ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
226# include <sys/select.h> 286# include <sys/select.h>
227# endif 287# endif
228#endif 288#endif
229 289
230#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
231# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
232#endif 298#endif
233 299
234#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 301# include <winsock.h>
236#endif 302#endif
237 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
238/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
239 323
240/* 324/*
241 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
257#else 341#else
258# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
259# define noinline 343# define noinline
260# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 345# define inline
262# endif 346# endif
263#endif 347#endif
264 348
265#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
280 364
281typedef ev_watcher *W; 365typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
284 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
286 377
287#ifdef _WIN32 378#ifdef _WIN32
288# include "ev_win32.c" 379# include "ev_win32.c"
289#endif 380#endif
290 381
311 perror (msg); 402 perror (msg);
312 abort (); 403 abort ();
313 } 404 }
314} 405}
315 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
316static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 423
318void 424void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 426{
321 alloc = cb; 427 alloc = cb;
322} 428}
323 429
324inline_speed void * 430inline_speed void *
325ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
326{ 432{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
328 434
329 if (!ptr && size) 435 if (!ptr && size)
330 { 436 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 438 abort ();
343typedef struct 449typedef struct
344{ 450{
345 WL head; 451 WL head;
346 unsigned char events; 452 unsigned char events;
347 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
348#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 457 SOCKET handle;
350#endif 458#endif
351} ANFD; 459} ANFD;
352 460
355 W w; 463 W w;
356 int events; 464 int events;
357} ANPENDING; 465} ANPENDING;
358 466
359#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
360typedef struct 469typedef struct
361{ 470{
362 WL head; 471 WL head;
363} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
364#endif 491#endif
365 492
366#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
367 494
368 struct ev_loop 495 struct ev_loop
439 ts.tv_sec = (time_t)delay; 566 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 568
442 nanosleep (&ts, 0); 569 nanosleep (&ts, 0);
443#elif defined(_WIN32) 570#elif defined(_WIN32)
444 Sleep (delay * 1e3); 571 Sleep ((unsigned long)(delay * 1e3));
445#else 572#else
446 struct timeval tv; 573 struct timeval tv;
447 574
448 tv.tv_sec = (time_t)delay; 575 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
451 select (0, 0, 0, 0, &tv); 581 select (0, 0, 0, 0, &tv);
452#endif 582#endif
453 } 583 }
454} 584}
455 585
456/*****************************************************************************/ 586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
457 589
458int inline_size 590int inline_size
459array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
460{ 592{
461 int ncur = cur + 1; 593 int ncur = cur + 1;
462 594
463 do 595 do
464 ncur <<= 1; 596 ncur <<= 1;
465 while (cnt > ncur); 597 while (cnt > ncur);
466 598
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 601 {
470 ncur *= elem; 602 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 605 ncur /= elem;
474 } 606 }
475 607
476 return ncur; 608 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
481{ 613{
482 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
484} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 620
486#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
488 { \ 623 { \
489 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
533 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
534} 669}
535 670
536/*****************************************************************************/ 671/*****************************************************************************/
537 672
538void inline_size
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed 673void inline_speed
552fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
553{ 675{
554 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
555 ev_io *w; 677 ev_io *w;
587 events |= (unsigned char)w->events; 709 events |= (unsigned char)w->events;
588 710
589#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
590 if (events) 712 if (events)
591 { 713 {
592 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
593 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 721 }
596#endif 722#endif
597 723
598 { 724 {
599 unsigned char o_events = anfd->events; 725 unsigned char o_events = anfd->events;
652{ 778{
653 int fd; 779 int fd;
654 780
655 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 782 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
659} 785}
660 786
661/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 788static void noinline
680 806
681 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 808 if (anfds [fd].events)
683 { 809 {
684 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
686 } 813 }
687} 814}
688 815
689/*****************************************************************************/ 816/*****************************************************************************/
690 817
818/*
819 * the heap functions want a real array index. array index 0 uis guaranteed to not
820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
821 * the branching factor of the d-tree.
822 */
823
824/*
825 * at the moment we allow libev the luxury of two heaps,
826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
827 * which is more cache-efficient.
828 * the difference is about 5% with 50000+ watchers.
829 */
830#if EV_USE_4HEAP
831
832#define DHEAP 4
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
836
837/* away from the root */
691void inline_speed 838void inline_speed
692upheap (WT *heap, int k) 839downheap (ANHE *heap, int N, int k)
693{ 840{
694 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
695 843
696 while (k) 844 for (;;)
697 { 845 {
698 int p = (k - 1) >> 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
699 849
700 if (heap [p]->at <= w->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
852 {
853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
701 break; 866 break;
702 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
906 heap [k] = heap [c];
907 ev_active (ANHE_w (heap [k])) = k;
908
909 k = c;
910 }
911
912 heap [k] = he;
913 ev_active (ANHE_w (he)) = k;
914}
915#endif
916
917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
703 heap [k] = heap [p]; 930 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 931 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 932 k = p;
706 } 933 }
707 934
708 heap [k] = w; 935 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 936 ev_active (ANHE_w (he)) = k;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738} 937}
739 938
740void inline_size 939void inline_size
741adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
742{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
743 upheap (heap, k); 943 upheap (heap, k);
944 else
744 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
745} 958}
746 959
747/*****************************************************************************/ 960/*****************************************************************************/
748 961
749typedef struct 962typedef struct
750{ 963{
751 WL head; 964 WL head;
752 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
753} ANSIG; 966} ANSIG;
754 967
755static ANSIG *signals; 968static ANSIG *signals;
756static int signalmax; 969static int signalmax;
757 970
758static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 972
762void inline_size 973/*****************************************************************************/
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824 974
825void inline_speed 975void inline_speed
826fd_intern (int fd) 976fd_intern (int fd)
827{ 977{
828#ifdef _WIN32 978#ifdef _WIN32
829 int arg = 1; 979 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else 981#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 984#endif
835} 985}
836 986
837static void noinline 987static void noinline
838siginit (EV_P) 988evpipe_init (EV_P)
839{ 989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
840 fd_intern (sigpipe [0]); 1005 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
842 1009
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1010 ev_io_start (EV_A_ &pipeev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
1037
1038static void
1039pipecb (EV_P_ ev_io *iow, int revents)
1040{
1041#if EV_USE_EVENTFD
1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
1053
1054 if (gotsig && ev_is_default_loop (EV_A))
1055 {
1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
846} 1078}
847 1079
848/*****************************************************************************/ 1080/*****************************************************************************/
849 1081
1082static void
1083ev_sighandler (int signum)
1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32
1090 signal (signum, ev_sighandler);
1091#endif
1092
1093 signals [signum - 1].gotsig = 1;
1094 evpipe_write (EV_A_ &gotsig);
1095}
1096
1097void noinline
1098ev_feed_signal_event (EV_P_ int signum)
1099{
1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
1106 --signum;
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return;
1110
1111 signals [signum].gotsig = 0;
1112
1113 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115}
1116
1117/*****************************************************************************/
1118
850static WL childs [EV_PID_HASHSIZE]; 1119static WL childs [EV_PID_HASHSIZE];
851 1120
852#ifndef _WIN32 1121#ifndef _WIN32
853 1122
854static ev_signal childev; 1123static ev_signal childev;
855 1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
856void inline_speed 1129void inline_speed
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1130child_reap (EV_P_ int chain, int pid, int status)
858{ 1131{
859 ev_child *w; 1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1134
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
862 if (w->pid == pid || !w->pid) 1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
863 { 1139 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1141 w->rpid = pid;
866 w->rstatus = status; 1142 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1144 }
1145 }
869} 1146}
870 1147
871#ifndef WCONTINUED 1148#ifndef WCONTINUED
872# define WCONTINUED 0 1149# define WCONTINUED 0
873#endif 1150#endif
882 if (!WCONTINUED 1159 if (!WCONTINUED
883 || errno != EINVAL 1160 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1162 return;
886 1163
887 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1165 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1167
891 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1169 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1171}
895 1172
896#endif 1173#endif
897 1174
898/*****************************************************************************/ 1175/*****************************************************************************/
970} 1247}
971 1248
972unsigned int 1249unsigned int
973ev_embeddable_backends (void) 1250ev_embeddable_backends (void)
974{ 1251{
1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1253
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1255 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
978} 1259}
979 1260
980unsigned int 1261unsigned int
981ev_backend (EV_P) 1262ev_backend (EV_P)
982{ 1263{
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1294 have_monotonic = 1;
1014 } 1295 }
1015#endif 1296#endif
1016 1297
1017 ev_rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
1018 mn_now = get_clock (); 1299 mn_now = get_clock ();
1019 now_floor = mn_now; 1300 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
1021 1302
1022 io_blocktime = 0.; 1303 io_blocktime = 0.;
1023 timeout_blocktime = 0.; 1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
1024 1311
1025 /* pid check not overridable via env */ 1312 /* pid check not overridable via env */
1026#ifndef _WIN32 1313#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1314 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1315 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1318 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1319 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1320 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1322
1036 if (!(flags & 0x0000ffffUL)) 1323 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1324 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1325
1045#if EV_USE_PORT 1326#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1328#endif
1048#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
1056#endif 1337#endif
1057#if EV_USE_SELECT 1338#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1340#endif
1060 1341
1061 ev_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
1063 } 1344 }
1064} 1345}
1065 1346
1066static void noinline 1347static void noinline
1067loop_destroy (EV_P) 1348loop_destroy (EV_P)
1068{ 1349{
1069 int i; 1350 int i;
1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
1070 1368
1071#if EV_USE_INOTIFY 1369#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1370 if (fs_fd >= 0)
1073 close (fs_fd); 1371 close (fs_fd);
1074#endif 1372#endif
1111#if EV_FORK_ENABLE 1409#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1410 array_free (fork, EMPTY);
1113#endif 1411#endif
1114 array_free (prepare, EMPTY); 1412 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
1116 1417
1117 backend = 0; 1418 backend = 0;
1118} 1419}
1119 1420
1421#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1422void inline_size infy_fork (EV_P);
1423#endif
1121 1424
1122void inline_size 1425void inline_size
1123loop_fork (EV_P) 1426loop_fork (EV_P)
1124{ 1427{
1125#if EV_USE_PORT 1428#if EV_USE_PORT
1133#endif 1436#endif
1134#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1438 infy_fork (EV_A);
1136#endif 1439#endif
1137 1440
1138 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
1139 { 1442 {
1140 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
1141 1449
1142 ev_ref (EV_A); 1450 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
1144 close (sigpipe [0]); 1460 close (evpipe [0]);
1145 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
1146 1463
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
1151 } 1467 }
1152 1468
1153 postfork = 0; 1469 postfork = 0;
1154} 1470}
1155 1471
1156#if EV_MULTIPLICITY 1472#if EV_MULTIPLICITY
1473
1157struct ev_loop * 1474struct ev_loop *
1158ev_loop_new (unsigned int flags) 1475ev_loop_new (unsigned int flags)
1159{ 1476{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1478
1177} 1494}
1178 1495
1179void 1496void
1180ev_loop_fork (EV_P) 1497ev_loop_fork (EV_P)
1181{ 1498{
1182 postfork = 1; 1499 postfork = 1; /* must be in line with ev_default_fork */
1183} 1500}
1184 1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1185#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1186 1602
1187#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1188struct ev_loop * 1604struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1190#else 1606#else
1191int 1607int
1192ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1193#endif 1609#endif
1194{ 1610{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1200 { 1612 {
1201#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1203#else 1615#else
1206 1618
1207 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1208 1620
1209 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1210 { 1622 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1623#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1229{ 1639{
1230#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif 1642#endif
1233 1643
1644 ev_default_loop_ptr = 0;
1645
1234#ifndef _WIN32 1646#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
1237#endif 1649#endif
1238 1650
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
1246} 1652}
1247 1653
1248void 1654void
1249ev_default_fork (void) 1655ev_default_fork (void)
1251#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1658 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1659#endif
1254 1660
1255 if (backend) 1661 if (backend)
1256 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
1257} 1663}
1258 1664
1259/*****************************************************************************/ 1665/*****************************************************************************/
1260 1666
1261void 1667void
1278 { 1684 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280 1686
1281 p->w->pending = 0; 1687 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1283 } 1690 }
1284 } 1691 }
1285} 1692}
1286
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366 1693
1367#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1368void inline_size 1695void inline_size
1369idle_reify (EV_P) 1696idle_reify (EV_P)
1370{ 1697{
1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1383 break; 1710 break;
1384 } 1711 }
1385 } 1712 }
1386 } 1713 }
1714}
1715#endif
1716
1717void inline_size
1718timers_reify (EV_P)
1719{
1720 EV_FREQUENT_CHECK;
1721
1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1723 {
1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1725
1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1727
1728 /* first reschedule or stop timer */
1729 if (w->repeat)
1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1736
1737 ANHE_at_cache (timers [HEAP0]);
1738 downheap (timers, timercnt, HEAP0);
1739 }
1740 else
1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1742
1743 EV_FREQUENT_CHECK;
1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1745 }
1746}
1747
1748#if EV_PERIODIC_ENABLE
1749void inline_size
1750periodics_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1755 {
1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1757
1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->reschedule_cb)
1762 {
1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1768 downheap (periodics, periodiccnt, HEAP0);
1769 }
1770 else if (w->interval)
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
1788 }
1789 else
1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1791
1792 EV_FREQUENT_CHECK;
1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1794 }
1795}
1796
1797static void noinline
1798periodics_reschedule (EV_P)
1799{
1800 int i;
1801
1802 /* adjust periodics after time jump */
1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1804 {
1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1806
1807 if (w->reschedule_cb)
1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1809 else if (w->interval)
1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1387} 1816}
1388#endif 1817#endif
1389 1818
1390void inline_speed 1819void inline_speed
1391time_update (EV_P_ ev_tstamp max_block) 1820time_update (EV_P_ ev_tstamp max_block)
1420 */ 1849 */
1421 for (i = 4; --i; ) 1850 for (i = 4; --i; )
1422 { 1851 {
1423 rtmn_diff = ev_rt_now - mn_now; 1852 rtmn_diff = ev_rt_now - mn_now;
1424 1853
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 1855 return; /* all is well */
1427 1856
1428 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 1858 mn_now = get_clock ();
1430 now_floor = mn_now; 1859 now_floor = mn_now;
1446#if EV_PERIODIC_ENABLE 1875#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 1876 periodics_reschedule (EV_A);
1448#endif 1877#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */ 1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i) 1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1451 ((WT)timers [i])->at += ev_rt_now - mn_now; 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1452 } 1885 }
1453 1886
1454 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1455 } 1888 }
1456} 1889}
1465ev_unref (EV_P) 1898ev_unref (EV_P)
1466{ 1899{
1467 --activecnt; 1900 --activecnt;
1468} 1901}
1469 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1470static int loop_done; 1909static int loop_done;
1471 1910
1472void 1911void
1473ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1474{ 1913{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1914 loop_done = EVUNLOOP_CANCEL;
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478 1915
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1480 1917
1481 do 1918 do
1482 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1483#ifndef _WIN32 1924#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 1925 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 1926 if (expect_false (getpid () != curpid))
1486 { 1927 {
1487 curpid = getpid (); 1928 curpid = getpid ();
1528 1969
1529 waittime = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1530 1971
1531 if (timercnt) 1972 if (timercnt)
1532 { 1973 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1535 } 1976 }
1536 1977
1537#if EV_PERIODIC_ENABLE 1978#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 1979 if (periodiccnt)
1539 { 1980 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 1982 if (waittime > to) waittime = to;
1542 } 1983 }
1543#endif 1984#endif
1544 1985
1545 if (expect_false (waittime < timeout_blocktime)) 1986 if (expect_false (waittime < timeout_blocktime))
1578 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2020 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2022
1582 call_pending (EV_A); 2023 call_pending (EV_A);
1583
1584 } 2024 }
1585 while (expect_true (activecnt && !loop_done)); 2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1586 2030
1587 if (loop_done == EVUNLOOP_ONE) 2031 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2032 loop_done = EVUNLOOP_CANCEL;
1589} 2033}
1590 2034
1678 2122
1679 if (expect_false (ev_is_active (w))) 2123 if (expect_false (ev_is_active (w)))
1680 return; 2124 return;
1681 2125
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1683 2130
1684 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1687 2134
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1690} 2139}
1691 2140
1692void noinline 2141void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1694{ 2143{
1695 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1697 return; 2146 return;
1698 2147
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1700 2151
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1703 2154
1704 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1705} 2158}
1706 2159
1707void noinline 2160void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1709{ 2162{
1710 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1711 return; 2164 return;
1712 2165
1713 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1714 2167
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1721 2178
2179 EV_FREQUENT_CHECK;
2180
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2182}
1724 2183
1725void noinline 2184void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2186{
1728 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1730 return; 2189 return;
1731 2190
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1733 2192
1734 { 2193 {
1735 int active = ((W)w)->active; 2194 int active = ev_active (w);
1736 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1737 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1738 { 2201 {
1739 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1741 } 2204 }
1742 } 2205 }
1743 2206
1744 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1745 2210
1746 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1747} 2212}
1748 2213
1749void noinline 2214void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1751{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1752 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1753 { 2220 {
1754 if (w->repeat) 2221 if (w->repeat)
1755 { 2222 {
1756 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1758 } 2226 }
1759 else 2227 else
1760 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1761 } 2229 }
1762 else if (w->repeat) 2230 else if (w->repeat)
1763 { 2231 {
1764 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1766 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1767} 2237}
1768 2238
1769#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1770void noinline 2240void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2242{
1773 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1774 return; 2244 return;
1775 2245
1776 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2248 else if (w->interval)
1779 { 2249 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2253 }
1784 else 2254 else
1785 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1786 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1791 2265
2266 EV_FREQUENT_CHECK;
2267
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2269}
1794 2270
1795void noinline 2271void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2273{
1798 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1800 return; 2276 return;
1801 2277
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1803 2279
1804 { 2280 {
1805 int active = ((W)w)->active; 2281 int active = ev_active (w);
1806 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1807 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2288 {
1809 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1811 } 2291 }
1812 } 2292 }
1813 2293
2294 EV_FREQUENT_CHECK;
2295
1814 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1815} 2297}
1816 2298
1817void noinline 2299void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1835#endif 2317#endif
1836 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1837 return; 2319 return;
1838 2320
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1840 2326
1841 { 2327 {
1842#ifndef _WIN32 2328#ifndef _WIN32
1843 sigset_t full, prev; 2329 sigset_t full, prev;
1844 sigfillset (&full); 2330 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev); 2331 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif 2332#endif
1847 2333
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1849 2335
1850#ifndef _WIN32 2336#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2337 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif 2338#endif
1853 } 2339 }
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2343
1858 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1859 { 2345 {
1860#if _WIN32 2346#if _WIN32
1861 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1862#else 2348#else
1863 struct sigaction sa; 2349 struct sigaction sa;
1864 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1868#endif 2354#endif
1869 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1870} 2358}
1871 2359
1872void noinline 2360void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2362{
1875 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1877 return; 2365 return;
1878 2366
2367 EV_FREQUENT_CHECK;
2368
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1881 2371
1882 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1883 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1884} 2376}
1885 2377
1886void 2378void
1887ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1888{ 2380{
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2383#endif
1892 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1893 return; 2385 return;
1894 2386
2387 EV_FREQUENT_CHECK;
2388
1895 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1897} 2393}
1898 2394
1899void 2395void
1900ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1901{ 2397{
1902 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1904 return; 2400 return;
1905 2401
2402 EV_FREQUENT_CHECK;
2403
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1908} 2408}
1909 2409
1910#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1911 2411
1912# ifdef _WIN32 2412# ifdef _WIN32
1930 if (w->wd < 0) 2430 if (w->wd < 0)
1931 { 2431 {
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933 2433
1934 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2438 {
1937 char path [4096]; 2439 char path [4096];
1938 strcpy (path, w->path); 2440 strcpy (path, w->path);
1939 2441
1979 2481
1980static void noinline 2482static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2484{
1983 if (slot < 0) 2485 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 2486 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 2488 infy_wd (EV_A_ slot, wd, ev);
1987 else 2489 else
1988 { 2490 {
1989 WL w_; 2491 WL w_;
2023infy_init (EV_P) 2525infy_init (EV_P)
2024{ 2526{
2025 if (fs_fd != -2) 2527 if (fs_fd != -2)
2026 return; 2528 return;
2027 2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2028 fs_fd = inotify_init (); 2551 fs_fd = inotify_init ();
2029 2552
2030 if (fs_fd >= 0) 2553 if (fs_fd >= 0)
2031 { 2554 {
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2061 if (fs_fd >= 0) 2584 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 2585 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 2586 else
2064 ev_timer_start (EV_A_ &w->timer); 2587 ev_timer_start (EV_A_ &w->timer);
2065 } 2588 }
2066
2067 } 2589 }
2068} 2590}
2069 2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 2598#endif
2071 2599
2072void 2600void
2073ev_stat_stat (EV_P_ ev_stat *w) 2601ev_stat_stat (EV_P_ ev_stat *w)
2074{ 2602{
2101 || w->prev.st_atime != w->attr.st_atime 2629 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 2630 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 2631 || w->prev.st_ctime != w->attr.st_ctime
2104 ) { 2632 ) {
2105 #if EV_USE_INOTIFY 2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2106 infy_del (EV_A_ w); 2636 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 2637 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2109 #endif 2640 #endif
2110 2641
2111 ev_feed_event (EV_A_ w, EV_STAT); 2642 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 2643 }
2113} 2644}
2138 else 2669 else
2139#endif 2670#endif
2140 ev_timer_start (EV_A_ &w->timer); 2671 ev_timer_start (EV_A_ &w->timer);
2141 2672
2142 ev_start (EV_A_ (W)w, 1); 2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2143} 2676}
2144 2677
2145void 2678void
2146ev_stat_stop (EV_P_ ev_stat *w) 2679ev_stat_stop (EV_P_ ev_stat *w)
2147{ 2680{
2148 clear_pending (EV_A_ (W)w); 2681 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2682 if (expect_false (!ev_is_active (w)))
2150 return; 2683 return;
2151 2684
2685 EV_FREQUENT_CHECK;
2686
2152#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 2688 infy_del (EV_A_ w);
2154#endif 2689#endif
2155 ev_timer_stop (EV_A_ &w->timer); 2690 ev_timer_stop (EV_A_ &w->timer);
2156 2691
2157 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2158} 2695}
2159#endif 2696#endif
2160 2697
2161#if EV_IDLE_ENABLE 2698#if EV_IDLE_ENABLE
2162void 2699void
2164{ 2701{
2165 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
2166 return; 2703 return;
2167 2704
2168 pri_adjust (EV_A_ (W)w); 2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2169 2708
2170 { 2709 {
2171 int active = ++idlecnt [ABSPRI (w)]; 2710 int active = ++idlecnt [ABSPRI (w)];
2172 2711
2173 ++idleall; 2712 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 2713 ev_start (EV_A_ (W)w, active);
2175 2714
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 2716 idles [ABSPRI (w)][active - 1] = w;
2178 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2179} 2720}
2180 2721
2181void 2722void
2182ev_idle_stop (EV_P_ ev_idle *w) 2723ev_idle_stop (EV_P_ ev_idle *w)
2183{ 2724{
2184 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2186 return; 2727 return;
2187 2728
2729 EV_FREQUENT_CHECK;
2730
2188 { 2731 {
2189 int active = ((W)w)->active; 2732 int active = ev_active (w);
2190 2733
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 2736
2194 ev_stop (EV_A_ (W)w); 2737 ev_stop (EV_A_ (W)w);
2195 --idleall; 2738 --idleall;
2196 } 2739 }
2740
2741 EV_FREQUENT_CHECK;
2197} 2742}
2198#endif 2743#endif
2199 2744
2200void 2745void
2201ev_prepare_start (EV_P_ ev_prepare *w) 2746ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 2747{
2203 if (expect_false (ev_is_active (w))) 2748 if (expect_false (ev_is_active (w)))
2204 return; 2749 return;
2750
2751 EV_FREQUENT_CHECK;
2205 2752
2206 ev_start (EV_A_ (W)w, ++preparecnt); 2753 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2209} 2758}
2210 2759
2211void 2760void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 2761ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 2762{
2214 clear_pending (EV_A_ (W)w); 2763 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2764 if (expect_false (!ev_is_active (w)))
2216 return; 2765 return;
2217 2766
2767 EV_FREQUENT_CHECK;
2768
2218 { 2769 {
2219 int active = ((W)w)->active; 2770 int active = ev_active (w);
2771
2220 prepares [active - 1] = prepares [--preparecnt]; 2772 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 2773 ev_active (prepares [active - 1]) = active;
2222 } 2774 }
2223 2775
2224 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2225} 2779}
2226 2780
2227void 2781void
2228ev_check_start (EV_P_ ev_check *w) 2782ev_check_start (EV_P_ ev_check *w)
2229{ 2783{
2230 if (expect_false (ev_is_active (w))) 2784 if (expect_false (ev_is_active (w)))
2231 return; 2785 return;
2786
2787 EV_FREQUENT_CHECK;
2232 2788
2233 ev_start (EV_A_ (W)w, ++checkcnt); 2789 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2236} 2794}
2237 2795
2238void 2796void
2239ev_check_stop (EV_P_ ev_check *w) 2797ev_check_stop (EV_P_ ev_check *w)
2240{ 2798{
2241 clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
2243 return; 2801 return;
2244 2802
2803 EV_FREQUENT_CHECK;
2804
2245 { 2805 {
2246 int active = ((W)w)->active; 2806 int active = ev_active (w);
2807
2247 checks [active - 1] = checks [--checkcnt]; 2808 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 2809 ev_active (checks [active - 1]) = active;
2249 } 2810 }
2250 2811
2251 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2252} 2815}
2253 2816
2254#if EV_EMBED_ENABLE 2817#if EV_EMBED_ENABLE
2255void noinline 2818void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 2819ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 2828
2266 if (ev_cb (w)) 2829 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 2831 else
2269 ev_embed_sweep (loop, w); 2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 2833}
2271 2834
2272static void 2835static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 2837{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 2839
2277 fd_reify (w->other); 2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2278} 2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2279 2870
2280void 2871void
2281ev_embed_start (EV_P_ ev_embed *w) 2872ev_embed_start (EV_P_ ev_embed *w)
2282{ 2873{
2283 if (expect_false (ev_is_active (w))) 2874 if (expect_false (ev_is_active (w)))
2287 struct ev_loop *loop = w->other; 2878 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 2881 }
2291 2882
2883 EV_FREQUENT_CHECK;
2884
2292 ev_set_priority (&w->io, ev_priority (w)); 2885 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 2886 ev_io_start (EV_A_ &w->io);
2294 2887
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 2889 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 2890 ev_prepare_start (EV_A_ &w->prepare);
2298 2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2299 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2300} 2900}
2301 2901
2302void 2902void
2303ev_embed_stop (EV_P_ ev_embed *w) 2903ev_embed_stop (EV_P_ ev_embed *w)
2304{ 2904{
2305 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2307 return; 2907 return;
2308 2908
2909 EV_FREQUENT_CHECK;
2910
2309 ev_io_stop (EV_A_ &w->io); 2911 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2311 2914
2312 ev_stop (EV_A_ (W)w); 2915 EV_FREQUENT_CHECK;
2313} 2916}
2314#endif 2917#endif
2315 2918
2316#if EV_FORK_ENABLE 2919#if EV_FORK_ENABLE
2317void 2920void
2318ev_fork_start (EV_P_ ev_fork *w) 2921ev_fork_start (EV_P_ ev_fork *w)
2319{ 2922{
2320 if (expect_false (ev_is_active (w))) 2923 if (expect_false (ev_is_active (w)))
2321 return; 2924 return;
2925
2926 EV_FREQUENT_CHECK;
2322 2927
2323 ev_start (EV_A_ (W)w, ++forkcnt); 2928 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2326} 2933}
2327 2934
2328void 2935void
2329ev_fork_stop (EV_P_ ev_fork *w) 2936ev_fork_stop (EV_P_ ev_fork *w)
2330{ 2937{
2331 clear_pending (EV_A_ (W)w); 2938 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2939 if (expect_false (!ev_is_active (w)))
2333 return; 2940 return;
2334 2941
2942 EV_FREQUENT_CHECK;
2943
2335 { 2944 {
2336 int active = ((W)w)->active; 2945 int active = ev_active (w);
2946
2337 forks [active - 1] = forks [--forkcnt]; 2947 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 2948 ev_active (forks [active - 1]) = active;
2339 } 2949 }
2340 2950
2341 ev_stop (EV_A_ (W)w); 2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
2342} 3001}
2343#endif 3002#endif
2344 3003
2345/*****************************************************************************/ 3004/*****************************************************************************/
2346 3005
2356once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3016{
2358 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3018 void *arg = once->arg;
2360 3019
2361 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3022 ev_free (once);
2364 3023
2365 cb (revents, arg); 3024 cb (revents, arg);
2366} 3025}
2367 3026
2368static void 3027static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3029{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3033}
2373 3034
2374static void 3035static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3037{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3041}
2379 3042
2380void 3043void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3045{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines