ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
286 411
287#ifdef _WIN32 412#ifdef _WIN32
288# include "ev_win32.c" 413# include "ev_win32.c"
289#endif 414#endif
290 415
297{ 422{
298 syserr_cb = cb; 423 syserr_cb = cb;
299} 424}
300 425
301static void noinline 426static void noinline
302syserr (const char *msg) 427ev_syserr (const char *msg)
303{ 428{
304 if (!msg) 429 if (!msg)
305 msg = "(libev) system error"; 430 msg = "(libev) system error";
306 431
307 if (syserr_cb) 432 if (syserr_cb)
311 perror (msg); 436 perror (msg);
312 abort (); 437 abort ();
313 } 438 }
314} 439}
315 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
316static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 457
318void 458void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 460{
321 alloc = cb; 461 alloc = cb;
322} 462}
323 463
324inline_speed void * 464inline_speed void *
325ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
326{ 466{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
328 468
329 if (!ptr && size) 469 if (!ptr && size)
330 { 470 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 472 abort ();
338#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
340 480
341/*****************************************************************************/ 481/*****************************************************************************/
342 482
483/* file descriptor info structure */
343typedef struct 484typedef struct
344{ 485{
345 WL head; 486 WL head;
346 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
348#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 495 SOCKET handle;
350#endif 496#endif
351} ANFD; 497} ANFD;
352 498
499/* stores the pending event set for a given watcher */
353typedef struct 500typedef struct
354{ 501{
355 W w; 502 W w;
356 int events; 503 int events; /* the pending event set for the given watcher */
357} ANPENDING; 504} ANPENDING;
358 505
359#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
360typedef struct 508typedef struct
361{ 509{
362 WL head; 510 WL head;
363} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
364#endif 532#endif
365 533
366#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
367 535
368 struct ev_loop 536 struct ev_loop
393 561
394ev_tstamp 562ev_tstamp
395ev_time (void) 563ev_time (void)
396{ 564{
397#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
398 struct timespec ts; 568 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 571 }
572#endif
573
402 struct timeval tv; 574 struct timeval tv;
403 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 577}
407 578
408ev_tstamp inline_size 579inline_size ev_tstamp
409get_clock (void) 580get_clock (void)
410{ 581{
411#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
413 { 584 {
439 ts.tv_sec = (time_t)delay; 610 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 612
442 nanosleep (&ts, 0); 613 nanosleep (&ts, 0);
443#elif defined(_WIN32) 614#elif defined(_WIN32)
444 Sleep (delay * 1e3); 615 Sleep ((unsigned long)(delay * 1e3));
445#else 616#else
446 struct timeval tv; 617 struct timeval tv;
447 618
448 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
451 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
452#endif 626#endif
453 } 627 }
454} 628}
455 629
456/*****************************************************************************/ 630/*****************************************************************************/
457 631
458int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
459array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
460{ 638{
461 int ncur = cur + 1; 639 int ncur = cur + 1;
462 640
463 do 641 do
464 ncur <<= 1; 642 ncur <<= 1;
465 while (cnt > ncur); 643 while (cnt > ncur);
466 644
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 647 {
470 ncur *= elem; 648 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 651 ncur /= elem;
474 } 652 }
475 653
476 return ncur; 654 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
481{ 659{
482 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
484} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 666
486#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
488 { \ 669 { \
489 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 683 }
503#endif 684#endif
504 685
505#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 688
508/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
509 696
510void noinline 697void noinline
511ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
512{ 699{
513 W w_ = (W)w; 700 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
524 } 711 }
525} 712}
526 713
527void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 731{
530 int i; 732 int i;
531 733
532 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
534} 736}
535 737
536/*****************************************************************************/ 738/*****************************************************************************/
537 739
538void inline_size 740inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
553{ 742{
554 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
555 ev_io *w; 744 ev_io *w;
556 745
568{ 757{
569 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
571} 760}
572 761
573void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
574fd_reify (EV_P) 765fd_reify (EV_P)
575{ 766{
576 int i; 767 int i;
577 768
578 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
587 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
588 779
589#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
590 if (events) 781 if (events)
591 { 782 {
592 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
593 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 790 }
596#endif 791#endif
597 792
598 { 793 {
599 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
601 796
602 anfd->reify = 0; 797 anfd->reify = 0;
603 anfd->events = events; 798 anfd->events = events;
604 799
605 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
607 } 802 }
608 } 803 }
609 804
610 fdchangecnt = 0; 805 fdchangecnt = 0;
611} 806}
612 807
613void inline_size 808/* something about the given fd changed */
809inline_size void
614fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
615{ 811{
616 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
618 814
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
624 } 820 }
625} 821}
626 822
627void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
628fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
629{ 826{
630 ev_io *w; 827 ev_io *w;
631 828
632 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 833 }
637} 834}
638 835
639int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
640fd_valid (int fd) 838fd_valid (int fd)
641{ 839{
642#ifdef _WIN32 840#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
644#else 842#else
652{ 850{
653 int fd; 851 int fd;
654 852
655 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 854 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
659} 857}
660 858
661/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 860static void noinline
680 878
681 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 880 if (anfds [fd].events)
683 { 881 {
684 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
686 } 885 }
687} 886}
688 887
689/*****************************************************************************/ 888/*****************************************************************************/
690 889
691void inline_speed 890/*
692upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
693{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
694 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
695 895
696 while (k) 896/*
697 { 897 * at the moment we allow libev the luxury of two heaps,
698 int p = (k - 1) >> 1; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
699 903
700 if (heap [p]->at <= w->at) 904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
701 break; 938 break;
702 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
703 heap [k] = heap [p]; 1002 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 1004 k = p;
706 } 1005 }
707 1006
708 heap [k] = w; 1007 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 1008 ev_active (ANHE_w (he)) = k;
710} 1009}
711 1010
712void inline_speed 1011/* move an element suitably so it is in a correct place */
713downheap (WT *heap, int N, int k) 1012inline_size void
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
742{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
743 upheap (heap, k); 1016 upheap (heap, k);
1017 else
744 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
745} 1031}
746 1032
747/*****************************************************************************/ 1033/*****************************************************************************/
748 1034
1035/* associate signal watchers to a signal signal */
749typedef struct 1036typedef struct
750{ 1037{
751 WL head; 1038 WL head;
752 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
753} ANSIG; 1040} ANSIG;
754 1041
755static ANSIG *signals; 1042static ANSIG *signals;
756static int signalmax; 1043static int signalmax;
757 1044
758static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 1046
762void inline_size 1047/*****************************************************************************/
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769 1048
770 ++base; 1049/* used to prepare libev internal fd's */
771 } 1050/* this is not fork-safe */
772} 1051inline_speed void
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1052fd_intern (int fd)
827{ 1053{
828#ifdef _WIN32 1054#ifdef _WIN32
829 int arg = 1; 1055 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else 1057#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1060#endif
835} 1061}
836 1062
837static void noinline 1063static void noinline
838siginit (EV_P) 1064evpipe_init (EV_P)
839{ 1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
840 fd_intern (sigpipe [0]); 1081 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
842 1085
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1086 ev_io_start (EV_A_ &pipe_w);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1116static void
1117pipecb (EV_P_ ev_io *iow, int revents)
1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
846} 1156}
847 1157
848/*****************************************************************************/ 1158/*****************************************************************************/
849 1159
1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
850static WL childs [EV_PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
851 1198
852#ifndef _WIN32 1199#ifndef _WIN32
853 1200
854static ev_signal childev; 1201static ev_signal childev;
855 1202
856void inline_speed 1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
858{ 1210{
859 ev_child *w; 1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1213
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
862 if (w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
863 { 1218 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1220 w->rpid = pid;
866 w->rstatus = status; 1221 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1223 }
1224 }
869} 1225}
870 1226
871#ifndef WCONTINUED 1227#ifndef WCONTINUED
872# define WCONTINUED 0 1228# define WCONTINUED 0
873#endif 1229#endif
874 1230
1231/* called on sigchld etc., calls waitpid */
875static void 1232static void
876childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
877{ 1234{
878 int pid, status; 1235 int pid, status;
879 1236
882 if (!WCONTINUED 1239 if (!WCONTINUED
883 || errno != EINVAL 1240 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1242 return;
886 1243
887 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1247
891 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1249 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1251}
895 1252
896#endif 1253#endif
897 1254
898/*****************************************************************************/ 1255/*****************************************************************************/
960 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
963#endif 1320#endif
964#ifdef __APPLE__ 1321#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
967#endif 1325#endif
968 1326
969 return flags; 1327 return flags;
970} 1328}
971 1329
972unsigned int 1330unsigned int
973ev_embeddable_backends (void) 1331ev_embeddable_backends (void)
974{ 1332{
1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1334
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1336 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
978} 1340}
979 1341
980unsigned int 1342unsigned int
981ev_backend (EV_P) 1343ev_backend (EV_P)
982{ 1344{
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1362{
1001 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1002} 1364}
1003 1365
1366/* initialise a loop structure, must be zero-initialised */
1004static void noinline 1367static void noinline
1005loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1006{ 1369{
1007 if (!backend) 1370 if (!backend)
1008 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1009#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1010 { 1384 {
1011 struct timespec ts; 1385 struct timespec ts;
1386
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1388 have_monotonic = 1;
1014 } 1389 }
1015#endif 1390#endif
1016 1391
1017 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1018 mn_now = get_clock (); 1393 mn_now = get_clock ();
1019 now_floor = mn_now; 1394 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now; 1395 rtmn_diff = ev_rt_now - mn_now;
1021 1396
1022 io_blocktime = 0.; 1397 io_blocktime = 0.;
1023 timeout_blocktime = 0.; 1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
1024 1405
1025 /* pid check not overridable via env */ 1406 /* pid check not overridable via env */
1026#ifndef _WIN32 1407#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1408 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1409 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1413 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1416
1036 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1419
1045#if EV_USE_PORT 1420#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1422#endif
1048#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
1056#endif 1431#endif
1057#if EV_USE_SELECT 1432#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1434#endif
1060 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1061 ev_init (&sigev, sigcb); 1438 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1063 } 1440 }
1064} 1441}
1065 1442
1443/* free up a loop structure */
1066static void noinline 1444static void noinline
1067loop_destroy (EV_P) 1445loop_destroy (EV_P)
1068{ 1446{
1069 int i; 1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1070 1465
1071#if EV_USE_INOTIFY 1466#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1467 if (fs_fd >= 0)
1073 close (fs_fd); 1468 close (fs_fd);
1074#endif 1469#endif
1101 } 1496 }
1102 1497
1103 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1104 1499
1105 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1110#endif 1506#endif
1111#if EV_FORK_ENABLE 1507#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1508 array_free (fork, EMPTY);
1113#endif 1509#endif
1114 array_free (prepare, EMPTY); 1510 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1116 1515
1117 backend = 0; 1516 backend = 0;
1118} 1517}
1119 1518
1519#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
1121 1522
1122void inline_size 1523inline_size void
1123loop_fork (EV_P) 1524loop_fork (EV_P)
1124{ 1525{
1125#if EV_USE_PORT 1526#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1528#endif
1133#endif 1534#endif
1134#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1536 infy_fork (EV_A);
1136#endif 1537#endif
1137 1538
1138 if (ev_is_active (&sigev)) 1539 if (ev_is_active (&pipe_w))
1139 { 1540 {
1140 /* default loop */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1141 1547
1142 ev_ref (EV_A); 1548 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1144 close (sigpipe [0]); 1558 close (evpipe [0]);
1145 close (sigpipe [1]); 1559 close (evpipe [1]);
1560 }
1146 1561
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A); 1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1151 } 1565 }
1152 1566
1153 postfork = 0; 1567 postfork = 0;
1154} 1568}
1155 1569
1156#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1157struct ev_loop * 1572struct ev_loop *
1158ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1159{ 1574{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1576
1177} 1592}
1178 1593
1179void 1594void
1180ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1181{ 1596{
1182 postfork = 1; 1597 postfork = 1; /* must be in line with ev_default_fork */
1183} 1598}
1184 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1185#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1186 1700
1187#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1188struct ev_loop * 1702struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1190#else 1704#else
1191int 1705int
1192ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
1193#endif 1707#endif
1194{ 1708{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
1200 { 1710 {
1201#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1203#else 1713#else
1206 1716
1207 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
1208 1718
1209 if (ev_backend (EV_A)) 1719 if (ev_backend (EV_A))
1210 { 1720 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1721#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1229{ 1737{
1230#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif 1740#endif
1233 1741
1742 ev_default_loop_ptr = 0;
1743
1234#ifndef _WIN32 1744#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1237#endif 1747#endif
1238 1748
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
1246} 1750}
1247 1751
1248void 1752void
1249ev_default_fork (void) 1753ev_default_fork (void)
1250{ 1754{
1251#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1757#endif
1254 1758
1255 if (backend) 1759 postfork = 1; /* must be in line with ev_loop_fork */
1256 postfork = 1;
1257} 1760}
1258 1761
1259/*****************************************************************************/ 1762/*****************************************************************************/
1260 1763
1261void 1764void
1262ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1263{ 1766{
1264 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1265} 1768}
1266 1769
1267void inline_speed 1770inline_speed void
1268call_pending (EV_P) 1771call_pending (EV_P)
1269{ 1772{
1270 int pri; 1773 int pri;
1271 1774
1272 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1274 { 1777 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 1779
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1280 1782
1281 p->w->pending = 0; 1783 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1283 } 1785 EV_FREQUENT_CHECK;
1284 } 1786 }
1285} 1787}
1286 1788
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1368void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1369idle_reify (EV_P) 1793idle_reify (EV_P)
1370{ 1794{
1371 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1372 { 1796 {
1373 int pri; 1797 int pri;
1385 } 1809 }
1386 } 1810 }
1387} 1811}
1388#endif 1812#endif
1389 1813
1390void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1392{ 1952{
1393 int i; 1953 int i;
1394 1954
1395#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1420 */ 1980 */
1421 for (i = 4; --i; ) 1981 for (i = 4; --i; )
1422 { 1982 {
1423 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1424 1984
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 1986 return; /* all is well */
1427 1987
1428 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 1989 mn_now = get_clock ();
1430 now_floor = mn_now; 1990 now_floor = mn_now;
1431 } 1991 }
1432 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1435# endif 1997# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 1998 }
1439 else 1999 else
1440#endif 2000#endif
1441 { 2001 {
1442 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1443 2003
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1448#endif 2010#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2011 }
1453 2012
1454 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1455 } 2014 }
1456} 2015}
1457 2016
1458void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done; 2017static int loop_done;
1471 2018
1472void 2019void
1473ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1474{ 2021{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2022 loop_done = EVUNLOOP_CANCEL;
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478 2023
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1480 2025
1481 do 2026 do
1482 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1483#ifndef _WIN32 2032#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1486 { 2035 {
1487 curpid = getpid (); 2036 curpid = getpid ();
1504 { 2053 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2055 call_pending (EV_A);
1507 } 2056 }
1508 2057
1509 if (expect_false (!activecnt))
1510 break;
1511
1512 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1514 loop_fork (EV_A); 2060 loop_fork (EV_A);
1515 2061
1516 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1528 2074
1529 waittime = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1530 2076
1531 if (timercnt) 2077 if (timercnt)
1532 { 2078 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2080 if (waittime > to) waittime = to;
1535 } 2081 }
1536 2082
1537#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2084 if (periodiccnt)
1539 { 2085 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2087 if (waittime > to) waittime = to;
1542 } 2088 }
1543#endif 2089#endif
1544 2090
1545 if (expect_false (waittime < timeout_blocktime)) 2091 if (expect_false (waittime < timeout_blocktime))
1578 /* queue check watchers, to be executed first */ 2124 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2125 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2126 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2127
1582 call_pending (EV_A); 2128 call_pending (EV_A);
1583
1584 } 2129 }
1585 while (expect_true (activecnt && !loop_done)); 2130 while (expect_true (
2131 activecnt
2132 && !loop_done
2133 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134 ));
1586 2135
1587 if (loop_done == EVUNLOOP_ONE) 2136 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2137 loop_done = EVUNLOOP_CANCEL;
1589} 2138}
1590 2139
1592ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1593{ 2142{
1594 loop_done = how; 2143 loop_done = how;
1595} 2144}
1596 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1597/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1598 2185
1599void inline_size 2186inline_size void
1600wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1601{ 2188{
1602 elem->next = *head; 2189 elem->next = *head;
1603 *head = elem; 2190 *head = elem;
1604} 2191}
1605 2192
1606void inline_size 2193inline_size void
1607wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1608{ 2195{
1609 while (*head) 2196 while (*head)
1610 { 2197 {
1611 if (*head == elem) 2198 if (*head == elem)
1616 2203
1617 head = &(*head)->next; 2204 head = &(*head)->next;
1618 } 2205 }
1619} 2206}
1620 2207
1621void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1622clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1623{ 2211{
1624 if (w->pending) 2212 if (w->pending)
1625 { 2213 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 2215 w->pending = 0;
1628 } 2216 }
1629} 2217}
1630 2218
1631int 2219int
1635 int pending = w_->pending; 2223 int pending = w_->pending;
1636 2224
1637 if (expect_true (pending)) 2225 if (expect_true (pending))
1638 { 2226 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1640 w_->pending = 0; 2229 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 2230 return p->events;
1643 } 2231 }
1644 else 2232 else
1645 return 0; 2233 return 0;
1646} 2234}
1647 2235
1648void inline_size 2236inline_size void
1649pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1650{ 2238{
1651 int pri = w->priority; 2239 int pri = w->priority;
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2242 w->priority = pri;
1655} 2243}
1656 2244
1657void inline_speed 2245inline_speed void
1658ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1659{ 2247{
1660 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1661 w->active = active; 2249 w->active = active;
1662 ev_ref (EV_A); 2250 ev_ref (EV_A);
1663} 2251}
1664 2252
1665void inline_size 2253inline_size void
1666ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1667{ 2255{
1668 ev_unref (EV_A); 2256 ev_unref (EV_A);
1669 w->active = 0; 2257 w->active = 0;
1670} 2258}
1677 int fd = w->fd; 2265 int fd = w->fd;
1678 2266
1679 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1680 return; 2268 return;
1681 2269
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1683 2274
1684 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1687 2278
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1690} 2283}
1691 2284
1692void noinline 2285void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1694{ 2287{
1695 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1697 return; 2290 return;
1698 2291
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1700 2295
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1703 2298
1704 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1705} 2302}
1706 2303
1707void noinline 2304void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1709{ 2306{
1710 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1711 return; 2308 return;
1712 2309
1713 ((WT)w)->at += mn_now; 2310 ev_at (w) += mn_now;
1714 2311
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
1721 2322
2323 EV_FREQUENT_CHECK;
2324
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2326}
1724 2327
1725void noinline 2328void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2330{
1728 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1730 return; 2333 return;
1731 2334
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2335 EV_FREQUENT_CHECK;
1733 2336
1734 { 2337 {
1735 int active = ((W)w)->active; 2338 int active = ev_active (w);
1736 2339
2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341
2342 --timercnt;
2343
1737 if (expect_true (--active < --timercnt)) 2344 if (expect_true (active < timercnt + HEAP0))
1738 { 2345 {
1739 timers [active] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
1741 } 2348 }
1742 } 2349 }
1743 2350
1744 ((WT)w)->at -= mn_now; 2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
1745 2354
1746 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1747} 2356}
1748 2357
1749void noinline 2358void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1751{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1752 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1753 { 2364 {
1754 if (w->repeat) 2365 if (w->repeat)
1755 { 2366 {
1756 ((WT)w)->at = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2369 adjustheap (timers, timercnt, ev_active (w));
1758 } 2370 }
1759 else 2371 else
1760 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1761 } 2373 }
1762 else if (w->repeat) 2374 else if (w->repeat)
1763 { 2375 {
1764 w->at = w->repeat; 2376 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1766 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
1767} 2381}
1768 2382
1769#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
1770void noinline 2384void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2386{
1773 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1774 return; 2388 return;
1775 2389
1776 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2392 else if (w->interval)
1779 { 2393 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2397 }
1784 else 2398 else
1785 ((WT)w)->at = w->offset; 2399 ev_at (w) = w->offset;
1786 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1791 2409
2410 EV_FREQUENT_CHECK;
2411
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2413}
1794 2414
1795void noinline 2415void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2417{
1798 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1800 return; 2420 return;
1801 2421
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2422 EV_FREQUENT_CHECK;
1803 2423
1804 { 2424 {
1805 int active = ((W)w)->active; 2425 int active = ev_active (w);
1806 2426
2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428
2429 --periodiccnt;
2430
1807 if (expect_true (--active < --periodiccnt)) 2431 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2432 {
1809 periodics [active] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
1811 } 2435 }
1812 } 2436 }
1813 2437
2438 EV_FREQUENT_CHECK;
2439
1814 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1815} 2441}
1816 2442
1817void noinline 2443void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2444ev_periodic_again (EV_P_ ev_periodic *w)
1829 2455
1830void noinline 2456void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
1832{ 2458{
1833#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif 2461#endif
1836 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
1837 return; 2463 return;
1838 2464
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2466
2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
1840 2470
1841 { 2471 {
1842#ifndef _WIN32 2472#ifndef _WIN32
1843 sigset_t full, prev; 2473 sigset_t full, prev;
1844 sigfillset (&full); 2474 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif 2476#endif
1847 2477
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1849 2479
1850#ifndef _WIN32 2480#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif 2482#endif
1853 } 2483 }
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2486 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2487
1858 if (!((WL)w)->next) 2488 if (!((WL)w)->next)
1859 { 2489 {
1860#if _WIN32 2490#if _WIN32
1861 signal (w->signum, sighandler); 2491 signal (w->signum, ev_sighandler);
1862#else 2492#else
1863 struct sigaction sa; 2493 struct sigaction sa;
1864 sa.sa_handler = sighandler; 2494 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
1868#endif 2498#endif
1869 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
1870} 2502}
1871 2503
1872void noinline 2504void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2506{
1875 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
1877 return; 2509 return;
1878 2510
2511 EV_FREQUENT_CHECK;
2512
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1881 2515
1882 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
1883 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
1884} 2520}
1885 2521
1886void 2522void
1887ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
1888{ 2524{
1889#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2527#endif
1892 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
1893 return; 2529 return;
1894 2530
2531 EV_FREQUENT_CHECK;
2532
1895 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
1897} 2537}
1898 2538
1899void 2539void
1900ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
1901{ 2541{
1902 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
1904 return; 2544 return;
1905 2545
2546 EV_FREQUENT_CHECK;
2547
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
1908} 2552}
1909 2553
1910#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
1911 2555
1912# ifdef _WIN32 2556# ifdef _WIN32
1913# undef lstat 2557# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
1915# endif 2559# endif
1916 2560
1917#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
1919 2564
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 2566
1922#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
1927{ 2572{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 2574
1930 if (w->wd < 0) 2575 if (w->wd < 0)
1931 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933 2579
1934 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2584 {
1937 char path [4096]; 2585 char path [4096];
1938 strcpy (path, w->path); 2586 strcpy (path, w->path);
1939 2587
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 2592
1945 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
1946 2594
1947 if (!pend) 2595 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 2596 break;
1949 2597
1950 *pend = 0; 2598 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 2600 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 2602 }
1955 } 2603 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 2604
1959 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
1961} 2626}
1962 2627
1963static void noinline 2628static void noinline
1964infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
1965{ 2630{
1979 2644
1980static void noinline 2645static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2647{
1983 if (slot < 0) 2648 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
1987 else 2652 else
1988 { 2653 {
1989 WL w_; 2654 WL w_;
1995 2660
1996 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
1997 { 2662 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2000 w->wd = -1; 2666 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 2668 }
2003 2669
2004 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2017 2683
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2020} 2686}
2021 2687
2022void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2023infy_init (EV_P) 2712infy_init (EV_P)
2024{ 2713{
2025 if (fs_fd != -2) 2714 if (fs_fd != -2)
2026 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2027 2720
2028 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2029 2722
2030 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2031 { 2724 {
2033 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2035 } 2728 }
2036} 2729}
2037 2730
2038void inline_size 2731inline_size void
2039infy_fork (EV_P) 2732infy_fork (EV_P)
2040{ 2733{
2041 int slot; 2734 int slot;
2042 2735
2043 if (fs_fd < 0) 2736 if (fs_fd < 0)
2059 w->wd = -1; 2752 w->wd = -1;
2060 2753
2061 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 2756 else
2064 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2065 } 2758 }
2066
2067 } 2759 }
2068} 2760}
2069 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 2768#endif
2071 2769
2072void 2770void
2073ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2074{ 2772{
2101 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2104 ) { 2802 ) {
2105 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2106 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2109 #endif 2810 #endif
2110 2811
2111 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 2813 }
2113} 2814}
2116ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2117{ 2818{
2118 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2119 return; 2820 return;
2120 2821
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2126 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 2826
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2132 2829
2133#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2134 infy_init (EV_A); 2831 infy_init (EV_A);
2135 2832
2136 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2138 else 2835 else
2139#endif 2836#endif
2140 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2141 2838
2142 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2143} 2842}
2144 2843
2145void 2844void
2146ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2147{ 2846{
2148 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2150 return; 2849 return;
2151 2850
2851 EV_FREQUENT_CHECK;
2852
2152#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2154#endif 2855#endif
2155 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2156 2857
2157 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2158} 2861}
2159#endif 2862#endif
2160 2863
2161#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2162void 2865void
2164{ 2867{
2165 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2166 return; 2869 return;
2167 2870
2168 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2169 2874
2170 { 2875 {
2171 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2172 2877
2173 ++idleall; 2878 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2175 2880
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2178 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2179} 2886}
2180 2887
2181void 2888void
2182ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2183{ 2890{
2184 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2186 return; 2893 return;
2187 2894
2895 EV_FREQUENT_CHECK;
2896
2188 { 2897 {
2189 int active = ((W)w)->active; 2898 int active = ev_active (w);
2190 2899
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 2902
2194 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2195 --idleall; 2904 --idleall;
2196 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2197} 2908}
2198#endif 2909#endif
2199 2910
2200void 2911void
2201ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 2913{
2203 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2204 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2205 2918
2206 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2209} 2924}
2210 2925
2211void 2926void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 2928{
2214 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2216 return; 2931 return;
2217 2932
2933 EV_FREQUENT_CHECK;
2934
2218 { 2935 {
2219 int active = ((W)w)->active; 2936 int active = ev_active (w);
2937
2220 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 2939 ev_active (prepares [active - 1]) = active;
2222 } 2940 }
2223 2941
2224 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2225} 2945}
2226 2946
2227void 2947void
2228ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2229{ 2949{
2230 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2231 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2232 2954
2233 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2236} 2960}
2237 2961
2238void 2962void
2239ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2240{ 2964{
2241 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2243 return; 2967 return;
2244 2968
2969 EV_FREQUENT_CHECK;
2970
2245 { 2971 {
2246 int active = ((W)w)->active; 2972 int active = ev_active (w);
2973
2247 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 2975 ev_active (checks [active - 1]) = active;
2249 } 2976 }
2250 2977
2251 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2252} 2981}
2253 2982
2254#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2255void noinline 2984void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2993 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 2994
2266 if (ev_cb (w)) 2995 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2996 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 2997 else
2269 ev_embed_sweep (loop, w); 2998 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 2999}
2271 3000
2272static void 3001static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3002embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 3003{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3004 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 3005
2277 fd_reify (w->other); 3006 {
3007 struct ev_loop *loop = w->other;
3008
3009 while (fdchangecnt)
3010 {
3011 fd_reify (EV_A);
3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3013 }
3014 }
2278} 3015}
3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
3034#if 0
3035static void
3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3037{
3038 ev_idle_stop (EV_A_ idle);
3039}
3040#endif
2279 3041
2280void 3042void
2281ev_embed_start (EV_P_ ev_embed *w) 3043ev_embed_start (EV_P_ ev_embed *w)
2282{ 3044{
2283 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2284 return; 3046 return;
2285 3047
2286 { 3048 {
2287 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2291 3055
2292 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2294 3058
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2298 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3067
2299 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2300} 3071}
2301 3072
2302void 3073void
2303ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3075{
2305 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2307 return; 3078 return;
2308 3079
3080 EV_FREQUENT_CHECK;
3081
2309 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2311 3085
2312 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2313} 3087}
2314#endif 3088#endif
2315 3089
2316#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2317void 3091void
2318ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2319{ 3093{
2320 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2321 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2322 3098
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2326} 3104}
2327 3105
2328void 3106void
2329ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3108{
2331 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2333 return; 3111 return;
2334 3112
3113 EV_FREQUENT_CHECK;
3114
2335 { 3115 {
2336 int active = ((W)w)->active; 3116 int active = ev_active (w);
3117
2337 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3119 ev_active (forks [active - 1]) = active;
2339 } 3120 }
2340 3121
2341 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
3125}
3126#endif
3127
3128#if EV_ASYNC_ENABLE
3129void
3130ev_async_start (EV_P_ ev_async *w)
3131{
3132 if (expect_false (ev_is_active (w)))
3133 return;
3134
3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
3138
3139 ev_start (EV_A_ (W)w, ++asynccnt);
3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
3144}
3145
3146void
3147ev_async_stop (EV_P_ ev_async *w)
3148{
3149 clear_pending (EV_A_ (W)w);
3150 if (expect_false (!ev_is_active (w)))
3151 return;
3152
3153 EV_FREQUENT_CHECK;
3154
3155 {
3156 int active = ev_active (w);
3157
3158 asyncs [active - 1] = asyncs [--asynccnt];
3159 ev_active (asyncs [active - 1]) = active;
3160 }
3161
3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165}
3166
3167void
3168ev_async_send (EV_P_ ev_async *w)
3169{
3170 w->sent = 1;
3171 evpipe_write (EV_A_ &gotasync);
2342} 3172}
2343#endif 3173#endif
2344 3174
2345/*****************************************************************************/ 3175/*****************************************************************************/
2346 3176
2356once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3187{
2358 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3189 void *arg = once->arg;
2360 3190
2361 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3193 ev_free (once);
2364 3194
2365 cb (revents, arg); 3195 cb (revents, arg);
2366} 3196}
2367 3197
2368static void 3198static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3200{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3204}
2373 3205
2374static void 3206static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3208{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3212}
2379 3213
2380void 3214void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3216{
2404 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2406 } 3240 }
2407} 3241}
2408 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2409#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2411#endif 3353#endif
2412 3354
2413#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines