ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.192 by root, Fri Dec 21 07:55:29 2007 UTC vs.
Revision 1.364 by root, Sun Oct 24 21:51:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
207#if !EV_STAT_ENABLE 375#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 376# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 377# define EV_USE_INOTIFY 0
210#endif 378#endif
211 379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
212#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
213# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
214#endif 394#endif
215 395
216#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 397# include <winsock.h>
218#endif 398#endif
219 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
220/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
221 445
222/* 446/*
223 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
229 */ 453 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 455
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
235 461
236#if __GNUC__ >= 4 462#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
239#else 465#else
240# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
241# define noinline 467# define noinline
242# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 469# define inline
244# endif 470# endif
245#endif 471#endif
246 472
247#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline 475#define inline_size static inline
250 476
251#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
252# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
253#else 487#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
259 490
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
262 493
263typedef ev_watcher *W; 494typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
266 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
268 520
269#ifdef _WIN32 521#ifdef _WIN32
270# include "ev_win32.c" 522# include "ev_win32.c"
271#endif 523#endif
272 524
273/*****************************************************************************/ 525/*****************************************************************************/
274 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
275static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
276 578
277void 579void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
279{ 581{
280 syserr_cb = cb; 582 syserr_cb = cb;
281} 583}
282 584
283static void noinline 585static void noinline
284syserr (const char *msg) 586ev_syserr (const char *msg)
285{ 587{
286 if (!msg) 588 if (!msg)
287 msg = "(libev) system error"; 589 msg = "(libev) system error";
288 590
289 if (syserr_cb) 591 if (syserr_cb)
290 syserr_cb (msg); 592 syserr_cb (msg);
291 else 593 else
292 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
293 perror (msg); 603 perror (msg);
604#endif
294 abort (); 605 abort ();
295 } 606 }
296} 607}
297 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
298static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 629
300void 630void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 632{
303 alloc = cb; 633 alloc = cb;
304} 634}
305 635
306inline_speed void * 636inline_speed void *
307ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
308{ 638{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
310 640
311 if (!ptr && size) 641 if (!ptr && size)
312 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
314 abort (); 648 abort ();
315 } 649 }
316 650
317 return ptr; 651 return ptr;
318} 652}
320#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
322 656
323/*****************************************************************************/ 657/*****************************************************************************/
324 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
325typedef struct 663typedef struct
326{ 664{
327 WL head; 665 WL head;
328 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
330#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 674 SOCKET handle;
332#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
333} ANFD; 679} ANFD;
334 680
681/* stores the pending event set for a given watcher */
335typedef struct 682typedef struct
336{ 683{
337 W w; 684 W w;
338 int events; 685 int events; /* the pending event set for the given watcher */
339} ANPENDING; 686} ANPENDING;
340 687
341#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
342typedef struct 690typedef struct
343{ 691{
344 WL head; 692 WL head;
345} ANFS; 693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
346#endif 714#endif
347 715
348#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
349 717
350 struct ev_loop 718 struct ev_loop
369 737
370 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
371 739
372#endif 740#endif
373 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
374/*****************************************************************************/ 754/*****************************************************************************/
375 755
756#ifndef EV_HAVE_EV_TIME
376ev_tstamp 757ev_tstamp
377ev_time (void) 758ev_time (void)
378{ 759{
379#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
380 struct timespec ts; 763 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 766 }
767#endif
768
384 struct timeval tv; 769 struct timeval tv;
385 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 772}
773#endif
389 774
390ev_tstamp inline_size 775inline_size ev_tstamp
391get_clock (void) 776get_clock (void)
392{ 777{
393#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
395 { 780 {
408{ 793{
409 return ev_rt_now; 794 return ev_rt_now;
410} 795}
411#endif 796#endif
412 797
413int inline_size 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
414array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
415{ 830{
416 int ncur = cur + 1; 831 int ncur = cur + 1;
417 832
418 do 833 do
419 ncur <<= 1; 834 ncur <<= 1;
420 while (cnt > ncur); 835 while (cnt > ncur);
421 836
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 839 {
425 ncur *= elem; 840 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 842 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 843 ncur /= elem;
429 } 844 }
430 845
431 return ncur; 846 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
436{ 851{
437 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
439} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 858
441#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
443 { \ 861 { \
444 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 875 }
458#endif 876#endif
459 877
460#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 880
463/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
464 888
465void noinline 889void noinline
466ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
467{ 891{
468 W w_ = (W)w; 892 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
479 } 903 }
480} 904}
481 905
482void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 923{
485 int i; 924 int i;
486 925
487 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
489} 928}
490 929
491/*****************************************************************************/ 930/*****************************************************************************/
492 931
493void inline_size 932inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
508{ 934{
509 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
510 ev_io *w; 936 ev_io *w;
511 937
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 942 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
518 } 944 }
519} 945}
520 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
521void 958void
522ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 960{
524 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
526} 963}
527 964
528void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
529fd_reify (EV_P) 968fd_reify (EV_P)
530{ 969{
531 int i; 970 int i;
532 971
533 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
534 { 973 {
535 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
537 ev_io *w; 976 ev_io *w;
538 977
539 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
540 980
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
542 events |= (unsigned char)w->events;
543 982
544#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
545 if (events) 984 if (o_reify & EV__IOFDSET)
546 { 985 {
547 unsigned long argp; 986 unsigned long arg;
548 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
550 } 990 }
551#endif 991#endif
552 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
553 { 994 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
557 anfd->reify = 0;
558 anfd->events = events; 995 anfd->events = 0;
559 996
560 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
562 }
563 } 1006 }
564 1007
565 fdchangecnt = 0; 1008 fdchangecnt = 0;
566} 1009}
567 1010
568void inline_size 1011/* something about the given fd changed */
1012inline_size void
569fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
570{ 1014{
571 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
573 1017
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
578 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
579 } 1023 }
580} 1024}
581 1025
582void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
583fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
584{ 1029{
585 ev_io *w; 1030 ev_io *w;
586 1031
587 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 1036 }
592} 1037}
593 1038
594int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
595fd_valid (int fd) 1041fd_valid (int fd)
596{ 1042{
597#ifdef _WIN32 1043#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
599#else 1045#else
600 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
601#endif 1047#endif
602} 1048}
603 1049
607{ 1053{
608 int fd; 1054 int fd;
609 1055
610 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 1057 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
614} 1060}
615 1061
616/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 1063static void noinline
621 1067
622 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 1069 if (anfds [fd].events)
624 { 1070 {
625 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
626 return; 1072 break;
627 } 1073 }
628} 1074}
629 1075
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 1077static void noinline
635 1081
636 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 1083 if (anfds [fd].events)
638 { 1084 {
639 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 1088 }
642} 1089}
643 1090
644/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
645 1092/* this is not fork-safe */
646void inline_speed 1093inline_speed void
647upheap (WT *heap, int k)
648{
649 WT w = heap [k];
650
651 while (k)
652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
658 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1;
660 k = p;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_speed
668downheap (WT *heap, int N, int k)
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k)
697{
698 upheap (heap, k);
699 downheap (heap, N, k);
700}
701
702/*****************************************************************************/
703
704typedef struct
705{
706 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG;
709
710static ANSIG *signals;
711static int signalmax;
712
713static int sigpipe [2];
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716
717void inline_size
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724
725 ++base;
726 }
727}
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779
780void inline_speed
781fd_intern (int fd) 1094fd_intern (int fd)
782{ 1095{
783#ifdef _WIN32 1096#ifdef _WIN32
784 int arg = 1; 1097 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
786#else 1099#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 1102#endif
790} 1103}
791 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
792static void noinline 1268static void noinline
793siginit (EV_P) 1269evpipe_init (EV_P)
794{ 1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
795 fd_intern (sigpipe [0]); 1290 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
797 1294
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1295 ev_io_start (EV_A_ &pipe_w);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1331static void
1332pipecb (EV_P_ ev_io *iow, int revents)
1333{
1334 int i;
1335
1336#if EV_USE_EVENTFD
1337 if (evfd >= 0)
1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
801} 1372}
802 1373
803/*****************************************************************************/ 1374/*****************************************************************************/
804 1375
1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
1382
1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
805static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
806 1441
807#ifndef _WIN32
808
809static ev_signal childev; 1442static ev_signal childev;
810 1443
811void inline_speed 1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
813{ 1451{
814 ev_child *w; 1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1454
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
817 if (w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
818 { 1459 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1461 w->rpid = pid;
821 w->rstatus = status; 1462 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1464 }
1465 }
824} 1466}
825 1467
826#ifndef WCONTINUED 1468#ifndef WCONTINUED
827# define WCONTINUED 0 1469# define WCONTINUED 0
828#endif 1470#endif
829 1471
1472/* called on sigchld etc., calls waitpid */
830static void 1473static void
831childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
832{ 1475{
833 int pid, status; 1476 int pid, status;
834 1477
837 if (!WCONTINUED 1480 if (!WCONTINUED
838 || errno != EINVAL 1481 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1483 return;
841 1484
842 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1488
846 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1492}
850 1493
851#endif 1494#endif
852 1495
853/*****************************************************************************/ 1496/*****************************************************************************/
854 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
855#if EV_USE_PORT 1501#if EV_USE_PORT
856# include "ev_port.c" 1502# include "ev_port.c"
857#endif 1503#endif
858#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
859# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
915 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
918#endif 1564#endif
919#ifdef __APPLE__ 1565#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
921 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
922#endif 1572#endif
923 1573
924 return flags; 1574 return flags;
925} 1575}
926 1576
927unsigned int 1577unsigned int
928ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
929{ 1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
930 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
931 return EVBACKEND_KQUEUE 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
932 | EVBACKEND_PORT; 1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
933} 1587}
934 1588
935unsigned int 1589unsigned int
936ev_backend (EV_P) 1590ev_backend (EV_P)
937{ 1591{
938 return backend; 1592 return backend;
939} 1593}
940 1594
1595#if EV_FEATURE_API
941unsigned int 1596unsigned int
942ev_loop_count (EV_P) 1597ev_iteration (EV_P)
943{ 1598{
944 return loop_count; 1599 return loop_count;
945} 1600}
946 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
947static void noinline 1645static void noinline
948loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
949{ 1647{
950 if (!backend) 1648 if (!backend)
951 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
952#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
953 { 1662 {
954 struct timespec ts; 1663 struct timespec ts;
1664
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1666 have_monotonic = 1;
957 } 1667 }
958#endif 1668#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 1669
965 /* pid check not overridable via env */ 1670 /* pid check not overridable via env */
966#ifndef _WIN32 1671#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1672 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1673 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1677 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
976 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
978 1706
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY 1707#if EV_USE_IOCP
982 fs_fd = -2; 1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
983#endif 1709#endif
984
985#if EV_USE_PORT 1710#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1712#endif
988#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
996#endif 1721#endif
997#if EV_USE_SELECT 1722#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1724#endif
1000 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1001 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1003 } 1732 }
1004} 1733}
1005 1734
1006static void noinline 1735/* free up a loop structure */
1736void
1007loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1008{ 1738{
1009 int i; 1739 int i;
1740
1741#if EV_MULTIPLICITY
1742 /* mimic free (0) */
1743 if (!EV_A)
1744 return;
1745#endif
1746
1747#if EV_CLEANUP_ENABLE
1748 /* queue cleanup watchers (and execute them) */
1749 if (expect_false (cleanupcnt))
1750 {
1751 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752 EV_INVOKE_PENDING;
1753 }
1754#endif
1755
1756#if EV_CHILD_ENABLE
1757 if (ev_is_active (&childev))
1758 {
1759 ev_ref (EV_A); /* child watcher */
1760 ev_signal_stop (EV_A_ &childev);
1761 }
1762#endif
1763
1764 if (ev_is_active (&pipe_w))
1765 {
1766 /*ev_ref (EV_A);*/
1767 /*ev_io_stop (EV_A_ &pipe_w);*/
1768
1769#if EV_USE_EVENTFD
1770 if (evfd >= 0)
1771 close (evfd);
1772#endif
1773
1774 if (evpipe [0] >= 0)
1775 {
1776 EV_WIN32_CLOSE_FD (evpipe [0]);
1777 EV_WIN32_CLOSE_FD (evpipe [1]);
1778 }
1779 }
1780
1781#if EV_USE_SIGNALFD
1782 if (ev_is_active (&sigfd_w))
1783 close (sigfd);
1784#endif
1010 1785
1011#if EV_USE_INOTIFY 1786#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1787 if (fs_fd >= 0)
1013 close (fs_fd); 1788 close (fs_fd);
1014#endif 1789#endif
1015 1790
1016 if (backend_fd >= 0) 1791 if (backend_fd >= 0)
1017 close (backend_fd); 1792 close (backend_fd);
1018 1793
1794#if EV_USE_IOCP
1795 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796#endif
1019#if EV_USE_PORT 1797#if EV_USE_PORT
1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1798 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1021#endif 1799#endif
1022#if EV_USE_KQUEUE 1800#if EV_USE_KQUEUE
1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1801 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1038#if EV_IDLE_ENABLE 1816#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 1817 array_free (idle, [i]);
1040#endif 1818#endif
1041 } 1819 }
1042 1820
1043 ev_free (anfds); anfdmax = 0; 1821 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 1822
1045 /* have to use the microsoft-never-gets-it-right macro */ 1823 /* have to use the microsoft-never-gets-it-right macro */
1824 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 1825 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 1826 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 1827#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 1828 array_free (periodic, EMPTY);
1050#endif 1829#endif
1051#if EV_FORK_ENABLE 1830#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 1831 array_free (fork, EMPTY);
1053#endif 1832#endif
1833#if EV_CLEANUP_ENABLE
1834 array_free (cleanup, EMPTY);
1835#endif
1054 array_free (prepare, EMPTY); 1836 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 1837 array_free (check, EMPTY);
1838#if EV_ASYNC_ENABLE
1839 array_free (async, EMPTY);
1840#endif
1056 1841
1057 backend = 0; 1842 backend = 0;
1058}
1059 1843
1844#if EV_MULTIPLICITY
1845 if (ev_is_default_loop (EV_A))
1846#endif
1847 ev_default_loop_ptr = 0;
1848#if EV_MULTIPLICITY
1849 else
1850 ev_free (EV_A);
1851#endif
1852}
1853
1854#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 1855inline_size void infy_fork (EV_P);
1856#endif
1061 1857
1062void inline_size 1858inline_size void
1063loop_fork (EV_P) 1859loop_fork (EV_P)
1064{ 1860{
1065#if EV_USE_PORT 1861#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1862 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 1863#endif
1073#endif 1869#endif
1074#if EV_USE_INOTIFY 1870#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 1871 infy_fork (EV_A);
1076#endif 1872#endif
1077 1873
1078 if (ev_is_active (&sigev)) 1874 if (ev_is_active (&pipe_w))
1079 { 1875 {
1080 /* default loop */ 1876 /* this "locks" the handlers against writing to the pipe */
1877 /* while we modify the fd vars */
1878 sig_pending = 1;
1879#if EV_ASYNC_ENABLE
1880 async_pending = 1;
1881#endif
1081 1882
1082 ev_ref (EV_A); 1883 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 1884 ev_io_stop (EV_A_ &pipe_w);
1084 close (sigpipe [0]);
1085 close (sigpipe [1]);
1086 1885
1087 while (pipe (sigpipe)) 1886#if EV_USE_EVENTFD
1088 syserr ("(libev) error creating pipe"); 1887 if (evfd >= 0)
1888 close (evfd);
1889#endif
1089 1890
1891 if (evpipe [0] >= 0)
1892 {
1893 EV_WIN32_CLOSE_FD (evpipe [0]);
1894 EV_WIN32_CLOSE_FD (evpipe [1]);
1895 }
1896
1897#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1090 siginit (EV_A); 1898 evpipe_init (EV_A);
1899 /* now iterate over everything, in case we missed something */
1900 pipecb (EV_A_ &pipe_w, EV_READ);
1901#endif
1091 } 1902 }
1092 1903
1093 postfork = 0; 1904 postfork = 0;
1094} 1905}
1906
1907#if EV_MULTIPLICITY
1908
1909struct ev_loop *
1910ev_loop_new (unsigned int flags)
1911{
1912 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913
1914 memset (EV_A, 0, sizeof (struct ev_loop));
1915 loop_init (EV_A_ flags);
1916
1917 if (ev_backend (EV_A))
1918 return EV_A;
1919
1920 ev_free (EV_A);
1921 return 0;
1922}
1923
1924#endif /* multiplicity */
1925
1926#if EV_VERIFY
1927static void noinline
1928verify_watcher (EV_P_ W w)
1929{
1930 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931
1932 if (w->pending)
1933 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934}
1935
1936static void noinline
1937verify_heap (EV_P_ ANHE *heap, int N)
1938{
1939 int i;
1940
1941 for (i = HEAP0; i < N + HEAP0; ++i)
1942 {
1943 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946
1947 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948 }
1949}
1950
1951static void noinline
1952array_verify (EV_P_ W *ws, int cnt)
1953{
1954 while (cnt--)
1955 {
1956 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 verify_watcher (EV_A_ ws [cnt]);
1958 }
1959}
1960#endif
1961
1962#if EV_FEATURE_API
1963void
1964ev_verify (EV_P)
1965{
1966#if EV_VERIFY
1967 int i;
1968 WL w;
1969
1970 assert (activecnt >= -1);
1971
1972 assert (fdchangemax >= fdchangecnt);
1973 for (i = 0; i < fdchangecnt; ++i)
1974 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975
1976 assert (anfdmax >= 0);
1977 for (i = 0; i < anfdmax; ++i)
1978 for (w = anfds [i].head; w; w = w->next)
1979 {
1980 verify_watcher (EV_A_ (W)w);
1981 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1982 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1983 }
1984
1985 assert (timermax >= timercnt);
1986 verify_heap (EV_A_ timers, timercnt);
1987
1988#if EV_PERIODIC_ENABLE
1989 assert (periodicmax >= periodiccnt);
1990 verify_heap (EV_A_ periodics, periodiccnt);
1991#endif
1992
1993 for (i = NUMPRI; i--; )
1994 {
1995 assert (pendingmax [i] >= pendingcnt [i]);
1996#if EV_IDLE_ENABLE
1997 assert (idleall >= 0);
1998 assert (idlemax [i] >= idlecnt [i]);
1999 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000#endif
2001 }
2002
2003#if EV_FORK_ENABLE
2004 assert (forkmax >= forkcnt);
2005 array_verify (EV_A_ (W *)forks, forkcnt);
2006#endif
2007
2008#if EV_CLEANUP_ENABLE
2009 assert (cleanupmax >= cleanupcnt);
2010 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011#endif
2012
2013#if EV_ASYNC_ENABLE
2014 assert (asyncmax >= asynccnt);
2015 array_verify (EV_A_ (W *)asyncs, asynccnt);
2016#endif
2017
2018#if EV_PREPARE_ENABLE
2019 assert (preparemax >= preparecnt);
2020 array_verify (EV_A_ (W *)prepares, preparecnt);
2021#endif
2022
2023#if EV_CHECK_ENABLE
2024 assert (checkmax >= checkcnt);
2025 array_verify (EV_A_ (W *)checks, checkcnt);
2026#endif
2027
2028# if 0
2029#if EV_CHILD_ENABLE
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032#endif
2033# endif
2034#endif
2035}
2036#endif
1095 2037
1096#if EV_MULTIPLICITY 2038#if EV_MULTIPLICITY
1097struct ev_loop * 2039struct ev_loop *
1098ev_loop_new (unsigned int flags)
1099{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101
1102 memset (loop, 0, sizeof (struct ev_loop));
1103
1104 loop_init (EV_A_ flags);
1105
1106 if (ev_backend (EV_A))
1107 return loop;
1108
1109 return 0;
1110}
1111
1112void
1113ev_loop_destroy (EV_P)
1114{
1115 loop_destroy (EV_A);
1116 ev_free (loop);
1117}
1118
1119void
1120ev_loop_fork (EV_P)
1121{
1122 postfork = 1;
1123}
1124
1125#endif
1126
1127#if EV_MULTIPLICITY
1128struct ev_loop *
1129ev_default_loop_init (unsigned int flags)
1130#else 2040#else
1131int 2041int
2042#endif
1132ev_default_loop (unsigned int flags) 2043ev_default_loop (unsigned int flags)
1133#endif
1134{ 2044{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 2045 if (!ev_default_loop_ptr)
1140 { 2046 {
1141#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2048 EV_P = ev_default_loop_ptr = &default_loop_struct;
1143#else 2049#else
1144 ev_default_loop_ptr = 1; 2050 ev_default_loop_ptr = 1;
1145#endif 2051#endif
1146 2052
1147 loop_init (EV_A_ flags); 2053 loop_init (EV_A_ flags);
1148 2054
1149 if (ev_backend (EV_A)) 2055 if (ev_backend (EV_A))
1150 { 2056 {
1151 siginit (EV_A); 2057#if EV_CHILD_ENABLE
1152
1153#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 2058 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 2059 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 2060 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2061 ev_unref (EV_A); /* child watcher should not keep loop alive */
1158#endif 2062#endif
1163 2067
1164 return ev_default_loop_ptr; 2068 return ev_default_loop_ptr;
1165} 2069}
1166 2070
1167void 2071void
1168ev_default_destroy (void) 2072ev_loop_fork (EV_P)
1169{ 2073{
1170#if EV_MULTIPLICITY 2074 postfork = 1; /* must be in line with ev_default_fork */
1171 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif
1173
1174#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev);
1177#endif
1178
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A);
1186}
1187
1188void
1189ev_default_fork (void)
1190{
1191#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif
1194
1195 if (backend)
1196 postfork = 1;
1197} 2075}
1198 2076
1199/*****************************************************************************/ 2077/*****************************************************************************/
1200 2078
1201void 2079void
1202ev_invoke (EV_P_ void *w, int revents) 2080ev_invoke (EV_P_ void *w, int revents)
1203{ 2081{
1204 EV_CB_INVOKE ((W)w, revents); 2082 EV_CB_INVOKE ((W)w, revents);
1205} 2083}
1206 2084
1207void inline_speed 2085unsigned int
1208call_pending (EV_P) 2086ev_pending_count (EV_P)
2087{
2088 int pri;
2089 unsigned int count = 0;
2090
2091 for (pri = NUMPRI; pri--; )
2092 count += pendingcnt [pri];
2093
2094 return count;
2095}
2096
2097void noinline
2098ev_invoke_pending (EV_P)
1209{ 2099{
1210 int pri; 2100 int pri;
1211 2101
1212 for (pri = NUMPRI; pri--; ) 2102 for (pri = NUMPRI; pri--; )
1213 while (pendingcnt [pri]) 2103 while (pendingcnt [pri])
1214 { 2104 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2105 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216 2106
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2107 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2108 /* ^ this is no longer true, as pending_w could be here */
1220 2109
1221 p->w->pending = 0; 2110 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events); 2111 EV_CB_INVOKE (p->w, p->events);
1223 } 2112 EV_FREQUENT_CHECK;
1224 } 2113 }
1225} 2114}
1226 2115
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1240
1241 ((WT)w)->at += w->repeat;
1242 if (((WT)w)->at < mn_now)
1243 ((WT)w)->at = mn_now;
1244
1245 downheap (timers, timercnt, 0);
1246 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 {
1260 ev_periodic *w = (ev_periodic *)periodics [0];
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306
1307#if EV_IDLE_ENABLE 2116#if EV_IDLE_ENABLE
1308void inline_size 2117/* make idle watchers pending. this handles the "call-idle */
2118/* only when higher priorities are idle" logic */
2119inline_size void
1309idle_reify (EV_P) 2120idle_reify (EV_P)
1310{ 2121{
1311 if (expect_false (idleall)) 2122 if (expect_false (idleall))
1312 { 2123 {
1313 int pri; 2124 int pri;
1325 } 2136 }
1326 } 2137 }
1327} 2138}
1328#endif 2139#endif
1329 2140
1330void inline_speed 2141/* make timers pending */
2142inline_size void
2143timers_reify (EV_P)
2144{
2145 EV_FREQUENT_CHECK;
2146
2147 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2148 {
2149 do
2150 {
2151 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152
2153 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154
2155 /* first reschedule or stop timer */
2156 if (w->repeat)
2157 {
2158 ev_at (w) += w->repeat;
2159 if (ev_at (w) < mn_now)
2160 ev_at (w) = mn_now;
2161
2162 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2163
2164 ANHE_at_cache (timers [HEAP0]);
2165 downheap (timers, timercnt, HEAP0);
2166 }
2167 else
2168 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169
2170 EV_FREQUENT_CHECK;
2171 feed_reverse (EV_A_ (W)w);
2172 }
2173 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2174
2175 feed_reverse_done (EV_A_ EV_TIMER);
2176 }
2177}
2178
2179#if EV_PERIODIC_ENABLE
2180/* make periodics pending */
2181inline_size void
2182periodics_reify (EV_P)
2183{
2184 EV_FREQUENT_CHECK;
2185
2186 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2187 {
2188 int feed_count = 0;
2189
2190 do
2191 {
2192 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193
2194 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2195
2196 /* first reschedule or stop timer */
2197 if (w->reschedule_cb)
2198 {
2199 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2200
2201 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2202
2203 ANHE_at_cache (periodics [HEAP0]);
2204 downheap (periodics, periodiccnt, HEAP0);
2205 }
2206 else if (w->interval)
2207 {
2208 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209 /* if next trigger time is not sufficiently in the future, put it there */
2210 /* this might happen because of floating point inexactness */
2211 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212 {
2213 ev_at (w) += w->interval;
2214
2215 /* if interval is unreasonably low we might still have a time in the past */
2216 /* so correct this. this will make the periodic very inexact, but the user */
2217 /* has effectively asked to get triggered more often than possible */
2218 if (ev_at (w) < ev_rt_now)
2219 ev_at (w) = ev_rt_now;
2220 }
2221
2222 ANHE_at_cache (periodics [HEAP0]);
2223 downheap (periodics, periodiccnt, HEAP0);
2224 }
2225 else
2226 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227
2228 EV_FREQUENT_CHECK;
2229 feed_reverse (EV_A_ (W)w);
2230 }
2231 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2232
2233 feed_reverse_done (EV_A_ EV_PERIODIC);
2234 }
2235}
2236
2237/* simply recalculate all periodics */
2238/* TODO: maybe ensure that at least one event happens when jumping forward? */
2239static void noinline
2240periodics_reschedule (EV_P)
2241{
2242 int i;
2243
2244 /* adjust periodics after time jump */
2245 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2246 {
2247 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2248
2249 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval)
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253
2254 ANHE_at_cache (periodics [i]);
2255 }
2256
2257 reheap (periodics, periodiccnt);
2258}
2259#endif
2260
2261/* adjust all timers by a given offset */
2262static void noinline
2263timers_reschedule (EV_P_ ev_tstamp adjust)
2264{
2265 int i;
2266
2267 for (i = 0; i < timercnt; ++i)
2268 {
2269 ANHE *he = timers + i + HEAP0;
2270 ANHE_w (*he)->at += adjust;
2271 ANHE_at_cache (*he);
2272 }
2273}
2274
2275/* fetch new monotonic and realtime times from the kernel */
2276/* also detect if there was a timejump, and act accordingly */
2277inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 2278time_update (EV_P_ ev_tstamp max_block)
1332{ 2279{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 2280#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 2281 if (expect_true (have_monotonic))
1337 { 2282 {
2283 int i;
1338 ev_tstamp odiff = rtmn_diff; 2284 ev_tstamp odiff = rtmn_diff;
1339 2285
1340 mn_now = get_clock (); 2286 mn_now = get_clock ();
1341 2287
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2288 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1360 */ 2306 */
1361 for (i = 4; --i; ) 2307 for (i = 4; --i; )
1362 { 2308 {
1363 rtmn_diff = ev_rt_now - mn_now; 2309 rtmn_diff = ev_rt_now - mn_now;
1364 2310
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2311 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 2312 return; /* all is well */
1367 2313
1368 ev_rt_now = ev_time (); 2314 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 2315 mn_now = get_clock ();
1370 now_floor = mn_now; 2316 now_floor = mn_now;
1371 } 2317 }
1372 2318
2319 /* no timer adjustment, as the monotonic clock doesn't jump */
2320 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 2321# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2322 periodics_reschedule (EV_A);
1375# endif 2323# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 2324 }
1379 else 2325 else
1380#endif 2326#endif
1381 { 2327 {
1382 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1383 2329
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2330 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 2331 {
2332 /* adjust timers. this is easy, as the offset is the same for all of them */
2333 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 2335 periodics_reschedule (EV_A);
1388#endif 2336#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 2337 }
1393 2338
1394 mn_now = ev_rt_now; 2339 mn_now = ev_rt_now;
1395 } 2340 }
1396} 2341}
1397 2342
1398void 2343void
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 2344ev_run (EV_P_ int flags)
1414{ 2345{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2346#if EV_FEATURE_API
1416 ? EVUNLOOP_ONE 2347 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 2348#endif
1418 2349
2350 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351
2352 loop_done = EVBREAK_CANCEL;
2353
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2354 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 2355
1421 do 2356 do
1422 { 2357 {
2358#if EV_VERIFY >= 2
2359 ev_verify (EV_A);
2360#endif
2361
1423#ifndef _WIN32 2362#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 2363 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 2364 if (expect_false (getpid () != curpid))
1426 { 2365 {
1427 curpid = getpid (); 2366 curpid = getpid ();
1433 /* we might have forked, so queue fork handlers */ 2372 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 2373 if (expect_false (postfork))
1435 if (forkcnt) 2374 if (forkcnt)
1436 { 2375 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2376 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 2377 EV_INVOKE_PENDING;
1439 } 2378 }
1440#endif 2379#endif
1441 2380
2381#if EV_PREPARE_ENABLE
1442 /* queue prepare watchers (and execute them) */ 2382 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 2383 if (expect_false (preparecnt))
1444 { 2384 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2385 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1447 } 2387 }
2388#endif
1448 2389
1449 if (expect_false (!activecnt)) 2390 if (expect_false (loop_done))
1450 break; 2391 break;
1451 2392
1452 /* we might have forked, so reify kernel state if necessary */ 2393 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 2394 if (expect_false (postfork))
1454 loop_fork (EV_A); 2395 loop_fork (EV_A);
1456 /* update fd-related kernel structures */ 2397 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 2398 fd_reify (EV_A);
1458 2399
1459 /* calculate blocking time */ 2400 /* calculate blocking time */
1460 { 2401 {
1461 ev_tstamp block; 2402 ev_tstamp waittime = 0.;
2403 ev_tstamp sleeptime = 0.;
1462 2404
2405 /* remember old timestamp for io_blocktime calculation */
2406 ev_tstamp prev_mn_now = mn_now;
2407
2408 /* update time to cancel out callback processing overhead */
2409 time_update (EV_A_ 1e100);
2410
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2411 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1464 block = 0.; /* do not block at all */
1465 else
1466 { 2412 {
1467 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100);
1469
1470 block = MAX_BLOCKTIME; 2413 waittime = MAX_BLOCKTIME;
1471 2414
1472 if (timercnt) 2415 if (timercnt)
1473 { 2416 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2417 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1475 if (block > to) block = to; 2418 if (waittime > to) waittime = to;
1476 } 2419 }
1477 2420
1478#if EV_PERIODIC_ENABLE 2421#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 2422 if (periodiccnt)
1480 { 2423 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2424 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1482 if (block > to) block = to; 2425 if (waittime > to) waittime = to;
1483 } 2426 }
1484#endif 2427#endif
1485 2428
2429 /* don't let timeouts decrease the waittime below timeout_blocktime */
2430 if (expect_false (waittime < timeout_blocktime))
2431 waittime = timeout_blocktime;
2432
2433 /* extra check because io_blocktime is commonly 0 */
1486 if (expect_false (block < 0.)) block = 0.; 2434 if (expect_false (io_blocktime))
2435 {
2436 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437
2438 if (sleeptime > waittime - backend_fudge)
2439 sleeptime = waittime - backend_fudge;
2440
2441 if (expect_true (sleeptime > 0.))
2442 {
2443 ev_sleep (sleeptime);
2444 waittime -= sleeptime;
2445 }
2446 }
1487 } 2447 }
1488 2448
2449#if EV_FEATURE_API
1489 ++loop_count; 2450 ++loop_count;
2451#endif
2452 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 2453 backend_poll (EV_A_ waittime);
2454 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1491 2455
1492 /* update ev_rt_now, do magic */ 2456 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 2457 time_update (EV_A_ waittime + sleeptime);
1494 } 2458 }
1495 2459
1496 /* queue pending timers and reschedule them */ 2460 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 2461 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 2462#if EV_PERIODIC_ENABLE
1502#if EV_IDLE_ENABLE 2466#if EV_IDLE_ENABLE
1503 /* queue idle watchers unless other events are pending */ 2467 /* queue idle watchers unless other events are pending */
1504 idle_reify (EV_A); 2468 idle_reify (EV_A);
1505#endif 2469#endif
1506 2470
2471#if EV_CHECK_ENABLE
1507 /* queue check watchers, to be executed first */ 2472 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 2473 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2474 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475#endif
1510 2476
1511 call_pending (EV_A); 2477 EV_INVOKE_PENDING;
1512
1513 } 2478 }
1514 while (expect_true (activecnt && !loop_done)); 2479 while (expect_true (
2480 activecnt
2481 && !loop_done
2482 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2483 ));
1515 2484
1516 if (loop_done == EVUNLOOP_ONE) 2485 if (loop_done == EVBREAK_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 2486 loop_done = EVBREAK_CANCEL;
1518}
1519 2487
2488#if EV_FEATURE_API
2489 --loop_depth;
2490#endif
2491}
2492
1520void 2493void
1521ev_unloop (EV_P_ int how) 2494ev_break (EV_P_ int how)
1522{ 2495{
1523 loop_done = how; 2496 loop_done = how;
1524} 2497}
1525 2498
2499void
2500ev_ref (EV_P)
2501{
2502 ++activecnt;
2503}
2504
2505void
2506ev_unref (EV_P)
2507{
2508 --activecnt;
2509}
2510
2511void
2512ev_now_update (EV_P)
2513{
2514 time_update (EV_A_ 1e100);
2515}
2516
2517void
2518ev_suspend (EV_P)
2519{
2520 ev_now_update (EV_A);
2521}
2522
2523void
2524ev_resume (EV_P)
2525{
2526 ev_tstamp mn_prev = mn_now;
2527
2528 ev_now_update (EV_A);
2529 timers_reschedule (EV_A_ mn_now - mn_prev);
2530#if EV_PERIODIC_ENABLE
2531 /* TODO: really do this? */
2532 periodics_reschedule (EV_A);
2533#endif
2534}
2535
1526/*****************************************************************************/ 2536/*****************************************************************************/
2537/* singly-linked list management, used when the expected list length is short */
1527 2538
1528void inline_size 2539inline_size void
1529wlist_add (WL *head, WL elem) 2540wlist_add (WL *head, WL elem)
1530{ 2541{
1531 elem->next = *head; 2542 elem->next = *head;
1532 *head = elem; 2543 *head = elem;
1533} 2544}
1534 2545
1535void inline_size 2546inline_size void
1536wlist_del (WL *head, WL elem) 2547wlist_del (WL *head, WL elem)
1537{ 2548{
1538 while (*head) 2549 while (*head)
1539 { 2550 {
1540 if (*head == elem) 2551 if (expect_true (*head == elem))
1541 { 2552 {
1542 *head = elem->next; 2553 *head = elem->next;
1543 return; 2554 break;
1544 } 2555 }
1545 2556
1546 head = &(*head)->next; 2557 head = &(*head)->next;
1547 } 2558 }
1548} 2559}
1549 2560
1550void inline_speed 2561/* internal, faster, version of ev_clear_pending */
2562inline_speed void
1551clear_pending (EV_P_ W w) 2563clear_pending (EV_P_ W w)
1552{ 2564{
1553 if (w->pending) 2565 if (w->pending)
1554 { 2566 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2567 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 2568 w->pending = 0;
1557 } 2569 }
1558} 2570}
1559 2571
1560int 2572int
1564 int pending = w_->pending; 2576 int pending = w_->pending;
1565 2577
1566 if (expect_true (pending)) 2578 if (expect_true (pending))
1567 { 2579 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2580 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 p->w = (W)&pending_w;
1569 w_->pending = 0; 2582 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 2583 return p->events;
1572 } 2584 }
1573 else 2585 else
1574 return 0; 2586 return 0;
1575} 2587}
1576 2588
1577void inline_size 2589inline_size void
1578pri_adjust (EV_P_ W w) 2590pri_adjust (EV_P_ W w)
1579{ 2591{
1580 int pri = w->priority; 2592 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2593 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2594 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 2595 ev_set_priority (w, pri);
1584} 2596}
1585 2597
1586void inline_speed 2598inline_speed void
1587ev_start (EV_P_ W w, int active) 2599ev_start (EV_P_ W w, int active)
1588{ 2600{
1589 pri_adjust (EV_A_ w); 2601 pri_adjust (EV_A_ w);
1590 w->active = active; 2602 w->active = active;
1591 ev_ref (EV_A); 2603 ev_ref (EV_A);
1592} 2604}
1593 2605
1594void inline_size 2606inline_size void
1595ev_stop (EV_P_ W w) 2607ev_stop (EV_P_ W w)
1596{ 2608{
1597 ev_unref (EV_A); 2609 ev_unref (EV_A);
1598 w->active = 0; 2610 w->active = 0;
1599} 2611}
1606 int fd = w->fd; 2618 int fd = w->fd;
1607 2619
1608 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
1609 return; 2621 return;
1610 2622
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 2623 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625
2626 EV_FREQUENT_CHECK;
1612 2627
1613 ev_start (EV_A_ (W)w, 1); 2628 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2629 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1615 wlist_add (&anfds[fd].head, (WL)w); 2630 wlist_add (&anfds[fd].head, (WL)w);
1616 2631
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 2633 w->events &= ~EV__IOFDSET;
2634
2635 EV_FREQUENT_CHECK;
1619} 2636}
1620 2637
1621void noinline 2638void noinline
1622ev_io_stop (EV_P_ ev_io *w) 2639ev_io_stop (EV_P_ ev_io *w)
1623{ 2640{
1624 clear_pending (EV_A_ (W)w); 2641 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2642 if (expect_false (!ev_is_active (w)))
1626 return; 2643 return;
1627 2644
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2646
2647 EV_FREQUENT_CHECK;
1629 2648
1630 wlist_del (&anfds[w->fd].head, (WL)w); 2649 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
1632 2651
1633 fd_change (EV_A_ w->fd, 1); 2652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2653
2654 EV_FREQUENT_CHECK;
1634} 2655}
1635 2656
1636void noinline 2657void noinline
1637ev_timer_start (EV_P_ ev_timer *w) 2658ev_timer_start (EV_P_ ev_timer *w)
1638{ 2659{
1639 if (expect_false (ev_is_active (w))) 2660 if (expect_false (ev_is_active (w)))
1640 return; 2661 return;
1641 2662
1642 ((WT)w)->at += mn_now; 2663 ev_at (w) += mn_now;
1643 2664
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 2666
2667 EV_FREQUENT_CHECK;
2668
2669 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 2670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1648 timers [timercnt - 1] = (WT)w; 2672 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 2673 ANHE_at_cache (timers [ev_active (w)]);
2674 upheap (timers, ev_active (w));
1650 2675
2676 EV_FREQUENT_CHECK;
2677
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 2679}
1653 2680
1654void noinline 2681void noinline
1655ev_timer_stop (EV_P_ ev_timer *w) 2682ev_timer_stop (EV_P_ ev_timer *w)
1656{ 2683{
1657 clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 2685 if (expect_false (!ev_is_active (w)))
1659 return; 2686 return;
1660 2687
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2688 EV_FREQUENT_CHECK;
1662 2689
1663 { 2690 {
1664 int active = ((W)w)->active; 2691 int active = ev_active (w);
1665 2692
2693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2694
2695 --timercnt;
2696
1666 if (expect_true (--active < --timercnt)) 2697 if (expect_true (active < timercnt + HEAP0))
1667 { 2698 {
1668 timers [active] = timers [timercnt]; 2699 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 2700 adjustheap (timers, timercnt, active);
1670 } 2701 }
1671 } 2702 }
1672 2703
1673 ((WT)w)->at -= mn_now; 2704 ev_at (w) -= mn_now;
1674 2705
1675 ev_stop (EV_A_ (W)w); 2706 ev_stop (EV_A_ (W)w);
2707
2708 EV_FREQUENT_CHECK;
1676} 2709}
1677 2710
1678void noinline 2711void noinline
1679ev_timer_again (EV_P_ ev_timer *w) 2712ev_timer_again (EV_P_ ev_timer *w)
1680{ 2713{
2714 EV_FREQUENT_CHECK;
2715
1681 if (ev_is_active (w)) 2716 if (ev_is_active (w))
1682 { 2717 {
1683 if (w->repeat) 2718 if (w->repeat)
1684 { 2719 {
1685 ((WT)w)->at = mn_now + w->repeat; 2720 ev_at (w) = mn_now + w->repeat;
2721 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 2722 adjustheap (timers, timercnt, ev_active (w));
1687 } 2723 }
1688 else 2724 else
1689 ev_timer_stop (EV_A_ w); 2725 ev_timer_stop (EV_A_ w);
1690 } 2726 }
1691 else if (w->repeat) 2727 else if (w->repeat)
1692 { 2728 {
1693 w->at = w->repeat; 2729 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 2730 ev_timer_start (EV_A_ w);
1695 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2734}
2735
2736ev_tstamp
2737ev_timer_remaining (EV_P_ ev_timer *w)
2738{
2739 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1696} 2740}
1697 2741
1698#if EV_PERIODIC_ENABLE 2742#if EV_PERIODIC_ENABLE
1699void noinline 2743void noinline
1700ev_periodic_start (EV_P_ ev_periodic *w) 2744ev_periodic_start (EV_P_ ev_periodic *w)
1701{ 2745{
1702 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1703 return; 2747 return;
1704 2748
1705 if (w->reschedule_cb) 2749 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2750 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 2751 else if (w->interval)
1708 { 2752 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2753 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 2754 /* this formula differs from the one in periodic_reify because we do not always round up */
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2755 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 2756 }
1713 else 2757 else
1714 ((WT)w)->at = w->offset; 2758 ev_at (w) = w->offset;
1715 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 2763 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2764 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1718 periodics [periodiccnt - 1] = (WT)w; 2765 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 2766 ANHE_at_cache (periodics [ev_active (w)]);
2767 upheap (periodics, ev_active (w));
1720 2768
2769 EV_FREQUENT_CHECK;
2770
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2771 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 2772}
1723 2773
1724void noinline 2774void noinline
1725ev_periodic_stop (EV_P_ ev_periodic *w) 2775ev_periodic_stop (EV_P_ ev_periodic *w)
1726{ 2776{
1727 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1729 return; 2779 return;
1730 2780
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2781 EV_FREQUENT_CHECK;
1732 2782
1733 { 2783 {
1734 int active = ((W)w)->active; 2784 int active = ev_active (w);
1735 2785
2786 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2787
2788 --periodiccnt;
2789
1736 if (expect_true (--active < --periodiccnt)) 2790 if (expect_true (active < periodiccnt + HEAP0))
1737 { 2791 {
1738 periodics [active] = periodics [periodiccnt]; 2792 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 2793 adjustheap (periodics, periodiccnt, active);
1740 } 2794 }
1741 } 2795 }
1742 2796
1743 ev_stop (EV_A_ (W)w); 2797 ev_stop (EV_A_ (W)w);
2798
2799 EV_FREQUENT_CHECK;
1744} 2800}
1745 2801
1746void noinline 2802void noinline
1747ev_periodic_again (EV_P_ ev_periodic *w) 2803ev_periodic_again (EV_P_ ev_periodic *w)
1748{ 2804{
1754 2810
1755#ifndef SA_RESTART 2811#ifndef SA_RESTART
1756# define SA_RESTART 0 2812# define SA_RESTART 0
1757#endif 2813#endif
1758 2814
2815#if EV_SIGNAL_ENABLE
2816
1759void noinline 2817void noinline
1760ev_signal_start (EV_P_ ev_signal *w) 2818ev_signal_start (EV_P_ ev_signal *w)
1761{ 2819{
1762#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif
1765 if (expect_false (ev_is_active (w))) 2820 if (expect_false (ev_is_active (w)))
1766 return; 2821 return;
1767 2822
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2823 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1769 2824
2825#if EV_MULTIPLICITY
2826 assert (("libev: a signal must not be attached to two different loops",
2827 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2828
2829 signals [w->signum - 1].loop = EV_A;
2830#endif
2831
2832 EV_FREQUENT_CHECK;
2833
2834#if EV_USE_SIGNALFD
2835 if (sigfd == -2)
1770 { 2836 {
1771#ifndef _WIN32 2837 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1772 sigset_t full, prev; 2838 if (sigfd < 0 && errno == EINVAL)
1773 sigfillset (&full); 2839 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776 2840
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2841 if (sigfd >= 0)
2842 {
2843 fd_intern (sigfd); /* doing it twice will not hurt */
1778 2844
1779#ifndef _WIN32 2845 sigemptyset (&sigfd_set);
1780 sigprocmask (SIG_SETMASK, &prev, 0); 2846
1781#endif 2847 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848 ev_set_priority (&sigfd_w, EV_MAXPRI);
2849 ev_io_start (EV_A_ &sigfd_w);
2850 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851 }
1782 } 2852 }
2853
2854 if (sigfd >= 0)
2855 {
2856 /* TODO: check .head */
2857 sigaddset (&sigfd_set, w->signum);
2858 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 }
2862#endif
1783 2863
1784 ev_start (EV_A_ (W)w, 1); 2864 ev_start (EV_A_ (W)w, 1);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 2865 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 2866
1787 if (!((WL)w)->next) 2867 if (!((WL)w)->next)
2868# if EV_USE_SIGNALFD
2869 if (sigfd < 0) /*TODO*/
2870# endif
1788 { 2871 {
1789#if _WIN32 2872# ifdef _WIN32
2873 evpipe_init (EV_A);
2874
1790 signal (w->signum, sighandler); 2875 signal (w->signum, ev_sighandler);
1791#else 2876# else
1792 struct sigaction sa; 2877 struct sigaction sa;
2878
2879 evpipe_init (EV_A);
2880
1793 sa.sa_handler = sighandler; 2881 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 2882 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2883 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 2884 sigaction (w->signum, &sa, 0);
2885
2886 sigemptyset (&sa.sa_mask);
2887 sigaddset (&sa.sa_mask, w->signum);
2888 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1797#endif 2889#endif
1798 } 2890 }
2891
2892 EV_FREQUENT_CHECK;
1799} 2893}
1800 2894
1801void noinline 2895void noinline
1802ev_signal_stop (EV_P_ ev_signal *w) 2896ev_signal_stop (EV_P_ ev_signal *w)
1803{ 2897{
1804 clear_pending (EV_A_ (W)w); 2898 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2899 if (expect_false (!ev_is_active (w)))
1806 return; 2900 return;
1807 2901
2902 EV_FREQUENT_CHECK;
2903
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 2904 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 2905 ev_stop (EV_A_ (W)w);
1810 2906
1811 if (!signals [w->signum - 1].head) 2907 if (!signals [w->signum - 1].head)
2908 {
2909#if EV_MULTIPLICITY
2910 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911#endif
2912#if EV_USE_SIGNALFD
2913 if (sigfd >= 0)
2914 {
2915 sigset_t ss;
2916
2917 sigemptyset (&ss);
2918 sigaddset (&ss, w->signum);
2919 sigdelset (&sigfd_set, w->signum);
2920
2921 signalfd (sigfd, &sigfd_set, 0);
2922 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 }
2924 else
2925#endif
1812 signal (w->signum, SIG_DFL); 2926 signal (w->signum, SIG_DFL);
2927 }
2928
2929 EV_FREQUENT_CHECK;
1813} 2930}
2931
2932#endif
2933
2934#if EV_CHILD_ENABLE
1814 2935
1815void 2936void
1816ev_child_start (EV_P_ ev_child *w) 2937ev_child_start (EV_P_ ev_child *w)
1817{ 2938{
1818#if EV_MULTIPLICITY 2939#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2940 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 2941#endif
1821 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
1822 return; 2943 return;
1823 2944
2945 EV_FREQUENT_CHECK;
2946
1824 ev_start (EV_A_ (W)w, 1); 2947 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2948 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2949
2950 EV_FREQUENT_CHECK;
1826} 2951}
1827 2952
1828void 2953void
1829ev_child_stop (EV_P_ ev_child *w) 2954ev_child_stop (EV_P_ ev_child *w)
1830{ 2955{
1831 clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
1833 return; 2958 return;
1834 2959
2960 EV_FREQUENT_CHECK;
2961
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2962 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 2963 ev_stop (EV_A_ (W)w);
2964
2965 EV_FREQUENT_CHECK;
1837} 2966}
2967
2968#endif
1838 2969
1839#if EV_STAT_ENABLE 2970#if EV_STAT_ENABLE
1840 2971
1841# ifdef _WIN32 2972# ifdef _WIN32
1842# undef lstat 2973# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 2974# define lstat(a,b) _stati64 (a,b)
1844# endif 2975# endif
1845 2976
1846#define DEF_STAT_INTERVAL 5.0074891 2977#define DEF_STAT_INTERVAL 5.0074891
2978#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 2979#define MIN_STAT_INTERVAL 0.1074891
1848 2980
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2981static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 2982
1851#if EV_USE_INOTIFY 2983#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192 2984
2985/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1853 2987
1854static void noinline 2988static void noinline
1855infy_add (EV_P_ ev_stat *w) 2989infy_add (EV_P_ ev_stat *w)
1856{ 2990{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2991 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 2992
1859 if (w->wd < 0) 2993 if (w->wd >= 0)
2994 {
2995 struct statfs sfs;
2996
2997 /* now local changes will be tracked by inotify, but remote changes won't */
2998 /* unless the filesystem is known to be local, we therefore still poll */
2999 /* also do poll on <2.6.25, but with normal frequency */
3000
3001 if (!fs_2625)
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003 else if (!statfs (w->path, &sfs)
3004 && (sfs.f_type == 0x1373 /* devfs */
3005 || sfs.f_type == 0xEF53 /* ext2/3 */
3006 || sfs.f_type == 0x3153464a /* jfs */
3007 || sfs.f_type == 0x52654973 /* reiser3 */
3008 || sfs.f_type == 0x01021994 /* tempfs */
3009 || sfs.f_type == 0x58465342 /* xfs */))
3010 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011 else
3012 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1860 { 3013 }
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3014 else
3015 {
3016 /* can't use inotify, continue to stat */
3017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1862 3018
1863 /* monitor some parent directory for speedup hints */ 3019 /* if path is not there, monitor some parent directory for speedup hints */
3020 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3021 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3022 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 3023 {
1866 char path [4096]; 3024 char path [4096];
1867 strcpy (path, w->path); 3025 strcpy (path, w->path);
1868 3026
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3029 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3030 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 3031
1874 char *pend = strrchr (path, '/'); 3032 char *pend = strrchr (path, '/');
1875 3033
1876 if (!pend) 3034 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 3035 break;
1878 3036
1879 *pend = 0; 3037 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 3038 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 3039 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3040 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 3041 }
1884 } 3042 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 3043
1888 if (w->wd >= 0) 3044 if (w->wd >= 0)
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3045 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046
3047 /* now re-arm timer, if required */
3048 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049 ev_timer_again (EV_A_ &w->timer);
3050 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1890} 3051}
1891 3052
1892static void noinline 3053static void noinline
1893infy_del (EV_P_ ev_stat *w) 3054infy_del (EV_P_ ev_stat *w)
1894{ 3055{
1897 3058
1898 if (wd < 0) 3059 if (wd < 0)
1899 return; 3060 return;
1900 3061
1901 w->wd = -2; 3062 w->wd = -2;
1902 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3063 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1903 wlist_del (&fs_hash [slot].head, (WL)w); 3064 wlist_del (&fs_hash [slot].head, (WL)w);
1904 3065
1905 /* remove this watcher, if others are watching it, they will rearm */ 3066 /* remove this watcher, if others are watching it, they will rearm */
1906 inotify_rm_watch (fs_fd, wd); 3067 inotify_rm_watch (fs_fd, wd);
1907} 3068}
1908 3069
1909static void noinline 3070static void noinline
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3071infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 3072{
1912 if (slot < 0) 3073 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 3074 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3075 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 3076 infy_wd (EV_A_ slot, wd, ev);
1916 else 3077 else
1917 { 3078 {
1918 WL w_; 3079 WL w_;
1919 3080
1920 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3081 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1921 { 3082 {
1922 ev_stat *w = (ev_stat *)w_; 3083 ev_stat *w = (ev_stat *)w_;
1923 w_ = w_->next; /* lets us remove this watcher and all before it */ 3084 w_ = w_->next; /* lets us remove this watcher and all before it */
1924 3085
1925 if (w->wd == wd || wd == -1) 3086 if (w->wd == wd || wd == -1)
1926 { 3087 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3088 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 3089 {
3090 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1929 w->wd = -1; 3091 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 3092 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 3093 }
1932 3094
1933 stat_timer_cb (EV_A_ &w->timer, 0); 3095 stat_timer_cb (EV_A_ &w->timer, 0);
1938 3100
1939static void 3101static void
1940infy_cb (EV_P_ ev_io *w, int revents) 3102infy_cb (EV_P_ ev_io *w, int revents)
1941{ 3103{
1942 char buf [EV_INOTIFY_BUFSIZE]; 3104 char buf [EV_INOTIFY_BUFSIZE];
1943 struct inotify_event *ev = (struct inotify_event *)buf;
1944 int ofs; 3105 int ofs;
1945 int len = read (fs_fd, buf, sizeof (buf)); 3106 int len = read (fs_fd, buf, sizeof (buf));
1946 3107
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3108 for (ofs = 0; ofs < len; )
3109 {
3110 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3111 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112 ofs += sizeof (struct inotify_event) + ev->len;
3113 }
1949} 3114}
1950 3115
1951void inline_size 3116inline_size void
3117ev_check_2625 (EV_P)
3118{
3119 /* kernels < 2.6.25 are borked
3120 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121 */
3122 if (ev_linux_version () < 0x020619)
3123 return;
3124
3125 fs_2625 = 1;
3126}
3127
3128inline_size int
3129infy_newfd (void)
3130{
3131#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133 if (fd >= 0)
3134 return fd;
3135#endif
3136 return inotify_init ();
3137}
3138
3139inline_size void
1952infy_init (EV_P) 3140infy_init (EV_P)
1953{ 3141{
1954 if (fs_fd != -2) 3142 if (fs_fd != -2)
1955 return; 3143 return;
1956 3144
3145 fs_fd = -1;
3146
3147 ev_check_2625 (EV_A);
3148
1957 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
1958 3150
1959 if (fs_fd >= 0) 3151 if (fs_fd >= 0)
1960 { 3152 {
3153 fd_intern (fs_fd);
1961 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3154 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1962 ev_set_priority (&fs_w, EV_MAXPRI); 3155 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
1964 } 3158 }
1965} 3159}
1966 3160
1967void inline_size 3161inline_size void
1968infy_fork (EV_P) 3162infy_fork (EV_P)
1969{ 3163{
1970 int slot; 3164 int slot;
1971 3165
1972 if (fs_fd < 0) 3166 if (fs_fd < 0)
1973 return; 3167 return;
1974 3168
3169 ev_ref (EV_A);
3170 ev_io_stop (EV_A_ &fs_w);
1975 close (fs_fd); 3171 close (fs_fd);
1976 fs_fd = inotify_init (); 3172 fs_fd = infy_newfd ();
1977 3173
3174 if (fs_fd >= 0)
3175 {
3176 fd_intern (fs_fd);
3177 ev_io_set (&fs_w, fs_fd, EV_READ);
3178 ev_io_start (EV_A_ &fs_w);
3179 ev_unref (EV_A);
3180 }
3181
1978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3182 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1979 { 3183 {
1980 WL w_ = fs_hash [slot].head; 3184 WL w_ = fs_hash [slot].head;
1981 fs_hash [slot].head = 0; 3185 fs_hash [slot].head = 0;
1982 3186
1983 while (w_) 3187 while (w_)
1988 w->wd = -1; 3192 w->wd = -1;
1989 3193
1990 if (fs_fd >= 0) 3194 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 3196 else
3197 {
3198 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1993 ev_timer_start (EV_A_ &w->timer); 3200 ev_timer_again (EV_A_ &w->timer);
3201 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202 }
1994 } 3203 }
1995
1996 } 3204 }
1997} 3205}
1998 3206
3207#endif
3208
3209#ifdef _WIN32
3210# define EV_LSTAT(p,b) _stati64 (p, b)
3211#else
3212# define EV_LSTAT(p,b) lstat (p, b)
1999#endif 3213#endif
2000 3214
2001void 3215void
2002ev_stat_stat (EV_P_ ev_stat *w) 3216ev_stat_stat (EV_P_ ev_stat *w)
2003{ 3217{
2010static void noinline 3224static void noinline
2011stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3225stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2012{ 3226{
2013 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3227 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2014 3228
2015 /* we copy this here each the time so that */ 3229 ev_statdata prev = w->attr;
2016 /* prev has the old value when the callback gets invoked */
2017 w->prev = w->attr;
2018 ev_stat_stat (EV_A_ w); 3230 ev_stat_stat (EV_A_ w);
2019 3231
2020 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3232 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2021 if ( 3233 if (
2022 w->prev.st_dev != w->attr.st_dev 3234 prev.st_dev != w->attr.st_dev
2023 || w->prev.st_ino != w->attr.st_ino 3235 || prev.st_ino != w->attr.st_ino
2024 || w->prev.st_mode != w->attr.st_mode 3236 || prev.st_mode != w->attr.st_mode
2025 || w->prev.st_nlink != w->attr.st_nlink 3237 || prev.st_nlink != w->attr.st_nlink
2026 || w->prev.st_uid != w->attr.st_uid 3238 || prev.st_uid != w->attr.st_uid
2027 || w->prev.st_gid != w->attr.st_gid 3239 || prev.st_gid != w->attr.st_gid
2028 || w->prev.st_rdev != w->attr.st_rdev 3240 || prev.st_rdev != w->attr.st_rdev
2029 || w->prev.st_size != w->attr.st_size 3241 || prev.st_size != w->attr.st_size
2030 || w->prev.st_atime != w->attr.st_atime 3242 || prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 3243 || prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 3244 || prev.st_ctime != w->attr.st_ctime
2033 ) { 3245 ) {
3246 /* we only update w->prev on actual differences */
3247 /* in case we test more often than invoke the callback, */
3248 /* to ensure that prev is always different to attr */
3249 w->prev = prev;
3250
2034 #if EV_USE_INOTIFY 3251 #if EV_USE_INOTIFY
3252 if (fs_fd >= 0)
3253 {
2035 infy_del (EV_A_ w); 3254 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 3255 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 3256 ev_stat_stat (EV_A_ w); /* avoid race... */
3257 }
2038 #endif 3258 #endif
2039 3259
2040 ev_feed_event (EV_A_ w, EV_STAT); 3260 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 3261 }
2042} 3262}
2045ev_stat_start (EV_P_ ev_stat *w) 3265ev_stat_start (EV_P_ ev_stat *w)
2046{ 3266{
2047 if (expect_false (ev_is_active (w))) 3267 if (expect_false (ev_is_active (w)))
2048 return; 3268 return;
2049 3269
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 3270 ev_stat_stat (EV_A_ w);
2055 3271
3272 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 3273 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 3274
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3275 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 3276 ev_set_priority (&w->timer, ev_priority (w));
2061 3277
2062#if EV_USE_INOTIFY 3278#if EV_USE_INOTIFY
2063 infy_init (EV_A); 3279 infy_init (EV_A);
2064 3280
2065 if (fs_fd >= 0) 3281 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 3282 infy_add (EV_A_ w);
2067 else 3283 else
2068#endif 3284#endif
3285 {
2069 ev_timer_start (EV_A_ &w->timer); 3286 ev_timer_again (EV_A_ &w->timer);
3287 ev_unref (EV_A);
3288 }
2070 3289
2071 ev_start (EV_A_ (W)w, 1); 3290 ev_start (EV_A_ (W)w, 1);
3291
3292 EV_FREQUENT_CHECK;
2072} 3293}
2073 3294
2074void 3295void
2075ev_stat_stop (EV_P_ ev_stat *w) 3296ev_stat_stop (EV_P_ ev_stat *w)
2076{ 3297{
2077 clear_pending (EV_A_ (W)w); 3298 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 3299 if (expect_false (!ev_is_active (w)))
2079 return; 3300 return;
2080 3301
3302 EV_FREQUENT_CHECK;
3303
2081#if EV_USE_INOTIFY 3304#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 3305 infy_del (EV_A_ w);
2083#endif 3306#endif
3307
3308 if (ev_is_active (&w->timer))
3309 {
3310 ev_ref (EV_A);
2084 ev_timer_stop (EV_A_ &w->timer); 3311 ev_timer_stop (EV_A_ &w->timer);
3312 }
2085 3313
2086 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2087} 3317}
2088#endif 3318#endif
2089 3319
2090#if EV_IDLE_ENABLE 3320#if EV_IDLE_ENABLE
2091void 3321void
2093{ 3323{
2094 if (expect_false (ev_is_active (w))) 3324 if (expect_false (ev_is_active (w)))
2095 return; 3325 return;
2096 3326
2097 pri_adjust (EV_A_ (W)w); 3327 pri_adjust (EV_A_ (W)w);
3328
3329 EV_FREQUENT_CHECK;
2098 3330
2099 { 3331 {
2100 int active = ++idlecnt [ABSPRI (w)]; 3332 int active = ++idlecnt [ABSPRI (w)];
2101 3333
2102 ++idleall; 3334 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 3335 ev_start (EV_A_ (W)w, active);
2104 3336
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3337 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w; 3338 idles [ABSPRI (w)][active - 1] = w;
2107 } 3339 }
3340
3341 EV_FREQUENT_CHECK;
2108} 3342}
2109 3343
2110void 3344void
2111ev_idle_stop (EV_P_ ev_idle *w) 3345ev_idle_stop (EV_P_ ev_idle *w)
2112{ 3346{
2113 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2115 return; 3349 return;
2116 3350
3351 EV_FREQUENT_CHECK;
3352
2117 { 3353 {
2118 int active = ((W)w)->active; 3354 int active = ev_active (w);
2119 3355
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3356 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3357 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 3358
2123 ev_stop (EV_A_ (W)w); 3359 ev_stop (EV_A_ (W)w);
2124 --idleall; 3360 --idleall;
2125 } 3361 }
2126}
2127#endif
2128 3362
3363 EV_FREQUENT_CHECK;
3364}
3365#endif
3366
3367#if EV_PREPARE_ENABLE
2129void 3368void
2130ev_prepare_start (EV_P_ ev_prepare *w) 3369ev_prepare_start (EV_P_ ev_prepare *w)
2131{ 3370{
2132 if (expect_false (ev_is_active (w))) 3371 if (expect_false (ev_is_active (w)))
2133 return; 3372 return;
3373
3374 EV_FREQUENT_CHECK;
2134 3375
2135 ev_start (EV_A_ (W)w, ++preparecnt); 3376 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3377 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w; 3378 prepares [preparecnt - 1] = w;
3379
3380 EV_FREQUENT_CHECK;
2138} 3381}
2139 3382
2140void 3383void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 3384ev_prepare_stop (EV_P_ ev_prepare *w)
2142{ 3385{
2143 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2145 return; 3388 return;
2146 3389
3390 EV_FREQUENT_CHECK;
3391
2147 { 3392 {
2148 int active = ((W)w)->active; 3393 int active = ev_active (w);
3394
2149 prepares [active - 1] = prepares [--preparecnt]; 3395 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 3396 ev_active (prepares [active - 1]) = active;
2151 } 3397 }
2152 3398
2153 ev_stop (EV_A_ (W)w); 3399 ev_stop (EV_A_ (W)w);
2154}
2155 3400
3401 EV_FREQUENT_CHECK;
3402}
3403#endif
3404
3405#if EV_CHECK_ENABLE
2156void 3406void
2157ev_check_start (EV_P_ ev_check *w) 3407ev_check_start (EV_P_ ev_check *w)
2158{ 3408{
2159 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
2160 return; 3410 return;
3411
3412 EV_FREQUENT_CHECK;
2161 3413
2162 ev_start (EV_A_ (W)w, ++checkcnt); 3414 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3415 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w; 3416 checks [checkcnt - 1] = w;
3417
3418 EV_FREQUENT_CHECK;
2165} 3419}
2166 3420
2167void 3421void
2168ev_check_stop (EV_P_ ev_check *w) 3422ev_check_stop (EV_P_ ev_check *w)
2169{ 3423{
2170 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2172 return; 3426 return;
2173 3427
3428 EV_FREQUENT_CHECK;
3429
2174 { 3430 {
2175 int active = ((W)w)->active; 3431 int active = ev_active (w);
3432
2176 checks [active - 1] = checks [--checkcnt]; 3433 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 3434 ev_active (checks [active - 1]) = active;
2178 } 3435 }
2179 3436
2180 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2181} 3440}
3441#endif
2182 3442
2183#if EV_EMBED_ENABLE 3443#if EV_EMBED_ENABLE
2184void noinline 3444void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w) 3445ev_embed_sweep (EV_P_ ev_embed *w)
2186{ 3446{
2187 ev_loop (w->other, EVLOOP_NONBLOCK); 3447 ev_run (w->other, EVRUN_NOWAIT);
2188} 3448}
2189 3449
2190static void 3450static void
2191embed_io_cb (EV_P_ ev_io *io, int revents) 3451embed_io_cb (EV_P_ ev_io *io, int revents)
2192{ 3452{
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 3454
2195 if (ev_cb (w)) 3455 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 3457 else
2198 ev_embed_sweep (loop, w); 3458 ev_run (w->other, EVRUN_NOWAIT);
2199} 3459}
2200 3460
2201static void 3461static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 3463{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 3465
2206 fd_reify (w->other); 3466 {
3467 EV_P = w->other;
3468
3469 while (fdchangecnt)
3470 {
3471 fd_reify (EV_A);
3472 ev_run (EV_A_ EVRUN_NOWAIT);
3473 }
3474 }
2207} 3475}
3476
3477static void
3478embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479{
3480 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481
3482 ev_embed_stop (EV_A_ w);
3483
3484 {
3485 EV_P = w->other;
3486
3487 ev_loop_fork (EV_A);
3488 ev_run (EV_A_ EVRUN_NOWAIT);
3489 }
3490
3491 ev_embed_start (EV_A_ w);
3492}
3493
3494#if 0
3495static void
3496embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3497{
3498 ev_idle_stop (EV_A_ idle);
3499}
3500#endif
2208 3501
2209void 3502void
2210ev_embed_start (EV_P_ ev_embed *w) 3503ev_embed_start (EV_P_ ev_embed *w)
2211{ 3504{
2212 if (expect_false (ev_is_active (w))) 3505 if (expect_false (ev_is_active (w)))
2213 return; 3506 return;
2214 3507
2215 { 3508 {
2216 struct ev_loop *loop = w->other; 3509 EV_P = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3510 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3511 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 3512 }
3513
3514 EV_FREQUENT_CHECK;
2220 3515
2221 ev_set_priority (&w->io, ev_priority (w)); 3516 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 3517 ev_io_start (EV_A_ &w->io);
2223 3518
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 3519 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 3520 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 3521 ev_prepare_start (EV_A_ &w->prepare);
2227 3522
3523 ev_fork_init (&w->fork, embed_fork_cb);
3524 ev_fork_start (EV_A_ &w->fork);
3525
3526 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3527
2228 ev_start (EV_A_ (W)w, 1); 3528 ev_start (EV_A_ (W)w, 1);
3529
3530 EV_FREQUENT_CHECK;
2229} 3531}
2230 3532
2231void 3533void
2232ev_embed_stop (EV_P_ ev_embed *w) 3534ev_embed_stop (EV_P_ ev_embed *w)
2233{ 3535{
2234 clear_pending (EV_A_ (W)w); 3536 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3537 if (expect_false (!ev_is_active (w)))
2236 return; 3538 return;
2237 3539
3540 EV_FREQUENT_CHECK;
3541
2238 ev_io_stop (EV_A_ &w->io); 3542 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 3543 ev_prepare_stop (EV_A_ &w->prepare);
3544 ev_fork_stop (EV_A_ &w->fork);
2240 3545
2241 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
2242} 3549}
2243#endif 3550#endif
2244 3551
2245#if EV_FORK_ENABLE 3552#if EV_FORK_ENABLE
2246void 3553void
2247ev_fork_start (EV_P_ ev_fork *w) 3554ev_fork_start (EV_P_ ev_fork *w)
2248{ 3555{
2249 if (expect_false (ev_is_active (w))) 3556 if (expect_false (ev_is_active (w)))
2250 return; 3557 return;
3558
3559 EV_FREQUENT_CHECK;
2251 3560
2252 ev_start (EV_A_ (W)w, ++forkcnt); 3561 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3562 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2254 forks [forkcnt - 1] = w; 3563 forks [forkcnt - 1] = w;
3564
3565 EV_FREQUENT_CHECK;
2255} 3566}
2256 3567
2257void 3568void
2258ev_fork_stop (EV_P_ ev_fork *w) 3569ev_fork_stop (EV_P_ ev_fork *w)
2259{ 3570{
2260 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
2262 return; 3573 return;
2263 3574
3575 EV_FREQUENT_CHECK;
3576
2264 { 3577 {
2265 int active = ((W)w)->active; 3578 int active = ev_active (w);
3579
2266 forks [active - 1] = forks [--forkcnt]; 3580 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 3581 ev_active (forks [active - 1]) = active;
2268 } 3582 }
2269 3583
2270 ev_stop (EV_A_ (W)w); 3584 ev_stop (EV_A_ (W)w);
3585
3586 EV_FREQUENT_CHECK;
3587}
3588#endif
3589
3590#if EV_CLEANUP_ENABLE
3591void
3592ev_cleanup_start (EV_P_ ev_cleanup *w)
3593{
3594 if (expect_false (ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 ev_start (EV_A_ (W)w, ++cleanupcnt);
3600 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601 cleanups [cleanupcnt - 1] = w;
3602
3603 /* cleanup watchers should never keep a refcount on the loop */
3604 ev_unref (EV_A);
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610{
3611 clear_pending (EV_A_ (W)w);
3612 if (expect_false (!ev_is_active (w)))
3613 return;
3614
3615 EV_FREQUENT_CHECK;
3616 ev_ref (EV_A);
3617
3618 {
3619 int active = ev_active (w);
3620
3621 cleanups [active - 1] = cleanups [--cleanupcnt];
3622 ev_active (cleanups [active - 1]) = active;
3623 }
3624
3625 ev_stop (EV_A_ (W)w);
3626
3627 EV_FREQUENT_CHECK;
3628}
3629#endif
3630
3631#if EV_ASYNC_ENABLE
3632void
3633ev_async_start (EV_P_ ev_async *w)
3634{
3635 if (expect_false (ev_is_active (w)))
3636 return;
3637
3638 w->sent = 0;
3639
3640 evpipe_init (EV_A);
3641
3642 EV_FREQUENT_CHECK;
3643
3644 ev_start (EV_A_ (W)w, ++asynccnt);
3645 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3646 asyncs [asynccnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651void
3652ev_async_stop (EV_P_ ev_async *w)
3653{
3654 clear_pending (EV_A_ (W)w);
3655 if (expect_false (!ev_is_active (w)))
3656 return;
3657
3658 EV_FREQUENT_CHECK;
3659
3660 {
3661 int active = ev_active (w);
3662
3663 asyncs [active - 1] = asyncs [--asynccnt];
3664 ev_active (asyncs [active - 1]) = active;
3665 }
3666
3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
3670}
3671
3672void
3673ev_async_send (EV_P_ ev_async *w)
3674{
3675 w->sent = 1;
3676 evpipe_write (EV_A_ &async_pending);
2271} 3677}
2272#endif 3678#endif
2273 3679
2274/*****************************************************************************/ 3680/*****************************************************************************/
2275 3681
2285once_cb (EV_P_ struct ev_once *once, int revents) 3691once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 3692{
2287 void (*cb)(int revents, void *arg) = once->cb; 3693 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 3694 void *arg = once->arg;
2289 3695
2290 ev_io_stop (EV_A_ &once->io); 3696 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 3697 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 3698 ev_free (once);
2293 3699
2294 cb (revents, arg); 3700 cb (revents, arg);
2295} 3701}
2296 3702
2297static void 3703static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 3704once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 3705{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3706 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707
3708 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 3709}
2302 3710
2303static void 3711static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 3712once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 3713{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3714 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715
3716 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2307} 3717}
2308 3718
2309void 3719void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3720ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2311{ 3721{
2312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3722 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2313 3723
2314 if (expect_false (!once)) 3724 if (expect_false (!once))
2315 { 3725 {
2316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3726 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2317 return; 3727 return;
2318 } 3728 }
2319 3729
2320 once->cb = cb; 3730 once->cb = cb;
2321 once->arg = arg; 3731 once->arg = arg;
2333 ev_timer_set (&once->to, timeout, 0.); 3743 ev_timer_set (&once->to, timeout, 0.);
2334 ev_timer_start (EV_A_ &once->to); 3744 ev_timer_start (EV_A_ &once->to);
2335 } 3745 }
2336} 3746}
2337 3747
3748/*****************************************************************************/
3749
3750#if EV_WALK_ENABLE
3751void
3752ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753{
3754 int i, j;
3755 ev_watcher_list *wl, *wn;
3756
3757 if (types & (EV_IO | EV_EMBED))
3758 for (i = 0; i < anfdmax; ++i)
3759 for (wl = anfds [i].head; wl; )
3760 {
3761 wn = wl->next;
3762
3763#if EV_EMBED_ENABLE
3764 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765 {
3766 if (types & EV_EMBED)
3767 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768 }
3769 else
3770#endif
3771#if EV_USE_INOTIFY
3772 if (ev_cb ((ev_io *)wl) == infy_cb)
3773 ;
3774 else
3775#endif
3776 if ((ev_io *)wl != &pipe_w)
3777 if (types & EV_IO)
3778 cb (EV_A_ EV_IO, wl);
3779
3780 wl = wn;
3781 }
3782
3783 if (types & (EV_TIMER | EV_STAT))
3784 for (i = timercnt + HEAP0; i-- > HEAP0; )
3785#if EV_STAT_ENABLE
3786 /*TODO: timer is not always active*/
3787 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3788 {
3789 if (types & EV_STAT)
3790 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3791 }
3792 else
3793#endif
3794 if (types & EV_TIMER)
3795 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3796
3797#if EV_PERIODIC_ENABLE
3798 if (types & EV_PERIODIC)
3799 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801#endif
3802
3803#if EV_IDLE_ENABLE
3804 if (types & EV_IDLE)
3805 for (j = NUMPRI; i--; )
3806 for (i = idlecnt [j]; i--; )
3807 cb (EV_A_ EV_IDLE, idles [j][i]);
3808#endif
3809
3810#if EV_FORK_ENABLE
3811 if (types & EV_FORK)
3812 for (i = forkcnt; i--; )
3813 if (ev_cb (forks [i]) != embed_fork_cb)
3814 cb (EV_A_ EV_FORK, forks [i]);
3815#endif
3816
3817#if EV_ASYNC_ENABLE
3818 if (types & EV_ASYNC)
3819 for (i = asynccnt; i--; )
3820 cb (EV_A_ EV_ASYNC, asyncs [i]);
3821#endif
3822
3823#if EV_PREPARE_ENABLE
3824 if (types & EV_PREPARE)
3825 for (i = preparecnt; i--; )
3826# if EV_EMBED_ENABLE
3827 if (ev_cb (prepares [i]) != embed_prepare_cb)
3828# endif
3829 cb (EV_A_ EV_PREPARE, prepares [i]);
3830#endif
3831
3832#if EV_CHECK_ENABLE
3833 if (types & EV_CHECK)
3834 for (i = checkcnt; i--; )
3835 cb (EV_A_ EV_CHECK, checks [i]);
3836#endif
3837
3838#if EV_SIGNAL_ENABLE
3839 if (types & EV_SIGNAL)
3840 for (i = 0; i < EV_NSIG - 1; ++i)
3841 for (wl = signals [i].head; wl; )
3842 {
3843 wn = wl->next;
3844 cb (EV_A_ EV_SIGNAL, wl);
3845 wl = wn;
3846 }
3847#endif
3848
3849#if EV_CHILD_ENABLE
3850 if (types & EV_CHILD)
3851 for (i = (EV_PID_HASHSIZE); i--; )
3852 for (wl = childs [i]; wl; )
3853 {
3854 wn = wl->next;
3855 cb (EV_A_ EV_CHILD, wl);
3856 wl = wn;
3857 }
3858#endif
3859/* EV_STAT 0x00001000 /* stat data changed */
3860/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861}
3862#endif
3863
2338#if EV_MULTIPLICITY 3864#if EV_MULTIPLICITY
2339 #include "ev_wrap.h" 3865 #include "ev_wrap.h"
2340#endif 3866#endif
2341 3867
2342#ifdef __cplusplus 3868EV_CPP(})
2343}
2344#endif
2345 3869

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines