 0);
3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
3224 for (w = w2 = anfds [i].head; w; w = w->next)
3225 {
3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236 }
3237 }
3238
3239 assert (timermax >= timercnt);
3240 verify_heap (EV_A_ timers, timercnt);
3241
3242#if EV_PERIODIC_ENABLE
3243 assert (periodicmax >= periodiccnt);
3244 verify_heap (EV_A_ periodics, periodiccnt);
3245#endif
3246
3247 for (i = NUMPRI; i--; )
3248 {
3249 assert (pendingmax [i] >= pendingcnt [i]);
3250#if EV_IDLE_ENABLE
3251 assert (idleall >= 0);
3252 assert (idlemax [i] >= idlecnt [i]);
3253 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254#endif
3255 }
3256
3257#if EV_FORK_ENABLE
3258 assert (forkmax >= forkcnt);
3259 array_verify (EV_A_ (W *)forks, forkcnt);
3260#endif
3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
3267#if EV_ASYNC_ENABLE
3268 assert (asyncmax >= asynccnt);
3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
3270#endif
3271
3272#if EV_PREPARE_ENABLE
3273 assert (preparemax >= preparecnt);
3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
3276
3277#if EV_CHECK_ENABLE
3278 assert (checkmax >= checkcnt);
3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
3281
3282# if 0
3283#if EV_CHILD_ENABLE
3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
3287# endif
3288#endif
3289}
1125#endif 3290#endif
1126 3291
1127#if EV_MULTIPLICITY 3292#if EV_MULTIPLICITY
3293ecb_cold
1128struct ev_loop * 3294struct ev_loop *
1129ev_default_loop_init (unsigned int flags)
1130#else 3295#else
1131int 3296int
3297#endif
1132ev_default_loop (unsigned int flags) 3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
1133#endif
1134{ 3299{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 3300 if (!ev_default_loop_ptr)
1140 { 3301 {
1141#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
1143#else 3304#else
1144 ev_default_loop_ptr = 1; 3305 ev_default_loop_ptr = 1;
1145#endif 3306#endif
1146 3307
1147 loop_init (EV_A_ flags); 3308 loop_init (EV_A_ flags);
1148 3309
1149 if (ev_backend (EV_A)) 3310 if (ev_backend (EV_A))
1150 { 3311 {
1151 siginit (EV_A); 3312#if EV_CHILD_ENABLE
1152
1153#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
1158#endif 3317#endif
1163 3322
1164 return ev_default_loop_ptr; 3323 return ev_default_loop_ptr;
1165} 3324}
1166 3325
1167void 3326void
1168ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
1169{ 3328{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif
1173
1174#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev);
1177#endif
1178
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A);
1186}
1187
1188void
1189ev_default_fork (void)
1190{
1191#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif
1194
1195 if (backend)
1196 postfork = 1; 3329 postfork = 1;
1197} 3330}
1198 3331
1199/*****************************************************************************/ 3332/*****************************************************************************/
1200 3333
1201void 3334void
1202ev_invoke (EV_P_ void *w, int revents) 3335ev_invoke (EV_P_ void *w, int revents)
1203{ 3336{
1204 EV_CB_INVOKE ((W)w, revents); 3337 EV_CB_INVOKE ((W)w, revents);
1205} 3338}
1206 3339
1207void inline_speed 3340unsigned int
1208call_pending (EV_P) 3341ev_pending_count (EV_P) EV_NOEXCEPT
1209{ 3342{
1210 int pri; 3343 int pri;
3344 unsigned int count = 0;
1211 3345
1212 for (pri = NUMPRI; pri--; ) 3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350}
3351
3352ecb_noinline
3353void
3354ev_invoke_pending (EV_P)
3355{
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
1213 while (pendingcnt [pri]) 3363 while (pendingcnt [pendingpri])
1214 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1220
1221 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events);
1223 }
1224 }
1225}
1226
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 { 3364 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1240 3366
1241 ((WT)w)->at += w->repeat; 3367 p->w->pending = 0;
1242 if (((WT)w)->at < mn_now) 3368 EV_CB_INVOKE (p->w, p->events);
1243 ((WT)w)->at = mn_now; 3369 EV_FREQUENT_CHECK;
1244
1245 downheap (timers, timercnt, 0);
1246 } 3370 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 { 3371 }
1260 ev_periodic *w = (ev_periodic *)periodics [0]; 3372 while (pendingpri);
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283} 3373}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306 3374
1307#if EV_IDLE_ENABLE 3375#if EV_IDLE_ENABLE
1308void inline_size 3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
1309idle_reify (EV_P) 3379idle_reify (EV_P)
1310{ 3380{
1311 if (expect_false (idleall)) 3381 if (ecb_expect_false (idleall))
1312 { 3382 {
1313 int pri; 3383 int pri;
1314 3384
1315 for (pri = NUMPRI; pri--; ) 3385 for (pri = NUMPRI; pri--; )
1316 { 3386 {
1325 } 3395 }
1326 } 3396 }
1327} 3397}
1328#endif 3398#endif
1329 3399
1330void inline_speed 3400/* make timers pending */
3401inline_size void
3402timers_reify (EV_P)
3403{
3404 EV_FREQUENT_CHECK;
3405
3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3407 {
3408 do
3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
3417 ev_at (w) += w->repeat;
3418 if (ev_at (w) < mn_now)
3419 ev_at (w) = mn_now;
3420
3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3422
3423 ANHE_at_cache (timers [HEAP0]);
3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
3431 }
3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3433
3434 feed_reverse_done (EV_A_ EV_TIMER);
3435 }
3436}
3437
3438#if EV_PERIODIC_ENABLE
3439
3440ecb_noinline
3441static void
3442periodic_recalc (EV_P_ ev_periodic *w)
3443{
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
3449 {
3450 ev_tstamp nat = at + w->interval;
3451
3452 /* when resolution fails us, we use ev_rt_now */
3453 if (ecb_expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
3466inline_size void
3467periodics_reify (EV_P)
3468{
3469 EV_FREQUENT_CHECK;
3470
3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3472 {
3473 do
3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483
3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485
3486 ANHE_at_cache (periodics [HEAP0]);
3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
3500 }
3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3502
3503 feed_reverse_done (EV_A_ EV_PERIODIC);
3504 }
3505}
3506
3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509ecb_noinline ecb_cold
3510static void
3511periodics_reschedule (EV_P)
3512{
3513 int i;
3514
3515 /* adjust periodics after time jump */
3516 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3517 {
3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3519
3520 if (w->reschedule_cb)
3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3522 else if (w->interval)
3523 periodic_recalc (EV_A_ w);
3524
3525 ANHE_at_cache (periodics [i]);
3526 }
3527
3528 reheap (periodics, periodiccnt);
3529}
3530#endif
3531
3532/* adjust all timers by a given offset */
3533ecb_noinline ecb_cold
3534static void
3535timers_reschedule (EV_P_ ev_tstamp adjust)
3536{
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545}
3546
3547/* fetch new monotonic and realtime times from the kernel */
3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 3550time_update (EV_P_ ev_tstamp max_block)
1332{ 3551{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 3552#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 3553 if (ecb_expect_true (have_monotonic))
1337 { 3554 {
3555 int i;
1338 ev_tstamp odiff = rtmn_diff; 3556 ev_tstamp odiff = rtmn_diff;
1339 3557
1340 mn_now = get_clock (); 3558 mn_now = get_clock ();
1341 3559
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1343 /* interpolate in the meantime */ 3561 /* interpolate in the meantime */
1344 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3562 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1345 { 3563 {
1346 ev_rt_now = rtmn_diff + mn_now; 3564 ev_rt_now = rtmn_diff + mn_now;
1347 return; 3565 return;
1348 } 3566 }
1349 3567
1358 * doesn't hurt either as we only do this on time-jumps or 3576 * doesn't hurt either as we only do this on time-jumps or
1359 * in the unlikely event of having been preempted here. 3577 * in the unlikely event of having been preempted here.
1360 */ 3578 */
1361 for (i = 4; --i; ) 3579 for (i = 4; --i; )
1362 { 3580 {
3581 ev_tstamp diff;
1363 rtmn_diff = ev_rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1364 3583
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3584 diff = odiff - rtmn_diff;
3585
3586 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 3587 return; /* all is well */
1367 3588
1368 ev_rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 3590 mn_now = get_clock ();
1370 now_floor = mn_now; 3591 now_floor = mn_now;
1371 } 3592 }
1372 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 3596# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 3597 periodics_reschedule (EV_A);
1375# endif 3598# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 3599 }
1379 else 3600 else
1380#endif 3601#endif
1381 { 3602 {
1382 ev_rt_now = ev_time (); 3603 ev_rt_now = ev_time ();
1383 3604
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3605 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 3609#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1388#endif 3611#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 3612 }
1393 3613
1394 mn_now = ev_rt_now; 3614 mn_now = ev_rt_now;
1395 } 3615 }
1396} 3616}
1397 3617
1398void 3618int
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1414{ 3620{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3621#if EV_FEATURE_API
1416 ? EVUNLOOP_ONE 3622 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 3623#endif
1418 3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
3627 loop_done = EVBREAK_CANCEL;
3628
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 3630
1421 do 3631 do
1422 { 3632 {
3633#if EV_VERIFY >= 2
3634 ev_verify (EV_A);
3635#endif
3636
1423#ifndef _WIN32 3637#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 3638 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 3639 if (ecb_expect_false (getpid () != curpid))
1426 { 3640 {
1427 curpid = getpid (); 3641 curpid = getpid ();
1428 postfork = 1; 3642 postfork = 1;
1429 } 3643 }
1430#endif 3644#endif
1431 3645
1432#if EV_FORK_ENABLE 3646#if EV_FORK_ENABLE
1433 /* we might have forked, so queue fork handlers */ 3647 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 3648 if (ecb_expect_false (postfork))
1435 if (forkcnt) 3649 if (forkcnt)
1436 { 3650 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 3652 EV_INVOKE_PENDING;
1439 } 3653 }
1440#endif 3654#endif
1441 3655
3656#if EV_PREPARE_ENABLE
1442 /* queue prepare watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 3658 if (ecb_expect_false (preparecnt))
1444 { 3659 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
1447 } 3662 }
3663#endif
1448 3664
1449 if (expect_false (!activecnt)) 3665 if (ecb_expect_false (loop_done))
1450 break; 3666 break;
1451 3667
1452 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 3669 if (ecb_expect_false (postfork))
1454 loop_fork (EV_A); 3670 loop_fork (EV_A);
1455 3671
1456 /* update fd-related kernel structures */ 3672 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 3673 fd_reify (EV_A);
1458 3674
1459 /* calculate blocking time */ 3675 /* calculate blocking time */
1460 { 3676 {
1461 ev_tstamp block; 3677 ev_tstamp waittime = 0.;
3678 ev_tstamp sleeptime = 0.;
1462 3679
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3680 /* remember old timestamp for io_blocktime calculation */
1464 block = 0.; /* do not block at all */ 3681 ev_tstamp prev_mn_now = mn_now;
1465 else 3682
3683 /* update time to cancel out callback processing overhead */
3684 time_update (EV_A_ 1e100);
3685
3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
3691 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1466 { 3692 {
1467 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100);
1469
1470 block = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
1471 3694
1472 if (timercnt) 3695 if (timercnt)
1473 { 3696 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1475 if (block > to) block = to; 3698 if (waittime > to) waittime = to;
1476 } 3699 }
1477 3700
1478#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 3702 if (periodiccnt)
1480 { 3703 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1482 if (block > to) block = to; 3705 if (waittime > to) waittime = to;
1483 } 3706 }
1484#endif 3707#endif
1485 3708
1486 if (expect_false (block < 0.)) block = 0.; 3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
3710 if (ecb_expect_false (waittime < timeout_blocktime))
3711 waittime = timeout_blocktime;
3712
3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (ecb_expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
3717
3718 /* extra check because io_blocktime is commonly 0 */
3719 if (ecb_expect_false (io_blocktime))
3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (ecb_expect_true (sleeptime > 0.))
3727 {
3728 ev_sleep (sleeptime);
3729 waittime -= sleeptime;
3730 }
3731 }
1487 } 3732 }
1488 3733
3734#if EV_FEATURE_API
1489 ++loop_count; 3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
1491 3749
1492 /* update ev_rt_now, do magic */ 3750 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 3751 time_update (EV_A_ waittime + sleeptime);
1494 } 3752 }
1495 3753
1496 /* queue pending timers and reschedule them */ 3754 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 3755 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 3756#if EV_PERIODIC_ENABLE
1502#if EV_IDLE_ENABLE 3760#if EV_IDLE_ENABLE
1503 /* queue idle watchers unless other events are pending */ 3761 /* queue idle watchers unless other events are pending */
1504 idle_reify (EV_A); 3762 idle_reify (EV_A);
1505#endif 3763#endif
1506 3764
3765#if EV_CHECK_ENABLE
1507 /* queue check watchers, to be executed first */ 3766 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 3767 if (ecb_expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3768 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3769#endif
1510 3770
1511 call_pending (EV_A); 3771 EV_INVOKE_PENDING;
1512
1513 } 3772 }
1514 while (expect_true (activecnt && !loop_done)); 3773 while (ecb_expect_true (
3774 activecnt
3775 && !loop_done
3776 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3777 ));
1515 3778
1516 if (loop_done == EVUNLOOP_ONE) 3779 if (loop_done == EVBREAK_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 3780 loop_done = EVBREAK_CANCEL;
1518}
1519 3781
3782#if EV_FEATURE_API
3783 --loop_depth;
3784#endif
3785
3786 return activecnt;
3787}
3788
1520void 3789void
1521ev_unloop (EV_P_ int how) 3790ev_break (EV_P_ int how) EV_NOEXCEPT
1522{ 3791{
1523 loop_done = how; 3792 loop_done = how;
1524} 3793}
1525 3794
3795void
3796ev_ref (EV_P) EV_NOEXCEPT
3797{
3798 ++activecnt;
3799}
3800
3801void
3802ev_unref (EV_P) EV_NOEXCEPT
3803{
3804 --activecnt;
3805}
3806
3807void
3808ev_now_update (EV_P) EV_NOEXCEPT
3809{
3810 time_update (EV_A_ 1e100);
3811}
3812
3813void
3814ev_suspend (EV_P) EV_NOEXCEPT
3815{
3816 ev_now_update (EV_A);
3817}
3818
3819void
3820ev_resume (EV_P) EV_NOEXCEPT
3821{
3822 ev_tstamp mn_prev = mn_now;
3823
3824 ev_now_update (EV_A);
3825 timers_reschedule (EV_A_ mn_now - mn_prev);
3826#if EV_PERIODIC_ENABLE
3827 /* TODO: really do this? */
3828 periodics_reschedule (EV_A);
3829#endif
3830}
3831
1526/*****************************************************************************/ 3832/*****************************************************************************/
3833/* singly-linked list management, used when the expected list length is short */
1527 3834
1528void inline_size 3835inline_size void
1529wlist_add (WL *head, WL elem) 3836wlist_add (WL *head, WL elem)
1530{ 3837{
1531 elem->next = *head; 3838 elem->next = *head;
1532 *head = elem; 3839 *head = elem;
1533} 3840}
1534 3841
1535void inline_size 3842inline_size void
1536wlist_del (WL *head, WL elem) 3843wlist_del (WL *head, WL elem)
1537{ 3844{
1538 while (*head) 3845 while (*head)
1539 { 3846 {
1540 if (*head == elem) 3847 if (ecb_expect_true (*head == elem))
1541 { 3848 {
1542 *head = elem->next; 3849 *head = elem->next;
1543 return; 3850 break;
1544 } 3851 }
1545 3852
1546 head = &(*head)->next; 3853 head = &(*head)->next;
1547 } 3854 }
1548} 3855}
1549 3856
1550void inline_speed 3857/* internal, faster, version of ev_clear_pending */
3858inline_speed void
1551clear_pending (EV_P_ W w) 3859clear_pending (EV_P_ W w)
1552{ 3860{
1553 if (w->pending) 3861 if (w->pending)
1554 { 3862 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3863 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 3864 w->pending = 0;
1557 } 3865 }
1558} 3866}
1559 3867
1560int 3868int
1561ev_clear_pending (EV_P_ void *w) 3869ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1562{ 3870{
1563 W w_ = (W)w; 3871 W w_ = (W)w;
1564 int pending = w_->pending; 3872 int pending = w_->pending;
1565 3873
1566 if (expect_true (pending)) 3874 if (ecb_expect_true (pending))
1567 { 3875 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3876 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3877 p->w = (W)&pending_w;
1569 w_->pending = 0; 3878 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 3879 return p->events;
1572 } 3880 }
1573 else 3881 else
1574 return 0; 3882 return 0;
1575} 3883}
1576 3884
1577void inline_size 3885inline_size void
1578pri_adjust (EV_P_ W w) 3886pri_adjust (EV_P_ W w)
1579{ 3887{
1580 int pri = w->priority; 3888 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3889 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3890 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 3891 ev_set_priority (w, pri);
1584} 3892}
1585 3893
1586void inline_speed 3894inline_speed void
1587ev_start (EV_P_ W w, int active) 3895ev_start (EV_P_ W w, int active)
1588{ 3896{
1589 pri_adjust (EV_A_ w); 3897 pri_adjust (EV_A_ w);
1590 w->active = active; 3898 w->active = active;
1591 ev_ref (EV_A); 3899 ev_ref (EV_A);
1592} 3900}
1593 3901
1594void inline_size 3902inline_size void
1595ev_stop (EV_P_ W w) 3903ev_stop (EV_P_ W w)
1596{ 3904{
1597 ev_unref (EV_A); 3905 ev_unref (EV_A);
1598 w->active = 0; 3906 w->active = 0;
1599} 3907}
1600 3908
1601/*****************************************************************************/ 3909/*****************************************************************************/
1602 3910
1603void noinline 3911ecb_noinline
3912void
1604ev_io_start (EV_P_ ev_io *w) 3913ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1605{ 3914{
1606 int fd = w->fd; 3915 int fd = w->fd;
1607 3916
1608 if (expect_false (ev_is_active (w))) 3917 if (ecb_expect_false (ev_is_active (w)))
1609 return; 3918 return;
1610 3919
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 3920 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3921 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3922
3923#if EV_VERIFY >= 2
3924 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3925#endif
3926 EV_FREQUENT_CHECK;
1612 3927
1613 ev_start (EV_A_ (W)w, 1); 3928 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3929 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1615 wlist_add (&anfds[fd].head, (WL)w); 3930 wlist_add (&anfds[fd].head, (WL)w);
1616 3931
3932 /* common bug, apparently */
3933 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3934
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3935 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 3936 w->events &= ~EV__IOFDSET;
1619}
1620 3937
1621void noinline 3938 EV_FREQUENT_CHECK;
3939}
3940
3941ecb_noinline
3942void
1622ev_io_stop (EV_P_ ev_io *w) 3943ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1623{ 3944{
1624 clear_pending (EV_A_ (W)w); 3945 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 3946 if (ecb_expect_false (!ev_is_active (w)))
1626 return; 3947 return;
1627 3948
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3949 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3950
3951#if EV_VERIFY >= 2
3952 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3953#endif
3954 EV_FREQUENT_CHECK;
1629 3955
1630 wlist_del (&anfds[w->fd].head, (WL)w); 3956 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
1632 3958
1633 fd_change (EV_A_ w->fd, 1); 3959 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1634}
1635 3960
1636void noinline 3961 EV_FREQUENT_CHECK;
3962}
3963
3964ecb_noinline
3965void
1637ev_timer_start (EV_P_ ev_timer *w) 3966ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1638{ 3967{
1639 if (expect_false (ev_is_active (w))) 3968 if (ecb_expect_false (ev_is_active (w)))
1640 return; 3969 return;
1641 3970
1642 ((WT)w)->at += mn_now; 3971 ev_at (w) += mn_now;
1643 3972
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3973 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 3974
3975 EV_FREQUENT_CHECK;
3976
3977 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 3978 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3979 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1648 timers [timercnt - 1] = (WT)w; 3980 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 3981 ANHE_at_cache (timers [ev_active (w)]);
3982 upheap (timers, ev_active (w));
1650 3983
3984 EV_FREQUENT_CHECK;
3985
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3986 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 3987}
1653 3988
1654void noinline 3989ecb_noinline
3990void
1655ev_timer_stop (EV_P_ ev_timer *w) 3991ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1656{ 3992{
1657 clear_pending (EV_A_ (W)w); 3993 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 3994 if (ecb_expect_false (!ev_is_active (w)))
1659 return; 3995 return;
1660 3996
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3997 EV_FREQUENT_CHECK;
1662 3998
1663 { 3999 {
1664 int active = ((W)w)->active; 4000 int active = ev_active (w);
1665 4001
4002 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4003
4004 --timercnt;
4005
1666 if (expect_true (--active < --timercnt)) 4006 if (ecb_expect_true (active < timercnt + HEAP0))
1667 { 4007 {
1668 timers [active] = timers [timercnt]; 4008 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 4009 adjustheap (timers, timercnt, active);
1670 } 4010 }
1671 } 4011 }
1672 4012
1673 ((WT)w)->at -= mn_now; 4013 ev_at (w) -= mn_now;
1674 4014
1675 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
1676}
1677 4016
1678void noinline 4017 EV_FREQUENT_CHECK;
4018}
4019
4020ecb_noinline
4021void
1679ev_timer_again (EV_P_ ev_timer *w) 4022ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1680{ 4023{
4024 EV_FREQUENT_CHECK;
4025
4026 clear_pending (EV_A_ (W)w);
4027
1681 if (ev_is_active (w)) 4028 if (ev_is_active (w))
1682 { 4029 {
1683 if (w->repeat) 4030 if (w->repeat)
1684 { 4031 {
1685 ((WT)w)->at = mn_now + w->repeat; 4032 ev_at (w) = mn_now + w->repeat;
4033 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 4034 adjustheap (timers, timercnt, ev_active (w));
1687 } 4035 }
1688 else 4036 else
1689 ev_timer_stop (EV_A_ w); 4037 ev_timer_stop (EV_A_ w);
1690 } 4038 }
1691 else if (w->repeat) 4039 else if (w->repeat)
1692 { 4040 {
1693 w->at = w->repeat; 4041 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 4042 ev_timer_start (EV_A_ w);
1695 } 4043 }
4044
4045 EV_FREQUENT_CHECK;
4046}
4047
4048ev_tstamp
4049ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4050{
4051 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1696} 4052}
1697 4053
1698#if EV_PERIODIC_ENABLE 4054#if EV_PERIODIC_ENABLE
1699void noinline 4055ecb_noinline
4056void
1700ev_periodic_start (EV_P_ ev_periodic *w) 4057ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1701{ 4058{
1702 if (expect_false (ev_is_active (w))) 4059 if (ecb_expect_false (ev_is_active (w)))
1703 return; 4060 return;
1704 4061
1705 if (w->reschedule_cb) 4062 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4063 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 4064 else if (w->interval)
1708 { 4065 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4066 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 4067 periodic_recalc (EV_A_ w);
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 4068 }
1713 else 4069 else
1714 ((WT)w)->at = w->offset; 4070 ev_at (w) = w->offset;
1715 4071
4072 EV_FREQUENT_CHECK;
4073
4074 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 4075 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 4076 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1718 periodics [periodiccnt - 1] = (WT)w; 4077 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 4078 ANHE_at_cache (periodics [ev_active (w)]);
4079 upheap (periodics, ev_active (w));
1720 4080
4081 EV_FREQUENT_CHECK;
4082
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4083 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 4084}
1723 4085
1724void noinline 4086ecb_noinline
4087void
1725ev_periodic_stop (EV_P_ ev_periodic *w) 4088ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1726{ 4089{
1727 clear_pending (EV_A_ (W)w); 4090 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 4091 if (ecb_expect_false (!ev_is_active (w)))
1729 return; 4092 return;
1730 4093
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 4094 EV_FREQUENT_CHECK;
1732 4095
1733 { 4096 {
1734 int active = ((W)w)->active; 4097 int active = ev_active (w);
1735 4098
4099 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4100
4101 --periodiccnt;
4102
1736 if (expect_true (--active < --periodiccnt)) 4103 if (ecb_expect_true (active < periodiccnt + HEAP0))
1737 { 4104 {
1738 periodics [active] = periodics [periodiccnt]; 4105 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 4106 adjustheap (periodics, periodiccnt, active);
1740 } 4107 }
1741 } 4108 }
1742 4109
1743 ev_stop (EV_A_ (W)w); 4110 ev_stop (EV_A_ (W)w);
1744}
1745 4111
1746void noinline 4112 EV_FREQUENT_CHECK;
4113}
4114
4115ecb_noinline
4116void
1747ev_periodic_again (EV_P_ ev_periodic *w) 4117ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1748{ 4118{
1749 /* TODO: use adjustheap and recalculation */ 4119 /* TODO: use adjustheap and recalculation */
1750 ev_periodic_stop (EV_A_ w); 4120 ev_periodic_stop (EV_A_ w);
1751 ev_periodic_start (EV_A_ w); 4121 ev_periodic_start (EV_A_ w);
1752} 4122}
1754 4124
1755#ifndef SA_RESTART 4125#ifndef SA_RESTART
1756# define SA_RESTART 0 4126# define SA_RESTART 0
1757#endif 4127#endif
1758 4128
1759void noinline 4129#if EV_SIGNAL_ENABLE
4130
4131ecb_noinline
4132void
1760ev_signal_start (EV_P_ ev_signal *w) 4133ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1761{ 4134{
4135 if (ecb_expect_false (ev_is_active (w)))
4136 return;
4137
4138 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4139
1762#if EV_MULTIPLICITY 4140#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4141 assert (("libev: a signal must not be attached to two different loops",
1764#endif 4142 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1765 if (expect_false (ev_is_active (w)))
1766 return;
1767 4143
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4144 signals [w->signum - 1].loop = EV_A;
4145 ECB_MEMORY_FENCE_RELEASE;
4146#endif
1769 4147
4148 EV_FREQUENT_CHECK;
4149
4150#if EV_USE_SIGNALFD
4151 if (sigfd == -2)
1770 { 4152 {
1771#ifndef _WIN32 4153 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1772 sigset_t full, prev; 4154 if (sigfd < 0 && errno == EINVAL)
1773 sigfillset (&full); 4155 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776 4156
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4157 if (sigfd >= 0)
4158 {
4159 fd_intern (sigfd); /* doing it twice will not hurt */
1778 4160
1779#ifndef _WIN32 4161 sigemptyset (&sigfd_set);
1780 sigprocmask (SIG_SETMASK, &prev, 0); 4162
1781#endif 4163 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4164 ev_set_priority (&sigfd_w, EV_MAXPRI);
4165 ev_io_start (EV_A_ &sigfd_w);
4166 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4167 }
1782 } 4168 }
4169
4170 if (sigfd >= 0)
4171 {
4172 /* TODO: check .head */
4173 sigaddset (&sigfd_set, w->signum);
4174 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4175
4176 signalfd (sigfd, &sigfd_set, 0);
4177 }
4178#endif
1783 4179
1784 ev_start (EV_A_ (W)w, 1); 4180 ev_start (EV_A_ (W)w, 1);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 4181 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 4182
1787 if (!((WL)w)->next) 4183 if (!((WL)w)->next)
4184# if EV_USE_SIGNALFD
4185 if (sigfd < 0) /*TODO*/
4186# endif
1788 { 4187 {
1789#if _WIN32 4188# ifdef _WIN32
4189 evpipe_init (EV_A);
4190
1790 signal (w->signum, sighandler); 4191 signal (w->signum, ev_sighandler);
1791#else 4192# else
1792 struct sigaction sa; 4193 struct sigaction sa;
4194
4195 evpipe_init (EV_A);
4196
1793 sa.sa_handler = sighandler; 4197 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 4198 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4199 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 4200 sigaction (w->signum, &sa, 0);
4201
4202 if (origflags & EVFLAG_NOSIGMASK)
4203 {
4204 sigemptyset (&sa.sa_mask);
4205 sigaddset (&sa.sa_mask, w->signum);
4206 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4207 }
1797#endif 4208#endif
1798 } 4209 }
1799}
1800 4210
1801void noinline 4211 EV_FREQUENT_CHECK;
4212}
4213
4214ecb_noinline
4215void
1802ev_signal_stop (EV_P_ ev_signal *w) 4216ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1803{ 4217{
1804 clear_pending (EV_A_ (W)w); 4218 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 4219 if (ecb_expect_false (!ev_is_active (w)))
1806 return; 4220 return;
4221
4222 EV_FREQUENT_CHECK;
1807 4223
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 4224 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 4225 ev_stop (EV_A_ (W)w);
1810 4226
1811 if (!signals [w->signum - 1].head) 4227 if (!signals [w->signum - 1].head)
1812 signal (w->signum, SIG_DFL); 4228 {
1813}
1814
1815void
1816ev_child_start (EV_P_ ev_child *w)
1817{
1818#if EV_MULTIPLICITY 4229#if EV_MULTIPLICITY
4230 signals [w->signum - 1].loop = 0; /* unattach from signal */
4231#endif
4232#if EV_USE_SIGNALFD
4233 if (sigfd >= 0)
4234 {
4235 sigset_t ss;
4236
4237 sigemptyset (&ss);
4238 sigaddset (&ss, w->signum);
4239 sigdelset (&sigfd_set, w->signum);
4240
4241 signalfd (sigfd, &sigfd_set, 0);
4242 sigprocmask (SIG_UNBLOCK, &ss, 0);
4243 }
4244 else
4245#endif
4246 signal (w->signum, SIG_DFL);
4247 }
4248
4249 EV_FREQUENT_CHECK;
4250}
4251
4252#endif
4253
4254#if EV_CHILD_ENABLE
4255
4256void
4257ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4258{
4259#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4260 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 4261#endif
1821 if (expect_false (ev_is_active (w))) 4262 if (ecb_expect_false (ev_is_active (w)))
1822 return; 4263 return;
1823 4264
4265 EV_FREQUENT_CHECK;
4266
1824 ev_start (EV_A_ (W)w, 1); 4267 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4268 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1826}
1827 4269
4270 EV_FREQUENT_CHECK;
4271}
4272
1828void 4273void
1829ev_child_stop (EV_P_ ev_child *w) 4274ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1830{ 4275{
1831 clear_pending (EV_A_ (W)w); 4276 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 4277 if (ecb_expect_false (!ev_is_active (w)))
1833 return; 4278 return;
1834 4279
4280 EV_FREQUENT_CHECK;
4281
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4282 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 4283 ev_stop (EV_A_ (W)w);
4284
4285 EV_FREQUENT_CHECK;
1837} 4286}
4287
4288#endif
1838 4289
1839#if EV_STAT_ENABLE 4290#if EV_STAT_ENABLE
1840 4291
1841# ifdef _WIN32 4292# ifdef _WIN32
1842# undef lstat 4293# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 4294# define lstat(a,b) _stati64 (a,b)
1844# endif 4295# endif
1845 4296
1846#define DEF_STAT_INTERVAL 5.0074891 4297#define DEF_STAT_INTERVAL 5.0074891
4298#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 4299#define MIN_STAT_INTERVAL 0.1074891
1848 4300
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4301ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 4302
1851#if EV_USE_INOTIFY 4303#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192
1853 4304
1854static void noinline 4305/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4306# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4307
4308ecb_noinline
4309static void
1855infy_add (EV_P_ ev_stat *w) 4310infy_add (EV_P_ ev_stat *w)
1856{ 4311{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4312 w->wd = inotify_add_watch (fs_fd, w->path,
4313 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4314 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4315 | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 4316
1859 if (w->wd < 0) 4317 if (w->wd >= 0)
4318 {
4319 struct statfs sfs;
4320
4321 /* now local changes will be tracked by inotify, but remote changes won't */
4322 /* unless the filesystem is known to be local, we therefore still poll */
4323 /* also do poll on <2.6.25, but with normal frequency */
4324
4325 if (!fs_2625)
4326 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4327 else if (!statfs (w->path, &sfs)
4328 && (sfs.f_type == 0x1373 /* devfs */
4329 || sfs.f_type == 0x4006 /* fat */
4330 || sfs.f_type == 0x4d44 /* msdos */
4331 || sfs.f_type == 0xEF53 /* ext2/3 */
4332 || sfs.f_type == 0x72b6 /* jffs2 */
4333 || sfs.f_type == 0x858458f6 /* ramfs */
4334 || sfs.f_type == 0x5346544e /* ntfs */
4335 || sfs.f_type == 0x3153464a /* jfs */
4336 || sfs.f_type == 0x9123683e /* btrfs */
4337 || sfs.f_type == 0x52654973 /* reiser3 */
4338 || sfs.f_type == 0x01021994 /* tmpfs */
4339 || sfs.f_type == 0x58465342 /* xfs */))
4340 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4341 else
4342 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1860 { 4343 }
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4344 else
4345 {
4346 /* can't use inotify, continue to stat */
4347 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1862 4348
1863 /* monitor some parent directory for speedup hints */ 4349 /* if path is not there, monitor some parent directory for speedup hints */
4350 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4351 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4352 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 4353 {
1866 char path [4096]; 4354 char path [4096];
1867 strcpy (path, w->path); 4355 strcpy (path, w->path);
1868 4356
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4359 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4360 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 4361
1874 char *pend = strrchr (path, '/'); 4362 char *pend = strrchr (path, '/');
1875 4363
1876 if (!pend) 4364 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 4365 break;
1878 4366
1879 *pend = 0; 4367 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 4368 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 4369 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4370 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 4371 }
1884 } 4372 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 4373
1888 if (w->wd >= 0) 4374 if (w->wd >= 0)
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4375 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1890}
1891 4376
1892static void noinline 4377 /* now re-arm timer, if required */
4378 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4379 ev_timer_again (EV_A_ &w->timer);
4380 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4381}
4382
4383ecb_noinline
4384static void
1893infy_del (EV_P_ ev_stat *w) 4385infy_del (EV_P_ ev_stat *w)
1894{ 4386{
1895 int slot; 4387 int slot;
1896 int wd = w->wd; 4388 int wd = w->wd;
1897 4389
1898 if (wd < 0) 4390 if (wd < 0)
1899 return; 4391 return;
1900 4392
1901 w->wd = -2; 4393 w->wd = -2;
1902 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4394 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1903 wlist_del (&fs_hash [slot].head, (WL)w); 4395 wlist_del (&fs_hash [slot].head, (WL)w);
1904 4396
1905 /* remove this watcher, if others are watching it, they will rearm */ 4397 /* remove this watcher, if others are watching it, they will rearm */
1906 inotify_rm_watch (fs_fd, wd); 4398 inotify_rm_watch (fs_fd, wd);
1907} 4399}
1908 4400
1909static void noinline 4401ecb_noinline
4402static void
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4403infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 4404{
1912 if (slot < 0) 4405 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 4406 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4407 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 4408 infy_wd (EV_A_ slot, wd, ev);
1916 else 4409 else
1917 { 4410 {
1918 WL w_; 4411 WL w_;
1919 4412
1920 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4413 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1921 { 4414 {
1922 ev_stat *w = (ev_stat *)w_; 4415 ev_stat *w = (ev_stat *)w_;
1923 w_ = w_->next; /* lets us remove this watcher and all before it */ 4416 w_ = w_->next; /* lets us remove this watcher and all before it */
1924 4417
1925 if (w->wd == wd || wd == -1) 4418 if (w->wd == wd || wd == -1)
1926 { 4419 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4420 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 4421 {
4422 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1929 w->wd = -1; 4423 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 4424 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 4425 }
1932 4426
1933 stat_timer_cb (EV_A_ &w->timer, 0); 4427 stat_timer_cb (EV_A_ &w->timer, 0);
1938 4432
1939static void 4433static void
1940infy_cb (EV_P_ ev_io *w, int revents) 4434infy_cb (EV_P_ ev_io *w, int revents)
1941{ 4435{
1942 char buf [EV_INOTIFY_BUFSIZE]; 4436 char buf [EV_INOTIFY_BUFSIZE];
1943 struct inotify_event *ev = (struct inotify_event *)buf;
1944 int ofs; 4437 int ofs;
1945 int len = read (fs_fd, buf, sizeof (buf)); 4438 int len = read (fs_fd, buf, sizeof (buf));
1946 4439
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4440 for (ofs = 0; ofs < len; )
4441 {
4442 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4443 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4444 ofs += sizeof (struct inotify_event) + ev->len;
4445 }
1949} 4446}
1950 4447
1951void inline_size 4448inline_size ecb_cold
4449void
4450ev_check_2625 (EV_P)
4451{
4452 /* kernels < 2.6.25 are borked
4453 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4454 */
4455 if (ev_linux_version () < 0x020619)
4456 return;
4457
4458 fs_2625 = 1;
4459}
4460
4461inline_size int
4462infy_newfd (void)
4463{
4464#if defined IN_CLOEXEC && defined IN_NONBLOCK
4465 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4466 if (fd >= 0)
4467 return fd;
4468#endif
4469 return inotify_init ();
4470}
4471
4472inline_size void
1952infy_init (EV_P) 4473infy_init (EV_P)
1953{ 4474{
1954 if (fs_fd != -2) 4475 if (fs_fd != -2)
1955 return; 4476 return;
1956 4477
4478 fs_fd = -1;
4479
4480 ev_check_2625 (EV_A);
4481
1957 fs_fd = inotify_init (); 4482 fs_fd = infy_newfd ();
1958 4483
1959 if (fs_fd >= 0) 4484 if (fs_fd >= 0)
1960 { 4485 {
4486 fd_intern (fs_fd);
1961 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4487 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1962 ev_set_priority (&fs_w, EV_MAXPRI); 4488 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 4489 ev_io_start (EV_A_ &fs_w);
4490 ev_unref (EV_A);
1964 } 4491 }
1965} 4492}
1966 4493
1967void inline_size 4494inline_size void
1968infy_fork (EV_P) 4495infy_fork (EV_P)
1969{ 4496{
1970 int slot; 4497 int slot;
1971 4498
1972 if (fs_fd < 0) 4499 if (fs_fd < 0)
1973 return; 4500 return;
1974 4501
4502 ev_ref (EV_A);
4503 ev_io_stop (EV_A_ &fs_w);
1975 close (fs_fd); 4504 close (fs_fd);
1976 fs_fd = inotify_init (); 4505 fs_fd = infy_newfd ();
1977 4506
4507 if (fs_fd >= 0)
4508 {
4509 fd_intern (fs_fd);
4510 ev_io_set (&fs_w, fs_fd, EV_READ);
4511 ev_io_start (EV_A_ &fs_w);
4512 ev_unref (EV_A);
4513 }
4514
1978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4515 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1979 { 4516 {
1980 WL w_ = fs_hash [slot].head; 4517 WL w_ = fs_hash [slot].head;
1981 fs_hash [slot].head = 0; 4518 fs_hash [slot].head = 0;
1982 4519
1983 while (w_) 4520 while (w_)
1988 w->wd = -1; 4525 w->wd = -1;
1989 4526
1990 if (fs_fd >= 0) 4527 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 4528 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 4529 else
4530 {
4531 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4532 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1993 ev_timer_start (EV_A_ &w->timer); 4533 ev_timer_again (EV_A_ &w->timer);
4534 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4535 }
1994 } 4536 }
1995
1996 } 4537 }
1997} 4538}
1998 4539
1999#endif 4540#endif
2000 4541
4542#ifdef _WIN32
4543# define EV_LSTAT(p,b) _stati64 (p, b)
4544#else
4545# define EV_LSTAT(p,b) lstat (p, b)
4546#endif
4547
2001void 4548void
2002ev_stat_stat (EV_P_ ev_stat *w) 4549ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2003{ 4550{
2004 if (lstat (w->path, &w->attr) < 0) 4551 if (lstat (w->path, &w->attr) < 0)
2005 w->attr.st_nlink = 0; 4552 w->attr.st_nlink = 0;
2006 else if (!w->attr.st_nlink) 4553 else if (!w->attr.st_nlink)
2007 w->attr.st_nlink = 1; 4554 w->attr.st_nlink = 1;
2008} 4555}
2009 4556
2010static void noinline 4557ecb_noinline
4558static void
2011stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4559stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2012{ 4560{
2013 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4561 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2014 4562
2015 /* we copy this here each the time so that */ 4563 ev_statdata prev = w->attr;
2016 /* prev has the old value when the callback gets invoked */
2017 w->prev = w->attr;
2018 ev_stat_stat (EV_A_ w); 4564 ev_stat_stat (EV_A_ w);
2019 4565
2020 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4566 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2021 if ( 4567 if (
2022 w->prev.st_dev != w->attr.st_dev 4568 prev.st_dev != w->attr.st_dev
2023 || w->prev.st_ino != w->attr.st_ino 4569 || prev.st_ino != w->attr.st_ino
2024 || w->prev.st_mode != w->attr.st_mode 4570 || prev.st_mode != w->attr.st_mode
2025 || w->prev.st_nlink != w->attr.st_nlink 4571 || prev.st_nlink != w->attr.st_nlink
2026 || w->prev.st_uid != w->attr.st_uid 4572 || prev.st_uid != w->attr.st_uid
2027 || w->prev.st_gid != w->attr.st_gid 4573 || prev.st_gid != w->attr.st_gid
2028 || w->prev.st_rdev != w->attr.st_rdev 4574 || prev.st_rdev != w->attr.st_rdev
2029 || w->prev.st_size != w->attr.st_size 4575 || prev.st_size != w->attr.st_size
2030 || w->prev.st_atime != w->attr.st_atime 4576 || prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 4577 || prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 4578 || prev.st_ctime != w->attr.st_ctime
2033 ) { 4579 ) {
4580 /* we only update w->prev on actual differences */
4581 /* in case we test more often than invoke the callback, */
4582 /* to ensure that prev is always different to attr */
4583 w->prev = prev;
4584
2034 #if EV_USE_INOTIFY 4585 #if EV_USE_INOTIFY
4586 if (fs_fd >= 0)
4587 {
2035 infy_del (EV_A_ w); 4588 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 4589 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 4590 ev_stat_stat (EV_A_ w); /* avoid race... */
4591 }
2038 #endif 4592 #endif
2039 4593
2040 ev_feed_event (EV_A_ w, EV_STAT); 4594 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 4595 }
2042} 4596}
2043 4597
2044void 4598void
2045ev_stat_start (EV_P_ ev_stat *w) 4599ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2046{ 4600{
2047 if (expect_false (ev_is_active (w))) 4601 if (ecb_expect_false (ev_is_active (w)))
2048 return; 4602 return;
2049 4603
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 4604 ev_stat_stat (EV_A_ w);
2055 4605
4606 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 4607 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 4608
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4609 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 4610 ev_set_priority (&w->timer, ev_priority (w));
2061 4611
2062#if EV_USE_INOTIFY 4612#if EV_USE_INOTIFY
2063 infy_init (EV_A); 4613 infy_init (EV_A);
2064 4614
2065 if (fs_fd >= 0) 4615 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 4616 infy_add (EV_A_ w);
2067 else 4617 else
2068#endif 4618#endif
4619 {
2069 ev_timer_start (EV_A_ &w->timer); 4620 ev_timer_again (EV_A_ &w->timer);
4621 ev_unref (EV_A);
4622 }
2070 4623
2071 ev_start (EV_A_ (W)w, 1); 4624 ev_start (EV_A_ (W)w, 1);
2072}
2073 4625
4626 EV_FREQUENT_CHECK;
4627}
4628
2074void 4629void
2075ev_stat_stop (EV_P_ ev_stat *w) 4630ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2076{ 4631{
2077 clear_pending (EV_A_ (W)w); 4632 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 4633 if (ecb_expect_false (!ev_is_active (w)))
2079 return; 4634 return;
4635
4636 EV_FREQUENT_CHECK;
2080 4637
2081#if EV_USE_INOTIFY 4638#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 4639 infy_del (EV_A_ w);
2083#endif 4640#endif
4641
4642 if (ev_is_active (&w->timer))
4643 {
4644 ev_ref (EV_A);
2084 ev_timer_stop (EV_A_ &w->timer); 4645 ev_timer_stop (EV_A_ &w->timer);
4646 }
2085 4647
2086 ev_stop (EV_A_ (W)w); 4648 ev_stop (EV_A_ (W)w);
4649
4650 EV_FREQUENT_CHECK;
2087} 4651}
2088#endif 4652#endif
2089 4653
2090#if EV_IDLE_ENABLE 4654#if EV_IDLE_ENABLE
2091void 4655void
2092ev_idle_start (EV_P_ ev_idle *w) 4656ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2093{ 4657{
2094 if (expect_false (ev_is_active (w))) 4658 if (ecb_expect_false (ev_is_active (w)))
2095 return; 4659 return;
2096 4660
2097 pri_adjust (EV_A_ (W)w); 4661 pri_adjust (EV_A_ (W)w);
4662
4663 EV_FREQUENT_CHECK;
2098 4664
2099 { 4665 {
2100 int active = ++idlecnt [ABSPRI (w)]; 4666 int active = ++idlecnt [ABSPRI (w)];
2101 4667
2102 ++idleall; 4668 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 4669 ev_start (EV_A_ (W)w, active);
2104 4670
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4671 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2106 idles [ABSPRI (w)][active - 1] = w; 4672 idles [ABSPRI (w)][active - 1] = w;
2107 } 4673 }
2108}
2109 4674
4675 EV_FREQUENT_CHECK;
4676}
4677
2110void 4678void
2111ev_idle_stop (EV_P_ ev_idle *w) 4679ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2112{ 4680{
2113 clear_pending (EV_A_ (W)w); 4681 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 4682 if (ecb_expect_false (!ev_is_active (w)))
2115 return; 4683 return;
2116 4684
4685 EV_FREQUENT_CHECK;
4686
2117 { 4687 {
2118 int active = ((W)w)->active; 4688 int active = ev_active (w);
2119 4689
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4690 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4691 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 4692
2123 ev_stop (EV_A_ (W)w); 4693 ev_stop (EV_A_ (W)w);
2124 --idleall; 4694 --idleall;
2125 } 4695 }
2126}
2127#endif
2128 4696
4697 EV_FREQUENT_CHECK;
4698}
4699#endif
4700
4701#if EV_PREPARE_ENABLE
2129void 4702void
2130ev_prepare_start (EV_P_ ev_prepare *w) 4703ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2131{ 4704{
2132 if (expect_false (ev_is_active (w))) 4705 if (ecb_expect_false (ev_is_active (w)))
2133 return; 4706 return;
2134 4707
4708 EV_FREQUENT_CHECK;
4709
2135 ev_start (EV_A_ (W)w, ++preparecnt); 4710 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4711 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2137 prepares [preparecnt - 1] = w; 4712 prepares [preparecnt - 1] = w;
2138}
2139 4713
4714 EV_FREQUENT_CHECK;
4715}
4716
2140void 4717void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 4718ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2142{ 4719{
2143 clear_pending (EV_A_ (W)w); 4720 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 4721 if (ecb_expect_false (!ev_is_active (w)))
2145 return; 4722 return;
2146 4723
4724 EV_FREQUENT_CHECK;
4725
2147 { 4726 {
2148 int active = ((W)w)->active; 4727 int active = ev_active (w);
4728
2149 prepares [active - 1] = prepares [--preparecnt]; 4729 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 4730 ev_active (prepares [active - 1]) = active;
2151 } 4731 }
2152 4732
2153 ev_stop (EV_A_ (W)w); 4733 ev_stop (EV_A_ (W)w);
2154}
2155 4734
4735 EV_FREQUENT_CHECK;
4736}
4737#endif
4738
4739#if EV_CHECK_ENABLE
2156void 4740void
2157ev_check_start (EV_P_ ev_check *w) 4741ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2158{ 4742{
2159 if (expect_false (ev_is_active (w))) 4743 if (ecb_expect_false (ev_is_active (w)))
2160 return; 4744 return;
2161 4745
4746 EV_FREQUENT_CHECK;
4747
2162 ev_start (EV_A_ (W)w, ++checkcnt); 4748 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4749 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2164 checks [checkcnt - 1] = w; 4750 checks [checkcnt - 1] = w;
2165}
2166 4751
4752 EV_FREQUENT_CHECK;
4753}
4754
2167void 4755void
2168ev_check_stop (EV_P_ ev_check *w) 4756ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2169{ 4757{
2170 clear_pending (EV_A_ (W)w); 4758 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 4759 if (ecb_expect_false (!ev_is_active (w)))
2172 return; 4760 return;
2173 4761
4762 EV_FREQUENT_CHECK;
4763
2174 { 4764 {
2175 int active = ((W)w)->active; 4765 int active = ev_active (w);
4766
2176 checks [active - 1] = checks [--checkcnt]; 4767 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 4768 ev_active (checks [active - 1]) = active;
2178 } 4769 }
2179 4770
2180 ev_stop (EV_A_ (W)w); 4771 ev_stop (EV_A_ (W)w);
4772
4773 EV_FREQUENT_CHECK;
2181} 4774}
4775#endif
2182 4776
2183#if EV_EMBED_ENABLE 4777#if EV_EMBED_ENABLE
2184void noinline 4778ecb_noinline
4779void
2185ev_embed_sweep (EV_P_ ev_embed *w) 4780ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2186{ 4781{
2187 ev_loop (w->other, EVLOOP_NONBLOCK); 4782 ev_run (w->other, EVRUN_NOWAIT);
2188} 4783}
2189 4784
2190static void 4785static void
2191embed_io_cb (EV_P_ ev_io *io, int revents) 4786embed_io_cb (EV_P_ ev_io *io, int revents)
2192{ 4787{
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4788 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 4789
2195 if (ev_cb (w)) 4790 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4791 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 4792 else
2198 ev_embed_sweep (loop, w); 4793 ev_run (w->other, EVRUN_NOWAIT);
2199} 4794}
2200 4795
2201static void 4796static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4797embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 4798{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4799 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 4800
2206 fd_reify (w->other); 4801 {
2207} 4802 EV_P = w->other;
2208 4803
4804 while (fdchangecnt)
4805 {
4806 fd_reify (EV_A);
4807 ev_run (EV_A_ EVRUN_NOWAIT);
4808 }
4809 }
4810}
4811
4812static void
4813embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4814{
4815 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4816
4817 ev_embed_stop (EV_A_ w);
4818
4819 {
4820 EV_P = w->other;
4821
4822 ev_loop_fork (EV_A);
4823 ev_run (EV_A_ EVRUN_NOWAIT);
4824 }
4825
4826 ev_embed_start (EV_A_ w);
4827}
4828
4829#if 0
4830static void
4831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4832{
4833 ev_idle_stop (EV_A_ idle);
4834}
4835#endif
4836
2209void 4837void
2210ev_embed_start (EV_P_ ev_embed *w) 4838ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2211{ 4839{
2212 if (expect_false (ev_is_active (w))) 4840 if (ecb_expect_false (ev_is_active (w)))
2213 return; 4841 return;
2214 4842
2215 { 4843 {
2216 struct ev_loop *loop = w->other; 4844 EV_P = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4845 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 4847 }
4848
4849 EV_FREQUENT_CHECK;
2220 4850
2221 ev_set_priority (&w->io, ev_priority (w)); 4851 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 4852 ev_io_start (EV_A_ &w->io);
2223 4853
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 4854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 4855 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 4856 ev_prepare_start (EV_A_ &w->prepare);
2227 4857
4858 ev_fork_init (&w->fork, embed_fork_cb);
4859 ev_fork_start (EV_A_ &w->fork);
4860
4861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4862
2228 ev_start (EV_A_ (W)w, 1); 4863 ev_start (EV_A_ (W)w, 1);
2229}
2230 4864
4865 EV_FREQUENT_CHECK;
4866}
4867
2231void 4868void
2232ev_embed_stop (EV_P_ ev_embed *w) 4869ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2233{ 4870{
2234 clear_pending (EV_A_ (W)w); 4871 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 4872 if (ecb_expect_false (!ev_is_active (w)))
2236 return; 4873 return;
2237 4874
4875 EV_FREQUENT_CHECK;
4876
2238 ev_io_stop (EV_A_ &w->io); 4877 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 4878 ev_prepare_stop (EV_A_ &w->prepare);
4879 ev_fork_stop (EV_A_ &w->fork);
2240 4880
2241 ev_stop (EV_A_ (W)w); 4881 ev_stop (EV_A_ (W)w);
4882
4883 EV_FREQUENT_CHECK;
2242} 4884}
2243#endif 4885#endif
2244 4886
2245#if EV_FORK_ENABLE 4887#if EV_FORK_ENABLE
2246void 4888void
2247ev_fork_start (EV_P_ ev_fork *w) 4889ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2248{ 4890{
2249 if (expect_false (ev_is_active (w))) 4891 if (ecb_expect_false (ev_is_active (w)))
2250 return; 4892 return;
2251 4893
4894 EV_FREQUENT_CHECK;
4895
2252 ev_start (EV_A_ (W)w, ++forkcnt); 4896 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4897 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2254 forks [forkcnt - 1] = w; 4898 forks [forkcnt - 1] = w;
2255}
2256 4899
4900 EV_FREQUENT_CHECK;
4901}
4902
2257void 4903void
2258ev_fork_stop (EV_P_ ev_fork *w) 4904ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2259{ 4905{
2260 clear_pending (EV_A_ (W)w); 4906 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 4907 if (ecb_expect_false (!ev_is_active (w)))
2262 return; 4908 return;
2263 4909
4910 EV_FREQUENT_CHECK;
4911
2264 { 4912 {
2265 int active = ((W)w)->active; 4913 int active = ev_active (w);
4914
2266 forks [active - 1] = forks [--forkcnt]; 4915 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 4916 ev_active (forks [active - 1]) = active;
2268 } 4917 }
2269 4918
2270 ev_stop (EV_A_ (W)w); 4919 ev_stop (EV_A_ (W)w);
4920
4921 EV_FREQUENT_CHECK;
4922}
4923#endif
4924
4925#if EV_CLEANUP_ENABLE
4926void
4927ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4928{
4929 if (ecb_expect_false (ev_is_active (w)))
4930 return;
4931
4932 EV_FREQUENT_CHECK;
4933
4934 ev_start (EV_A_ (W)w, ++cleanupcnt);
4935 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4936 cleanups [cleanupcnt - 1] = w;
4937
4938 /* cleanup watchers should never keep a refcount on the loop */
4939 ev_unref (EV_A);
4940 EV_FREQUENT_CHECK;
4941}
4942
4943void
4944ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4945{
4946 clear_pending (EV_A_ (W)w);
4947 if (ecb_expect_false (!ev_is_active (w)))
4948 return;
4949
4950 EV_FREQUENT_CHECK;
4951 ev_ref (EV_A);
4952
4953 {
4954 int active = ev_active (w);
4955
4956 cleanups [active - 1] = cleanups [--cleanupcnt];
4957 ev_active (cleanups [active - 1]) = active;
4958 }
4959
4960 ev_stop (EV_A_ (W)w);
4961
4962 EV_FREQUENT_CHECK;
4963}
4964#endif
4965
4966#if EV_ASYNC_ENABLE
4967void
4968ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4969{
4970 if (ecb_expect_false (ev_is_active (w)))
4971 return;
4972
4973 w->sent = 0;
4974
4975 evpipe_init (EV_A);
4976
4977 EV_FREQUENT_CHECK;
4978
4979 ev_start (EV_A_ (W)w, ++asynccnt);
4980 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4981 asyncs [asynccnt - 1] = w;
4982
4983 EV_FREQUENT_CHECK;
4984}
4985
4986void
4987ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4988{
4989 clear_pending (EV_A_ (W)w);
4990 if (ecb_expect_false (!ev_is_active (w)))
4991 return;
4992
4993 EV_FREQUENT_CHECK;
4994
4995 {
4996 int active = ev_active (w);
4997
4998 asyncs [active - 1] = asyncs [--asynccnt];
4999 ev_active (asyncs [active - 1]) = active;
5000 }
5001
5002 ev_stop (EV_A_ (W)w);
5003
5004 EV_FREQUENT_CHECK;
5005}
5006
5007void
5008ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5009{
5010 w->sent = 1;
5011 evpipe_write (EV_A_ &async_pending);
2271} 5012}
2272#endif 5013#endif
2273 5014
2274/*****************************************************************************/ 5015/*****************************************************************************/
2275 5016
2285once_cb (EV_P_ struct ev_once *once, int revents) 5026once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 5027{
2287 void (*cb)(int revents, void *arg) = once->cb; 5028 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 5029 void *arg = once->arg;
2289 5030
2290 ev_io_stop (EV_A_ &once->io); 5031 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 5032 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 5033 ev_free (once);
2293 5034
2294 cb (revents, arg); 5035 cb (revents, arg);
2295} 5036}
2296 5037
2297static void 5038static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 5039once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 5040{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5041 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5042
5043 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 5044}
2302 5045
2303static void 5046static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 5047once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 5048{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5049 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2307}
2308 5050
5051 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5052}
5053
2309void 5054void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5055ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2311{ 5056{
2312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5057 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2313
2314 if (expect_false (!once))
2315 {
2316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2317 return;
2318 }
2319 5058
2320 once->cb = cb; 5059 once->cb = cb;
2321 once->arg = arg; 5060 once->arg = arg;
2322 5061
2323 ev_init (&once->io, once_cb_io); 5062 ev_init (&once->io, once_cb_io);
2333 ev_timer_set (&once->to, timeout, 0.); 5072 ev_timer_set (&once->to, timeout, 0.);
2334 ev_timer_start (EV_A_ &once->to); 5073 ev_timer_start (EV_A_ &once->to);
2335 } 5074 }
2336} 5075}
2337 5076
5077/*****************************************************************************/
5078
5079#if EV_WALK_ENABLE
5080ecb_cold
5081void
5082ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5083{
5084 int i, j;
5085 ev_watcher_list *wl, *wn;
5086
5087 if (types & (EV_IO | EV_EMBED))
5088 for (i = 0; i < anfdmax; ++i)
5089 for (wl = anfds [i].head; wl; )
5090 {
5091 wn = wl->next;
5092
5093#if EV_EMBED_ENABLE
5094 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5095 {
5096 if (types & EV_EMBED)
5097 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5098 }
5099 else
5100#endif
5101#if EV_USE_INOTIFY
5102 if (ev_cb ((ev_io *)wl) == infy_cb)
5103 ;
5104 else
5105#endif
5106 if ((ev_io *)wl != &pipe_w)
5107 if (types & EV_IO)
5108 cb (EV_A_ EV_IO, wl);
5109
5110 wl = wn;
5111 }
5112
5113 if (types & (EV_TIMER | EV_STAT))
5114 for (i = timercnt + HEAP0; i-- > HEAP0; )
5115#if EV_STAT_ENABLE
5116 /*TODO: timer is not always active*/
5117 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5118 {
5119 if (types & EV_STAT)
5120 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5121 }
5122 else
5123#endif
5124 if (types & EV_TIMER)
5125 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5126
5127#if EV_PERIODIC_ENABLE
5128 if (types & EV_PERIODIC)
5129 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5130 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5131#endif
5132
5133#if EV_IDLE_ENABLE
5134 if (types & EV_IDLE)
5135 for (j = NUMPRI; j--; )
5136 for (i = idlecnt [j]; i--; )
5137 cb (EV_A_ EV_IDLE, idles [j][i]);
5138#endif
5139
5140#if EV_FORK_ENABLE
5141 if (types & EV_FORK)
5142 for (i = forkcnt; i--; )
5143 if (ev_cb (forks [i]) != embed_fork_cb)
5144 cb (EV_A_ EV_FORK, forks [i]);
5145#endif
5146
5147#if EV_ASYNC_ENABLE
5148 if (types & EV_ASYNC)
5149 for (i = asynccnt; i--; )
5150 cb (EV_A_ EV_ASYNC, asyncs [i]);
5151#endif
5152
5153#if EV_PREPARE_ENABLE
5154 if (types & EV_PREPARE)
5155 for (i = preparecnt; i--; )
5156# if EV_EMBED_ENABLE
5157 if (ev_cb (prepares [i]) != embed_prepare_cb)
5158# endif
5159 cb (EV_A_ EV_PREPARE, prepares [i]);
5160#endif
5161
5162#if EV_CHECK_ENABLE
5163 if (types & EV_CHECK)
5164 for (i = checkcnt; i--; )
5165 cb (EV_A_ EV_CHECK, checks [i]);
5166#endif
5167
5168#if EV_SIGNAL_ENABLE
5169 if (types & EV_SIGNAL)
5170 for (i = 0; i < EV_NSIG - 1; ++i)
5171 for (wl = signals [i].head; wl; )
5172 {
5173 wn = wl->next;
5174 cb (EV_A_ EV_SIGNAL, wl);
5175 wl = wn;
5176 }
5177#endif
5178
5179#if EV_CHILD_ENABLE
5180 if (types & EV_CHILD)
5181 for (i = (EV_PID_HASHSIZE); i--; )
5182 for (wl = childs [i]; wl; )
5183 {
5184 wn = wl->next;
5185 cb (EV_A_ EV_CHILD, wl);
5186 wl = wn;
5187 }
5188#endif
5189/* EV_STAT 0x00001000 /* stat data changed */
5190/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5191}
5192#endif
5193
2338#if EV_MULTIPLICITY 5194#if EV_MULTIPLICITY
2339 #include "ev_wrap.h" 5195 #include "ev_wrap.h"
2340#endif 5196#endif
2341 5197
2342#ifdef __cplusplus
2343}
2344#endif
2345

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines