ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.274 by root, Thu Nov 20 00:35:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
286 407
287#ifdef _WIN32 408#ifdef _WIN32
288# include "ev_win32.c" 409# include "ev_win32.c"
289#endif 410#endif
290 411
297{ 418{
298 syserr_cb = cb; 419 syserr_cb = cb;
299} 420}
300 421
301static void noinline 422static void noinline
302syserr (const char *msg) 423ev_syserr (const char *msg)
303{ 424{
304 if (!msg) 425 if (!msg)
305 msg = "(libev) system error"; 426 msg = "(libev) system error";
306 427
307 if (syserr_cb) 428 if (syserr_cb)
311 perror (msg); 432 perror (msg);
312 abort (); 433 abort ();
313 } 434 }
314} 435}
315 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
316static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 453
318void 454void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 456{
321 alloc = cb; 457 alloc = cb;
322} 458}
323 459
324inline_speed void * 460inline_speed void *
325ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
326{ 462{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
328 464
329 if (!ptr && size) 465 if (!ptr && size)
330 { 466 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 468 abort ();
343typedef struct 479typedef struct
344{ 480{
345 WL head; 481 WL head;
346 unsigned char events; 482 unsigned char events;
347 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
348#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 490 SOCKET handle;
350#endif 491#endif
351} ANFD; 492} ANFD;
352 493
355 W w; 496 W w;
356 int events; 497 int events;
357} ANPENDING; 498} ANPENDING;
358 499
359#if EV_USE_INOTIFY 500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
360typedef struct 502typedef struct
361{ 503{
362 WL head; 504 WL head;
363} ANFS; 505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
364#endif 524#endif
365 525
366#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
367 527
368 struct ev_loop 528 struct ev_loop
439 ts.tv_sec = (time_t)delay; 599 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 601
442 nanosleep (&ts, 0); 602 nanosleep (&ts, 0);
443#elif defined(_WIN32) 603#elif defined(_WIN32)
444 Sleep (delay * 1e3); 604 Sleep ((unsigned long)(delay * 1e3));
445#else 605#else
446 struct timeval tv; 606 struct timeval tv;
447 607
448 tv.tv_sec = (time_t)delay; 608 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
451 select (0, 0, 0, 0, &tv); 614 select (0, 0, 0, 0, &tv);
452#endif 615#endif
453 } 616 }
454} 617}
455 618
456/*****************************************************************************/ 619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
457 622
458int inline_size 623int inline_size
459array_nextsize (int elem, int cur, int cnt) 624array_nextsize (int elem, int cur, int cnt)
460{ 625{
461 int ncur = cur + 1; 626 int ncur = cur + 1;
462 627
463 do 628 do
464 ncur <<= 1; 629 ncur <<= 1;
465 while (cnt > ncur); 630 while (cnt > ncur);
466 631
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 634 {
470 ncur *= elem; 635 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 637 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 638 ncur /= elem;
474 } 639 }
475 640
476 return ncur; 641 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 645array_realloc (int elem, void *base, int *cur, int cnt)
481{ 646{
482 *cur = array_nextsize (elem, *cur, cnt); 647 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 648 return ev_realloc (base, elem * *cur);
484} 649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 653
486#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 655 if (expect_false ((cnt) > (cur))) \
488 { \ 656 { \
489 int ocur_ = (cur); \ 657 int ocur_ = (cur); \
533 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
534} 702}
535 703
536/*****************************************************************************/ 704/*****************************************************************************/
537 705
538void inline_size
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed 706void inline_speed
552fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
553{ 708{
554 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
555 ev_io *w; 710 ev_io *w;
587 events |= (unsigned char)w->events; 742 events |= (unsigned char)w->events;
588 743
589#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
590 if (events) 745 if (events)
591 { 746 {
592 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
593 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 754 }
596#endif 755#endif
597 756
598 { 757 {
599 unsigned char o_events = anfd->events; 758 unsigned char o_events = anfd->events;
652{ 811{
653 int fd; 812 int fd;
654 813
655 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 815 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
659} 818}
660 819
661/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 821static void noinline
680 839
681 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 841 if (anfds [fd].events)
683 { 842 {
684 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
686 } 846 }
687} 847}
688 848
689/*****************************************************************************/ 849/*****************************************************************************/
690 850
851/*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857/*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863#if EV_USE_4HEAP
864
865#define DHEAP 4
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
869
870/* away from the root */
691void inline_speed 871void inline_speed
692upheap (WT *heap, int k) 872downheap (ANHE *heap, int N, int k)
693{ 873{
694 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
695 876
696 while (k) 877 for (;;)
697 { 878 {
698 int p = (k - 1) >> 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
699 882
700 if (heap [p]->at <= w->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
701 break; 899 break;
702 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947}
948#endif
949
950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
703 heap [k] = heap [p]; 963 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 964 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 965 k = p;
706 } 966 }
707 967
708 heap [k] = w; 968 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 969 ev_active (ANHE_w (he)) = k;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738} 970}
739 971
740void inline_size 972void inline_size
741adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
742{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
743 upheap (heap, k); 976 upheap (heap, k);
977 else
744 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
745} 991}
746 992
747/*****************************************************************************/ 993/*****************************************************************************/
748 994
749typedef struct 995typedef struct
750{ 996{
751 WL head; 997 WL head;
752 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
753} ANSIG; 999} ANSIG;
754 1000
755static ANSIG *signals; 1001static ANSIG *signals;
756static int signalmax; 1002static int signalmax;
757 1003
758static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 1005
762void inline_size 1006/*****************************************************************************/
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824 1007
825void inline_speed 1008void inline_speed
826fd_intern (int fd) 1009fd_intern (int fd)
827{ 1010{
828#ifdef _WIN32 1011#ifdef _WIN32
829 int arg = 1; 1012 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else 1014#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1017#endif
835} 1018}
836 1019
837static void noinline 1020static void noinline
838siginit (EV_P) 1021evpipe_init (EV_P)
839{ 1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
840 fd_intern (sigpipe [0]); 1038 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
842 1042
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1043 ev_io_start (EV_A_ &pipeev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
1071static void
1072pipecb (EV_P_ ev_io *iow, int revents)
1073{
1074#if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
846} 1111}
847 1112
848/*****************************************************************************/ 1113/*****************************************************************************/
849 1114
1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
850static WL childs [EV_PID_HASHSIZE]; 1152static WL childs [EV_PID_HASHSIZE];
851 1153
852#ifndef _WIN32 1154#ifndef _WIN32
853 1155
854static ev_signal childev; 1156static ev_signal childev;
855 1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
856void inline_speed 1162void inline_speed
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1163child_reap (EV_P_ int chain, int pid, int status)
858{ 1164{
859 ev_child *w; 1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1167
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
862 if (w->pid == pid || !w->pid) 1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
863 { 1172 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1174 w->rpid = pid;
866 w->rstatus = status; 1175 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1177 }
1178 }
869} 1179}
870 1180
871#ifndef WCONTINUED 1181#ifndef WCONTINUED
872# define WCONTINUED 0 1182# define WCONTINUED 0
873#endif 1183#endif
882 if (!WCONTINUED 1192 if (!WCONTINUED
883 || errno != EINVAL 1193 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1195 return;
886 1196
887 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1200
891 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1202 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1204}
895 1205
896#endif 1206#endif
897 1207
898/*****************************************************************************/ 1208/*****************************************************************************/
970} 1280}
971 1281
972unsigned int 1282unsigned int
973ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
974{ 1284{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1286
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1288 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
978} 1292}
979 1293
980unsigned int 1294unsigned int
981ev_backend (EV_P) 1295ev_backend (EV_P)
982{ 1296{
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1327 have_monotonic = 1;
1014 } 1328 }
1015#endif 1329#endif
1016 1330
1017 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
1018 mn_now = get_clock (); 1332 mn_now = get_clock ();
1019 now_floor = mn_now; 1333 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1021 1335
1022 io_blocktime = 0.; 1336 io_blocktime = 0.;
1023 timeout_blocktime = 0.; 1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1024 1344
1025 /* pid check not overridable via env */ 1345 /* pid check not overridable via env */
1026#ifndef _WIN32 1346#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1347 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1348 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1352 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1355
1036 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1358
1045#if EV_USE_PORT 1359#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1361#endif
1048#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
1056#endif 1370#endif
1057#if EV_USE_SELECT 1371#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1373#endif
1060 1374
1061 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
1063 } 1377 }
1064} 1378}
1065 1379
1066static void noinline 1380static void noinline
1067loop_destroy (EV_P) 1381loop_destroy (EV_P)
1068{ 1382{
1069 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1070 1401
1071#if EV_USE_INOTIFY 1402#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1403 if (fs_fd >= 0)
1073 close (fs_fd); 1404 close (fs_fd);
1074#endif 1405#endif
1111#if EV_FORK_ENABLE 1442#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1443 array_free (fork, EMPTY);
1113#endif 1444#endif
1114 array_free (prepare, EMPTY); 1445 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
1116 1450
1117 backend = 0; 1451 backend = 0;
1118} 1452}
1119 1453
1454#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1455void inline_size infy_fork (EV_P);
1456#endif
1121 1457
1122void inline_size 1458void inline_size
1123loop_fork (EV_P) 1459loop_fork (EV_P)
1124{ 1460{
1125#if EV_USE_PORT 1461#if EV_USE_PORT
1133#endif 1469#endif
1134#if EV_USE_INOTIFY 1470#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1471 infy_fork (EV_A);
1136#endif 1472#endif
1137 1473
1138 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
1139 { 1475 {
1140 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
1141 1482
1142 ev_ref (EV_A); 1483 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1144 close (sigpipe [0]); 1493 close (evpipe [0]);
1145 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
1146 1496
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1151 } 1500 }
1152 1501
1153 postfork = 0; 1502 postfork = 0;
1154} 1503}
1155 1504
1156#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
1157struct ev_loop * 1507struct ev_loop *
1158ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
1159{ 1509{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1511
1177} 1527}
1178 1528
1179void 1529void
1180ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
1181{ 1531{
1182 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
1183} 1533}
1184 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1185#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
1186 1635
1187#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1188struct ev_loop * 1637struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
1190#else 1639#else
1191int 1640int
1192ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
1193#endif 1642#endif
1194{ 1643{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
1200 { 1645 {
1201#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1203#else 1648#else
1206 1651
1207 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1208 1653
1209 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1210 { 1655 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1656#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1229{ 1672{
1230#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif 1675#endif
1233 1676
1677 ev_default_loop_ptr = 0;
1678
1234#ifndef _WIN32 1679#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1237#endif 1682#endif
1238 1683
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1246} 1685}
1247 1686
1248void 1687void
1249ev_default_fork (void) 1688ev_default_fork (void)
1250{ 1689{
1251#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1692#endif
1254 1693
1255 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1256 postfork = 1;
1257} 1695}
1258 1696
1259/*****************************************************************************/ 1697/*****************************************************************************/
1260 1698
1261void 1699void
1278 { 1716 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280 1718
1281 p->w->pending = 0; 1719 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1283 } 1722 }
1284 } 1723 }
1285} 1724}
1286
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366 1725
1367#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1368void inline_size 1727void inline_size
1369idle_reify (EV_P) 1728idle_reify (EV_P)
1370{ 1729{
1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1383 break; 1742 break;
1384 } 1743 }
1385 } 1744 }
1386 } 1745 }
1746}
1747#endif
1748
1749void inline_size
1750timers_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0);
1771 }
1772 else
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778}
1779
1780#if EV_PERIODIC_ENABLE
1781void inline_size
1782periodics_reify (EV_P)
1783{
1784 EV_FREQUENT_CHECK;
1785
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1826 }
1827}
1828
1829static void noinline
1830periodics_reschedule (EV_P)
1831{
1832 int i;
1833
1834 /* adjust periodics after time jump */
1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1836 {
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1387} 1848}
1388#endif 1849#endif
1389 1850
1390void inline_speed 1851void inline_speed
1391time_update (EV_P_ ev_tstamp max_block) 1852time_update (EV_P_ ev_tstamp max_block)
1420 */ 1881 */
1421 for (i = 4; --i; ) 1882 for (i = 4; --i; )
1422 { 1883 {
1423 rtmn_diff = ev_rt_now - mn_now; 1884 rtmn_diff = ev_rt_now - mn_now;
1424 1885
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 1887 return; /* all is well */
1427 1888
1428 ev_rt_now = ev_time (); 1889 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 1890 mn_now = get_clock ();
1430 now_floor = mn_now; 1891 now_floor = mn_now;
1446#if EV_PERIODIC_ENABLE 1907#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 1908 periodics_reschedule (EV_A);
1448#endif 1909#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */ 1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i) 1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1451 ((WT)timers [i])->at += ev_rt_now - mn_now; 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1452 } 1917 }
1453 1918
1454 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1455 } 1920 }
1456} 1921}
1465ev_unref (EV_P) 1930ev_unref (EV_P)
1466{ 1931{
1467 --activecnt; 1932 --activecnt;
1468} 1933}
1469 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1470static int loop_done; 1941static int loop_done;
1471 1942
1472void 1943void
1473ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1474{ 1945{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478 1947
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1480 1949
1481 do 1950 do
1482 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1483#ifndef _WIN32 1956#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 1957 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 1958 if (expect_false (getpid () != curpid))
1486 { 1959 {
1487 curpid = getpid (); 1960 curpid = getpid ();
1528 2001
1529 waittime = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1530 2003
1531 if (timercnt) 2004 if (timercnt)
1532 { 2005 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2007 if (waittime > to) waittime = to;
1535 } 2008 }
1536 2009
1537#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2011 if (periodiccnt)
1539 { 2012 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2014 if (waittime > to) waittime = to;
1542 } 2015 }
1543#endif 2016#endif
1544 2017
1545 if (expect_false (waittime < timeout_blocktime)) 2018 if (expect_false (waittime < timeout_blocktime))
1578 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2054
1582 call_pending (EV_A); 2055 call_pending (EV_A);
1583
1584 } 2056 }
1585 while (expect_true (activecnt && !loop_done)); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1586 2062
1587 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1589} 2065}
1590 2066
1678 2154
1679 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1680 return; 2156 return;
1681 2157
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1683 2162
1684 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1687 2166
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET; 2168 w->events &= ~EV_IOFDSET;
2169
2170 EV_FREQUENT_CHECK;
1690} 2171}
1691 2172
1692void noinline 2173void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1694{ 2175{
1695 clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1697 return; 2178 return;
1698 2179
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
1700 2183
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1703 2186
1704 fd_change (EV_A_ w->fd, 1); 2187 fd_change (EV_A_ w->fd, 1);
2188
2189 EV_FREQUENT_CHECK;
1705} 2190}
1706 2191
1707void noinline 2192void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1709{ 2194{
1710 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1711 return; 2196 return;
1712 2197
1713 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1714 2199
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1721 2210
2211 EV_FREQUENT_CHECK;
2212
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2214}
1724 2215
1725void noinline 2216void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2218{
1728 clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1730 return; 2221 return;
1731 2222
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2223 EV_FREQUENT_CHECK;
1733 2224
1734 { 2225 {
1735 int active = ((W)w)->active; 2226 int active = ev_active (w);
1736 2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
1737 if (expect_true (--active < --timercnt)) 2232 if (expect_true (active < timercnt + HEAP0))
1738 { 2233 {
1739 timers [active] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2235 adjustheap (timers, timercnt, active);
1741 } 2236 }
1742 } 2237 }
1743 2238
1744 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1745 2242
1746 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1747} 2244}
1748 2245
1749void noinline 2246void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1751{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1752 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1753 { 2252 {
1754 if (w->repeat) 2253 if (w->repeat)
1755 { 2254 {
1756 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1758 } 2258 }
1759 else 2259 else
1760 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1761 } 2261 }
1762 else if (w->repeat) 2262 else if (w->repeat)
1763 { 2263 {
1764 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1766 } 2266 }
2267
2268 EV_FREQUENT_CHECK;
1767} 2269}
1768 2270
1769#if EV_PERIODIC_ENABLE 2271#if EV_PERIODIC_ENABLE
1770void noinline 2272void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2274{
1773 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1774 return; 2276 return;
1775 2277
1776 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2280 else if (w->interval)
1779 { 2281 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2285 }
1784 else 2286 else
1785 ((WT)w)->at = w->offset; 2287 ev_at (w) = w->offset;
1786 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1791 2297
2298 EV_FREQUENT_CHECK;
2299
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2301}
1794 2302
1795void noinline 2303void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2305{
1798 clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1800 return; 2308 return;
1801 2309
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2310 EV_FREQUENT_CHECK;
1803 2311
1804 { 2312 {
1805 int active = ((W)w)->active; 2313 int active = ev_active (w);
1806 2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
1807 if (expect_true (--active < --periodiccnt)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2320 {
1809 periodics [active] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2322 adjustheap (periodics, periodiccnt, active);
1811 } 2323 }
1812 } 2324 }
1813 2325
2326 EV_FREQUENT_CHECK;
2327
1814 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1815} 2329}
1816 2330
1817void noinline 2331void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1835#endif 2349#endif
1836 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1837 return; 2351 return;
1838 2352
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
1840 2358
1841 { 2359 {
1842#ifndef _WIN32 2360#ifndef _WIN32
1843 sigset_t full, prev; 2361 sigset_t full, prev;
1844 sigfillset (&full); 2362 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev); 2363 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif 2364#endif
1847 2365
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1849 2367
1850#ifndef _WIN32 2368#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2369 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif 2370#endif
1853 } 2371 }
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2375
1858 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1859 { 2377 {
1860#if _WIN32 2378#if _WIN32
1861 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1862#else 2380#else
1863 struct sigaction sa; 2381 struct sigaction sa;
1864 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1868#endif 2386#endif
1869 } 2387 }
2388
2389 EV_FREQUENT_CHECK;
1870} 2390}
1871 2391
1872void noinline 2392void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2394{
1875 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1877 return; 2397 return;
1878 2398
2399 EV_FREQUENT_CHECK;
2400
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1881 2403
1882 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1883 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
1884} 2408}
1885 2409
1886void 2410void
1887ev_child_start (EV_P_ ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1888{ 2412{
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2415#endif
1892 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1893 return; 2417 return;
1894 2418
2419 EV_FREQUENT_CHECK;
2420
1895 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
1897} 2425}
1898 2426
1899void 2427void
1900ev_child_stop (EV_P_ ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1901{ 2429{
1902 clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1904 return; 2432 return;
1905 2433
2434 EV_FREQUENT_CHECK;
2435
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1908} 2440}
1909 2441
1910#if EV_STAT_ENABLE 2442#if EV_STAT_ENABLE
1911 2443
1912# ifdef _WIN32 2444# ifdef _WIN32
1913# undef lstat 2445# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 2446# define lstat(a,b) _stati64 (a,b)
1915# endif 2447# endif
1916 2448
1917#define DEF_STAT_INTERVAL 5.0074891 2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 2451#define MIN_STAT_INTERVAL 0.1074891
1919 2452
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 2454
1922#if EV_USE_INOTIFY 2455#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 2456# define EV_INOTIFY_BUFSIZE 8192
1927{ 2460{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 2462
1930 if (w->wd < 0) 2463 if (w->wd < 0)
1931 { 2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933 2467
1934 /* monitor some parent directory for speedup hints */ 2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2472 {
1937 char path [4096]; 2473 char path [4096];
1938 strcpy (path, w->path); 2474 strcpy (path, w->path);
1939 2475
1952 } 2488 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 2490 }
1955 } 2491 }
1956 else 2492 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2493 {
1958
1959 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2494 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2495
2496 /* now local changes will be tracked by inotify, but remote changes won't */
2497 /* unless the filesystem it known to be local, we therefore still poll */
2498 /* also do poll on <2.6.25, but with normal frequency */
2499 struct statfs sfs;
2500
2501 if (fs_2625 && !statfs (w->path, &sfs))
2502 if (sfs.f_type == 0x1373 /* devfs */
2503 || sfs.f_type == 0xEF53 /* ext2/3 */
2504 || sfs.f_type == 0x3153464a /* jfs */
2505 || sfs.f_type == 0x52654973 /* reiser3 */
2506 || sfs.f_type == 0x01021994 /* tempfs */
2507 || sfs.f_type == 0x58465342 /* xfs */)
2508 return;
2509
2510 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer);
2512 }
1961} 2513}
1962 2514
1963static void noinline 2515static void noinline
1964infy_del (EV_P_ ev_stat *w) 2516infy_del (EV_P_ ev_stat *w)
1965{ 2517{
1979 2531
1980static void noinline 2532static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2533infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2534{
1983 if (slot < 0) 2535 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 2536 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2537 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 2538 infy_wd (EV_A_ slot, wd, ev);
1987 else 2539 else
1988 { 2540 {
1989 WL w_; 2541 WL w_;
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2570 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2020} 2572}
2021 2573
2022void inline_size 2574void inline_size
2575check_2625 (EV_P)
2576{
2577 /* kernels < 2.6.25 are borked
2578 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2579 */
2580 struct utsname buf;
2581 int major, minor, micro;
2582
2583 if (uname (&buf))
2584 return;
2585
2586 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2587 return;
2588
2589 if (major < 2
2590 || (major == 2 && minor < 6)
2591 || (major == 2 && minor == 6 && micro < 25))
2592 return;
2593
2594 fs_2625 = 1;
2595}
2596
2597void inline_size
2023infy_init (EV_P) 2598infy_init (EV_P)
2024{ 2599{
2025 if (fs_fd != -2) 2600 if (fs_fd != -2)
2026 return; 2601 return;
2602
2603 fs_fd = -1;
2604
2605 check_2625 (EV_A);
2027 2606
2028 fs_fd = inotify_init (); 2607 fs_fd = inotify_init ();
2029 2608
2030 if (fs_fd >= 0) 2609 if (fs_fd >= 0)
2031 { 2610 {
2059 w->wd = -1; 2638 w->wd = -1;
2060 2639
2061 if (fs_fd >= 0) 2640 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 2641 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 2642 else
2064 ev_timer_start (EV_A_ &w->timer); 2643 ev_timer_again (EV_A_ &w->timer);
2065 } 2644 }
2066
2067 } 2645 }
2068} 2646}
2069 2647
2648#endif
2649
2650#ifdef _WIN32
2651# define EV_LSTAT(p,b) _stati64 (p, b)
2652#else
2653# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 2654#endif
2071 2655
2072void 2656void
2073ev_stat_stat (EV_P_ ev_stat *w) 2657ev_stat_stat (EV_P_ ev_stat *w)
2074{ 2658{
2101 || w->prev.st_atime != w->attr.st_atime 2685 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 2686 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 2687 || w->prev.st_ctime != w->attr.st_ctime
2104 ) { 2688 ) {
2105 #if EV_USE_INOTIFY 2689 #if EV_USE_INOTIFY
2690 if (fs_fd >= 0)
2691 {
2106 infy_del (EV_A_ w); 2692 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 2693 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 2694 ev_stat_stat (EV_A_ w); /* avoid race... */
2695 }
2109 #endif 2696 #endif
2110 2697
2111 ev_feed_event (EV_A_ w, EV_STAT); 2698 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 2699 }
2113} 2700}
2116ev_stat_start (EV_P_ ev_stat *w) 2703ev_stat_start (EV_P_ ev_stat *w)
2117{ 2704{
2118 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
2119 return; 2706 return;
2120 2707
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 2708 ev_stat_stat (EV_A_ w);
2126 2709
2710 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 2711 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 2712
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2713 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 2714 ev_set_priority (&w->timer, ev_priority (w));
2132 2715
2133#if EV_USE_INOTIFY 2716#if EV_USE_INOTIFY
2134 infy_init (EV_A); 2717 infy_init (EV_A);
2135 2718
2136 if (fs_fd >= 0) 2719 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 2720 infy_add (EV_A_ w);
2138 else 2721 else
2139#endif 2722#endif
2140 ev_timer_start (EV_A_ &w->timer); 2723 ev_timer_again (EV_A_ &w->timer);
2141 2724
2142 ev_start (EV_A_ (W)w, 1); 2725 ev_start (EV_A_ (W)w, 1);
2726
2727 EV_FREQUENT_CHECK;
2143} 2728}
2144 2729
2145void 2730void
2146ev_stat_stop (EV_P_ ev_stat *w) 2731ev_stat_stop (EV_P_ ev_stat *w)
2147{ 2732{
2148 clear_pending (EV_A_ (W)w); 2733 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2734 if (expect_false (!ev_is_active (w)))
2150 return; 2735 return;
2151 2736
2737 EV_FREQUENT_CHECK;
2738
2152#if EV_USE_INOTIFY 2739#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 2740 infy_del (EV_A_ w);
2154#endif 2741#endif
2155 ev_timer_stop (EV_A_ &w->timer); 2742 ev_timer_stop (EV_A_ &w->timer);
2156 2743
2157 ev_stop (EV_A_ (W)w); 2744 ev_stop (EV_A_ (W)w);
2745
2746 EV_FREQUENT_CHECK;
2158} 2747}
2159#endif 2748#endif
2160 2749
2161#if EV_IDLE_ENABLE 2750#if EV_IDLE_ENABLE
2162void 2751void
2164{ 2753{
2165 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
2166 return; 2755 return;
2167 2756
2168 pri_adjust (EV_A_ (W)w); 2757 pri_adjust (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2169 2760
2170 { 2761 {
2171 int active = ++idlecnt [ABSPRI (w)]; 2762 int active = ++idlecnt [ABSPRI (w)];
2172 2763
2173 ++idleall; 2764 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 2765 ev_start (EV_A_ (W)w, active);
2175 2766
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2767 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 2768 idles [ABSPRI (w)][active - 1] = w;
2178 } 2769 }
2770
2771 EV_FREQUENT_CHECK;
2179} 2772}
2180 2773
2181void 2774void
2182ev_idle_stop (EV_P_ ev_idle *w) 2775ev_idle_stop (EV_P_ ev_idle *w)
2183{ 2776{
2184 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2186 return; 2779 return;
2187 2780
2781 EV_FREQUENT_CHECK;
2782
2188 { 2783 {
2189 int active = ((W)w)->active; 2784 int active = ev_active (w);
2190 2785
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2786 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2787 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 2788
2194 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2195 --idleall; 2790 --idleall;
2196 } 2791 }
2792
2793 EV_FREQUENT_CHECK;
2197} 2794}
2198#endif 2795#endif
2199 2796
2200void 2797void
2201ev_prepare_start (EV_P_ ev_prepare *w) 2798ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 2799{
2203 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2204 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2205 2804
2206 ev_start (EV_A_ (W)w, ++preparecnt); 2805 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2806 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 2807 prepares [preparecnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2209} 2810}
2210 2811
2211void 2812void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 2813ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 2814{
2214 clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2216 return; 2817 return;
2217 2818
2819 EV_FREQUENT_CHECK;
2820
2218 { 2821 {
2219 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2220 prepares [active - 1] = prepares [--preparecnt]; 2824 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 2825 ev_active (prepares [active - 1]) = active;
2222 } 2826 }
2223 2827
2224 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2225} 2831}
2226 2832
2227void 2833void
2228ev_check_start (EV_P_ ev_check *w) 2834ev_check_start (EV_P_ ev_check *w)
2229{ 2835{
2230 if (expect_false (ev_is_active (w))) 2836 if (expect_false (ev_is_active (w)))
2231 return; 2837 return;
2838
2839 EV_FREQUENT_CHECK;
2232 2840
2233 ev_start (EV_A_ (W)w, ++checkcnt); 2841 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2842 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 2843 checks [checkcnt - 1] = w;
2844
2845 EV_FREQUENT_CHECK;
2236} 2846}
2237 2847
2238void 2848void
2239ev_check_stop (EV_P_ ev_check *w) 2849ev_check_stop (EV_P_ ev_check *w)
2240{ 2850{
2241 clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
2243 return; 2853 return;
2244 2854
2855 EV_FREQUENT_CHECK;
2856
2245 { 2857 {
2246 int active = ((W)w)->active; 2858 int active = ev_active (w);
2859
2247 checks [active - 1] = checks [--checkcnt]; 2860 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 2861 ev_active (checks [active - 1]) = active;
2249 } 2862 }
2250 2863
2251 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2252} 2867}
2253 2868
2254#if EV_EMBED_ENABLE 2869#if EV_EMBED_ENABLE
2255void noinline 2870void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 2871ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2879 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 2880
2266 if (ev_cb (w)) 2881 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2882 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 2883 else
2269 ev_embed_sweep (loop, w); 2884 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 2885}
2271 2886
2272static void 2887static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2888embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 2889{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2890 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 2891
2277 fd_reify (w->other); 2892 {
2893 struct ev_loop *loop = w->other;
2894
2895 while (fdchangecnt)
2896 {
2897 fd_reify (EV_A);
2898 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2899 }
2900 }
2278} 2901}
2902
2903static void
2904embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2905{
2906 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2907
2908 {
2909 struct ev_loop *loop = w->other;
2910
2911 ev_loop_fork (EV_A);
2912 }
2913}
2914
2915#if 0
2916static void
2917embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2918{
2919 ev_idle_stop (EV_A_ idle);
2920}
2921#endif
2279 2922
2280void 2923void
2281ev_embed_start (EV_P_ ev_embed *w) 2924ev_embed_start (EV_P_ ev_embed *w)
2282{ 2925{
2283 if (expect_false (ev_is_active (w))) 2926 if (expect_false (ev_is_active (w)))
2287 struct ev_loop *loop = w->other; 2930 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2931 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2932 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 2933 }
2291 2934
2935 EV_FREQUENT_CHECK;
2936
2292 ev_set_priority (&w->io, ev_priority (w)); 2937 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 2938 ev_io_start (EV_A_ &w->io);
2294 2939
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 2940 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 2941 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 2942 ev_prepare_start (EV_A_ &w->prepare);
2298 2943
2944 ev_fork_init (&w->fork, embed_fork_cb);
2945 ev_fork_start (EV_A_ &w->fork);
2946
2947 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2948
2299 ev_start (EV_A_ (W)w, 1); 2949 ev_start (EV_A_ (W)w, 1);
2950
2951 EV_FREQUENT_CHECK;
2300} 2952}
2301 2953
2302void 2954void
2303ev_embed_stop (EV_P_ ev_embed *w) 2955ev_embed_stop (EV_P_ ev_embed *w)
2304{ 2956{
2305 clear_pending (EV_A_ (W)w); 2957 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 2958 if (expect_false (!ev_is_active (w)))
2307 return; 2959 return;
2308 2960
2961 EV_FREQUENT_CHECK;
2962
2309 ev_io_stop (EV_A_ &w->io); 2963 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 2964 ev_prepare_stop (EV_A_ &w->prepare);
2965 ev_fork_stop (EV_A_ &w->fork);
2311 2966
2312 ev_stop (EV_A_ (W)w); 2967 EV_FREQUENT_CHECK;
2313} 2968}
2314#endif 2969#endif
2315 2970
2316#if EV_FORK_ENABLE 2971#if EV_FORK_ENABLE
2317void 2972void
2318ev_fork_start (EV_P_ ev_fork *w) 2973ev_fork_start (EV_P_ ev_fork *w)
2319{ 2974{
2320 if (expect_false (ev_is_active (w))) 2975 if (expect_false (ev_is_active (w)))
2321 return; 2976 return;
2977
2978 EV_FREQUENT_CHECK;
2322 2979
2323 ev_start (EV_A_ (W)w, ++forkcnt); 2980 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2981 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 2982 forks [forkcnt - 1] = w;
2983
2984 EV_FREQUENT_CHECK;
2326} 2985}
2327 2986
2328void 2987void
2329ev_fork_stop (EV_P_ ev_fork *w) 2988ev_fork_stop (EV_P_ ev_fork *w)
2330{ 2989{
2331 clear_pending (EV_A_ (W)w); 2990 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2991 if (expect_false (!ev_is_active (w)))
2333 return; 2992 return;
2334 2993
2994 EV_FREQUENT_CHECK;
2995
2335 { 2996 {
2336 int active = ((W)w)->active; 2997 int active = ev_active (w);
2998
2337 forks [active - 1] = forks [--forkcnt]; 2999 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3000 ev_active (forks [active - 1]) = active;
2339 } 3001 }
2340 3002
2341 ev_stop (EV_A_ (W)w); 3003 ev_stop (EV_A_ (W)w);
3004
3005 EV_FREQUENT_CHECK;
3006}
3007#endif
3008
3009#if EV_ASYNC_ENABLE
3010void
3011ev_async_start (EV_P_ ev_async *w)
3012{
3013 if (expect_false (ev_is_active (w)))
3014 return;
3015
3016 evpipe_init (EV_A);
3017
3018 EV_FREQUENT_CHECK;
3019
3020 ev_start (EV_A_ (W)w, ++asynccnt);
3021 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3022 asyncs [asynccnt - 1] = w;
3023
3024 EV_FREQUENT_CHECK;
3025}
3026
3027void
3028ev_async_stop (EV_P_ ev_async *w)
3029{
3030 clear_pending (EV_A_ (W)w);
3031 if (expect_false (!ev_is_active (w)))
3032 return;
3033
3034 EV_FREQUENT_CHECK;
3035
3036 {
3037 int active = ev_active (w);
3038
3039 asyncs [active - 1] = asyncs [--asynccnt];
3040 ev_active (asyncs [active - 1]) = active;
3041 }
3042
3043 ev_stop (EV_A_ (W)w);
3044
3045 EV_FREQUENT_CHECK;
3046}
3047
3048void
3049ev_async_send (EV_P_ ev_async *w)
3050{
3051 w->sent = 1;
3052 evpipe_write (EV_A_ &gotasync);
2342} 3053}
2343#endif 3054#endif
2344 3055
2345/*****************************************************************************/ 3056/*****************************************************************************/
2346 3057
2356once_cb (EV_P_ struct ev_once *once, int revents) 3067once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3068{
2358 void (*cb)(int revents, void *arg) = once->cb; 3069 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3070 void *arg = once->arg;
2360 3071
2361 ev_io_stop (EV_A_ &once->io); 3072 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3073 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3074 ev_free (once);
2364 3075
2365 cb (revents, arg); 3076 cb (revents, arg);
2366} 3077}
2367 3078
2368static void 3079static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3080once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3081{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3082 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3083
3084 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3085}
2373 3086
2374static void 3087static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3088once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3089{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3090 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3091
3092 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3093}
2379 3094
2380void 3095void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3096ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3097{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines