ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.338 by root, Tue Mar 16 00:20:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
124#include <assert.h> 164#include <assert.h>
125#include <errno.h> 165#include <errno.h>
126#include <sys/types.h> 166#include <sys/types.h>
127#include <time.h> 167#include <time.h>
168#include <limits.h>
128 169
129#include <signal.h> 170#include <signal.h>
130 171
131#ifdef EV_H 172#ifdef EV_H
132# include EV_H 173# include EV_H
137#ifndef _WIN32 178#ifndef _WIN32
138# include <sys/time.h> 179# include <sys/time.h>
139# include <sys/wait.h> 180# include <sys/wait.h>
140# include <unistd.h> 181# include <unistd.h>
141#else 182#else
183# include <io.h>
142# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 185# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
146# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
147#endif 227# endif
148 228#endif
149/**/
150 229
151#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
152# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
153#endif 236#endif
154 237
155#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 240#endif
158 241
159#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
160# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
161#endif 248#endif
162 249
163#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 252#endif
166 253
167#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
168# ifdef _WIN32 255# ifdef _WIN32
169# define EV_USE_POLL 0 256# define EV_USE_POLL 0
170# else 257# else
171# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 259# endif
173#endif 260#endif
174 261
175#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
176# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
177#endif 268#endif
178 269
179#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
181#endif 272#endif
183#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 275# define EV_USE_PORT 0
185#endif 276#endif
186 277
187#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
188# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
189#endif 284#endif
190 285
191#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 297# else
195# define EV_PID_HASHSIZE 16 298# define EV_USE_EVENTFD 0
196# endif
197#endif 299# endif
300#endif
198 301
199#ifndef EV_INOTIFY_HASHSIZE 302#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 304# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 305# else
203# define EV_INOTIFY_HASHSIZE 16 306# define EV_USE_SIGNALFD 0
204# endif
205#endif 307# endif
308#endif
206 309
207/**/ 310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
208 349
209#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
212#endif 353#endif
226# include <sys/select.h> 367# include <sys/select.h>
227# endif 368# endif
228#endif 369#endif
229 370
230#if EV_USE_INOTIFY 371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
231# include <sys/inotify.h> 374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
232#endif 380#endif
233 381
234#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 383# include <winsock.h>
236#endif 384#endif
237 385
386#if EV_USE_EVENTFD
387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
238/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
239 444
240/* 445/*
241 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
247 */ 452 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 454
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 457
254#if __GNUC__ >= 4 458#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
257#else 461#else
258# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
259# define noinline 463# define noinline
260# if __STDC_VERSION__ < 199901L 464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 465# define inline
262# endif 466# endif
263#endif 467#endif
264 468
265#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 471#define inline_size static inline
268 472
269#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
270# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
271#else 483#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
277 486
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
280 489
281typedef ev_watcher *W; 490typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
284 493
494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
515#endif
286 516
287#ifdef _WIN32 517#ifdef _WIN32
288# include "ev_win32.c" 518# include "ev_win32.c"
289#endif 519#endif
290 520
291/*****************************************************************************/ 521/*****************************************************************************/
292 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
293static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
294 532
295void 533void
296ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
297{ 535{
298 syserr_cb = cb; 536 syserr_cb = cb;
299} 537}
300 538
301static void noinline 539static void noinline
302syserr (const char *msg) 540ev_syserr (const char *msg)
303{ 541{
304 if (!msg) 542 if (!msg)
305 msg = "(libev) system error"; 543 msg = "(libev) system error";
306 544
307 if (syserr_cb) 545 if (syserr_cb)
308 syserr_cb (msg); 546 syserr_cb (msg);
309 else 547 else
310 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
311 perror (msg); 557 perror (msg);
558#endif
312 abort (); 559 abort ();
313 } 560 }
314} 561}
315 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
316static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 583
318void 584void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 586{
321 alloc = cb; 587 alloc = cb;
322} 588}
323 589
324inline_speed void * 590inline_speed void *
325ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
326{ 592{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
328 594
329 if (!ptr && size) 595 if (!ptr && size)
330 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
332 abort (); 602 abort ();
333 } 603 }
334 604
335 return ptr; 605 return ptr;
336} 606}
338#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
340 610
341/*****************************************************************************/ 611/*****************************************************************************/
342 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
343typedef struct 617typedef struct
344{ 618{
345 WL head; 619 WL head;
346 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
348#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 628 SOCKET handle;
350#endif 629#endif
351} ANFD; 630} ANFD;
352 631
632/* stores the pending event set for a given watcher */
353typedef struct 633typedef struct
354{ 634{
355 W w; 635 W w;
356 int events; 636 int events; /* the pending event set for the given watcher */
357} ANPENDING; 637} ANPENDING;
358 638
359#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
360typedef struct 641typedef struct
361{ 642{
362 WL head; 643 WL head;
363} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
364#endif 665#endif
365 666
366#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
367 668
368 struct ev_loop 669 struct ev_loop
387 688
388 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
389 690
390#endif 691#endif
391 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
392/*****************************************************************************/ 705/*****************************************************************************/
393 706
707#ifndef EV_HAVE_EV_TIME
394ev_tstamp 708ev_tstamp
395ev_time (void) 709ev_time (void)
396{ 710{
397#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
398 struct timespec ts; 714 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 717 }
718#endif
719
402 struct timeval tv; 720 struct timeval tv;
403 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 723}
724#endif
407 725
408ev_tstamp inline_size 726inline_size ev_tstamp
409get_clock (void) 727get_clock (void)
410{ 728{
411#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
413 { 731 {
439 ts.tv_sec = (time_t)delay; 757 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 759
442 nanosleep (&ts, 0); 760 nanosleep (&ts, 0);
443#elif defined(_WIN32) 761#elif defined(_WIN32)
444 Sleep (delay * 1e3); 762 Sleep ((unsigned long)(delay * 1e3));
445#else 763#else
446 struct timeval tv; 764 struct timeval tv;
447 765
448 tv.tv_sec = (time_t)delay; 766 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
451 select (0, 0, 0, 0, &tv); 772 select (0, 0, 0, 0, &tv);
452#endif 773#endif
453 } 774 }
454} 775}
455 776
456/*****************************************************************************/ 777/*****************************************************************************/
457 778
458int inline_size 779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
459array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
460{ 785{
461 int ncur = cur + 1; 786 int ncur = cur + 1;
462 787
463 do 788 do
464 ncur <<= 1; 789 ncur <<= 1;
465 while (cnt > ncur); 790 while (cnt > ncur);
466 791
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 794 {
470 ncur *= elem; 795 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 797 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 798 ncur /= elem;
474 } 799 }
475 800
476 return ncur; 801 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
481{ 806{
482 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
484} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 813
486#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
488 { \ 816 { \
489 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 830 }
503#endif 831#endif
504 832
505#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 835
508/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
509 843
510void noinline 844void noinline
511ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
512{ 846{
513 W w_ = (W)w; 847 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
524 } 858 }
525} 859}
526 860
527void inline_speed 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 878{
530 int i; 879 int i;
531 880
532 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
534} 883}
535 884
536/*****************************************************************************/ 885/*****************************************************************************/
537 886
538void inline_size 887inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
553{ 889{
554 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
555 ev_io *w; 891 ev_io *w;
556 892
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 897 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
563 } 899 }
564} 900}
565 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
566void 913void
567ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
568{ 915{
569 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
571} 918}
572 919
573void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
574fd_reify (EV_P) 923fd_reify (EV_P)
575{ 924{
576 int i; 925 int i;
577 926
578 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
587 events |= (unsigned char)w->events; 936 events |= (unsigned char)w->events;
588 937
589#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
590 if (events) 939 if (events)
591 { 940 {
592 unsigned long argp; 941 unsigned long arg;
593 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 944 }
596#endif 945#endif
597 946
598 { 947 {
599 unsigned char o_events = anfd->events; 948 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify; 949 unsigned char o_reify = anfd->reify;
601 950
602 anfd->reify = 0; 951 anfd->reify = 0;
603 anfd->events = events; 952 anfd->events = events;
604 953
605 if (o_events != events || o_reify & EV_IOFDSET) 954 if (o_events != events || o_reify & EV__IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 955 backend_modify (EV_A_ fd, o_events, events);
607 } 956 }
608 } 957 }
609 958
610 fdchangecnt = 0; 959 fdchangecnt = 0;
611} 960}
612 961
613void inline_size 962/* something about the given fd changed */
963inline_size void
614fd_change (EV_P_ int fd, int flags) 964fd_change (EV_P_ int fd, int flags)
615{ 965{
616 unsigned char reify = anfds [fd].reify; 966 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 967 anfds [fd].reify |= flags;
618 968
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
624 } 974 }
625} 975}
626 976
627void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
628fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
629{ 980{
630 ev_io *w; 981 ev_io *w;
631 982
632 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 987 }
637} 988}
638 989
639int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
640fd_valid (int fd) 992fd_valid (int fd)
641{ 993{
642#ifdef _WIN32 994#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 996#else
645 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
646#endif 998#endif
647} 999}
648 1000
652{ 1004{
653 int fd; 1005 int fd;
654 1006
655 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 1008 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
659} 1011}
660 1012
661/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 1014static void noinline
666 1018
667 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1020 if (anfds [fd].events)
669 { 1021 {
670 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
671 return; 1023 break;
672 } 1024 }
673} 1025}
674 1026
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1028static void noinline
680 1032
681 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1034 if (anfds [fd].events)
683 { 1035 {
684 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
1037 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1039 }
687} 1040}
688 1041
689/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
690 1043/* this is not fork-safe */
691void inline_speed 1044inline_speed void
692upheap (WT *heap, int k)
693{
694 WT w = heap [k];
695
696 while (k)
697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
703 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1;
705 k = p;
706 }
707
708 heap [k] = w;
709 ((W)heap [k])->active = k + 1;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
747/*****************************************************************************/
748
749typedef struct
750{
751 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG;
754
755static ANSIG *signals;
756static int signalmax;
757
758static int sigpipe [2];
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761
762void inline_size
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1045fd_intern (int fd)
827{ 1046{
828#ifdef _WIN32 1047#ifdef _WIN32
829 int arg = 1; 1048 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1050#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1053#endif
835} 1054}
836 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
837static void noinline 1219static void noinline
838siginit (EV_P) 1220evpipe_init (EV_P)
839{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
840 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
842 1245
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
846} 1317}
847 1318
848/*****************************************************************************/ 1319/*****************************************************************************/
849 1320
1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
1327
1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
850static WL childs [EV_PID_HASHSIZE]; 1385static WL childs [EV_PID_HASHSIZE];
851 1386
852#ifndef _WIN32
853
854static ev_signal childev; 1387static ev_signal childev;
855 1388
856void inline_speed 1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
858{ 1396{
859 ev_child *w; 1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1399
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
862 if (w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
863 { 1404 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1406 w->rpid = pid;
866 w->rstatus = status; 1407 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1409 }
1410 }
869} 1411}
870 1412
871#ifndef WCONTINUED 1413#ifndef WCONTINUED
872# define WCONTINUED 0 1414# define WCONTINUED 0
873#endif 1415#endif
874 1416
1417/* called on sigchld etc., calls waitpid */
875static void 1418static void
876childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
877{ 1420{
878 int pid, status; 1421 int pid, status;
879 1422
882 if (!WCONTINUED 1425 if (!WCONTINUED
883 || errno != EINVAL 1426 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1428 return;
886 1429
887 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1433
891 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1437}
895 1438
896#endif 1439#endif
897 1440
898/*****************************************************************************/ 1441/*****************************************************************************/
960 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
963#endif 1506#endif
964#ifdef __APPLE__ 1507#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
967#endif 1511#endif
968 1512
969 return flags; 1513 return flags;
970} 1514}
971 1515
972unsigned int 1516unsigned int
973ev_embeddable_backends (void) 1517ev_embeddable_backends (void)
974{ 1518{
1519 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1520
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1521 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1522 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1523 flags &= ~EVBACKEND_EPOLL;
1524
1525 return flags;
978} 1526}
979 1527
980unsigned int 1528unsigned int
981ev_backend (EV_P) 1529ev_backend (EV_P)
982{ 1530{
983 return backend; 1531 return backend;
984} 1532}
985 1533
1534#if EV_FEATURE_API
986unsigned int 1535unsigned int
987ev_loop_count (EV_P) 1536ev_loop_count (EV_P)
988{ 1537{
989 return loop_count; 1538 return loop_count;
990} 1539}
991 1540
1541unsigned int
1542ev_loop_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
992void 1547void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{ 1549{
995 io_blocktime = interval; 1550 io_blocktime = interval;
996} 1551}
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1555{
1001 timeout_blocktime = interval; 1556 timeout_blocktime = interval;
1002} 1557}
1003 1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
1004static void noinline 1584static void noinline
1005loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
1006{ 1586{
1007 if (!backend) 1587 if (!backend)
1008 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
1009#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
1010 { 1601 {
1011 struct timespec ts; 1602 struct timespec ts;
1603
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1605 have_monotonic = 1;
1014 } 1606 }
1015#endif 1607#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 1608
1025 /* pid check not overridable via env */ 1609 /* pid check not overridable via env */
1026#ifndef _WIN32 1610#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1611 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1612 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1615 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1616 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1617 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1618 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1619
1620 ev_rt_now = ev_time ();
1621 mn_now = get_clock ();
1622 now_floor = mn_now;
1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1627
1628 io_blocktime = 0.;
1629 timeout_blocktime = 0.;
1630 backend = 0;
1631 backend_fd = -1;
1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1636#if EV_USE_INOTIFY
1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1638#endif
1639#if EV_USE_SIGNALFD
1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1641#endif
1642
1036 if (!(flags & 0x0000ffffUL)) 1643 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1645
1045#if EV_USE_PORT 1646#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1647 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1648#endif
1048#if EV_USE_KQUEUE 1649#if EV_USE_KQUEUE
1056#endif 1657#endif
1057#if EV_USE_SELECT 1658#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1660#endif
1060 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1061 ev_init (&sigev, sigcb); 1665 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
1063 } 1668 }
1064} 1669}
1065 1670
1671/* free up a loop structure */
1066static void noinline 1672static void noinline
1067loop_destroy (EV_P) 1673loop_destroy (EV_P)
1068{ 1674{
1069 int i; 1675 int i;
1676
1677 if (ev_is_active (&pipe_w))
1678 {
1679 /*ev_ref (EV_A);*/
1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1681
1682#if EV_USE_EVENTFD
1683 if (evfd >= 0)
1684 close (evfd);
1685#endif
1686
1687 if (evpipe [0] >= 0)
1688 {
1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1691 }
1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
1070 1698
1071#if EV_USE_INOTIFY 1699#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1700 if (fs_fd >= 0)
1073 close (fs_fd); 1701 close (fs_fd);
1074#endif 1702#endif
1098#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 1727 array_free (idle, [i]);
1100#endif 1728#endif
1101 } 1729 }
1102 1730
1103 ev_free (anfds); anfdmax = 0; 1731 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 1732
1105 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1735 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1736 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1738 array_free (periodic, EMPTY);
1110#endif 1739#endif
1111#if EV_FORK_ENABLE 1740#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1741 array_free (fork, EMPTY);
1113#endif 1742#endif
1114 array_free (prepare, EMPTY); 1743 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1744 array_free (check, EMPTY);
1745#if EV_ASYNC_ENABLE
1746 array_free (async, EMPTY);
1747#endif
1116 1748
1117 backend = 0; 1749 backend = 0;
1118} 1750}
1119 1751
1752#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1753inline_size void infy_fork (EV_P);
1754#endif
1121 1755
1122void inline_size 1756inline_size void
1123loop_fork (EV_P) 1757loop_fork (EV_P)
1124{ 1758{
1125#if EV_USE_PORT 1759#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1761#endif
1133#endif 1767#endif
1134#if EV_USE_INOTIFY 1768#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1769 infy_fork (EV_A);
1136#endif 1770#endif
1137 1771
1138 if (ev_is_active (&sigev)) 1772 if (ev_is_active (&pipe_w))
1139 { 1773 {
1140 /* default loop */ 1774 /* this "locks" the handlers against writing to the pipe */
1775 /* while we modify the fd vars */
1776 sig_pending = 1;
1777#if EV_ASYNC_ENABLE
1778 async_pending = 1;
1779#endif
1141 1780
1142 ev_ref (EV_A); 1781 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1782 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 1783
1147 while (pipe (sigpipe)) 1784#if EV_USE_EVENTFD
1148 syserr ("(libev) error creating pipe"); 1785 if (evfd >= 0)
1786 close (evfd);
1787#endif
1149 1788
1789 if (evpipe [0] >= 0)
1790 {
1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1793 }
1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1150 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
1151 } 1800 }
1152 1801
1153 postfork = 0; 1802 postfork = 0;
1154} 1803}
1155 1804
1156#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
1157struct ev_loop * 1807struct ev_loop *
1158ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
1159{ 1809{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1811
1162 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
1165 1814
1166 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
1167 return loop; 1816 return EV_A;
1168 1817
1169 return 0; 1818 return 0;
1170} 1819}
1171 1820
1172void 1821void
1177} 1826}
1178 1827
1179void 1828void
1180ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
1181{ 1830{
1182 postfork = 1; 1831 postfork = 1; /* must be in line with ev_default_fork */
1183} 1832}
1833#endif /* multiplicity */
1184 1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_loop_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1939}
1185#endif 1940#endif
1186 1941
1187#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1188struct ev_loop * 1943struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1944ev_default_loop_init (unsigned int flags)
1190#else 1945#else
1191int 1946int
1192ev_default_loop (unsigned int flags) 1947ev_default_loop (unsigned int flags)
1193#endif 1948#endif
1194{ 1949{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1200 { 1951 {
1201#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 1954#else
1204 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1205#endif 1956#endif
1206 1957
1207 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1208 1959
1209 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1210 { 1961 {
1211 siginit (EV_A); 1962#if EV_CHILD_ENABLE
1212
1213#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1218#endif 1967#endif
1226 1975
1227void 1976void
1228ev_default_destroy (void) 1977ev_default_destroy (void)
1229{ 1978{
1230#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1232#endif 1981#endif
1233 1982
1234#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1235 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1237#endif 1988#endif
1238 1989
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1246} 1991}
1247 1992
1248void 1993void
1249ev_default_fork (void) 1994ev_default_fork (void)
1250{ 1995{
1251#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1253#endif 1998#endif
1254 1999
1255 if (backend) 2000 postfork = 1; /* must be in line with ev_loop_fork */
1256 postfork = 1;
1257} 2001}
1258 2002
1259/*****************************************************************************/ 2003/*****************************************************************************/
1260 2004
1261void 2005void
1262ev_invoke (EV_P_ void *w, int revents) 2006ev_invoke (EV_P_ void *w, int revents)
1263{ 2007{
1264 EV_CB_INVOKE ((W)w, revents); 2008 EV_CB_INVOKE ((W)w, revents);
1265} 2009}
1266 2010
1267void inline_speed 2011unsigned int
1268call_pending (EV_P) 2012ev_pending_count (EV_P)
2013{
2014 int pri;
2015 unsigned int count = 0;
2016
2017 for (pri = NUMPRI; pri--; )
2018 count += pendingcnt [pri];
2019
2020 return count;
2021}
2022
2023void noinline
2024ev_invoke_pending (EV_P)
1269{ 2025{
1270 int pri; 2026 int pri;
1271 2027
1272 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1274 { 2030 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 2032
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1280 2035
1281 p->w->pending = 0; 2036 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1283 } 2038 EV_FREQUENT_CHECK;
1284 } 2039 }
1285} 2040}
1286 2041
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 2042#if EV_IDLE_ENABLE
1368void inline_size 2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
1369idle_reify (EV_P) 2046idle_reify (EV_P)
1370{ 2047{
1371 if (expect_false (idleall)) 2048 if (expect_false (idleall))
1372 { 2049 {
1373 int pri; 2050 int pri;
1385 } 2062 }
1386 } 2063 }
1387} 2064}
1388#endif 2065#endif
1389 2066
1390void inline_speed 2067/* make timers pending */
2068inline_size void
2069timers_reify (EV_P)
2070{
2071 EV_FREQUENT_CHECK;
2072
2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2074 {
2075 do
2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2089
2090 ANHE_at_cache (timers [HEAP0]);
2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
2098 }
2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2100
2101 feed_reverse_done (EV_A_ EV_TIMEOUT);
2102 }
2103}
2104
2105#if EV_PERIODIC_ENABLE
2106/* make periodics pending */
2107inline_size void
2108periodics_reify (EV_P)
2109{
2110 EV_FREQUENT_CHECK;
2111
2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2113 {
2114 int feed_count = 0;
2115
2116 do
2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
2156 }
2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2158
2159 feed_reverse_done (EV_A_ EV_PERIODIC);
2160 }
2161}
2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2165static void noinline
2166periodics_reschedule (EV_P)
2167{
2168 int i;
2169
2170 /* adjust periodics after time jump */
2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2172 {
2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2174
2175 if (w->reschedule_cb)
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177 else if (w->interval)
2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179
2180 ANHE_at_cache (periodics [i]);
2181 }
2182
2183 reheap (periodics, periodiccnt);
2184}
2185#endif
2186
2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
2194 {
2195 ANHE *he = timers + i + HEAP0;
2196 ANHE_w (*he)->at += adjust;
2197 ANHE_at_cache (*he);
2198 }
2199}
2200
2201/* fetch new monotonic and realtime times from the kernel */
2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2204time_update (EV_P_ ev_tstamp max_block)
1392{ 2205{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2206#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2207 if (expect_true (have_monotonic))
1397 { 2208 {
2209 int i;
1398 ev_tstamp odiff = rtmn_diff; 2210 ev_tstamp odiff = rtmn_diff;
1399 2211
1400 mn_now = get_clock (); 2212 mn_now = get_clock ();
1401 2213
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1420 */ 2232 */
1421 for (i = 4; --i; ) 2233 for (i = 4; --i; )
1422 { 2234 {
1423 rtmn_diff = ev_rt_now - mn_now; 2235 rtmn_diff = ev_rt_now - mn_now;
1424 2236
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2237 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2238 return; /* all is well */
1427 2239
1428 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2241 mn_now = get_clock ();
1430 now_floor = mn_now; 2242 now_floor = mn_now;
1431 } 2243 }
1432 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1435# endif 2249# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2250 }
1439 else 2251 else
1440#endif 2252#endif
1441 { 2253 {
1442 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1443 2255
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1448#endif 2262#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2263 }
1453 2264
1454 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1455 } 2266 }
1456} 2267}
1457 2268
1458void 2269void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1474{ 2271{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2272#if EV_FEATURE_API
1476 ? EVUNLOOP_ONE 2273 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2274#endif
1478 2275
2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
2278 loop_done = EVUNLOOP_CANCEL;
2279
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2281
1481 do 2282 do
1482 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_loop_verify (EV_A);
2286#endif
2287
1483#ifndef _WIN32 2288#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2289 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2290 if (expect_false (getpid () != curpid))
1486 { 2291 {
1487 curpid = getpid (); 2292 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2298 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2299 if (expect_false (postfork))
1495 if (forkcnt) 2300 if (forkcnt)
1496 { 2301 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2303 EV_INVOKE_PENDING;
1499 } 2304 }
1500#endif 2305#endif
1501 2306
2307#if EV_PREPARE_ENABLE
1502 /* queue prepare watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1504 { 2310 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1507 } 2313 }
2314#endif
1508 2315
1509 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1510 break; 2317 break;
1511 2318
1512 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1514 loop_fork (EV_A); 2321 loop_fork (EV_A);
1521 ev_tstamp waittime = 0.; 2328 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2329 ev_tstamp sleeptime = 0.;
1523 2330
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1525 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1526 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100); 2337 time_update (EV_A_ 1e100);
1528 2338
1529 waittime = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1530 2340
1531 if (timercnt) 2341 if (timercnt)
1532 { 2342 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2344 if (waittime > to) waittime = to;
1535 } 2345 }
1536 2346
1537#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2348 if (periodiccnt)
1539 { 2349 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2351 if (waittime > to) waittime = to;
1542 } 2352 }
1543#endif 2353#endif
1544 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 2356 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 2357 waittime = timeout_blocktime;
1547 2358
1548 sleeptime = waittime - backend_fudge; 2359 /* extra check because io_blocktime is commonly 0 */
1549
1550 if (expect_true (sleeptime > io_blocktime)) 2360 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
1555 ev_sleep (sleeptime); 2369 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 2370 waittime -= sleeptime;
2371 }
1557 } 2372 }
1558 } 2373 }
1559 2374
2375#if EV_FEATURE_API
1560 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1562 2381
1563 /* update ev_rt_now, do magic */ 2382 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 2383 time_update (EV_A_ waittime + sleeptime);
1565 } 2384 }
1566 2385
1573#if EV_IDLE_ENABLE 2392#if EV_IDLE_ENABLE
1574 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1575 idle_reify (EV_A); 2394 idle_reify (EV_A);
1576#endif 2395#endif
1577 2396
2397#if EV_CHECK_ENABLE
1578 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1581 2402
1582 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1583
1584 } 2404 }
1585 while (expect_true (activecnt && !loop_done)); 2405 while (expect_true (
2406 activecnt
2407 && !loop_done
2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2409 ));
1586 2410
1587 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1589} 2417}
1590 2418
1591void 2419void
1592ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1593{ 2421{
1594 loop_done = how; 2422 loop_done = how;
1595} 2423}
1596 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1597/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1598 2464
1599void inline_size 2465inline_size void
1600wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1601{ 2467{
1602 elem->next = *head; 2468 elem->next = *head;
1603 *head = elem; 2469 *head = elem;
1604} 2470}
1605 2471
1606void inline_size 2472inline_size void
1607wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1608{ 2474{
1609 while (*head) 2475 while (*head)
1610 { 2476 {
1611 if (*head == elem) 2477 if (expect_true (*head == elem))
1612 { 2478 {
1613 *head = elem->next; 2479 *head = elem->next;
1614 return; 2480 break;
1615 } 2481 }
1616 2482
1617 head = &(*head)->next; 2483 head = &(*head)->next;
1618 } 2484 }
1619} 2485}
1620 2486
1621void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1622clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1623{ 2490{
1624 if (w->pending) 2491 if (w->pending)
1625 { 2492 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 2494 w->pending = 0;
1628 } 2495 }
1629} 2496}
1630 2497
1631int 2498int
1635 int pending = w_->pending; 2502 int pending = w_->pending;
1636 2503
1637 if (expect_true (pending)) 2504 if (expect_true (pending))
1638 { 2505 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
1640 w_->pending = 0; 2508 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 2509 return p->events;
1643 } 2510 }
1644 else 2511 else
1645 return 0; 2512 return 0;
1646} 2513}
1647 2514
1648void inline_size 2515inline_size void
1649pri_adjust (EV_P_ W w) 2516pri_adjust (EV_P_ W w)
1650{ 2517{
1651 int pri = w->priority; 2518 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2521 ev_set_priority (w, pri);
1655} 2522}
1656 2523
1657void inline_speed 2524inline_speed void
1658ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1659{ 2526{
1660 pri_adjust (EV_A_ w); 2527 pri_adjust (EV_A_ w);
1661 w->active = active; 2528 w->active = active;
1662 ev_ref (EV_A); 2529 ev_ref (EV_A);
1663} 2530}
1664 2531
1665void inline_size 2532inline_size void
1666ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1667{ 2534{
1668 ev_unref (EV_A); 2535 ev_unref (EV_A);
1669 w->active = 0; 2536 w->active = 0;
1670} 2537}
1677 int fd = w->fd; 2544 int fd = w->fd;
1678 2545
1679 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1680 return; 2547 return;
1681 2548
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1683 2553
1684 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1687 2557
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 2559 w->events &= ~EV__IOFDSET;
2560
2561 EV_FREQUENT_CHECK;
1690} 2562}
1691 2563
1692void noinline 2564void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1694{ 2566{
1695 clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1697 return; 2569 return;
1698 2570
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2572
2573 EV_FREQUENT_CHECK;
1700 2574
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1703 2577
1704 fd_change (EV_A_ w->fd, 1); 2578 fd_change (EV_A_ w->fd, 1);
2579
2580 EV_FREQUENT_CHECK;
1705} 2581}
1706 2582
1707void noinline 2583void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1709{ 2585{
1710 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1711 return; 2587 return;
1712 2588
1713 ((WT)w)->at += mn_now; 2589 ev_at (w) += mn_now;
1714 2590
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2599 ANHE_at_cache (timers [ev_active (w)]);
2600 upheap (timers, ev_active (w));
1721 2601
2602 EV_FREQUENT_CHECK;
2603
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2605}
1724 2606
1725void noinline 2607void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2609{
1728 clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1730 return; 2612 return;
1731 2613
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2614 EV_FREQUENT_CHECK;
1733 2615
1734 { 2616 {
1735 int active = ((W)w)->active; 2617 int active = ev_active (w);
1736 2618
2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2620
2621 --timercnt;
2622
1737 if (expect_true (--active < --timercnt)) 2623 if (expect_true (active < timercnt + HEAP0))
1738 { 2624 {
1739 timers [active] = timers [timercnt]; 2625 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2626 adjustheap (timers, timercnt, active);
1741 } 2627 }
1742 } 2628 }
1743 2629
1744 ((WT)w)->at -= mn_now; 2630 ev_at (w) -= mn_now;
1745 2631
1746 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
2633
2634 EV_FREQUENT_CHECK;
1747} 2635}
1748 2636
1749void noinline 2637void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
1751{ 2639{
2640 EV_FREQUENT_CHECK;
2641
1752 if (ev_is_active (w)) 2642 if (ev_is_active (w))
1753 { 2643 {
1754 if (w->repeat) 2644 if (w->repeat)
1755 { 2645 {
1756 ((WT)w)->at = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2648 adjustheap (timers, timercnt, ev_active (w));
1758 } 2649 }
1759 else 2650 else
1760 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
1761 } 2652 }
1762 else if (w->repeat) 2653 else if (w->repeat)
1763 { 2654 {
1764 w->at = w->repeat; 2655 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
1766 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 2666}
1768 2667
1769#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
1770void noinline 2669void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2671{
1773 if (expect_false (ev_is_active (w))) 2672 if (expect_false (ev_is_active (w)))
1774 return; 2673 return;
1775 2674
1776 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2677 else if (w->interval)
1779 { 2678 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2682 }
1784 else 2683 else
1785 ((WT)w)->at = w->offset; 2684 ev_at (w) = w->offset;
1786 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2692 ANHE_at_cache (periodics [ev_active (w)]);
2693 upheap (periodics, ev_active (w));
1791 2694
2695 EV_FREQUENT_CHECK;
2696
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2698}
1794 2699
1795void noinline 2700void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2702{
1798 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1800 return; 2705 return;
1801 2706
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2707 EV_FREQUENT_CHECK;
1803 2708
1804 { 2709 {
1805 int active = ((W)w)->active; 2710 int active = ev_active (w);
1806 2711
2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2713
2714 --periodiccnt;
2715
1807 if (expect_true (--active < --periodiccnt)) 2716 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2717 {
1809 periodics [active] = periodics [periodiccnt]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2719 adjustheap (periodics, periodiccnt, active);
1811 } 2720 }
1812 } 2721 }
1813 2722
1814 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
2724
2725 EV_FREQUENT_CHECK;
1815} 2726}
1816 2727
1817void noinline 2728void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
1819{ 2730{
1825 2736
1826#ifndef SA_RESTART 2737#ifndef SA_RESTART
1827# define SA_RESTART 0 2738# define SA_RESTART 0
1828#endif 2739#endif
1829 2740
2741#if EV_SIGNAL_ENABLE
2742
1830void noinline 2743void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2744ev_signal_start (EV_P_ ev_signal *w)
1832{ 2745{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1837 return; 2747 return;
1838 2748
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 2750
2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
1841 { 2762 {
1842#ifndef _WIN32 2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 2764 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 2766
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
1849 2770
1850#ifndef _WIN32 2771 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2772
1852#endif 2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
1853 } 2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
1854 2789
1855 ev_start (EV_A_ (W)w, 1); 2790 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2792
1858 if (!((WL)w)->next) 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
1859 { 2797 {
1860#if _WIN32 2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
1861 signal (w->signum, sighandler); 2801 signal (w->signum, ev_sighandler);
1862#else 2802# else
1863 struct sigaction sa; 2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
1864 sa.sa_handler = sighandler; 2807 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2808 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1868#endif 2815#endif
1869 } 2816 }
2817
2818 EV_FREQUENT_CHECK;
1870} 2819}
1871 2820
1872void noinline 2821void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2823{
1875 clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
1877 return; 2826 return;
1878 2827
2828 EV_FREQUENT_CHECK;
2829
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
1881 2832
1882 if (!signals [w->signum - 1].head) 2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
1883 signal (w->signum, SIG_DFL); 2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
1884} 2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
1885 2861
1886void 2862void
1887ev_child_start (EV_P_ ev_child *w) 2863ev_child_start (EV_P_ ev_child *w)
1888{ 2864{
1889#if EV_MULTIPLICITY 2865#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2867#endif
1892 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
1893 return; 2869 return;
1894 2870
2871 EV_FREQUENT_CHECK;
2872
1895 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875
2876 EV_FREQUENT_CHECK;
1897} 2877}
1898 2878
1899void 2879void
1900ev_child_stop (EV_P_ ev_child *w) 2880ev_child_stop (EV_P_ ev_child *w)
1901{ 2881{
1902 clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
1904 return; 2884 return;
1905 2885
2886 EV_FREQUENT_CHECK;
2887
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1908} 2892}
2893
2894#endif
1909 2895
1910#if EV_STAT_ENABLE 2896#if EV_STAT_ENABLE
1911 2897
1912# ifdef _WIN32 2898# ifdef _WIN32
1913# undef lstat 2899# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 2900# define lstat(a,b) _stati64 (a,b)
1915# endif 2901# endif
1916 2902
1917#define DEF_STAT_INTERVAL 5.0074891 2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 2905#define MIN_STAT_INTERVAL 0.1074891
1919 2906
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 2908
1922#if EV_USE_INOTIFY 2909#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 2913
1925static void noinline 2914static void noinline
1926infy_add (EV_P_ ev_stat *w) 2915infy_add (EV_P_ ev_stat *w)
1927{ 2916{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 2918
1930 if (w->wd < 0) 2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 2939 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 2944
1934 /* monitor some parent directory for speedup hints */ 2945 /* if path is not there, monitor some parent directory for speedup hints */
2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2947 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2949 {
1937 char path [4096]; 2950 char path [4096];
1938 strcpy (path, w->path); 2951 strcpy (path, w->path);
1939 2952
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 2957
1945 char *pend = strrchr (path, '/'); 2958 char *pend = strrchr (path, '/');
1946 2959
1947 if (!pend) 2960 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 2961 break;
1949 2962
1950 *pend = 0; 2963 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 2964 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 2965 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 2967 }
1955 } 2968 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 2969
1959 if (w->wd >= 0) 2970 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 2977}
1962 2978
1963static void noinline 2979static void noinline
1964infy_del (EV_P_ ev_stat *w) 2980infy_del (EV_P_ ev_stat *w)
1965{ 2981{
1968 2984
1969 if (wd < 0) 2985 if (wd < 0)
1970 return; 2986 return;
1971 2987
1972 w->wd = -2; 2988 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w); 2990 wlist_del (&fs_hash [slot].head, (WL)w);
1975 2991
1976 /* remove this watcher, if others are watching it, they will rearm */ 2992 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd); 2993 inotify_rm_watch (fs_fd, wd);
1978} 2994}
1979 2995
1980static void noinline 2996static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2998{
1983 if (slot < 0) 2999 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 3000 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 3002 infy_wd (EV_A_ slot, wd, ev);
1987 else 3003 else
1988 { 3004 {
1989 WL w_; 3005 WL w_;
1990 3006
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1992 { 3008 {
1993 ev_stat *w = (ev_stat *)w_; 3009 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */ 3010 w_ = w_->next; /* lets us remove this watcher and all before it */
1995 3011
1996 if (w->wd == wd || wd == -1) 3012 if (w->wd == wd || wd == -1)
1997 { 3013 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2000 w->wd = -1; 3017 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 3018 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 3019 }
2003 3020
2004 stat_timer_cb (EV_A_ &w->timer, 0); 3021 stat_timer_cb (EV_A_ &w->timer, 0);
2009 3026
2010static void 3027static void
2011infy_cb (EV_P_ ev_io *w, int revents) 3028infy_cb (EV_P_ ev_io *w, int revents)
2012{ 3029{
2013 char buf [EV_INOTIFY_BUFSIZE]; 3030 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 3031 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 3032 int len = read (fs_fd, buf, sizeof (buf));
2017 3033
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
2020} 3040}
2021 3041
2022void inline_size 3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
3081 return;
3082
3083 fs_2625 = 1;
3084}
3085
3086inline_size int
3087infy_newfd (void)
3088{
3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
3093#endif
3094 return inotify_init ();
3095}
3096
3097inline_size void
2023infy_init (EV_P) 3098infy_init (EV_P)
2024{ 3099{
2025 if (fs_fd != -2) 3100 if (fs_fd != -2)
2026 return; 3101 return;
2027 3102
3103 fs_fd = -1;
3104
3105 ev_check_2625 (EV_A);
3106
2028 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
2029 3108
2030 if (fs_fd >= 0) 3109 if (fs_fd >= 0)
2031 { 3110 {
3111 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 3113 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
2035 } 3116 }
2036} 3117}
2037 3118
2038void inline_size 3119inline_size void
2039infy_fork (EV_P) 3120infy_fork (EV_P)
2040{ 3121{
2041 int slot; 3122 int slot;
2042 3123
2043 if (fs_fd < 0) 3124 if (fs_fd < 0)
2044 return; 3125 return;
2045 3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 3129 close (fs_fd);
2047 fs_fd = inotify_init (); 3130 fs_fd = infy_newfd ();
2048 3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2050 { 3141 {
2051 WL w_ = fs_hash [slot].head; 3142 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 3143 fs_hash [slot].head = 0;
2053 3144
2054 while (w_) 3145 while (w_)
2059 w->wd = -1; 3150 w->wd = -1;
2060 3151
2061 if (fs_fd >= 0) 3152 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3153 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
2065 } 3161 }
2066
2067 } 3162 }
2068} 3163}
2069 3164
3165#endif
3166
3167#ifdef _WIN32
3168# define EV_LSTAT(p,b) _stati64 (p, b)
3169#else
3170# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3171#endif
2071 3172
2072void 3173void
2073ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
2074{ 3175{
2081static void noinline 3182static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 3184{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 3186
2086 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
2090 3189
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 3191 if (
2093 w->prev.st_dev != w->attr.st_dev 3192 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 3193 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 3194 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 3195 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 3196 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 3197 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 3198 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 3199 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 3200 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3201 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3202 || prev.st_ctime != w->attr.st_ctime
2104 ) { 3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
2105 #if EV_USE_INOTIFY 3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
2106 infy_del (EV_A_ w); 3212 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3213 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
2109 #endif 3216 #endif
2110 3217
2111 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3219 }
2113} 3220}
2116ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
2117{ 3224{
2118 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
2119 return; 3226 return;
2120 3227
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
2126 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3231 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3232
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
2132 3235
2133#if EV_USE_INOTIFY 3236#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3237 infy_init (EV_A);
2135 3238
2136 if (fs_fd >= 0) 3239 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2138 else 3241 else
2139#endif 3242#endif
3243 {
2140 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
2141 3247
2142 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
2143} 3251}
2144 3252
2145void 3253void
2146ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
2147{ 3255{
2148 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2150 return; 3258 return;
2151 3259
3260 EV_FREQUENT_CHECK;
3261
2152#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2154#endif 3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
2156 3271
2157 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2158} 3275}
2159#endif 3276#endif
2160 3277
2161#if EV_IDLE_ENABLE 3278#if EV_IDLE_ENABLE
2162void 3279void
2164{ 3281{
2165 if (expect_false (ev_is_active (w))) 3282 if (expect_false (ev_is_active (w)))
2166 return; 3283 return;
2167 3284
2168 pri_adjust (EV_A_ (W)w); 3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
2169 3288
2170 { 3289 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3290 int active = ++idlecnt [ABSPRI (w)];
2172 3291
2173 ++idleall; 3292 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3293 ev_start (EV_A_ (W)w, active);
2175 3294
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3296 idles [ABSPRI (w)][active - 1] = w;
2178 } 3297 }
3298
3299 EV_FREQUENT_CHECK;
2179} 3300}
2180 3301
2181void 3302void
2182ev_idle_stop (EV_P_ ev_idle *w) 3303ev_idle_stop (EV_P_ ev_idle *w)
2183{ 3304{
2184 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
2186 return; 3307 return;
2187 3308
3309 EV_FREQUENT_CHECK;
3310
2188 { 3311 {
2189 int active = ((W)w)->active; 3312 int active = ev_active (w);
2190 3313
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3316
2194 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
2195 --idleall; 3318 --idleall;
2196 } 3319 }
2197}
2198#endif
2199 3320
3321 EV_FREQUENT_CHECK;
3322}
3323#endif
3324
3325#if EV_PREPARE_ENABLE
2200void 3326void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3327ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 3328{
2203 if (expect_false (ev_is_active (w))) 3329 if (expect_false (ev_is_active (w)))
2204 return; 3330 return;
3331
3332 EV_FREQUENT_CHECK;
2205 3333
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3334 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
2209} 3339}
2210 3340
2211void 3341void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 3342ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 3343{
2214 clear_pending (EV_A_ (W)w); 3344 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3345 if (expect_false (!ev_is_active (w)))
2216 return; 3346 return;
2217 3347
3348 EV_FREQUENT_CHECK;
3349
2218 { 3350 {
2219 int active = ((W)w)->active; 3351 int active = ev_active (w);
3352
2220 prepares [active - 1] = prepares [--preparecnt]; 3353 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 3354 ev_active (prepares [active - 1]) = active;
2222 } 3355 }
2223 3356
2224 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2225}
2226 3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
2227void 3364void
2228ev_check_start (EV_P_ ev_check *w) 3365ev_check_start (EV_P_ ev_check *w)
2229{ 3366{
2230 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2231 return; 3368 return;
3369
3370 EV_FREQUENT_CHECK;
2232 3371
2233 ev_start (EV_A_ (W)w, ++checkcnt); 3372 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
2236} 3377}
2237 3378
2238void 3379void
2239ev_check_stop (EV_P_ ev_check *w) 3380ev_check_stop (EV_P_ ev_check *w)
2240{ 3381{
2241 clear_pending (EV_A_ (W)w); 3382 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 3383 if (expect_false (!ev_is_active (w)))
2243 return; 3384 return;
2244 3385
3386 EV_FREQUENT_CHECK;
3387
2245 { 3388 {
2246 int active = ((W)w)->active; 3389 int active = ev_active (w);
3390
2247 checks [active - 1] = checks [--checkcnt]; 3391 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 3392 ev_active (checks [active - 1]) = active;
2249 } 3393 }
2250 3394
2251 ev_stop (EV_A_ (W)w); 3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
2252} 3398}
3399#endif
2253 3400
2254#if EV_EMBED_ENABLE 3401#if EV_EMBED_ENABLE
2255void noinline 3402void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 3403ev_embed_sweep (EV_P_ ev_embed *w)
2257{ 3404{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3411 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 3412
2266 if (ev_cb (w)) 3413 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3414 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 3415 else
2269 ev_embed_sweep (loop, w); 3416 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 3417}
2271 3418
2272static void 3419static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 3421{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 3423
2277 fd_reify (w->other); 3424 {
3425 EV_P = w->other;
3426
3427 while (fdchangecnt)
3428 {
3429 fd_reify (EV_A);
3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3431 }
3432 }
2278} 3433}
3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
3452#if 0
3453static void
3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3455{
3456 ev_idle_stop (EV_A_ idle);
3457}
3458#endif
2279 3459
2280void 3460void
2281ev_embed_start (EV_P_ ev_embed *w) 3461ev_embed_start (EV_P_ ev_embed *w)
2282{ 3462{
2283 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2284 return; 3464 return;
2285 3465
2286 { 3466 {
2287 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3470 }
3471
3472 EV_FREQUENT_CHECK;
2291 3473
2292 ev_set_priority (&w->io, ev_priority (w)); 3474 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3475 ev_io_start (EV_A_ &w->io);
2294 3476
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3478 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3479 ev_prepare_start (EV_A_ &w->prepare);
2298 3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3485
2299 ev_start (EV_A_ (W)w, 1); 3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
2300} 3489}
2301 3490
2302void 3491void
2303ev_embed_stop (EV_P_ ev_embed *w) 3492ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3493{
2305 clear_pending (EV_A_ (W)w); 3494 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3495 if (expect_false (!ev_is_active (w)))
2307 return; 3496 return;
2308 3497
3498 EV_FREQUENT_CHECK;
3499
2309 ev_io_stop (EV_A_ &w->io); 3500 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
2311 3503
2312 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2313} 3507}
2314#endif 3508#endif
2315 3509
2316#if EV_FORK_ENABLE 3510#if EV_FORK_ENABLE
2317void 3511void
2318ev_fork_start (EV_P_ ev_fork *w) 3512ev_fork_start (EV_P_ ev_fork *w)
2319{ 3513{
2320 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2321 return; 3515 return;
3516
3517 EV_FREQUENT_CHECK;
2322 3518
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3519 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
2326} 3524}
2327 3525
2328void 3526void
2329ev_fork_stop (EV_P_ ev_fork *w) 3527ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3528{
2331 clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
2333 return; 3531 return;
2334 3532
3533 EV_FREQUENT_CHECK;
3534
2335 { 3535 {
2336 int active = ((W)w)->active; 3536 int active = ev_active (w);
3537
2337 forks [active - 1] = forks [--forkcnt]; 3538 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3539 ev_active (forks [active - 1]) = active;
2339 } 3540 }
2340 3541
2341 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
3545}
3546#endif
3547
3548#if EV_ASYNC_ENABLE
3549void
3550ev_async_start (EV_P_ ev_async *w)
3551{
3552 if (expect_false (ev_is_active (w)))
3553 return;
3554
3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++asynccnt);
3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_async_stop (EV_P_ ev_async *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 asyncs [active - 1] = asyncs [--asynccnt];
3579 ev_active (asyncs [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_send (EV_P_ ev_async *w)
3589{
3590 w->sent = 1;
3591 evpipe_write (EV_A_ &async_pending);
2342} 3592}
2343#endif 3593#endif
2344 3594
2345/*****************************************************************************/ 3595/*****************************************************************************/
2346 3596
2356once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3607{
2358 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3609 void *arg = once->arg;
2360 3610
2361 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3613 ev_free (once);
2364 3614
2365 cb (revents, arg); 3615 cb (revents, arg);
2366} 3616}
2367 3617
2368static void 3618static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3620{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3624}
2373 3625
2374static void 3626static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3628{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3632}
2379 3633
2380void 3634void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3636{
2404 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
2406 } 3660 }
2407} 3661}
2408 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
2409#if EV_MULTIPLICITY 3779#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3780 #include "ev_wrap.h"
2411#endif 3781#endif
2412 3782
2413#ifdef __cplusplus 3783#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines