ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif 236#endif
218 237
219/**/ 238/**/
220 239
221/* 240/*
222 * This is used to avoid floating point rounding problems. 241 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 242 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 243 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 244 * errors are against us.
226 * This value is good at least till the year 4000 245 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 246 * Better solutions welcome.
229 */ 247 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 249
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 253
236#if __GNUC__ >= 3 254#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
239#else 257#else
240# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
241# define noinline 259# define noinline
408{ 426{
409 return ev_rt_now; 427 return ev_rt_now;
410} 428}
411#endif 429#endif
412 430
431void
432ev_sleep (ev_tstamp delay)
433{
434 if (delay > 0.)
435 {
436#if EV_USE_NANOSLEEP
437 struct timespec ts;
438
439 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0);
443#elif defined(_WIN32)
444 Sleep (delay * 1e3);
445#else
446 struct timeval tv;
447
448 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450
451 select (0, 0, 0, 0, &tv);
452#endif
453 }
454}
455
456/*****************************************************************************/
457
413int inline_size 458int inline_size
414array_nextsize (int elem, int cur, int cnt) 459array_nextsize (int elem, int cur, int cnt)
415{ 460{
416 int ncur = cur + 1; 461 int ncur = cur + 1;
417 462
477 pendings [pri][w_->pending - 1].w = w_; 522 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 523 pendings [pri][w_->pending - 1].events = revents;
479 } 524 }
480} 525}
481 526
482void inline_size 527void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 528queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 529{
485 int i; 530 int i;
486 531
487 for (i = 0; i < eventcnt; ++i) 532 for (i = 0; i < eventcnt; ++i)
534 { 579 {
535 int fd = fdchanges [i]; 580 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 581 ANFD *anfd = anfds + fd;
537 ev_io *w; 582 ev_io *w;
538 583
539 int events = 0; 584 unsigned char events = 0;
540 585
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 587 events |= (unsigned char)w->events;
543 588
544#if EV_SELECT_IS_WINSOCKET 589#if EV_SELECT_IS_WINSOCKET
545 if (events) 590 if (events)
546 { 591 {
547 unsigned long argp; 592 unsigned long argp;
548 anfd->handle = _get_osfhandle (fd); 593 anfd->handle = _get_osfhandle (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 595 }
551#endif 596#endif
552 597
598 {
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
553 anfd->reify = 0; 602 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events);
607 }
557 } 608 }
558 609
559 fdchangecnt = 0; 610 fdchangecnt = 0;
560} 611}
561 612
562void inline_size 613void inline_size
563fd_change (EV_P_ int fd) 614fd_change (EV_P_ int fd, int flags)
564{ 615{
565 if (expect_false (anfds [fd].reify)) 616 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 617 anfds [fd].reify |= flags;
569 618
619 if (expect_true (!reify))
620 {
570 ++fdchangecnt; 621 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 623 fdchanges [fdchangecnt - 1] = fd;
624 }
573} 625}
574 626
575void inline_speed 627void inline_speed
576fd_kill (EV_P_ int fd) 628fd_kill (EV_P_ int fd)
577{ 629{
628 680
629 for (fd = 0; fd < anfdmax; ++fd) 681 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 682 if (anfds [fd].events)
631 { 683 {
632 anfds [fd].events = 0; 684 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 685 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 686 }
635} 687}
636 688
637/*****************************************************************************/ 689/*****************************************************************************/
638 690
639void inline_speed 691void inline_speed
640upheap (WT *heap, int k) 692upheap (WT *heap, int k)
641{ 693{
642 WT w = heap [k]; 694 WT w = heap [k];
643 695
644 while (k && heap [k >> 1]->at > w->at) 696 while (k)
645 { 697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
646 heap [k] = heap [k >> 1]; 703 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 704 ((W)heap [k])->active = k + 1;
648 k >>= 1; 705 k = p;
649 } 706 }
650 707
651 heap [k] = w; 708 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 709 ((W)heap [k])->active = k + 1;
653
654} 710}
655 711
656void inline_speed 712void inline_speed
657downheap (WT *heap, int N, int k) 713downheap (WT *heap, int N, int k)
658{ 714{
659 WT w = heap [k]; 715 WT w = heap [k];
660 716
661 while (k < (N >> 1)) 717 for (;;)
662 { 718 {
663 int j = k << 1; 719 int c = (k << 1) + 1;
664 720
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 721 if (c >= N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 722 break;
670 723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
671 heap [k] = heap [j]; 730 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 731 ((W)heap [k])->active = k + 1;
732
673 k = j; 733 k = c;
674 } 734 }
675 735
676 heap [k] = w; 736 heap [k] = w;
677 ((W)heap [k])->active = k + 1; 737 ((W)heap [k])->active = k + 1;
678} 738}
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 ev_unref (EV_A); /* child watcher should not keep loop alive */
786} 846}
787 847
788/*****************************************************************************/ 848/*****************************************************************************/
789 849
790static ev_child *childs [EV_PID_HASHSIZE]; 850static WL childs [EV_PID_HASHSIZE];
791 851
792#ifndef _WIN32 852#ifndef _WIN32
793 853
794static ev_signal childev; 854static ev_signal childev;
795 855
910} 970}
911 971
912unsigned int 972unsigned int
913ev_embeddable_backends (void) 973ev_embeddable_backends (void)
914{ 974{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
915 return EVBACKEND_EPOLL 976 return EVBACKEND_KQUEUE
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT; 977 | EVBACKEND_PORT;
918} 978}
919 979
920unsigned int 980unsigned int
921ev_backend (EV_P) 981ev_backend (EV_P)
925 985
926unsigned int 986unsigned int
927ev_loop_count (EV_P) 987ev_loop_count (EV_P)
928{ 988{
929 return loop_count; 989 return loop_count;
990}
991
992void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{
995 io_blocktime = interval;
996}
997
998void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 timeout_blocktime = interval;
930} 1002}
931 1003
932static void noinline 1004static void noinline
933loop_init (EV_P_ unsigned int flags) 1005loop_init (EV_P_ unsigned int flags)
934{ 1006{
945 ev_rt_now = ev_time (); 1017 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1018 mn_now = get_clock ();
947 now_floor = mn_now; 1019 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1020 rtmn_diff = ev_rt_now - mn_now;
949 1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024
950 /* pid check not overridable via env */ 1025 /* pid check not overridable via env */
951#ifndef _WIN32 1026#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1027 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1028 curpid = getpid ();
954#endif 1029#endif
1022 array_free (pending, [i]); 1097 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1098#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1099 array_free (idle, [i]);
1025#endif 1100#endif
1026 } 1101 }
1102
1103 ev_free (anfds); anfdmax = 0;
1027 1104
1028 /* have to use the microsoft-never-gets-it-right macro */ 1105 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1106 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1107 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1108#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1109 array_free (periodic, EMPTY);
1110#endif
1111#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY);
1033#endif 1113#endif
1034 array_free (prepare, EMPTY); 1114 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1115 array_free (check, EMPTY);
1036 1116
1037 backend = 0; 1117 backend = 0;
1207void inline_size 1287void inline_size
1208timers_reify (EV_P) 1288timers_reify (EV_P)
1209{ 1289{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now) 1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 { 1291 {
1212 ev_timer *w = timers [0]; 1292 ev_timer *w = (ev_timer *)timers [0];
1213 1293
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215 1295
1216 /* first reschedule or stop timer */ 1296 /* first reschedule or stop timer */
1217 if (w->repeat) 1297 if (w->repeat)
1220 1300
1221 ((WT)w)->at += w->repeat; 1301 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now) 1302 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now; 1303 ((WT)w)->at = mn_now;
1224 1304
1225 downheap ((WT *)timers, timercnt, 0); 1305 downheap (timers, timercnt, 0);
1226 } 1306 }
1227 else 1307 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229 1309
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1235void inline_size 1315void inline_size
1236periodics_reify (EV_P) 1316periodics_reify (EV_P)
1237{ 1317{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 { 1319 {
1240 ev_periodic *w = periodics [0]; 1320 ev_periodic *w = (ev_periodic *)periodics [0];
1241 1321
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243 1323
1244 /* first reschedule or stop timer */ 1324 /* first reschedule or stop timer */
1245 if (w->reschedule_cb) 1325 if (w->reschedule_cb)
1246 { 1326 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0); 1329 downheap (periodics, periodiccnt, 0);
1250 } 1330 }
1251 else if (w->interval) 1331 else if (w->interval)
1252 { 1332 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval; 1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1336 downheap (periodics, periodiccnt, 0);
1256 } 1337 }
1257 else 1338 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1340
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1348 int i;
1268 1349
1269 /* adjust periodics after time jump */ 1350 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1351 for (i = 0; i < periodiccnt; ++i)
1271 { 1352 {
1272 ev_periodic *w = periodics [i]; 1353 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1354
1274 if (w->reschedule_cb) 1355 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1357 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1359 }
1279 1360
1280 /* now rebuild the heap */ 1361 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1362 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1363 downheap (periodics, periodiccnt, i);
1283} 1364}
1284#endif 1365#endif
1285 1366
1286#if EV_IDLE_ENABLE 1367#if EV_IDLE_ENABLE
1287void inline_size 1368void inline_size
1304 } 1385 }
1305 } 1386 }
1306} 1387}
1307#endif 1388#endif
1308 1389
1309int inline_size 1390void inline_speed
1310time_update_monotonic (EV_P) 1391time_update (EV_P_ ev_tstamp max_block)
1311{ 1392{
1393 int i;
1394
1395#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic))
1397 {
1398 ev_tstamp odiff = rtmn_diff;
1399
1312 mn_now = get_clock (); 1400 mn_now = get_clock ();
1313 1401
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1403 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1404 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1405 {
1316 ev_rt_now = rtmn_diff + mn_now; 1406 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1407 return;
1318 } 1408 }
1319 else 1409
1320 {
1321 now_floor = mn_now; 1410 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1411 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1412
1327void inline_size 1413 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1414 * on the choice of "4": one iteration isn't enough,
1329{ 1415 * in case we get preempted during the calls to
1330 int i; 1416 * ev_time and get_clock. a second call is almost guaranteed
1331 1417 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1418 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1419 * in the unlikely event of having been preempted here.
1334 { 1420 */
1335 if (time_update_monotonic (EV_A)) 1421 for (i = 4; --i; )
1336 { 1422 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1423 rtmn_diff = ev_rt_now - mn_now;
1350 1424
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1426 return; /* all is well */
1353 1427
1354 ev_rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1429 mn_now = get_clock ();
1356 now_floor = mn_now; 1430 now_floor = mn_now;
1357 } 1431 }
1358 1432
1359# if EV_PERIODIC_ENABLE 1433# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1434 periodics_reschedule (EV_A);
1361# endif 1435# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1438 }
1366 else 1439 else
1367#endif 1440#endif
1368 { 1441 {
1369 ev_rt_now = ev_time (); 1442 ev_rt_now = ev_time ();
1370 1443
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1445 {
1373#if EV_PERIODIC_ENABLE 1446#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1447 periodics_reschedule (EV_A);
1375#endif 1448#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1450 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1452 }
1381 1453
1444 /* update fd-related kernel structures */ 1516 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1517 fd_reify (EV_A);
1446 1518
1447 /* calculate blocking time */ 1519 /* calculate blocking time */
1448 { 1520 {
1449 ev_tstamp block; 1521 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.;
1450 1523
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1525 {
1455 /* update time to cancel out callback processing overhead */ 1526 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1527 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1528
1466 block = MAX_BLOCKTIME; 1529 waittime = MAX_BLOCKTIME;
1467 1530
1468 if (timercnt) 1531 if (timercnt)
1469 { 1532 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1471 if (block > to) block = to; 1534 if (waittime > to) waittime = to;
1472 } 1535 }
1473 1536
1474#if EV_PERIODIC_ENABLE 1537#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1538 if (periodiccnt)
1476 { 1539 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1541 if (waittime > to) waittime = to;
1479 } 1542 }
1480#endif 1543#endif
1481 1544
1482 if (expect_false (block < 0.)) block = 0.; 1545 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime;
1547
1548 sleeptime = waittime - backend_fudge;
1549
1550 if (expect_true (sleeptime > io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 {
1555 ev_sleep (sleeptime);
1556 waittime -= sleeptime;
1557 }
1483 } 1558 }
1484 1559
1485 ++loop_count; 1560 ++loop_count;
1486 backend_poll (EV_A_ block); 1561 backend_poll (EV_A_ waittime);
1562
1563 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime);
1487 } 1565 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1566
1492 /* queue pending timers and reschedule them */ 1567 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1568 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1569#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1570 periodics_reify (EV_A); /* absolute timers called first */
1606 1681
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1682 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1683
1609 ev_start (EV_A_ (W)w, 1); 1684 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1686 wlist_add (&anfds[fd].head, (WL)w);
1612 1687
1613 fd_change (EV_A_ fd); 1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET;
1614} 1690}
1615 1691
1616void noinline 1692void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1693ev_io_stop (EV_P_ ev_io *w)
1618{ 1694{
1620 if (expect_false (!ev_is_active (w))) 1696 if (expect_false (!ev_is_active (w)))
1621 return; 1697 return;
1622 1698
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1700
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1701 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1702 ev_stop (EV_A_ (W)w);
1627 1703
1628 fd_change (EV_A_ w->fd); 1704 fd_change (EV_A_ w->fd, 1);
1629} 1705}
1630 1706
1631void noinline 1707void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 1708ev_timer_start (EV_P_ ev_timer *w)
1633{ 1709{
1637 ((WT)w)->at += mn_now; 1713 ((WT)w)->at += mn_now;
1638 1714
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 1716
1641 ev_start (EV_A_ (W)w, ++timercnt); 1717 ev_start (EV_A_ (W)w, ++timercnt);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1643 timers [timercnt - 1] = w; 1719 timers [timercnt - 1] = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 1720 upheap (timers, timercnt - 1);
1645 1721
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647} 1723}
1648 1724
1649void noinline 1725void noinline
1651{ 1727{
1652 clear_pending (EV_A_ (W)w); 1728 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1729 if (expect_false (!ev_is_active (w)))
1654 return; 1730 return;
1655 1731
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1657 1733
1658 { 1734 {
1659 int active = ((W)w)->active; 1735 int active = ((W)w)->active;
1660 1736
1661 if (expect_true (--active < --timercnt)) 1737 if (expect_true (--active < --timercnt))
1662 { 1738 {
1663 timers [active] = timers [timercnt]; 1739 timers [active] = timers [timercnt];
1664 adjustheap ((WT *)timers, timercnt, active); 1740 adjustheap (timers, timercnt, active);
1665 } 1741 }
1666 } 1742 }
1667 1743
1668 ((WT)w)->at -= mn_now; 1744 ((WT)w)->at -= mn_now;
1669 1745
1676 if (ev_is_active (w)) 1752 if (ev_is_active (w))
1677 { 1753 {
1678 if (w->repeat) 1754 if (w->repeat)
1679 { 1755 {
1680 ((WT)w)->at = mn_now + w->repeat; 1756 ((WT)w)->at = mn_now + w->repeat;
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1757 adjustheap (timers, timercnt, ((W)w)->active - 1);
1682 } 1758 }
1683 else 1759 else
1684 ev_timer_stop (EV_A_ w); 1760 ev_timer_stop (EV_A_ w);
1685 } 1761 }
1686 else if (w->repeat) 1762 else if (w->repeat)
1707 } 1783 }
1708 else 1784 else
1709 ((WT)w)->at = w->offset; 1785 ((WT)w)->at = w->offset;
1710 1786
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 1787 ev_start (EV_A_ (W)w, ++periodiccnt);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 1789 periodics [periodiccnt - 1] = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 1790 upheap (periodics, periodiccnt - 1);
1715 1791
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717} 1793}
1718 1794
1719void noinline 1795void noinline
1721{ 1797{
1722 clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1724 return; 1800 return;
1725 1801
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1727 1803
1728 { 1804 {
1729 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1730 1806
1731 if (expect_true (--active < --periodiccnt)) 1807 if (expect_true (--active < --periodiccnt))
1732 { 1808 {
1733 periodics [active] = periodics [periodiccnt]; 1809 periodics [active] = periodics [periodiccnt];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 1810 adjustheap (periodics, periodiccnt, active);
1735 } 1811 }
1736 } 1812 }
1737 1813
1738 ev_stop (EV_A_ (W)w); 1814 ev_stop (EV_A_ (W)w);
1739} 1815}
1760 if (expect_false (ev_is_active (w))) 1836 if (expect_false (ev_is_active (w)))
1761 return; 1837 return;
1762 1838
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 1840
1841 {
1842#ifndef _WIN32
1843 sigset_t full, prev;
1844 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1849
1850#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif
1853 }
1854
1765 ev_start (EV_A_ (W)w, 1); 1855 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 1857
1769 if (!((WL)w)->next) 1858 if (!((WL)w)->next)
1770 { 1859 {
1771#if _WIN32 1860#if _WIN32
1772 signal (w->signum, sighandler); 1861 signal (w->signum, sighandler);
1785{ 1874{
1786 clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 1876 if (expect_false (!ev_is_active (w)))
1788 return; 1877 return;
1789 1878
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1879 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1792 1881
1793 if (!signals [w->signum - 1].head) 1882 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 1883 signal (w->signum, SIG_DFL);
1795} 1884}
1802#endif 1891#endif
1803 if (expect_false (ev_is_active (w))) 1892 if (expect_false (ev_is_active (w)))
1804 return; 1893 return;
1805 1894
1806 ev_start (EV_A_ (W)w, 1); 1895 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 1897}
1809 1898
1810void 1899void
1811ev_child_stop (EV_P_ ev_child *w) 1900ev_child_stop (EV_P_ ev_child *w)
1812{ 1901{
1813 clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 1903 if (expect_false (!ev_is_active (w)))
1815 return; 1904 return;
1816 1905
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 1907 ev_stop (EV_A_ (W)w);
1819} 1908}
1820 1909
1821#if EV_STAT_ENABLE 1910#if EV_STAT_ENABLE
1822 1911
2164 2253
2165#if EV_EMBED_ENABLE 2254#if EV_EMBED_ENABLE
2166void noinline 2255void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2256ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2257{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2258 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2259}
2171 2260
2172static void 2261static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2262embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2263{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2265
2177 if (ev_cb (w)) 2266 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2267 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2268 else
2180 ev_embed_sweep (loop, w); 2269 ev_embed_sweep (loop, w);
2181} 2270}
2182 2271
2272static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276
2277 fd_reify (w->other);
2278}
2279
2183void 2280void
2184ev_embed_start (EV_P_ ev_embed *w) 2281ev_embed_start (EV_P_ ev_embed *w)
2185{ 2282{
2186 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
2187 return; 2284 return;
2188 2285
2189 { 2286 {
2190 struct ev_loop *loop = w->loop; 2287 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2290 }
2194 2291
2195 ev_set_priority (&w->io, ev_priority (w)); 2292 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2293 ev_io_start (EV_A_ &w->io);
2197 2294
2295 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare);
2298
2198 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
2199} 2300}
2200 2301
2201void 2302void
2202ev_embed_stop (EV_P_ ev_embed *w) 2303ev_embed_stop (EV_P_ ev_embed *w)
2204 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2206 return; 2307 return;
2207 2308
2208 ev_io_stop (EV_A_ &w->io); 2309 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare);
2209 2311
2210 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2211} 2313}
2212#endif 2314#endif
2213 2315
2302 ev_timer_set (&once->to, timeout, 0.); 2404 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2405 ev_timer_start (EV_A_ &once->to);
2304 } 2406 }
2305} 2407}
2306 2408
2409#if EV_MULTIPLICITY
2410 #include "ev_wrap.h"
2411#endif
2412
2307#ifdef __cplusplus 2413#ifdef __cplusplus
2308} 2414}
2309#endif 2415#endif
2310 2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines