ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 257#else
236# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
240#endif 263#endif
241 264
242#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
244 274
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 277
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
250 280
251typedef ev_watcher *W; 281typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
281 perror (msg); 311 perror (msg);
282 abort (); 312 abort ();
283 } 313 }
284} 314}
285 315
286static void *(*alloc)(void *ptr, size_t size) = realloc; 316static void *(*alloc)(void *ptr, long size);
287 317
288void 318void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 319ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 320{
291 alloc = cb; 321 alloc = cb;
292} 322}
293 323
294inline_speed void * 324inline_speed void *
295ev_realloc (void *ptr, size_t size) 325ev_realloc (void *ptr, long size)
296{ 326{
297 ptr = alloc (ptr, size); 327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 328
299 if (!ptr && size) 329 if (!ptr && size)
300 { 330 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 332 abort ();
303 } 333 }
304 334
305 return ptr; 335 return ptr;
306} 336}
324{ 354{
325 W w; 355 W w;
326 int events; 356 int events;
327} ANPENDING; 357} ANPENDING;
328 358
359#if EV_USE_INOTIFY
329typedef struct 360typedef struct
330{ 361{
331#if EV_USE_INOTIFY
332 WL head; 362 WL head;
333#endif
334} ANFS; 363} ANFS;
364#endif
335 365
336#if EV_MULTIPLICITY 366#if EV_MULTIPLICITY
337 367
338 struct ev_loop 368 struct ev_loop
339 { 369 {
396{ 426{
397 return ev_rt_now; 427 return ev_rt_now;
398} 428}
399#endif 429#endif
400 430
401#define array_roundsize(type,n) (((n) | 4) & ~3) 431void
432ev_sleep (ev_tstamp delay)
433{
434 if (delay > 0.)
435 {
436#if EV_USE_NANOSLEEP
437 struct timespec ts;
438
439 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0);
443#elif defined(_WIN32)
444 Sleep (delay * 1e3);
445#else
446 struct timeval tv;
447
448 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450
451 select (0, 0, 0, 0, &tv);
452#endif
453 }
454}
455
456/*****************************************************************************/
457
458int inline_size
459array_nextsize (int elem, int cur, int cnt)
460{
461 int ncur = cur + 1;
462
463 do
464 ncur <<= 1;
465 while (cnt > ncur);
466
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096)
469 {
470 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
472 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem;
474 }
475
476 return ncur;
477}
478
479static noinline void *
480array_realloc (int elem, void *base, int *cur, int cnt)
481{
482 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur);
484}
402 485
403#define array_needsize(type,base,cur,cnt,init) \ 486#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 487 if (expect_false ((cnt) > (cur))) \
405 { \ 488 { \
406 int newcnt = cur; \ 489 int ocur_ = (cur); \
407 do \ 490 (base) = (type *)array_realloc \
408 { \ 491 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 492 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 493 }
417 494
495#if 0
418#define array_slim(type,stem) \ 496#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 497 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 498 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 499 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 500 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 502 }
503#endif
425 504
426#define array_free(stem, idx) \ 505#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 507
429/*****************************************************************************/ 508/*****************************************************************************/
430 509
431void noinline 510void noinline
432ev_feed_event (EV_P_ void *w, int revents) 511ev_feed_event (EV_P_ void *w, int revents)
433{ 512{
434 W w_ = (W)w; 513 W w_ = (W)w;
514 int pri = ABSPRI (w_);
435 515
436 if (expect_false (w_->pending)) 516 if (expect_false (w_->pending))
517 pendings [pri][w_->pending - 1].events |= revents;
518 else
437 { 519 {
520 w_->pending = ++pendingcnt [pri];
521 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
522 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 523 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 524 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 525}
447 526
448void inline_size 527void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 528queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 529{
451 int i; 530 int i;
452 531
453 for (i = 0; i < eventcnt; ++i) 532 for (i = 0; i < eventcnt; ++i)
485} 564}
486 565
487void 566void
488ev_feed_fd_event (EV_P_ int fd, int revents) 567ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 568{
569 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 570 fd_event (EV_A_ fd, revents);
491} 571}
492 572
493void inline_size 573void inline_size
494fd_reify (EV_P) 574fd_reify (EV_P)
495{ 575{
499 { 579 {
500 int fd = fdchanges [i]; 580 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 581 ANFD *anfd = anfds + fd;
502 ev_io *w; 582 ev_io *w;
503 583
504 int events = 0; 584 unsigned char events = 0;
505 585
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 587 events |= (unsigned char)w->events;
508 588
509#if EV_SELECT_IS_WINSOCKET 589#if EV_SELECT_IS_WINSOCKET
510 if (events) 590 if (events)
511 { 591 {
512 unsigned long argp; 592 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 593 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 595 }
516#endif 596#endif
517 597
598 {
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
518 anfd->reify = 0; 602 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events);
607 }
522 } 608 }
523 609
524 fdchangecnt = 0; 610 fdchangecnt = 0;
525} 611}
526 612
527void inline_size 613void inline_size
528fd_change (EV_P_ int fd) 614fd_change (EV_P_ int fd, int flags)
529{ 615{
530 if (expect_false (anfds [fd].reify)) 616 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 617 anfds [fd].reify |= flags;
534 618
619 if (expect_true (!reify))
620 {
535 ++fdchangecnt; 621 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 623 fdchanges [fdchangecnt - 1] = fd;
624 }
538} 625}
539 626
540void inline_speed 627void inline_speed
541fd_kill (EV_P_ int fd) 628fd_kill (EV_P_ int fd)
542{ 629{
589static void noinline 676static void noinline
590fd_rearm_all (EV_P) 677fd_rearm_all (EV_P)
591{ 678{
592 int fd; 679 int fd;
593 680
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 681 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 682 if (anfds [fd].events)
597 { 683 {
598 anfds [fd].events = 0; 684 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 685 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 686 }
601} 687}
602 688
603/*****************************************************************************/ 689/*****************************************************************************/
604 690
605void inline_speed 691void inline_speed
606upheap (WT *heap, int k) 692upheap (WT *heap, int k)
607{ 693{
608 WT w = heap [k]; 694 WT w = heap [k];
609 695
610 while (k && heap [k >> 1]->at > w->at) 696 while (k)
611 { 697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
612 heap [k] = heap [k >> 1]; 703 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 704 ((W)heap [k])->active = k + 1;
614 k >>= 1; 705 k = p;
615 } 706 }
616 707
617 heap [k] = w; 708 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 709 ((W)heap [k])->active = k + 1;
619
620} 710}
621 711
622void inline_speed 712void inline_speed
623downheap (WT *heap, int N, int k) 713downheap (WT *heap, int N, int k)
624{ 714{
625 WT w = heap [k]; 715 WT w = heap [k];
626 716
627 while (k < (N >> 1)) 717 for (;;)
628 { 718 {
629 int j = k << 1; 719 int c = (k << 1) + 1;
630 720
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 721 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 722 break;
636 723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
637 heap [k] = heap [j]; 730 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 731 ((W)heap [k])->active = k + 1;
732
639 k = j; 733 k = c;
640 } 734 }
641 735
642 heap [k] = w; 736 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 737 ((W)heap [k])->active = k + 1;
644} 738}
726 for (signum = signalmax; signum--; ) 820 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 821 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 822 ev_feed_signal_event (EV_A_ signum + 1);
729} 823}
730 824
731void inline_size 825void inline_speed
732fd_intern (int fd) 826fd_intern (int fd)
733{ 827{
734#ifdef _WIN32 828#ifdef _WIN32
735 int arg = 1; 829 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 ev_unref (EV_A); /* child watcher should not keep loop alive */
752} 846}
753 847
754/*****************************************************************************/ 848/*****************************************************************************/
755 849
756static ev_child *childs [EV_PID_HASHSIZE]; 850static WL childs [EV_PID_HASHSIZE];
757 851
758#ifndef _WIN32 852#ifndef _WIN32
759 853
760static ev_signal childev; 854static ev_signal childev;
761 855
765 ev_child *w; 859 ev_child *w;
766 860
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 862 if (w->pid == pid || !w->pid)
769 { 863 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 865 w->rpid = pid;
772 w->rstatus = status; 866 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 867 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 868 }
775} 869}
776 870
777#ifndef WCONTINUED 871#ifndef WCONTINUED
876} 970}
877 971
878unsigned int 972unsigned int
879ev_embeddable_backends (void) 973ev_embeddable_backends (void)
880{ 974{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
881 return EVBACKEND_EPOLL 976 return EVBACKEND_KQUEUE
882 | EVBACKEND_KQUEUE
883 | EVBACKEND_PORT; 977 | EVBACKEND_PORT;
884} 978}
885 979
886unsigned int 980unsigned int
887ev_backend (EV_P) 981ev_backend (EV_P)
888{ 982{
889 return backend; 983 return backend;
984}
985
986unsigned int
987ev_loop_count (EV_P)
988{
989 return loop_count;
990}
991
992void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{
995 io_blocktime = interval;
996}
997
998void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 timeout_blocktime = interval;
890} 1002}
891 1003
892static void noinline 1004static void noinline
893loop_init (EV_P_ unsigned int flags) 1005loop_init (EV_P_ unsigned int flags)
894{ 1006{
905 ev_rt_now = ev_time (); 1017 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1018 mn_now = get_clock ();
907 now_floor = mn_now; 1019 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1020 rtmn_diff = ev_rt_now - mn_now;
909 1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024
1025 /* pid check not overridable via env */
1026#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid ();
1029#endif
1030
910 if (!(flags & EVFLAG_NOENV) 1031 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1032 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1033 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1034 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1035
970#if EV_USE_SELECT 1091#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1092 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1093#endif
973 1094
974 for (i = NUMPRI; i--; ) 1095 for (i = NUMPRI; i--; )
1096 {
975 array_free (pending, [i]); 1097 array_free (pending, [i]);
1098#if EV_IDLE_ENABLE
1099 array_free (idle, [i]);
1100#endif
1101 }
1102
1103 ev_free (anfds); anfdmax = 0;
976 1104
977 /* have to use the microsoft-never-gets-it-right macro */ 1105 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1106 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1107 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1108#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1109 array_free (periodic, EMPTY);
982#endif 1110#endif
1111#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1112 array_free (fork, EMPTY);
1113#endif
984 array_free (prepare, EMPTY0); 1114 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1115 array_free (check, EMPTY);
986 1116
987 backend = 0; 1117 backend = 0;
988} 1118}
989 1119
990void inline_size infy_fork (EV_P); 1120void inline_size infy_fork (EV_P);
1126 postfork = 1; 1256 postfork = 1;
1127} 1257}
1128 1258
1129/*****************************************************************************/ 1259/*****************************************************************************/
1130 1260
1131int inline_size 1261void
1132any_pending (EV_P) 1262ev_invoke (EV_P_ void *w, int revents)
1133{ 1263{
1134 int pri; 1264 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1265}
1142 1266
1143void inline_speed 1267void inline_speed
1144call_pending (EV_P) 1268call_pending (EV_P)
1145{ 1269{
1163void inline_size 1287void inline_size
1164timers_reify (EV_P) 1288timers_reify (EV_P)
1165{ 1289{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1167 { 1291 {
1168 ev_timer *w = timers [0]; 1292 ev_timer *w = (ev_timer *)timers [0];
1169 1293
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1295
1172 /* first reschedule or stop timer */ 1296 /* first reschedule or stop timer */
1173 if (w->repeat) 1297 if (w->repeat)
1176 1300
1177 ((WT)w)->at += w->repeat; 1301 ((WT)w)->at += w->repeat;
1178 if (((WT)w)->at < mn_now) 1302 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now; 1303 ((WT)w)->at = mn_now;
1180 1304
1181 downheap ((WT *)timers, timercnt, 0); 1305 downheap (timers, timercnt, 0);
1182 } 1306 }
1183 else 1307 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1309
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1191void inline_size 1315void inline_size
1192periodics_reify (EV_P) 1316periodics_reify (EV_P)
1193{ 1317{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1195 { 1319 {
1196 ev_periodic *w = periodics [0]; 1320 ev_periodic *w = (ev_periodic *)periodics [0];
1197 1321
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1323
1200 /* first reschedule or stop timer */ 1324 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1325 if (w->reschedule_cb)
1202 { 1326 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1329 downheap (periodics, periodiccnt, 0);
1206 } 1330 }
1207 else if (w->interval) 1331 else if (w->interval)
1208 { 1332 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1336 downheap (periodics, periodiccnt, 0);
1212 } 1337 }
1213 else 1338 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1340
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1223 int i; 1348 int i;
1224 1349
1225 /* adjust periodics after time jump */ 1350 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1351 for (i = 0; i < periodiccnt; ++i)
1227 { 1352 {
1228 ev_periodic *w = periodics [i]; 1353 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1354
1230 if (w->reschedule_cb) 1355 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1357 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1359 }
1235 1360
1236 /* now rebuild the heap */ 1361 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1362 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1363 downheap (periodics, periodiccnt, i);
1239} 1364}
1240#endif 1365#endif
1241 1366
1367#if EV_IDLE_ENABLE
1242int inline_size 1368void inline_size
1243time_update_monotonic (EV_P) 1369idle_reify (EV_P)
1244{ 1370{
1371 if (expect_false (idleall))
1372 {
1373 int pri;
1374
1375 for (pri = NUMPRI; pri--; )
1376 {
1377 if (pendingcnt [pri])
1378 break;
1379
1380 if (idlecnt [pri])
1381 {
1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1383 break;
1384 }
1385 }
1386 }
1387}
1388#endif
1389
1390void inline_speed
1391time_update (EV_P_ ev_tstamp max_block)
1392{
1393 int i;
1394
1395#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic))
1397 {
1398 ev_tstamp odiff = rtmn_diff;
1399
1245 mn_now = get_clock (); 1400 mn_now = get_clock ();
1246 1401
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1403 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1404 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1405 {
1249 ev_rt_now = rtmn_diff + mn_now; 1406 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1407 return;
1251 } 1408 }
1252 else 1409
1253 {
1254 now_floor = mn_now; 1410 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1411 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1412
1260void inline_size 1413 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1414 * on the choice of "4": one iteration isn't enough,
1262{ 1415 * in case we get preempted during the calls to
1263 int i; 1416 * ev_time and get_clock. a second call is almost guaranteed
1264 1417 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1418 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1419 * in the unlikely event of having been preempted here.
1267 { 1420 */
1268 if (time_update_monotonic (EV_A)) 1421 for (i = 4; --i; )
1269 { 1422 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1423 rtmn_diff = ev_rt_now - mn_now;
1283 1424
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1426 return; /* all is well */
1286 1427
1287 ev_rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1429 mn_now = get_clock ();
1289 now_floor = mn_now; 1430 now_floor = mn_now;
1290 } 1431 }
1291 1432
1292# if EV_PERIODIC_ENABLE 1433# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1434 periodics_reschedule (EV_A);
1294# endif 1435# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1438 }
1299 else 1439 else
1300#endif 1440#endif
1301 { 1441 {
1302 ev_rt_now = ev_time (); 1442 ev_rt_now = ev_time ();
1303 1443
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1445 {
1306#if EV_PERIODIC_ENABLE 1446#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1447 periodics_reschedule (EV_A);
1308#endif 1448#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1450 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1452 }
1314 1453
1315 mn_now = ev_rt_now; 1454 mn_now = ev_rt_now;
1335{ 1474{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1476 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1477 : EVUNLOOP_CANCEL;
1339 1478
1340 while (activecnt) 1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1480
1481 do
1341 { 1482 {
1342 /* we might have forked, so reify kernel state if necessary */ 1483#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid))
1486 {
1487 curpid = getpid ();
1488 postfork = 1;
1489 }
1490#endif
1491
1343 #if EV_FORK_ENABLE 1492#if EV_FORK_ENABLE
1493 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1494 if (expect_false (postfork))
1345 if (forkcnt) 1495 if (forkcnt)
1346 { 1496 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1498 call_pending (EV_A);
1349 } 1499 }
1350 #endif 1500#endif
1351 1501
1352 /* queue check watchers (and execute them) */ 1502 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1503 if (expect_false (preparecnt))
1354 { 1504 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1506 call_pending (EV_A);
1357 } 1507 }
1358 1508
1509 if (expect_false (!activecnt))
1510 break;
1511
1359 /* we might have forked, so reify kernel state if necessary */ 1512 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1513 if (expect_false (postfork))
1361 loop_fork (EV_A); 1514 loop_fork (EV_A);
1362 1515
1363 /* update fd-related kernel structures */ 1516 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1517 fd_reify (EV_A);
1365 1518
1366 /* calculate blocking time */ 1519 /* calculate blocking time */
1367 { 1520 {
1368 double block; 1521 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.;
1369 1523
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1525 {
1374 /* update time to cancel out callback processing overhead */ 1526 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1527 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1528
1385 block = MAX_BLOCKTIME; 1529 waittime = MAX_BLOCKTIME;
1386 1530
1387 if (timercnt) 1531 if (timercnt)
1388 { 1532 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1390 if (block > to) block = to; 1534 if (waittime > to) waittime = to;
1391 } 1535 }
1392 1536
1393#if EV_PERIODIC_ENABLE 1537#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1538 if (periodiccnt)
1395 { 1539 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1541 if (waittime > to) waittime = to;
1398 } 1542 }
1399#endif 1543#endif
1400 1544
1401 if (expect_false (block < 0.)) block = 0.; 1545 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime;
1547
1548 sleeptime = waittime - backend_fudge;
1549
1550 if (expect_true (sleeptime > io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 {
1555 ev_sleep (sleeptime);
1556 waittime -= sleeptime;
1557 }
1402 } 1558 }
1403 1559
1560 ++loop_count;
1404 backend_poll (EV_A_ block); 1561 backend_poll (EV_A_ waittime);
1562
1563 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime);
1405 } 1565 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1566
1410 /* queue pending timers and reschedule them */ 1567 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1568 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1569#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1570 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1571#endif
1415 1572
1573#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1574 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1575 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1576#endif
1419 1577
1420 /* queue check watchers, to be executed first */ 1578 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1579 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1581
1424 call_pending (EV_A); 1582 call_pending (EV_A);
1425 1583
1426 if (expect_false (loop_done))
1427 break;
1428 } 1584 }
1585 while (expect_true (activecnt && !loop_done));
1429 1586
1430 if (loop_done == EVUNLOOP_ONE) 1587 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1588 loop_done = EVUNLOOP_CANCEL;
1432} 1589}
1433 1590
1460 head = &(*head)->next; 1617 head = &(*head)->next;
1461 } 1618 }
1462} 1619}
1463 1620
1464void inline_speed 1621void inline_speed
1465ev_clear_pending (EV_P_ W w) 1622clear_pending (EV_P_ W w)
1466{ 1623{
1467 if (w->pending) 1624 if (w->pending)
1468 { 1625 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1626 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1627 w->pending = 0;
1471 } 1628 }
1472} 1629}
1473 1630
1631int
1632ev_clear_pending (EV_P_ void *w)
1633{
1634 W w_ = (W)w;
1635 int pending = w_->pending;
1636
1637 if (expect_true (pending))
1638 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1640 w_->pending = 0;
1641 p->w = 0;
1642 return p->events;
1643 }
1644 else
1645 return 0;
1646}
1647
1648void inline_size
1649pri_adjust (EV_P_ W w)
1650{
1651 int pri = w->priority;
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri;
1655}
1656
1474void inline_speed 1657void inline_speed
1475ev_start (EV_P_ W w, int active) 1658ev_start (EV_P_ W w, int active)
1476{ 1659{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1660 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1661 w->active = active;
1481 ev_ref (EV_A); 1662 ev_ref (EV_A);
1482} 1663}
1483 1664
1484void inline_size 1665void inline_size
1488 w->active = 0; 1669 w->active = 0;
1489} 1670}
1490 1671
1491/*****************************************************************************/ 1672/*****************************************************************************/
1492 1673
1493void 1674void noinline
1494ev_io_start (EV_P_ ev_io *w) 1675ev_io_start (EV_P_ ev_io *w)
1495{ 1676{
1496 int fd = w->fd; 1677 int fd = w->fd;
1497 1678
1498 if (expect_false (ev_is_active (w))) 1679 if (expect_false (ev_is_active (w)))
1500 1681
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1682 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1683
1503 ev_start (EV_A_ (W)w, 1); 1684 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1686 wlist_add (&anfds[fd].head, (WL)w);
1506 1687
1507 fd_change (EV_A_ fd); 1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET;
1508} 1690}
1509 1691
1510void 1692void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1693ev_io_stop (EV_P_ ev_io *w)
1512{ 1694{
1513 ev_clear_pending (EV_A_ (W)w); 1695 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1696 if (expect_false (!ev_is_active (w)))
1515 return; 1697 return;
1516 1698
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1700
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1701 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1702 ev_stop (EV_A_ (W)w);
1521 1703
1522 fd_change (EV_A_ w->fd); 1704 fd_change (EV_A_ w->fd, 1);
1523} 1705}
1524 1706
1525void 1707void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1708ev_timer_start (EV_P_ ev_timer *w)
1527{ 1709{
1528 if (expect_false (ev_is_active (w))) 1710 if (expect_false (ev_is_active (w)))
1529 return; 1711 return;
1530 1712
1531 ((WT)w)->at += mn_now; 1713 ((WT)w)->at += mn_now;
1532 1714
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1716
1535 ev_start (EV_A_ (W)w, ++timercnt); 1717 ev_start (EV_A_ (W)w, ++timercnt);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1537 timers [timercnt - 1] = w; 1719 timers [timercnt - 1] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1720 upheap (timers, timercnt - 1);
1539 1721
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1723}
1542 1724
1543void 1725void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1726ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1727{
1546 ev_clear_pending (EV_A_ (W)w); 1728 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1729 if (expect_false (!ev_is_active (w)))
1548 return; 1730 return;
1549 1731
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1551 1733
1552 { 1734 {
1553 int active = ((W)w)->active; 1735 int active = ((W)w)->active;
1554 1736
1555 if (expect_true (--active < --timercnt)) 1737 if (expect_true (--active < --timercnt))
1556 { 1738 {
1557 timers [active] = timers [timercnt]; 1739 timers [active] = timers [timercnt];
1558 adjustheap ((WT *)timers, timercnt, active); 1740 adjustheap (timers, timercnt, active);
1559 } 1741 }
1560 } 1742 }
1561 1743
1562 ((WT)w)->at -= mn_now; 1744 ((WT)w)->at -= mn_now;
1563 1745
1564 ev_stop (EV_A_ (W)w); 1746 ev_stop (EV_A_ (W)w);
1565} 1747}
1566 1748
1567void 1749void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1750ev_timer_again (EV_P_ ev_timer *w)
1569{ 1751{
1570 if (ev_is_active (w)) 1752 if (ev_is_active (w))
1571 { 1753 {
1572 if (w->repeat) 1754 if (w->repeat)
1573 { 1755 {
1574 ((WT)w)->at = mn_now + w->repeat; 1756 ((WT)w)->at = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1757 adjustheap (timers, timercnt, ((W)w)->active - 1);
1576 } 1758 }
1577 else 1759 else
1578 ev_timer_stop (EV_A_ w); 1760 ev_timer_stop (EV_A_ w);
1579 } 1761 }
1580 else if (w->repeat) 1762 else if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1765 ev_timer_start (EV_A_ w);
1584 } 1766 }
1585} 1767}
1586 1768
1587#if EV_PERIODIC_ENABLE 1769#if EV_PERIODIC_ENABLE
1588void 1770void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1771ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1772{
1591 if (expect_false (ev_is_active (w))) 1773 if (expect_false (ev_is_active (w)))
1592 return; 1774 return;
1593 1775
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1778 else if (w->interval)
1597 { 1779 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1781 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1783 }
1784 else
1785 ((WT)w)->at = w->offset;
1602 1786
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1787 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1789 periodics [periodiccnt - 1] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1790 upheap (periodics, periodiccnt - 1);
1607 1791
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1793}
1610 1794
1611void 1795void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1796ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1797{
1614 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1616 return; 1800 return;
1617 1801
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1619 1803
1620 { 1804 {
1621 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1622 1806
1623 if (expect_true (--active < --periodiccnt)) 1807 if (expect_true (--active < --periodiccnt))
1624 { 1808 {
1625 periodics [active] = periodics [periodiccnt]; 1809 periodics [active] = periodics [periodiccnt];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 1810 adjustheap (periodics, periodiccnt, active);
1627 } 1811 }
1628 } 1812 }
1629 1813
1630 ev_stop (EV_A_ (W)w); 1814 ev_stop (EV_A_ (W)w);
1631} 1815}
1632 1816
1633void 1817void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1818ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1819{
1636 /* TODO: use adjustheap and recalculation */ 1820 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1821 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1822 ev_periodic_start (EV_A_ w);
1641 1825
1642#ifndef SA_RESTART 1826#ifndef SA_RESTART
1643# define SA_RESTART 0 1827# define SA_RESTART 0
1644#endif 1828#endif
1645 1829
1646void 1830void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1831ev_signal_start (EV_P_ ev_signal *w)
1648{ 1832{
1649#if EV_MULTIPLICITY 1833#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1835#endif
1652 if (expect_false (ev_is_active (w))) 1836 if (expect_false (ev_is_active (w)))
1653 return; 1837 return;
1654 1838
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 1840
1841 {
1842#ifndef _WIN32
1843 sigset_t full, prev;
1844 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1849
1850#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif
1853 }
1854
1657 ev_start (EV_A_ (W)w, 1); 1855 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 1857
1661 if (!((WL)w)->next) 1858 if (!((WL)w)->next)
1662 { 1859 {
1663#if _WIN32 1860#if _WIN32
1664 signal (w->signum, sighandler); 1861 signal (w->signum, sighandler);
1670 sigaction (w->signum, &sa, 0); 1867 sigaction (w->signum, &sa, 0);
1671#endif 1868#endif
1672 } 1869 }
1673} 1870}
1674 1871
1675void 1872void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1873ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1874{
1678 ev_clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1876 if (expect_false (!ev_is_active (w)))
1680 return; 1877 return;
1681 1878
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1879 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1684 1881
1685 if (!signals [w->signum - 1].head) 1882 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 1883 signal (w->signum, SIG_DFL);
1687} 1884}
1694#endif 1891#endif
1695 if (expect_false (ev_is_active (w))) 1892 if (expect_false (ev_is_active (w)))
1696 return; 1893 return;
1697 1894
1698 ev_start (EV_A_ (W)w, 1); 1895 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 1897}
1701 1898
1702void 1899void
1703ev_child_stop (EV_P_ ev_child *w) 1900ev_child_stop (EV_P_ ev_child *w)
1704{ 1901{
1705 ev_clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1903 if (expect_false (!ev_is_active (w)))
1707 return; 1904 return;
1708 1905
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1907 ev_stop (EV_A_ (W)w);
1711} 1908}
1712 1909
1713#if EV_STAT_ENABLE 1910#if EV_STAT_ENABLE
1714 1911
1718# endif 1915# endif
1719 1916
1720#define DEF_STAT_INTERVAL 5.0074891 1917#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1918#define MIN_STAT_INTERVAL 0.1074891
1722 1919
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1921
1725#if EV_USE_INOTIFY 1922#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1923# define EV_INOTIFY_BUFSIZE 8192
1727 1924
1728static void noinline 1925static void noinline
1879 w->attr.st_nlink = 0; 2076 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2077 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2078 w->attr.st_nlink = 1;
1882} 2079}
1883 2080
1884void noinline 2081static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2082stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2083{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2085
1889 /* we copy this here each the time so that */ 2086 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2087 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2088 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2089 ev_stat_stat (EV_A_ w);
1893 2090
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if (
2093 w->prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2104 ) {
1896 #if EV_USE_INOTIFY 2105 #if EV_USE_INOTIFY
1897 infy_del (EV_A_ w); 2106 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2107 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2108 ev_stat_stat (EV_A_ w); /* avoid race... */
1900 #endif 2109 #endif
1934} 2143}
1935 2144
1936void 2145void
1937ev_stat_stop (EV_P_ ev_stat *w) 2146ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2147{
1939 ev_clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1941 return; 2150 return;
1942 2151
1943#if EV_USE_INOTIFY 2152#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2153 infy_del (EV_A_ w);
1947 2156
1948 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1949} 2158}
1950#endif 2159#endif
1951 2160
2161#if EV_IDLE_ENABLE
1952void 2162void
1953ev_idle_start (EV_P_ ev_idle *w) 2163ev_idle_start (EV_P_ ev_idle *w)
1954{ 2164{
1955 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1956 return; 2166 return;
1957 2167
2168 pri_adjust (EV_A_ (W)w);
2169
2170 {
2171 int active = ++idlecnt [ABSPRI (w)];
2172
2173 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2174 ev_start (EV_A_ (W)w, active);
2175
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2177 idles [ABSPRI (w)][active - 1] = w;
2178 }
1961} 2179}
1962 2180
1963void 2181void
1964ev_idle_stop (EV_P_ ev_idle *w) 2182ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2183{
1966 ev_clear_pending (EV_A_ (W)w); 2184 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2185 if (expect_false (!ev_is_active (w)))
1968 return; 2186 return;
1969 2187
1970 { 2188 {
1971 int active = ((W)w)->active; 2189 int active = ((W)w)->active;
1972 idles [active - 1] = idles [--idlecnt]; 2190
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1973 ((W)idles [active - 1])->active = active; 2192 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2193
2194 ev_stop (EV_A_ (W)w);
2195 --idleall;
1974 } 2196 }
1975
1976 ev_stop (EV_A_ (W)w);
1977} 2197}
2198#endif
1978 2199
1979void 2200void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2201ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2202{
1982 if (expect_false (ev_is_active (w))) 2203 if (expect_false (ev_is_active (w)))
1988} 2209}
1989 2210
1990void 2211void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2212ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2213{
1993 ev_clear_pending (EV_A_ (W)w); 2214 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2215 if (expect_false (!ev_is_active (w)))
1995 return; 2216 return;
1996 2217
1997 { 2218 {
1998 int active = ((W)w)->active; 2219 int active = ((W)w)->active;
2015} 2236}
2016 2237
2017void 2238void
2018ev_check_stop (EV_P_ ev_check *w) 2239ev_check_stop (EV_P_ ev_check *w)
2019{ 2240{
2020 ev_clear_pending (EV_A_ (W)w); 2241 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2242 if (expect_false (!ev_is_active (w)))
2022 return; 2243 return;
2023 2244
2024 { 2245 {
2025 int active = ((W)w)->active; 2246 int active = ((W)w)->active;
2032 2253
2033#if EV_EMBED_ENABLE 2254#if EV_EMBED_ENABLE
2034void noinline 2255void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2256ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2257{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2258 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2259}
2039 2260
2040static void 2261static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2262embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2263{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2265
2045 if (ev_cb (w)) 2266 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2267 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2268 else
2048 ev_embed_sweep (loop, w); 2269 ev_embed_sweep (loop, w);
2049} 2270}
2050 2271
2272static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276
2277 fd_reify (w->other);
2278}
2279
2051void 2280void
2052ev_embed_start (EV_P_ ev_embed *w) 2281ev_embed_start (EV_P_ ev_embed *w)
2053{ 2282{
2054 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
2055 return; 2284 return;
2056 2285
2057 { 2286 {
2058 struct ev_loop *loop = w->loop; 2287 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2290 }
2062 2291
2063 ev_set_priority (&w->io, ev_priority (w)); 2292 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2293 ev_io_start (EV_A_ &w->io);
2065 2294
2295 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare);
2298
2066 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
2067} 2300}
2068 2301
2069void 2302void
2070ev_embed_stop (EV_P_ ev_embed *w) 2303ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2304{
2072 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2074 return; 2307 return;
2075 2308
2076 ev_io_stop (EV_A_ &w->io); 2309 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare);
2077 2311
2078 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2079} 2313}
2080#endif 2314#endif
2081 2315
2092} 2326}
2093 2327
2094void 2328void
2095ev_fork_stop (EV_P_ ev_fork *w) 2329ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2330{
2097 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2099 return; 2333 return;
2100 2334
2101 { 2335 {
2102 int active = ((W)w)->active; 2336 int active = ((W)w)->active;
2170 ev_timer_set (&once->to, timeout, 0.); 2404 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 2405 ev_timer_start (EV_A_ &once->to);
2172 } 2406 }
2173} 2407}
2174 2408
2409#if EV_MULTIPLICITY
2410 #include "ev_wrap.h"
2411#endif
2412
2175#ifdef __cplusplus 2413#ifdef __cplusplus
2176} 2414}
2177#endif 2415#endif
2178 2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines