ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.114 by root, Mon Nov 12 20:03:39 2007 UTC vs.
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
62# endif 113# endif
63 114
64#endif 115#endif
65 116
66#include <math.h> 117#include <math.h>
75#include <sys/types.h> 126#include <sys/types.h>
76#include <time.h> 127#include <time.h>
77 128
78#include <signal.h> 129#include <signal.h>
79 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
80#ifndef _WIN32 137#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 138# include <sys/time.h>
83# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
84#else 141#else
85# define WIN32_LEAN_AND_MEAN 142# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 143# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 144# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 145# define EV_SELECT_IS_WINSOCKET 1
90#endif 147#endif
91 148
92/**/ 149/**/
93 150
94#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
96#endif 161#endif
97 162
98#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 165#endif
102 166
103#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
104# ifdef _WIN32 168# ifdef _WIN32
105# define EV_USE_POLL 0 169# define EV_USE_POLL 0
114 178
115#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
117#endif 181#endif
118 182
119#ifndef EV_USE_REALTIME 183#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 184# define EV_USE_PORT 0
185#endif
186
187#ifndef EV_USE_INOTIFY
188# define EV_USE_INOTIFY 0
189#endif
190
191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
194# else
195# define EV_PID_HASHSIZE 16
196# endif
197#endif
198
199#ifndef EV_INOTIFY_HASHSIZE
200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
121#endif 205#endif
122 206
123/**/ 207/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
130 208
131#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 210# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 211# define EV_USE_MONOTONIC 0
134#endif 212#endif
136#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
139#endif 217#endif
140 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
141#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 235# include <winsock.h>
143#endif 236#endif
144 237
145/**/ 238/**/
146 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 253
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 254#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 256# define noinline __attribute__ ((noinline))
161#else 257#else
162# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
163# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
164#endif 263#endif
165 264
166#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
168 274
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 277
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
174 280
175typedef struct ev_watcher *W; 281typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
178 284
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
180 286
181#ifdef _WIN32 287#ifdef _WIN32
182# include "ev_win32.c" 288# include "ev_win32.c"
184 290
185/*****************************************************************************/ 291/*****************************************************************************/
186 292
187static void (*syserr_cb)(const char *msg); 293static void (*syserr_cb)(const char *msg);
188 294
295void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 296ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 297{
191 syserr_cb = cb; 298 syserr_cb = cb;
192} 299}
193 300
194static void 301static void noinline
195syserr (const char *msg) 302syserr (const char *msg)
196{ 303{
197 if (!msg) 304 if (!msg)
198 msg = "(libev) system error"; 305 msg = "(libev) system error";
199 306
206 } 313 }
207} 314}
208 315
209static void *(*alloc)(void *ptr, long size); 316static void *(*alloc)(void *ptr, long size);
210 317
318void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 319ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 320{
213 alloc = cb; 321 alloc = cb;
214} 322}
215 323
216static void * 324inline_speed void *
217ev_realloc (void *ptr, long size) 325ev_realloc (void *ptr, long size)
218{ 326{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220 328
221 if (!ptr && size) 329 if (!ptr && size)
245typedef struct 353typedef struct
246{ 354{
247 W w; 355 W w;
248 int events; 356 int events;
249} ANPENDING; 357} ANPENDING;
358
359#if EV_USE_INOTIFY
360typedef struct
361{
362 WL head;
363} ANFS;
364#endif
250 365
251#if EV_MULTIPLICITY 366#if EV_MULTIPLICITY
252 367
253 struct ev_loop 368 struct ev_loop
254 { 369 {
258 #include "ev_vars.h" 373 #include "ev_vars.h"
259 #undef VAR 374 #undef VAR
260 }; 375 };
261 #include "ev_wrap.h" 376 #include "ev_wrap.h"
262 377
263 struct ev_loop default_loop_struct; 378 static struct ev_loop default_loop_struct;
264 static struct ev_loop *default_loop; 379 struct ev_loop *ev_default_loop_ptr;
265 380
266#else 381#else
267 382
268 ev_tstamp ev_rt_now; 383 ev_tstamp ev_rt_now;
269 #define VAR(name,decl) static decl; 384 #define VAR(name,decl) static decl;
270 #include "ev_vars.h" 385 #include "ev_vars.h"
271 #undef VAR 386 #undef VAR
272 387
273 static int default_loop; 388 static int ev_default_loop_ptr;
274 389
275#endif 390#endif
276 391
277/*****************************************************************************/ 392/*****************************************************************************/
278 393
288 gettimeofday (&tv, 0); 403 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 404 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif 405#endif
291} 406}
292 407
293inline ev_tstamp 408ev_tstamp inline_size
294get_clock (void) 409get_clock (void)
295{ 410{
296#if EV_USE_MONOTONIC 411#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 412 if (expect_true (have_monotonic))
298 { 413 {
311{ 426{
312 return ev_rt_now; 427 return ev_rt_now;
313} 428}
314#endif 429#endif
315 430
316#define array_roundsize(type,n) (((n) | 4) & ~3) 431void
432ev_sleep (ev_tstamp delay)
433{
434 if (delay > 0.)
435 {
436#if EV_USE_NANOSLEEP
437 struct timespec ts;
438
439 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0);
443#elif defined(_WIN32)
444 Sleep (delay * 1e3);
445#else
446 struct timeval tv;
447
448 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450
451 select (0, 0, 0, 0, &tv);
452#endif
453 }
454}
455
456/*****************************************************************************/
457
458int inline_size
459array_nextsize (int elem, int cur, int cnt)
460{
461 int ncur = cur + 1;
462
463 do
464 ncur <<= 1;
465 while (cnt > ncur);
466
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096)
469 {
470 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
472 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem;
474 }
475
476 return ncur;
477}
478
479static noinline void *
480array_realloc (int elem, void *base, int *cur, int cnt)
481{
482 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur);
484}
317 485
318#define array_needsize(type,base,cur,cnt,init) \ 486#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 487 if (expect_false ((cnt) > (cur))) \
320 { \ 488 { \
321 int newcnt = cur; \ 489 int ocur_ = (cur); \
322 do \ 490 (base) = (type *)array_realloc \
323 { \ 491 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 492 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 493 }
332 494
495#if 0
333#define array_slim(type,stem) \ 496#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 497 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 498 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 499 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 500 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 502 }
503#endif
340 504
341#define array_free(stem, idx) \ 505#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
343 507
344/*****************************************************************************/ 508/*****************************************************************************/
345 509
346static void 510void noinline
511ev_feed_event (EV_P_ void *w, int revents)
512{
513 W w_ = (W)w;
514 int pri = ABSPRI (w_);
515
516 if (expect_false (w_->pending))
517 pendings [pri][w_->pending - 1].events |= revents;
518 else
519 {
520 w_->pending = ++pendingcnt [pri];
521 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
522 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents;
524 }
525}
526
527void inline_speed
528queue_events (EV_P_ W *events, int eventcnt, int type)
529{
530 int i;
531
532 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type);
534}
535
536/*****************************************************************************/
537
538void inline_size
347anfds_init (ANFD *base, int count) 539anfds_init (ANFD *base, int count)
348{ 540{
349 while (count--) 541 while (count--)
350 { 542 {
351 base->head = 0; 543 base->head = 0;
354 546
355 ++base; 547 ++base;
356 } 548 }
357} 549}
358 550
359void 551void inline_speed
360ev_feed_event (EV_P_ void *w, int revents)
361{
362 W w_ = (W)w;
363
364 if (w_->pending)
365 {
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
367 return;
368 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374}
375
376static void
377queue_events (EV_P_ W *events, int eventcnt, int type)
378{
379 int i;
380
381 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type);
383}
384
385inline void
386fd_event (EV_P_ int fd, int revents) 552fd_event (EV_P_ int fd, int revents)
387{ 553{
388 ANFD *anfd = anfds + fd; 554 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 555 ev_io *w;
390 556
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 558 {
393 int ev = w->events & revents; 559 int ev = w->events & revents;
394 560
395 if (ev) 561 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 562 ev_feed_event (EV_A_ (W)w, ev);
398} 564}
399 565
400void 566void
401ev_feed_fd_event (EV_P_ int fd, int revents) 567ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 568{
569 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 570 fd_event (EV_A_ fd, revents);
404} 571}
405 572
406/*****************************************************************************/ 573void inline_size
407
408static void
409fd_reify (EV_P) 574fd_reify (EV_P)
410{ 575{
411 int i; 576 int i;
412 577
413 for (i = 0; i < fdchangecnt; ++i) 578 for (i = 0; i < fdchangecnt; ++i)
414 { 579 {
415 int fd = fdchanges [i]; 580 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 581 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 582 ev_io *w;
418 583
419 int events = 0; 584 unsigned char events = 0;
420 585
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 587 events |= (unsigned char)w->events;
423 588
424#if EV_SELECT_IS_WINSOCKET 589#if EV_SELECT_IS_WINSOCKET
425 if (events) 590 if (events)
426 { 591 {
427 unsigned long argp; 592 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd); 593 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 } 595 }
431#endif 596#endif
432 597
598 {
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
433 anfd->reify = 0; 602 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events);
607 }
437 } 608 }
438 609
439 fdchangecnt = 0; 610 fdchangecnt = 0;
440} 611}
441 612
442static void 613void inline_size
443fd_change (EV_P_ int fd) 614fd_change (EV_P_ int fd, int flags)
444{ 615{
445 if (anfds [fd].reify) 616 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 617 anfds [fd].reify |= flags;
449 618
619 if (expect_true (!reify))
620 {
450 ++fdchangecnt; 621 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 623 fdchanges [fdchangecnt - 1] = fd;
624 }
453} 625}
454 626
455static void 627void inline_speed
456fd_kill (EV_P_ int fd) 628fd_kill (EV_P_ int fd)
457{ 629{
458 struct ev_io *w; 630 ev_io *w;
459 631
460 while ((w = (struct ev_io *)anfds [fd].head)) 632 while ((w = (ev_io *)anfds [fd].head))
461 { 633 {
462 ev_io_stop (EV_A_ w); 634 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 636 }
465} 637}
466 638
467static int 639int inline_size
468fd_valid (int fd) 640fd_valid (int fd)
469{ 641{
470#ifdef _WIN32 642#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 643 return _get_osfhandle (fd) != -1;
472#else 644#else
473 return fcntl (fd, F_GETFD) != -1; 645 return fcntl (fd, F_GETFD) != -1;
474#endif 646#endif
475} 647}
476 648
477/* called on EBADF to verify fds */ 649/* called on EBADF to verify fds */
478static void 650static void noinline
479fd_ebadf (EV_P) 651fd_ebadf (EV_P)
480{ 652{
481 int fd; 653 int fd;
482 654
483 for (fd = 0; fd < anfdmax; ++fd) 655 for (fd = 0; fd < anfdmax; ++fd)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 657 if (!fd_valid (fd) == -1 && errno == EBADF)
486 fd_kill (EV_A_ fd); 658 fd_kill (EV_A_ fd);
487} 659}
488 660
489/* called on ENOMEM in select/poll to kill some fds and retry */ 661/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 662static void noinline
491fd_enomem (EV_P) 663fd_enomem (EV_P)
492{ 664{
493 int fd; 665 int fd;
494 666
495 for (fd = anfdmax; fd--; ) 667 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
499 return; 671 return;
500 } 672 }
501} 673}
502 674
503/* usually called after fork if method needs to re-arm all fds from scratch */ 675/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 676static void noinline
505fd_rearm_all (EV_P) 677fd_rearm_all (EV_P)
506{ 678{
507 int fd; 679 int fd;
508 680
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 681 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 682 if (anfds [fd].events)
512 { 683 {
513 anfds [fd].events = 0; 684 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 685 fd_change (EV_A_ fd, EV_IOFDSET | 1);
515 } 686 }
516} 687}
517 688
518/*****************************************************************************/ 689/*****************************************************************************/
519 690
520static void 691void inline_speed
521upheap (WT *heap, int k) 692upheap (WT *heap, int k)
522{ 693{
523 WT w = heap [k]; 694 WT w = heap [k];
524 695
525 while (k && heap [k >> 1]->at > w->at) 696 while (k)
526 { 697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
527 heap [k] = heap [k >> 1]; 703 heap [k] = heap [p];
528 ((W)heap [k])->active = k + 1; 704 ((W)heap [k])->active = k + 1;
529 k >>= 1; 705 k = p;
530 } 706 }
531 707
532 heap [k] = w; 708 heap [k] = w;
533 ((W)heap [k])->active = k + 1; 709 ((W)heap [k])->active = k + 1;
534
535} 710}
536 711
537static void 712void inline_speed
538downheap (WT *heap, int N, int k) 713downheap (WT *heap, int N, int k)
539{ 714{
540 WT w = heap [k]; 715 WT w = heap [k];
541 716
542 while (k < (N >> 1)) 717 for (;;)
543 { 718 {
544 int j = k << 1; 719 int c = (k << 1) + 1;
545 720
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 721 if (c >= N)
547 ++j;
548
549 if (w->at <= heap [j]->at)
550 break; 722 break;
551 723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
552 heap [k] = heap [j]; 730 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 731 ((W)heap [k])->active = k + 1;
732
554 k = j; 733 k = c;
555 } 734 }
556 735
557 heap [k] = w; 736 heap [k] = w;
558 ((W)heap [k])->active = k + 1; 737 ((W)heap [k])->active = k + 1;
559} 738}
560 739
561inline void 740void inline_size
562adjustheap (WT *heap, int N, int k) 741adjustheap (WT *heap, int N, int k)
563{ 742{
564 upheap (heap, k); 743 upheap (heap, k);
565 downheap (heap, N, k); 744 downheap (heap, N, k);
566} 745}
576static ANSIG *signals; 755static ANSIG *signals;
577static int signalmax; 756static int signalmax;
578 757
579static int sigpipe [2]; 758static int sigpipe [2];
580static sig_atomic_t volatile gotsig; 759static sig_atomic_t volatile gotsig;
581static struct ev_io sigev; 760static ev_io sigev;
582 761
583static void 762void inline_size
584signals_init (ANSIG *base, int count) 763signals_init (ANSIG *base, int count)
585{ 764{
586 while (count--) 765 while (count--)
587 { 766 {
588 base->head = 0; 767 base->head = 0;
608 write (sigpipe [1], &signum, 1); 787 write (sigpipe [1], &signum, 1);
609 errno = old_errno; 788 errno = old_errno;
610 } 789 }
611} 790}
612 791
613void 792void noinline
614ev_feed_signal_event (EV_P_ int signum) 793ev_feed_signal_event (EV_P_ int signum)
615{ 794{
616 WL w; 795 WL w;
617 796
618#if EV_MULTIPLICITY 797#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif 799#endif
621 800
622 --signum; 801 --signum;
623 802
624 if (signum < 0 || signum >= signalmax) 803 if (signum < 0 || signum >= signalmax)
629 for (w = signals [signum].head; w; w = w->next) 808 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631} 810}
632 811
633static void 812static void
634sigcb (EV_P_ struct ev_io *iow, int revents) 813sigcb (EV_P_ ev_io *iow, int revents)
635{ 814{
636 int signum; 815 int signum;
637 816
638 read (sigpipe [0], &revents, 1); 817 read (sigpipe [0], &revents, 1);
639 gotsig = 0; 818 gotsig = 0;
641 for (signum = signalmax; signum--; ) 820 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig) 821 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1); 822 ev_feed_signal_event (EV_A_ signum + 1);
644} 823}
645 824
646inline void 825void inline_speed
647fd_intern (int fd) 826fd_intern (int fd)
648{ 827{
649#ifdef _WIN32 828#ifdef _WIN32
650 int arg = 1; 829 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 832 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 833 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 834#endif
656} 835}
657 836
658static void 837static void noinline
659siginit (EV_P) 838siginit (EV_P)
660{ 839{
661 fd_intern (sigpipe [0]); 840 fd_intern (sigpipe [0]);
662 fd_intern (sigpipe [1]); 841 fd_intern (sigpipe [1]);
663 842
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 ev_unref (EV_A); /* child watcher should not keep loop alive */
667} 846}
668 847
669/*****************************************************************************/ 848/*****************************************************************************/
670 849
671static struct ev_child *childs [PID_HASHSIZE]; 850static WL childs [EV_PID_HASHSIZE];
672 851
673#ifndef _WIN32 852#ifndef _WIN32
674 853
675static struct ev_signal childev; 854static ev_signal childev;
855
856void inline_speed
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
858{
859 ev_child *w;
860
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
862 if (w->pid == pid || !w->pid)
863 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
865 w->rpid = pid;
866 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 }
869}
676 870
677#ifndef WCONTINUED 871#ifndef WCONTINUED
678# define WCONTINUED 0 872# define WCONTINUED 0
679#endif 873#endif
680 874
681static void 875static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 876childcb (EV_P_ ev_signal *sw, int revents)
698{ 877{
699 int pid, status; 878 int pid, status;
700 879
880 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 881 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 882 if (!WCONTINUED
883 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return;
886
703 /* make sure we are called again until all childs have been reaped */ 887 /* make sure we are called again until all childs have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 890
706 child_reap (EV_A_ sw, pid, pid, status); 891 child_reap (EV_A_ sw, pid, pid, status);
892 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 894}
710 895
711#endif 896#endif
712 897
713/*****************************************************************************/ 898/*****************************************************************************/
714 899
900#if EV_USE_PORT
901# include "ev_port.c"
902#endif
715#if EV_USE_KQUEUE 903#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 904# include "ev_kqueue.c"
717#endif 905#endif
718#if EV_USE_EPOLL 906#if EV_USE_EPOLL
719# include "ev_epoll.c" 907# include "ev_epoll.c"
736{ 924{
737 return EV_VERSION_MINOR; 925 return EV_VERSION_MINOR;
738} 926}
739 927
740/* return true if we are running with elevated privileges and should ignore env variables */ 928/* return true if we are running with elevated privileges and should ignore env variables */
741static int 929int inline_size
742enable_secure (void) 930enable_secure (void)
743{ 931{
744#ifdef _WIN32 932#ifdef _WIN32
745 return 0; 933 return 0;
746#else 934#else
748 || getgid () != getegid (); 936 || getgid () != getegid ();
749#endif 937#endif
750} 938}
751 939
752unsigned int 940unsigned int
753ev_method (EV_P) 941ev_supported_backends (void)
754{ 942{
755 return method; 943 unsigned int flags = 0;
756}
757 944
758static void 945 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
946 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
947 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
948 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
949 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
950
951 return flags;
952}
953
954unsigned int
955ev_recommended_backends (void)
956{
957 unsigned int flags = ev_supported_backends ();
958
959#ifndef __NetBSD__
960 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE;
963#endif
964#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation
966 flags &= ~EVBACKEND_POLL;
967#endif
968
969 return flags;
970}
971
972unsigned int
973ev_embeddable_backends (void)
974{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE
977 | EVBACKEND_PORT;
978}
979
980unsigned int
981ev_backend (EV_P)
982{
983 return backend;
984}
985
986unsigned int
987ev_loop_count (EV_P)
988{
989 return loop_count;
990}
991
992void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{
995 io_blocktime = interval;
996}
997
998void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 timeout_blocktime = interval;
1002}
1003
1004static void noinline
759loop_init (EV_P_ unsigned int flags) 1005loop_init (EV_P_ unsigned int flags)
760{ 1006{
761 if (!method) 1007 if (!backend)
762 { 1008 {
763#if EV_USE_MONOTONIC 1009#if EV_USE_MONOTONIC
764 { 1010 {
765 struct timespec ts; 1011 struct timespec ts;
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
771 ev_rt_now = ev_time (); 1017 ev_rt_now = ev_time ();
772 mn_now = get_clock (); 1018 mn_now = get_clock ();
773 now_floor = mn_now; 1019 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now; 1020 rtmn_diff = ev_rt_now - mn_now;
775 1021
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024
1025 /* pid check not overridable via env */
1026#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid ();
1029#endif
1030
1031 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS"))
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1034 flags = atoi (getenv ("LIBEV_FLAGS"));
778 1035
779 if (!(flags & 0x0000ffff)) 1036 if (!(flags & 0x0000ffffUL))
780 flags |= 0x0000ffff; 1037 flags |= ev_recommended_backends ();
781 1038
782 method = 0; 1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044
1045#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif
783#if EV_USE_KQUEUE 1048#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
785#endif 1050#endif
786#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1052 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
788#endif 1053#endif
789#if EV_USE_POLL 1054#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1055 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
791#endif 1056#endif
792#if EV_USE_SELECT 1057#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
794#endif 1059#endif
795 1060
796 ev_init (&sigev, sigcb); 1061 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI); 1062 ev_set_priority (&sigev, EV_MAXPRI);
798 } 1063 }
799} 1064}
800 1065
801void 1066static void noinline
802loop_destroy (EV_P) 1067loop_destroy (EV_P)
803{ 1068{
804 int i; 1069 int i;
805 1070
1071#if EV_USE_INOTIFY
1072 if (fs_fd >= 0)
1073 close (fs_fd);
1074#endif
1075
1076 if (backend_fd >= 0)
1077 close (backend_fd);
1078
1079#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1081#endif
806#if EV_USE_KQUEUE 1082#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
808#endif 1084#endif
809#if EV_USE_EPOLL 1085#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1086 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
811#endif 1087#endif
812#if EV_USE_POLL 1088#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1089 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
814#endif 1090#endif
815#if EV_USE_SELECT 1091#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1092 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
817#endif 1093#endif
818 1094
819 for (i = NUMPRI; i--; ) 1095 for (i = NUMPRI; i--; )
1096 {
820 array_free (pending, [i]); 1097 array_free (pending, [i]);
1098#if EV_IDLE_ENABLE
1099 array_free (idle, [i]);
1100#endif
1101 }
1102
1103 ev_free (anfds); anfdmax = 0;
821 1104
822 /* have to use the microsoft-never-gets-it-right macro */ 1105 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0); 1106 array_free (fdchange, EMPTY);
824 array_free (timer, EMPTY0); 1107 array_free (timer, EMPTY);
825#if EV_PERIODICS 1108#if EV_PERIODIC_ENABLE
826 array_free (periodic, EMPTY0); 1109 array_free (periodic, EMPTY);
827#endif 1110#endif
1111#if EV_FORK_ENABLE
828 array_free (idle, EMPTY0); 1112 array_free (fork, EMPTY);
1113#endif
829 array_free (prepare, EMPTY0); 1114 array_free (prepare, EMPTY);
830 array_free (check, EMPTY0); 1115 array_free (check, EMPTY);
831 1116
832 method = 0; 1117 backend = 0;
833} 1118}
834 1119
835static void 1120void inline_size infy_fork (EV_P);
1121
1122void inline_size
836loop_fork (EV_P) 1123loop_fork (EV_P)
837{ 1124{
1125#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif
1128#if EV_USE_KQUEUE
1129 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1130#endif
838#if EV_USE_EPOLL 1131#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1132 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
840#endif 1133#endif
841#if EV_USE_KQUEUE 1134#if EV_USE_INOTIFY
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1135 infy_fork (EV_A);
843#endif 1136#endif
844 1137
845 if (ev_is_active (&sigev)) 1138 if (ev_is_active (&sigev))
846 { 1139 {
847 /* default loop */ 1140 /* default loop */
868 1161
869 memset (loop, 0, sizeof (struct ev_loop)); 1162 memset (loop, 0, sizeof (struct ev_loop));
870 1163
871 loop_init (EV_A_ flags); 1164 loop_init (EV_A_ flags);
872 1165
873 if (ev_method (EV_A)) 1166 if (ev_backend (EV_A))
874 return loop; 1167 return loop;
875 1168
876 return 0; 1169 return 0;
877} 1170}
878 1171
891 1184
892#endif 1185#endif
893 1186
894#if EV_MULTIPLICITY 1187#if EV_MULTIPLICITY
895struct ev_loop * 1188struct ev_loop *
1189ev_default_loop_init (unsigned int flags)
896#else 1190#else
897int 1191int
898#endif
899ev_default_loop (unsigned int flags) 1192ev_default_loop (unsigned int flags)
1193#endif
900{ 1194{
901 if (sigpipe [0] == sigpipe [1]) 1195 if (sigpipe [0] == sigpipe [1])
902 if (pipe (sigpipe)) 1196 if (pipe (sigpipe))
903 return 0; 1197 return 0;
904 1198
905 if (!default_loop) 1199 if (!ev_default_loop_ptr)
906 { 1200 {
907#if EV_MULTIPLICITY 1201#if EV_MULTIPLICITY
908 struct ev_loop *loop = default_loop = &default_loop_struct; 1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
909#else 1203#else
910 default_loop = 1; 1204 ev_default_loop_ptr = 1;
911#endif 1205#endif
912 1206
913 loop_init (EV_A_ flags); 1207 loop_init (EV_A_ flags);
914 1208
915 if (ev_method (EV_A)) 1209 if (ev_backend (EV_A))
916 { 1210 {
917 siginit (EV_A); 1211 siginit (EV_A);
918 1212
919#ifndef _WIN32 1213#ifndef _WIN32
920 ev_signal_init (&childev, childcb, SIGCHLD); 1214 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_signal_start (EV_A_ &childev); 1216 ev_signal_start (EV_A_ &childev);
923 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1217 ev_unref (EV_A); /* child watcher should not keep loop alive */
924#endif 1218#endif
925 } 1219 }
926 else 1220 else
927 default_loop = 0; 1221 ev_default_loop_ptr = 0;
928 } 1222 }
929 1223
930 return default_loop; 1224 return ev_default_loop_ptr;
931} 1225}
932 1226
933void 1227void
934ev_default_destroy (void) 1228ev_default_destroy (void)
935{ 1229{
936#if EV_MULTIPLICITY 1230#if EV_MULTIPLICITY
937 struct ev_loop *loop = default_loop; 1231 struct ev_loop *loop = ev_default_loop_ptr;
938#endif 1232#endif
939 1233
940#ifndef _WIN32 1234#ifndef _WIN32
941 ev_ref (EV_A); /* child watcher */ 1235 ev_ref (EV_A); /* child watcher */
942 ev_signal_stop (EV_A_ &childev); 1236 ev_signal_stop (EV_A_ &childev);
953 1247
954void 1248void
955ev_default_fork (void) 1249ev_default_fork (void)
956{ 1250{
957#if EV_MULTIPLICITY 1251#if EV_MULTIPLICITY
958 struct ev_loop *loop = default_loop; 1252 struct ev_loop *loop = ev_default_loop_ptr;
959#endif 1253#endif
960 1254
961 if (method) 1255 if (backend)
962 postfork = 1; 1256 postfork = 1;
963} 1257}
964 1258
965/*****************************************************************************/ 1259/*****************************************************************************/
966 1260
967static int 1261void
968any_pending (EV_P) 1262ev_invoke (EV_P_ void *w, int revents)
969{ 1263{
970 int pri; 1264 EV_CB_INVOKE ((W)w, revents);
971
972 for (pri = NUMPRI; pri--; )
973 if (pendingcnt [pri])
974 return 1;
975
976 return 0;
977} 1265}
978 1266
979static void 1267void inline_speed
980call_pending (EV_P) 1268call_pending (EV_P)
981{ 1269{
982 int pri; 1270 int pri;
983 1271
984 for (pri = NUMPRI; pri--; ) 1272 for (pri = NUMPRI; pri--; )
985 while (pendingcnt [pri]) 1273 while (pendingcnt [pri])
986 { 1274 {
987 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
988 1276
989 if (p->w) 1277 if (expect_true (p->w))
990 { 1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
991 p->w->pending = 0; 1281 p->w->pending = 0;
992 EV_CB_INVOKE (p->w, p->events); 1282 EV_CB_INVOKE (p->w, p->events);
993 } 1283 }
994 } 1284 }
995} 1285}
996 1286
997static void 1287void inline_size
998timers_reify (EV_P) 1288timers_reify (EV_P)
999{ 1289{
1000 while (timercnt && ((WT)timers [0])->at <= mn_now) 1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1001 { 1291 {
1002 struct ev_timer *w = timers [0]; 1292 ev_timer *w = (ev_timer *)timers [0];
1003 1293
1004 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1005 1295
1006 /* first reschedule or stop timer */ 1296 /* first reschedule or stop timer */
1007 if (w->repeat) 1297 if (w->repeat)
1008 { 1298 {
1009 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1010 1300
1011 ((WT)w)->at += w->repeat; 1301 ((WT)w)->at += w->repeat;
1012 if (((WT)w)->at < mn_now) 1302 if (((WT)w)->at < mn_now)
1013 ((WT)w)->at = mn_now; 1303 ((WT)w)->at = mn_now;
1014 1304
1015 downheap ((WT *)timers, timercnt, 0); 1305 downheap (timers, timercnt, 0);
1016 } 1306 }
1017 else 1307 else
1018 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1019 1309
1020 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1021 } 1311 }
1022} 1312}
1023 1313
1024#if EV_PERIODICS 1314#if EV_PERIODIC_ENABLE
1025static void 1315void inline_size
1026periodics_reify (EV_P) 1316periodics_reify (EV_P)
1027{ 1317{
1028 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1029 { 1319 {
1030 struct ev_periodic *w = periodics [0]; 1320 ev_periodic *w = (ev_periodic *)periodics [0];
1031 1321
1032 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1033 1323
1034 /* first reschedule or stop timer */ 1324 /* first reschedule or stop timer */
1035 if (w->reschedule_cb) 1325 if (w->reschedule_cb)
1036 { 1326 {
1037 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1329 downheap (periodics, periodiccnt, 0);
1040 } 1330 }
1041 else if (w->interval) 1331 else if (w->interval)
1042 { 1332 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0); 1336 downheap (periodics, periodiccnt, 0);
1046 } 1337 }
1047 else 1338 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 1340
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 } 1342 }
1052} 1343}
1053 1344
1054static void 1345static void noinline
1055periodics_reschedule (EV_P) 1346periodics_reschedule (EV_P)
1056{ 1347{
1057 int i; 1348 int i;
1058 1349
1059 /* adjust periodics after time jump */ 1350 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i) 1351 for (i = 0; i < periodiccnt; ++i)
1061 { 1352 {
1062 struct ev_periodic *w = periodics [i]; 1353 ev_periodic *w = (ev_periodic *)periodics [i];
1063 1354
1064 if (w->reschedule_cb) 1355 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval) 1357 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1068 } 1359 }
1069 1360
1070 /* now rebuild the heap */ 1361 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; ) 1362 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i); 1363 downheap (periodics, periodiccnt, i);
1073} 1364}
1074#endif 1365#endif
1075 1366
1076inline int 1367#if EV_IDLE_ENABLE
1077time_update_monotonic (EV_P) 1368void inline_size
1369idle_reify (EV_P)
1078{ 1370{
1371 if (expect_false (idleall))
1372 {
1373 int pri;
1374
1375 for (pri = NUMPRI; pri--; )
1376 {
1377 if (pendingcnt [pri])
1378 break;
1379
1380 if (idlecnt [pri])
1381 {
1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1383 break;
1384 }
1385 }
1386 }
1387}
1388#endif
1389
1390void inline_speed
1391time_update (EV_P_ ev_tstamp max_block)
1392{
1393 int i;
1394
1395#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic))
1397 {
1398 ev_tstamp odiff = rtmn_diff;
1399
1079 mn_now = get_clock (); 1400 mn_now = get_clock ();
1080 1401
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1403 /* interpolate in the meantime */
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1404 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 { 1405 {
1083 ev_rt_now = rtmn_diff + mn_now; 1406 ev_rt_now = rtmn_diff + mn_now;
1084 return 0; 1407 return;
1085 } 1408 }
1086 else 1409
1087 {
1088 now_floor = mn_now; 1410 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 1411 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 1412
1094static void 1413 /* loop a few times, before making important decisions.
1095time_update (EV_P) 1414 * on the choice of "4": one iteration isn't enough,
1096{ 1415 * in case we get preempted during the calls to
1097 int i; 1416 * ev_time and get_clock. a second call is almost guaranteed
1098 1417 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 1418 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 1419 * in the unlikely event of having been preempted here.
1101 { 1420 */
1102 if (time_update_monotonic (EV_A)) 1421 for (i = 4; --i; )
1103 { 1422 {
1104 ev_tstamp odiff = rtmn_diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 1423 rtmn_diff = ev_rt_now - mn_now;
1109 1424
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1111 return; /* all is well */ 1426 return; /* all is well */
1112 1427
1113 ev_rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 1429 mn_now = get_clock ();
1115 now_floor = mn_now; 1430 now_floor = mn_now;
1116 } 1431 }
1117 1432
1118# if EV_PERIODICS 1433# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A);
1435# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 }
1439 else
1440#endif
1441 {
1442 ev_rt_now = ev_time ();
1443
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 {
1446#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 1447 periodics_reschedule (EV_A);
1120# endif 1448#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */ 1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1137 for (i = 0; i < timercnt; ++i) 1450 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now; 1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 } 1452 }
1140 1453
1141 mn_now = ev_rt_now; 1454 mn_now = ev_rt_now;
1157static int loop_done; 1470static int loop_done;
1158 1471
1159void 1472void
1160ev_loop (EV_P_ int flags) 1473ev_loop (EV_P_ int flags)
1161{ 1474{
1162 double block;
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1164 1480
1165 do 1481 do
1166 { 1482 {
1483#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid))
1486 {
1487 curpid = getpid ();
1488 postfork = 1;
1489 }
1490#endif
1491
1492#if EV_FORK_ENABLE
1493 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork))
1495 if (forkcnt)
1496 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A);
1499 }
1500#endif
1501
1167 /* queue check watchers (and execute them) */ 1502 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 1503 if (expect_false (preparecnt))
1169 { 1504 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 1506 call_pending (EV_A);
1172 } 1507 }
1173 1508
1509 if (expect_false (!activecnt))
1510 break;
1511
1174 /* we might have forked, so reify kernel state if necessary */ 1512 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 1513 if (expect_false (postfork))
1176 loop_fork (EV_A); 1514 loop_fork (EV_A);
1177 1515
1178 /* update fd-related kernel structures */ 1516 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 1517 fd_reify (EV_A);
1180 1518
1181 /* calculate blocking time */ 1519 /* calculate blocking time */
1520 {
1521 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.;
1182 1523
1183 /* we only need this for !monotonic clock or timers, but as we basically 1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1184 always have timers, we just calculate it always */
1185#if EV_USE_MONOTONIC
1186 if (expect_true (have_monotonic))
1187 time_update_monotonic (EV_A);
1188 else
1189#endif
1190 { 1525 {
1191 ev_rt_now = ev_time (); 1526 /* update time to cancel out callback processing overhead */
1192 mn_now = ev_rt_now; 1527 time_update (EV_A_ 1e100);
1193 }
1194 1528
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 1529 waittime = MAX_BLOCKTIME;
1200 1530
1201 if (timercnt) 1531 if (timercnt)
1202 { 1532 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1204 if (block > to) block = to; 1534 if (waittime > to) waittime = to;
1205 } 1535 }
1206 1536
1207#if EV_PERIODICS 1537#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 1538 if (periodiccnt)
1209 { 1539 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1211 if (block > to) block = to; 1541 if (waittime > to) waittime = to;
1212 } 1542 }
1213#endif 1543#endif
1214 1544
1215 if (block < 0.) block = 0.; 1545 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime;
1547
1548 sleeptime = waittime - backend_fudge;
1549
1550 if (expect_true (sleeptime > io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 {
1555 ev_sleep (sleeptime);
1556 waittime -= sleeptime;
1557 }
1216 } 1558 }
1217 1559
1218 method_poll (EV_A_ block); 1560 ++loop_count;
1561 backend_poll (EV_A_ waittime);
1219 1562
1220 /* update ev_rt_now, do magic */ 1563 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 1564 time_update (EV_A_ waittime + sleeptime);
1565 }
1222 1566
1223 /* queue pending timers and reschedule them */ 1567 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 1568 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 1569#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 1570 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 1571#endif
1228 1572
1573#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 1574 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 1575 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1576#endif
1232 1577
1233 /* queue check watchers, to be executed first */ 1578 /* queue check watchers, to be executed first */
1234 if (checkcnt) 1579 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1236 1581
1237 call_pending (EV_A); 1582 call_pending (EV_A);
1583
1238 } 1584 }
1239 while (activecnt && !loop_done); 1585 while (expect_true (activecnt && !loop_done));
1240 1586
1241 if (loop_done != 2) 1587 if (loop_done == EVUNLOOP_ONE)
1242 loop_done = 0; 1588 loop_done = EVUNLOOP_CANCEL;
1243} 1589}
1244 1590
1245void 1591void
1246ev_unloop (EV_P_ int how) 1592ev_unloop (EV_P_ int how)
1247{ 1593{
1248 loop_done = how; 1594 loop_done = how;
1249} 1595}
1250 1596
1251/*****************************************************************************/ 1597/*****************************************************************************/
1252 1598
1253inline void 1599void inline_size
1254wlist_add (WL *head, WL elem) 1600wlist_add (WL *head, WL elem)
1255{ 1601{
1256 elem->next = *head; 1602 elem->next = *head;
1257 *head = elem; 1603 *head = elem;
1258} 1604}
1259 1605
1260inline void 1606void inline_size
1261wlist_del (WL *head, WL elem) 1607wlist_del (WL *head, WL elem)
1262{ 1608{
1263 while (*head) 1609 while (*head)
1264 { 1610 {
1265 if (*head == elem) 1611 if (*head == elem)
1270 1616
1271 head = &(*head)->next; 1617 head = &(*head)->next;
1272 } 1618 }
1273} 1619}
1274 1620
1275inline void 1621void inline_speed
1276ev_clear_pending (EV_P_ W w) 1622clear_pending (EV_P_ W w)
1277{ 1623{
1278 if (w->pending) 1624 if (w->pending)
1279 { 1625 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1626 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1281 w->pending = 0; 1627 w->pending = 0;
1282 } 1628 }
1283} 1629}
1284 1630
1285inline void 1631int
1632ev_clear_pending (EV_P_ void *w)
1633{
1634 W w_ = (W)w;
1635 int pending = w_->pending;
1636
1637 if (expect_true (pending))
1638 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1640 w_->pending = 0;
1641 p->w = 0;
1642 return p->events;
1643 }
1644 else
1645 return 0;
1646}
1647
1648void inline_size
1649pri_adjust (EV_P_ W w)
1650{
1651 int pri = w->priority;
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri;
1655}
1656
1657void inline_speed
1286ev_start (EV_P_ W w, int active) 1658ev_start (EV_P_ W w, int active)
1287{ 1659{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1660 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 1661 w->active = active;
1292 ev_ref (EV_A); 1662 ev_ref (EV_A);
1293} 1663}
1294 1664
1295inline void 1665void inline_size
1296ev_stop (EV_P_ W w) 1666ev_stop (EV_P_ W w)
1297{ 1667{
1298 ev_unref (EV_A); 1668 ev_unref (EV_A);
1299 w->active = 0; 1669 w->active = 0;
1300} 1670}
1301 1671
1302/*****************************************************************************/ 1672/*****************************************************************************/
1303 1673
1304void 1674void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 1675ev_io_start (EV_P_ ev_io *w)
1306{ 1676{
1307 int fd = w->fd; 1677 int fd = w->fd;
1308 1678
1309 if (ev_is_active (w)) 1679 if (expect_false (ev_is_active (w)))
1310 return; 1680 return;
1311 1681
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 1682 assert (("ev_io_start called with negative fd", fd >= 0));
1313 1683
1314 ev_start (EV_A_ (W)w, 1); 1684 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1686 wlist_add (&anfds[fd].head, (WL)w);
1317 1687
1318 fd_change (EV_A_ fd); 1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET;
1319} 1690}
1320 1691
1321void 1692void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 1693ev_io_stop (EV_P_ ev_io *w)
1323{ 1694{
1324 ev_clear_pending (EV_A_ (W)w); 1695 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 1696 if (expect_false (!ev_is_active (w)))
1326 return; 1697 return;
1327 1698
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 1700
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1701 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 1702 ev_stop (EV_A_ (W)w);
1332 1703
1333 fd_change (EV_A_ w->fd); 1704 fd_change (EV_A_ w->fd, 1);
1334} 1705}
1335 1706
1336void 1707void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 1708ev_timer_start (EV_P_ ev_timer *w)
1338{ 1709{
1339 if (ev_is_active (w)) 1710 if (expect_false (ev_is_active (w)))
1340 return; 1711 return;
1341 1712
1342 ((WT)w)->at += mn_now; 1713 ((WT)w)->at += mn_now;
1343 1714
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 1716
1346 ev_start (EV_A_ (W)w, ++timercnt); 1717 ev_start (EV_A_ (W)w, ++timercnt);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1348 timers [timercnt - 1] = w; 1719 timers [timercnt - 1] = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 1720 upheap (timers, timercnt - 1);
1350 1721
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1352} 1723}
1353 1724
1354void 1725void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 1726ev_timer_stop (EV_P_ ev_timer *w)
1356{ 1727{
1357 ev_clear_pending (EV_A_ (W)w); 1728 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 1729 if (expect_false (!ev_is_active (w)))
1359 return; 1730 return;
1360 1731
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1362 1733
1363 if (((W)w)->active < timercnt--) 1734 {
1735 int active = ((W)w)->active;
1736
1737 if (expect_true (--active < --timercnt))
1364 { 1738 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 1739 timers [active] = timers [timercnt];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1740 adjustheap (timers, timercnt, active);
1367 } 1741 }
1742 }
1368 1743
1369 ((WT)w)->at -= mn_now; 1744 ((WT)w)->at -= mn_now;
1370 1745
1371 ev_stop (EV_A_ (W)w); 1746 ev_stop (EV_A_ (W)w);
1372} 1747}
1373 1748
1374void 1749void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 1750ev_timer_again (EV_P_ ev_timer *w)
1376{ 1751{
1377 if (ev_is_active (w)) 1752 if (ev_is_active (w))
1378 { 1753 {
1379 if (w->repeat) 1754 if (w->repeat)
1380 { 1755 {
1381 ((WT)w)->at = mn_now + w->repeat; 1756 ((WT)w)->at = mn_now + w->repeat;
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1757 adjustheap (timers, timercnt, ((W)w)->active - 1);
1383 } 1758 }
1384 else 1759 else
1385 ev_timer_stop (EV_A_ w); 1760 ev_timer_stop (EV_A_ w);
1386 } 1761 }
1387 else if (w->repeat) 1762 else if (w->repeat)
1389 w->at = w->repeat; 1764 w->at = w->repeat;
1390 ev_timer_start (EV_A_ w); 1765 ev_timer_start (EV_A_ w);
1391 } 1766 }
1392} 1767}
1393 1768
1394#if EV_PERIODICS 1769#if EV_PERIODIC_ENABLE
1395void 1770void noinline
1396ev_periodic_start (EV_P_ struct ev_periodic *w) 1771ev_periodic_start (EV_P_ ev_periodic *w)
1397{ 1772{
1398 if (ev_is_active (w)) 1773 if (expect_false (ev_is_active (w)))
1399 return; 1774 return;
1400 1775
1401 if (w->reschedule_cb) 1776 if (w->reschedule_cb)
1402 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1403 else if (w->interval) 1778 else if (w->interval)
1404 { 1779 {
1405 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1406 /* this formula differs from the one in periodic_reify because we do not always round up */ 1781 /* this formula differs from the one in periodic_reify because we do not always round up */
1407 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 } 1783 }
1784 else
1785 ((WT)w)->at = w->offset;
1409 1786
1410 ev_start (EV_A_ (W)w, ++periodiccnt); 1787 ev_start (EV_A_ (W)w, ++periodiccnt);
1411 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1412 periodics [periodiccnt - 1] = w; 1789 periodics [periodiccnt - 1] = (WT)w;
1413 upheap ((WT *)periodics, periodiccnt - 1); 1790 upheap (periodics, periodiccnt - 1);
1414 1791
1415 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1416} 1793}
1417 1794
1418void 1795void noinline
1419ev_periodic_stop (EV_P_ struct ev_periodic *w) 1796ev_periodic_stop (EV_P_ ev_periodic *w)
1420{ 1797{
1421 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1422 if (!ev_is_active (w)) 1799 if (expect_false (!ev_is_active (w)))
1423 return; 1800 return;
1424 1801
1425 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1426 1803
1427 if (((W)w)->active < periodiccnt--) 1804 {
1805 int active = ((W)w)->active;
1806
1807 if (expect_true (--active < --periodiccnt))
1428 { 1808 {
1429 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1809 periodics [active] = periodics [periodiccnt];
1430 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1810 adjustheap (periodics, periodiccnt, active);
1431 } 1811 }
1812 }
1432 1813
1433 ev_stop (EV_A_ (W)w); 1814 ev_stop (EV_A_ (W)w);
1434} 1815}
1435 1816
1436void 1817void noinline
1437ev_periodic_again (EV_P_ struct ev_periodic *w) 1818ev_periodic_again (EV_P_ ev_periodic *w)
1438{ 1819{
1439 /* TODO: use adjustheap and recalculation */ 1820 /* TODO: use adjustheap and recalculation */
1440 ev_periodic_stop (EV_A_ w); 1821 ev_periodic_stop (EV_A_ w);
1441 ev_periodic_start (EV_A_ w); 1822 ev_periodic_start (EV_A_ w);
1442} 1823}
1443#endif 1824#endif
1444 1825
1445void
1446ev_idle_start (EV_P_ struct ev_idle *w)
1447{
1448 if (ev_is_active (w))
1449 return;
1450
1451 ev_start (EV_A_ (W)w, ++idlecnt);
1452 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1453 idles [idlecnt - 1] = w;
1454}
1455
1456void
1457ev_idle_stop (EV_P_ struct ev_idle *w)
1458{
1459 ev_clear_pending (EV_A_ (W)w);
1460 if (!ev_is_active (w))
1461 return;
1462
1463 idles [((W)w)->active - 1] = idles [--idlecnt];
1464 ev_stop (EV_A_ (W)w);
1465}
1466
1467void
1468ev_prepare_start (EV_P_ struct ev_prepare *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++preparecnt);
1474 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1475 prepares [preparecnt - 1] = w;
1476}
1477
1478void
1479ev_prepare_stop (EV_P_ struct ev_prepare *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_check_start (EV_P_ struct ev_check *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++checkcnt);
1496 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1497 checks [checkcnt - 1] = w;
1498}
1499
1500void
1501ev_check_stop (EV_P_ struct ev_check *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 checks [((W)w)->active - 1] = checks [--checkcnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511#ifndef SA_RESTART 1826#ifndef SA_RESTART
1512# define SA_RESTART 0 1827# define SA_RESTART 0
1513#endif 1828#endif
1514 1829
1515void 1830void noinline
1516ev_signal_start (EV_P_ struct ev_signal *w) 1831ev_signal_start (EV_P_ ev_signal *w)
1517{ 1832{
1518#if EV_MULTIPLICITY 1833#if EV_MULTIPLICITY
1519 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1520#endif 1835#endif
1521 if (ev_is_active (w)) 1836 if (expect_false (ev_is_active (w)))
1522 return; 1837 return;
1523 1838
1524 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1525 1840
1841 {
1842#ifndef _WIN32
1843 sigset_t full, prev;
1844 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1849
1850#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif
1853 }
1854
1526 ev_start (EV_A_ (W)w, 1); 1855 ev_start (EV_A_ (W)w, 1);
1527 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1528 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1529 1857
1530 if (!((WL)w)->next) 1858 if (!((WL)w)->next)
1531 { 1859 {
1532#if _WIN32 1860#if _WIN32
1533 signal (w->signum, sighandler); 1861 signal (w->signum, sighandler);
1539 sigaction (w->signum, &sa, 0); 1867 sigaction (w->signum, &sa, 0);
1540#endif 1868#endif
1541 } 1869 }
1542} 1870}
1543 1871
1544void 1872void noinline
1545ev_signal_stop (EV_P_ struct ev_signal *w) 1873ev_signal_stop (EV_P_ ev_signal *w)
1546{ 1874{
1547 ev_clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1548 if (!ev_is_active (w)) 1876 if (expect_false (!ev_is_active (w)))
1549 return; 1877 return;
1550 1878
1551 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1879 wlist_del (&signals [w->signum - 1].head, (WL)w);
1552 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1553 1881
1554 if (!signals [w->signum - 1].head) 1882 if (!signals [w->signum - 1].head)
1555 signal (w->signum, SIG_DFL); 1883 signal (w->signum, SIG_DFL);
1556} 1884}
1557 1885
1558void 1886void
1559ev_child_start (EV_P_ struct ev_child *w) 1887ev_child_start (EV_P_ ev_child *w)
1560{ 1888{
1561#if EV_MULTIPLICITY 1889#if EV_MULTIPLICITY
1562 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1563#endif 1891#endif
1564 if (ev_is_active (w)) 1892 if (expect_false (ev_is_active (w)))
1565 return; 1893 return;
1566 1894
1567 ev_start (EV_A_ (W)w, 1); 1895 ev_start (EV_A_ (W)w, 1);
1568 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1569} 1897}
1570 1898
1571void 1899void
1572ev_child_stop (EV_P_ struct ev_child *w) 1900ev_child_stop (EV_P_ ev_child *w)
1573{ 1901{
1574 ev_clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1575 if (!ev_is_active (w)) 1903 if (expect_false (!ev_is_active (w)))
1576 return; 1904 return;
1577 1905
1578 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1579 ev_stop (EV_A_ (W)w); 1907 ev_stop (EV_A_ (W)w);
1580} 1908}
1581 1909
1910#if EV_STAT_ENABLE
1911
1912# ifdef _WIN32
1913# undef lstat
1914# define lstat(a,b) _stati64 (a,b)
1915# endif
1916
1917#define DEF_STAT_INTERVAL 5.0074891
1918#define MIN_STAT_INTERVAL 0.1074891
1919
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921
1922#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192
1924
1925static void noinline
1926infy_add (EV_P_ ev_stat *w)
1927{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929
1930 if (w->wd < 0)
1931 {
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933
1934 /* monitor some parent directory for speedup hints */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 {
1937 char path [4096];
1938 strcpy (path, w->path);
1939
1940 do
1941 {
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944
1945 char *pend = strrchr (path, '/');
1946
1947 if (!pend)
1948 break; /* whoops, no '/', complain to your admin */
1949
1950 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 }
1955 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958
1959 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1961}
1962
1963static void noinline
1964infy_del (EV_P_ ev_stat *w)
1965{
1966 int slot;
1967 int wd = w->wd;
1968
1969 if (wd < 0)
1970 return;
1971
1972 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w);
1975
1976 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd);
1978}
1979
1980static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{
1983 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev);
1987 else
1988 {
1989 WL w_;
1990
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1992 {
1993 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */
1995
1996 if (w->wd == wd || wd == -1)
1997 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 {
2000 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */
2002 }
2003
2004 stat_timer_cb (EV_A_ &w->timer, 0);
2005 }
2006 }
2007 }
2008}
2009
2010static void
2011infy_cb (EV_P_ ev_io *w, int revents)
2012{
2013 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf));
2017
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2020}
2021
2022void inline_size
2023infy_init (EV_P)
2024{
2025 if (fs_fd != -2)
2026 return;
2027
2028 fs_fd = inotify_init ();
2029
2030 if (fs_fd >= 0)
2031 {
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w);
2035 }
2036}
2037
2038void inline_size
2039infy_fork (EV_P)
2040{
2041 int slot;
2042
2043 if (fs_fd < 0)
2044 return;
2045
2046 close (fs_fd);
2047 fs_fd = inotify_init ();
2048
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2050 {
2051 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0;
2053
2054 while (w_)
2055 {
2056 ev_stat *w = (ev_stat *)w_;
2057 w_ = w_->next; /* lets us add this watcher */
2058
2059 w->wd = -1;
2060
2061 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else
2064 ev_timer_start (EV_A_ &w->timer);
2065 }
2066
2067 }
2068}
2069
2070#endif
2071
2072void
2073ev_stat_stat (EV_P_ ev_stat *w)
2074{
2075 if (lstat (w->path, &w->attr) < 0)
2076 w->attr.st_nlink = 0;
2077 else if (!w->attr.st_nlink)
2078 w->attr.st_nlink = 1;
2079}
2080
2081static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085
2086 /* we copy this here each the time so that */
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w);
2090
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if (
2093 w->prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime
2104 ) {
2105 #if EV_USE_INOTIFY
2106 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */
2109 #endif
2110
2111 ev_feed_event (EV_A_ w, EV_STAT);
2112 }
2113}
2114
2115void
2116ev_stat_start (EV_P_ ev_stat *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w);
2126
2127 if (w->interval < MIN_STAT_INTERVAL)
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2131 ev_set_priority (&w->timer, ev_priority (w));
2132
2133#if EV_USE_INOTIFY
2134 infy_init (EV_A);
2135
2136 if (fs_fd >= 0)
2137 infy_add (EV_A_ w);
2138 else
2139#endif
2140 ev_timer_start (EV_A_ &w->timer);
2141
2142 ev_start (EV_A_ (W)w, 1);
2143}
2144
2145void
2146ev_stat_stop (EV_P_ ev_stat *w)
2147{
2148 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w)))
2150 return;
2151
2152#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w);
2154#endif
2155 ev_timer_stop (EV_A_ &w->timer);
2156
2157 ev_stop (EV_A_ (W)w);
2158}
2159#endif
2160
2161#if EV_IDLE_ENABLE
2162void
2163ev_idle_start (EV_P_ ev_idle *w)
2164{
2165 if (expect_false (ev_is_active (w)))
2166 return;
2167
2168 pri_adjust (EV_A_ (W)w);
2169
2170 {
2171 int active = ++idlecnt [ABSPRI (w)];
2172
2173 ++idleall;
2174 ev_start (EV_A_ (W)w, active);
2175
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w;
2178 }
2179}
2180
2181void
2182ev_idle_stop (EV_P_ ev_idle *w)
2183{
2184 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w)))
2186 return;
2187
2188 {
2189 int active = ((W)w)->active;
2190
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2193
2194 ev_stop (EV_A_ (W)w);
2195 --idleall;
2196 }
2197}
2198#endif
2199
2200void
2201ev_prepare_start (EV_P_ ev_prepare *w)
2202{
2203 if (expect_false (ev_is_active (w)))
2204 return;
2205
2206 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w;
2209}
2210
2211void
2212ev_prepare_stop (EV_P_ ev_prepare *w)
2213{
2214 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w)))
2216 return;
2217
2218 {
2219 int active = ((W)w)->active;
2220 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active;
2222 }
2223
2224 ev_stop (EV_A_ (W)w);
2225}
2226
2227void
2228ev_check_start (EV_P_ ev_check *w)
2229{
2230 if (expect_false (ev_is_active (w)))
2231 return;
2232
2233 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w;
2236}
2237
2238void
2239ev_check_stop (EV_P_ ev_check *w)
2240{
2241 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w)))
2243 return;
2244
2245 {
2246 int active = ((W)w)->active;
2247 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active;
2249 }
2250
2251 ev_stop (EV_A_ (W)w);
2252}
2253
2254#if EV_EMBED_ENABLE
2255void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w)
2257{
2258 ev_loop (w->other, EVLOOP_NONBLOCK);
2259}
2260
2261static void
2262embed_io_cb (EV_P_ ev_io *io, int revents)
2263{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265
2266 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else
2269 ev_embed_sweep (loop, w);
2270}
2271
2272static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276
2277 fd_reify (w->other);
2278}
2279
2280void
2281ev_embed_start (EV_P_ ev_embed *w)
2282{
2283 if (expect_false (ev_is_active (w)))
2284 return;
2285
2286 {
2287 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 }
2291
2292 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io);
2294
2295 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare);
2298
2299 ev_start (EV_A_ (W)w, 1);
2300}
2301
2302void
2303ev_embed_stop (EV_P_ ev_embed *w)
2304{
2305 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w)))
2307 return;
2308
2309 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare);
2311
2312 ev_stop (EV_A_ (W)w);
2313}
2314#endif
2315
2316#if EV_FORK_ENABLE
2317void
2318ev_fork_start (EV_P_ ev_fork *w)
2319{
2320 if (expect_false (ev_is_active (w)))
2321 return;
2322
2323 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w;
2326}
2327
2328void
2329ev_fork_stop (EV_P_ ev_fork *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335 {
2336 int active = ((W)w)->active;
2337 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active;
2339 }
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
1582/*****************************************************************************/ 2345/*****************************************************************************/
1583 2346
1584struct ev_once 2347struct ev_once
1585{ 2348{
1586 struct ev_io io; 2349 ev_io io;
1587 struct ev_timer to; 2350 ev_timer to;
1588 void (*cb)(int revents, void *arg); 2351 void (*cb)(int revents, void *arg);
1589 void *arg; 2352 void *arg;
1590}; 2353};
1591 2354
1592static void 2355static void
1601 2364
1602 cb (revents, arg); 2365 cb (revents, arg);
1603} 2366}
1604 2367
1605static void 2368static void
1606once_cb_io (EV_P_ struct ev_io *w, int revents) 2369once_cb_io (EV_P_ ev_io *w, int revents)
1607{ 2370{
1608 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1609} 2372}
1610 2373
1611static void 2374static void
1612once_cb_to (EV_P_ struct ev_timer *w, int revents) 2375once_cb_to (EV_P_ ev_timer *w, int revents)
1613{ 2376{
1614 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1615} 2378}
1616 2379
1617void 2380void
1618ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1619{ 2382{
1620 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1621 2384
1622 if (!once) 2385 if (expect_false (!once))
2386 {
1623 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1624 else 2388 return;
1625 { 2389 }
2390
1626 once->cb = cb; 2391 once->cb = cb;
1627 once->arg = arg; 2392 once->arg = arg;
1628 2393
1629 ev_init (&once->io, once_cb_io); 2394 ev_init (&once->io, once_cb_io);
1630 if (fd >= 0) 2395 if (fd >= 0)
1631 { 2396 {
1632 ev_io_set (&once->io, fd, events); 2397 ev_io_set (&once->io, fd, events);
1633 ev_io_start (EV_A_ &once->io); 2398 ev_io_start (EV_A_ &once->io);
1634 } 2399 }
1635 2400
1636 ev_init (&once->to, once_cb_to); 2401 ev_init (&once->to, once_cb_to);
1637 if (timeout >= 0.) 2402 if (timeout >= 0.)
1638 { 2403 {
1639 ev_timer_set (&once->to, timeout, 0.); 2404 ev_timer_set (&once->to, timeout, 0.);
1640 ev_timer_start (EV_A_ &once->to); 2405 ev_timer_start (EV_A_ &once->to);
1641 }
1642 } 2406 }
1643} 2407}
2408
2409#if EV_MULTIPLICITY
2410 #include "ev_wrap.h"
2411#endif
1644 2412
1645#ifdef __cplusplus 2413#ifdef __cplusplus
1646} 2414}
1647#endif 2415#endif
1648 2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines