ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.171 by root, Sun Dec 9 02:12:43 2007 UTC vs.
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
228#else 257#else
229# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
230# define noinline 259# define noinline
397{ 426{
398 return ev_rt_now; 427 return ev_rt_now;
399} 428}
400#endif 429#endif
401 430
431void
432ev_sleep (ev_tstamp delay)
433{
434 if (delay > 0.)
435 {
436#if EV_USE_NANOSLEEP
437 struct timespec ts;
438
439 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0);
443#elif defined(_WIN32)
444 Sleep (delay * 1e3);
445#else
446 struct timeval tv;
447
448 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450
451 select (0, 0, 0, 0, &tv);
452#endif
453 }
454}
455
456/*****************************************************************************/
457
402int inline_size 458int inline_size
403array_nextsize (int elem, int cur, int cnt) 459array_nextsize (int elem, int cur, int cnt)
404{ 460{
405 int ncur = cur + 1; 461 int ncur = cur + 1;
406 462
466 pendings [pri][w_->pending - 1].w = w_; 522 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 523 pendings [pri][w_->pending - 1].events = revents;
468 } 524 }
469} 525}
470 526
471void inline_size 527void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 528queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 529{
474 int i; 530 int i;
475 531
476 for (i = 0; i < eventcnt; ++i) 532 for (i = 0; i < eventcnt; ++i)
523 { 579 {
524 int fd = fdchanges [i]; 580 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 581 ANFD *anfd = anfds + fd;
526 ev_io *w; 582 ev_io *w;
527 583
528 int events = 0; 584 unsigned char events = 0;
529 585
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 587 events |= (unsigned char)w->events;
532 588
533#if EV_SELECT_IS_WINSOCKET 589#if EV_SELECT_IS_WINSOCKET
534 if (events) 590 if (events)
535 { 591 {
536 unsigned long argp; 592 unsigned long argp;
537 anfd->handle = _get_osfhandle (fd); 593 anfd->handle = _get_osfhandle (fd);
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
539 } 595 }
540#endif 596#endif
541 597
598 {
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
542 anfd->reify = 0; 602 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events);
607 }
546 } 608 }
547 609
548 fdchangecnt = 0; 610 fdchangecnt = 0;
549} 611}
550 612
551void inline_size 613void inline_size
552fd_change (EV_P_ int fd) 614fd_change (EV_P_ int fd, int flags)
553{ 615{
554 if (expect_false (anfds [fd].reify)) 616 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 617 anfds [fd].reify |= flags;
558 618
619 if (expect_true (!reify))
620 {
559 ++fdchangecnt; 621 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 623 fdchanges [fdchangecnt - 1] = fd;
624 }
562} 625}
563 626
564void inline_speed 627void inline_speed
565fd_kill (EV_P_ int fd) 628fd_kill (EV_P_ int fd)
566{ 629{
617 680
618 for (fd = 0; fd < anfdmax; ++fd) 681 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 682 if (anfds [fd].events)
620 { 683 {
621 anfds [fd].events = 0; 684 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 685 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 686 }
624} 687}
625 688
626/*****************************************************************************/ 689/*****************************************************************************/
627 690
628void inline_speed 691void inline_speed
629upheap (WT *heap, int k) 692upheap (WT *heap, int k)
630{ 693{
631 WT w = heap [k]; 694 WT w = heap [k];
632 695
633 while (k && heap [k >> 1]->at > w->at) 696 while (k)
634 { 697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
635 heap [k] = heap [k >> 1]; 703 heap [k] = heap [p];
636 ((W)heap [k])->active = k + 1; 704 ((W)heap [k])->active = k + 1;
637 k >>= 1; 705 k = p;
638 } 706 }
639 707
640 heap [k] = w; 708 heap [k] = w;
641 ((W)heap [k])->active = k + 1; 709 ((W)heap [k])->active = k + 1;
642
643} 710}
644 711
645void inline_speed 712void inline_speed
646downheap (WT *heap, int N, int k) 713downheap (WT *heap, int N, int k)
647{ 714{
648 WT w = heap [k]; 715 WT w = heap [k];
649 716
650 while (k < (N >> 1)) 717 for (;;)
651 { 718 {
652 int j = k << 1; 719 int c = (k << 1) + 1;
653 720
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 721 if (c >= N)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 722 break;
659 723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
660 heap [k] = heap [j]; 730 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 731 ((W)heap [k])->active = k + 1;
732
662 k = j; 733 k = c;
663 } 734 }
664 735
665 heap [k] = w; 736 heap [k] = w;
666 ((W)heap [k])->active = k + 1; 737 ((W)heap [k])->active = k + 1;
667} 738}
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 ev_unref (EV_A); /* child watcher should not keep loop alive */
775} 846}
776 847
777/*****************************************************************************/ 848/*****************************************************************************/
778 849
779static ev_child *childs [EV_PID_HASHSIZE]; 850static WL childs [EV_PID_HASHSIZE];
780 851
781#ifndef _WIN32 852#ifndef _WIN32
782 853
783static ev_signal childev; 854static ev_signal childev;
784 855
899} 970}
900 971
901unsigned int 972unsigned int
902ev_embeddable_backends (void) 973ev_embeddable_backends (void)
903{ 974{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
904 return EVBACKEND_EPOLL 976 return EVBACKEND_KQUEUE
905 | EVBACKEND_KQUEUE
906 | EVBACKEND_PORT; 977 | EVBACKEND_PORT;
907} 978}
908 979
909unsigned int 980unsigned int
910ev_backend (EV_P) 981ev_backend (EV_P)
914 985
915unsigned int 986unsigned int
916ev_loop_count (EV_P) 987ev_loop_count (EV_P)
917{ 988{
918 return loop_count; 989 return loop_count;
990}
991
992void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{
995 io_blocktime = interval;
996}
997
998void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 timeout_blocktime = interval;
919} 1002}
920 1003
921static void noinline 1004static void noinline
922loop_init (EV_P_ unsigned int flags) 1005loop_init (EV_P_ unsigned int flags)
923{ 1006{
934 ev_rt_now = ev_time (); 1017 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1018 mn_now = get_clock ();
936 now_floor = mn_now; 1019 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1020 rtmn_diff = ev_rt_now - mn_now;
938 1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024
939 /* pid check not overridable via env */ 1025 /* pid check not overridable via env */
940#ifndef _WIN32 1026#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1027 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1028 curpid = getpid ();
943#endif 1029#endif
1011 array_free (pending, [i]); 1097 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1098#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1099 array_free (idle, [i]);
1014#endif 1100#endif
1015 } 1101 }
1102
1103 ev_free (anfds); anfdmax = 0;
1016 1104
1017 /* have to use the microsoft-never-gets-it-right macro */ 1105 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1106 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1107 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1108#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1109 array_free (periodic, EMPTY);
1110#endif
1111#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY);
1022#endif 1113#endif
1023 array_free (prepare, EMPTY); 1114 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1115 array_free (check, EMPTY);
1025 1116
1026 backend = 0; 1117 backend = 0;
1196void inline_size 1287void inline_size
1197timers_reify (EV_P) 1288timers_reify (EV_P)
1198{ 1289{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 { 1291 {
1201 ev_timer *w = timers [0]; 1292 ev_timer *w = (ev_timer *)timers [0];
1202 1293
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1295
1205 /* first reschedule or stop timer */ 1296 /* first reschedule or stop timer */
1206 if (w->repeat) 1297 if (w->repeat)
1209 1300
1210 ((WT)w)->at += w->repeat; 1301 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now) 1302 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now; 1303 ((WT)w)->at = mn_now;
1213 1304
1214 downheap ((WT *)timers, timercnt, 0); 1305 downheap (timers, timercnt, 0);
1215 } 1306 }
1216 else 1307 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1309
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1224void inline_size 1315void inline_size
1225periodics_reify (EV_P) 1316periodics_reify (EV_P)
1226{ 1317{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 1319 {
1229 ev_periodic *w = periodics [0]; 1320 ev_periodic *w = (ev_periodic *)periodics [0];
1230 1321
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1323
1233 /* first reschedule or stop timer */ 1324 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1325 if (w->reschedule_cb)
1235 { 1326 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1329 downheap (periodics, periodiccnt, 0);
1239 } 1330 }
1240 else if (w->interval) 1331 else if (w->interval)
1241 { 1332 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1336 downheap (periodics, periodiccnt, 0);
1245 } 1337 }
1246 else 1338 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1340
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1256 int i; 1348 int i;
1257 1349
1258 /* adjust periodics after time jump */ 1350 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1351 for (i = 0; i < periodiccnt; ++i)
1260 { 1352 {
1261 ev_periodic *w = periodics [i]; 1353 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1354
1263 if (w->reschedule_cb) 1355 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1357 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1359 }
1268 1360
1269 /* now rebuild the heap */ 1361 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1362 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1363 downheap (periodics, periodiccnt, i);
1272} 1364}
1273#endif 1365#endif
1274 1366
1275#if EV_IDLE_ENABLE 1367#if EV_IDLE_ENABLE
1276void inline_size 1368void inline_size
1293 } 1385 }
1294 } 1386 }
1295} 1387}
1296#endif 1388#endif
1297 1389
1298int inline_size 1390void inline_speed
1299time_update_monotonic (EV_P) 1391time_update (EV_P_ ev_tstamp max_block)
1300{ 1392{
1393 int i;
1394
1395#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic))
1397 {
1398 ev_tstamp odiff = rtmn_diff;
1399
1301 mn_now = get_clock (); 1400 mn_now = get_clock ();
1302 1401
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1403 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1404 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1405 {
1305 ev_rt_now = rtmn_diff + mn_now; 1406 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1407 return;
1307 } 1408 }
1308 else 1409
1309 {
1310 now_floor = mn_now; 1410 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1411 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1412
1316void inline_size 1413 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1414 * on the choice of "4": one iteration isn't enough,
1318{ 1415 * in case we get preempted during the calls to
1319 int i; 1416 * ev_time and get_clock. a second call is almost guaranteed
1320 1417 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1418 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1419 * in the unlikely event of having been preempted here.
1323 { 1420 */
1324 if (time_update_monotonic (EV_A)) 1421 for (i = 4; --i; )
1325 { 1422 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1423 rtmn_diff = ev_rt_now - mn_now;
1339 1424
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1341 return; /* all is well */ 1426 return; /* all is well */
1342 1427
1343 ev_rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1429 mn_now = get_clock ();
1345 now_floor = mn_now; 1430 now_floor = mn_now;
1346 } 1431 }
1347 1432
1348# if EV_PERIODIC_ENABLE 1433# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1434 periodics_reschedule (EV_A);
1350# endif 1435# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1438 }
1355 else 1439 else
1356#endif 1440#endif
1357 { 1441 {
1358 ev_rt_now = ev_time (); 1442 ev_rt_now = ev_time ();
1359 1443
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1445 {
1362#if EV_PERIODIC_ENABLE 1446#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1447 periodics_reschedule (EV_A);
1364#endif 1448#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1450 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 1452 }
1370 1453
1433 /* update fd-related kernel structures */ 1516 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1517 fd_reify (EV_A);
1435 1518
1436 /* calculate blocking time */ 1519 /* calculate blocking time */
1437 { 1520 {
1438 ev_tstamp block; 1521 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.;
1439 1523
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1525 {
1444 /* update time to cancel out callback processing overhead */ 1526 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1527 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1528
1455 block = MAX_BLOCKTIME; 1529 waittime = MAX_BLOCKTIME;
1456 1530
1457 if (timercnt) 1531 if (timercnt)
1458 { 1532 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1460 if (block > to) block = to; 1534 if (waittime > to) waittime = to;
1461 } 1535 }
1462 1536
1463#if EV_PERIODIC_ENABLE 1537#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1538 if (periodiccnt)
1465 { 1539 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1541 if (waittime > to) waittime = to;
1468 } 1542 }
1469#endif 1543#endif
1470 1544
1471 if (expect_false (block < 0.)) block = 0.; 1545 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime;
1547
1548 sleeptime = waittime - backend_fudge;
1549
1550 if (expect_true (sleeptime > io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 {
1555 ev_sleep (sleeptime);
1556 waittime -= sleeptime;
1557 }
1472 } 1558 }
1473 1559
1474 ++loop_count; 1560 ++loop_count;
1475 backend_poll (EV_A_ block); 1561 backend_poll (EV_A_ waittime);
1562
1563 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime);
1476 } 1565 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 1566
1481 /* queue pending timers and reschedule them */ 1567 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 1568 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 1569#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 1570 periodics_reify (EV_A); /* absolute timers called first */
1546ev_clear_pending (EV_P_ void *w) 1632ev_clear_pending (EV_P_ void *w)
1547{ 1633{
1548 W w_ = (W)w; 1634 W w_ = (W)w;
1549 int pending = w_->pending; 1635 int pending = w_->pending;
1550 1636
1551 if (!pending) 1637 if (expect_true (pending))
1638 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1640 w_->pending = 0;
1641 p->w = 0;
1642 return p->events;
1643 }
1644 else
1552 return 0; 1645 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 1646}
1560 1647
1561void inline_size 1648void inline_size
1562pri_adjust (EV_P_ W w) 1649pri_adjust (EV_P_ W w)
1563{ 1650{
1594 1681
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 1682 assert (("ev_io_start called with negative fd", fd >= 0));
1596 1683
1597 ev_start (EV_A_ (W)w, 1); 1684 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1686 wlist_add (&anfds[fd].head, (WL)w);
1600 1687
1601 fd_change (EV_A_ fd); 1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET;
1602} 1690}
1603 1691
1604void noinline 1692void noinline
1605ev_io_stop (EV_P_ ev_io *w) 1693ev_io_stop (EV_P_ ev_io *w)
1606{ 1694{
1608 if (expect_false (!ev_is_active (w))) 1696 if (expect_false (!ev_is_active (w)))
1609 return; 1697 return;
1610 1698
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 1700
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1701 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 1702 ev_stop (EV_A_ (W)w);
1615 1703
1616 fd_change (EV_A_ w->fd); 1704 fd_change (EV_A_ w->fd, 1);
1617} 1705}
1618 1706
1619void noinline 1707void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 1708ev_timer_start (EV_P_ ev_timer *w)
1621{ 1709{
1625 ((WT)w)->at += mn_now; 1713 ((WT)w)->at += mn_now;
1626 1714
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 1716
1629 ev_start (EV_A_ (W)w, ++timercnt); 1717 ev_start (EV_A_ (W)w, ++timercnt);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1631 timers [timercnt - 1] = w; 1719 timers [timercnt - 1] = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 1720 upheap (timers, timercnt - 1);
1633 1721
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1635} 1723}
1636 1724
1637void noinline 1725void noinline
1639{ 1727{
1640 clear_pending (EV_A_ (W)w); 1728 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 1729 if (expect_false (!ev_is_active (w)))
1642 return; 1730 return;
1643 1731
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1645 1733
1646 { 1734 {
1647 int active = ((W)w)->active; 1735 int active = ((W)w)->active;
1648 1736
1649 if (expect_true (--active < --timercnt)) 1737 if (expect_true (--active < --timercnt))
1650 { 1738 {
1651 timers [active] = timers [timercnt]; 1739 timers [active] = timers [timercnt];
1652 adjustheap ((WT *)timers, timercnt, active); 1740 adjustheap (timers, timercnt, active);
1653 } 1741 }
1654 } 1742 }
1655 1743
1656 ((WT)w)->at -= mn_now; 1744 ((WT)w)->at -= mn_now;
1657 1745
1664 if (ev_is_active (w)) 1752 if (ev_is_active (w))
1665 { 1753 {
1666 if (w->repeat) 1754 if (w->repeat)
1667 { 1755 {
1668 ((WT)w)->at = mn_now + w->repeat; 1756 ((WT)w)->at = mn_now + w->repeat;
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1757 adjustheap (timers, timercnt, ((W)w)->active - 1);
1670 } 1758 }
1671 else 1759 else
1672 ev_timer_stop (EV_A_ w); 1760 ev_timer_stop (EV_A_ w);
1673 } 1761 }
1674 else if (w->repeat) 1762 else if (w->repeat)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 1778 else if (w->interval)
1691 { 1779 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 1781 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 1783 }
1784 else
1785 ((WT)w)->at = w->offset;
1696 1786
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 1787 ev_start (EV_A_ (W)w, ++periodiccnt);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 1789 periodics [periodiccnt - 1] = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 1790 upheap (periodics, periodiccnt - 1);
1701 1791
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1703} 1793}
1704 1794
1705void noinline 1795void noinline
1707{ 1797{
1708 clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1710 return; 1800 return;
1711 1801
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1713 1803
1714 { 1804 {
1715 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1716 1806
1717 if (expect_true (--active < --periodiccnt)) 1807 if (expect_true (--active < --periodiccnt))
1718 { 1808 {
1719 periodics [active] = periodics [periodiccnt]; 1809 periodics [active] = periodics [periodiccnt];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 1810 adjustheap (periodics, periodiccnt, active);
1721 } 1811 }
1722 } 1812 }
1723 1813
1724 ev_stop (EV_A_ (W)w); 1814 ev_stop (EV_A_ (W)w);
1725} 1815}
1746 if (expect_false (ev_is_active (w))) 1836 if (expect_false (ev_is_active (w)))
1747 return; 1837 return;
1748 1838
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1750 1840
1841 {
1842#ifndef _WIN32
1843 sigset_t full, prev;
1844 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1849
1850#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif
1853 }
1854
1751 ev_start (EV_A_ (W)w, 1); 1855 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 1857
1755 if (!((WL)w)->next) 1858 if (!((WL)w)->next)
1756 { 1859 {
1757#if _WIN32 1860#if _WIN32
1758 signal (w->signum, sighandler); 1861 signal (w->signum, sighandler);
1771{ 1874{
1772 clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 1876 if (expect_false (!ev_is_active (w)))
1774 return; 1877 return;
1775 1878
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1879 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1778 1881
1779 if (!signals [w->signum - 1].head) 1882 if (!signals [w->signum - 1].head)
1780 signal (w->signum, SIG_DFL); 1883 signal (w->signum, SIG_DFL);
1781} 1884}
1788#endif 1891#endif
1789 if (expect_false (ev_is_active (w))) 1892 if (expect_false (ev_is_active (w)))
1790 return; 1893 return;
1791 1894
1792 ev_start (EV_A_ (W)w, 1); 1895 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1794} 1897}
1795 1898
1796void 1899void
1797ev_child_stop (EV_P_ ev_child *w) 1900ev_child_stop (EV_P_ ev_child *w)
1798{ 1901{
1799 clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 1903 if (expect_false (!ev_is_active (w)))
1801 return; 1904 return;
1802 1905
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 1907 ev_stop (EV_A_ (W)w);
1805} 1908}
1806 1909
1807#if EV_STAT_ENABLE 1910#if EV_STAT_ENABLE
1808 1911
2150 2253
2151#if EV_EMBED_ENABLE 2254#if EV_EMBED_ENABLE
2152void noinline 2255void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 2256ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 2257{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 2258 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 2259}
2157 2260
2158static void 2261static void
2159embed_cb (EV_P_ ev_io *io, int revents) 2262embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 2263{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 2265
2163 if (ev_cb (w)) 2266 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2267 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 2268 else
2166 ev_embed_sweep (loop, w); 2269 ev_embed_sweep (loop, w);
2167} 2270}
2168 2271
2272static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276
2277 fd_reify (w->other);
2278}
2279
2169void 2280void
2170ev_embed_start (EV_P_ ev_embed *w) 2281ev_embed_start (EV_P_ ev_embed *w)
2171{ 2282{
2172 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
2173 return; 2284 return;
2174 2285
2175 { 2286 {
2176 struct ev_loop *loop = w->loop; 2287 struct ev_loop *loop = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 2290 }
2180 2291
2181 ev_set_priority (&w->io, ev_priority (w)); 2292 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 2293 ev_io_start (EV_A_ &w->io);
2183 2294
2295 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare);
2298
2184 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
2185} 2300}
2186 2301
2187void 2302void
2188ev_embed_stop (EV_P_ ev_embed *w) 2303ev_embed_stop (EV_P_ ev_embed *w)
2190 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2192 return; 2307 return;
2193 2308
2194 ev_io_stop (EV_A_ &w->io); 2309 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare);
2195 2311
2196 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2197} 2313}
2198#endif 2314#endif
2199 2315
2288 ev_timer_set (&once->to, timeout, 0.); 2404 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 2405 ev_timer_start (EV_A_ &once->to);
2290 } 2406 }
2291} 2407}
2292 2408
2409#if EV_MULTIPLICITY
2410 #include "ev_wrap.h"
2411#endif
2412
2293#ifdef __cplusplus 2413#ifdef __cplusplus
2294} 2414}
2295#endif 2415#endif
2296 2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines