ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.378 by root, Mon Jun 13 09:52:36 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
135#endif 186#endif
187
188EV_CPP(extern "C" {)
136 189
137#ifndef _WIN32 190#ifndef _WIN32
138# include <sys/time.h> 191# include <sys/time.h>
139# include <sys/wait.h> 192# include <sys/wait.h>
140# include <unistd.h> 193# include <unistd.h>
141#else 194#else
195# include <io.h>
142# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 197# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
146# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
147#endif 251# endif
148 252#endif
149/**/
150 253
151#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
152# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
153#endif 260#endif
154 261
155#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 264#endif
158 265
159#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
160# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
161#endif 272#endif
162 273
163#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 276#endif
166 277
167#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
168# ifdef _WIN32 279# ifdef _WIN32
169# define EV_USE_POLL 0 280# define EV_USE_POLL 0
170# else 281# else
171# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 283# endif
173#endif 284#endif
174 285
175#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
176# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
177#endif 292#endif
178 293
179#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
181#endif 296#endif
183#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 299# define EV_USE_PORT 0
185#endif 300#endif
186 301
187#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
188# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
189#endif 308#endif
190 309
191#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 321# else
195# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
196# endif 323# endif
197#endif 324#endif
198 325
199#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 329# else
203# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
204# endif 331# endif
205#endif 332#endif
206 333
207/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
208 373
209#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
212#endif 377#endif
220# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
222#endif 387#endif
223 388
224#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
226# include <sys/select.h> 392# include <sys/select.h>
227# endif 393# endif
228#endif 394#endif
229 395
230#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
231# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
232#endif 404#endif
233 405
234#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 407# include <winsock.h>
236#endif 408#endif
237 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
238/**/ 448/**/
239 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
240/* 456/*
241 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 459 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 462
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
253 468
254#if __GNUC__ >= 4 469#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
257#else 472#else
258# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
259# define noinline 474# define noinline
260# if __STDC_VERSION__ < 199901L 475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 476# define inline
262# endif 477# endif
263#endif 478#endif
264 479
265#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 482#define inline_size static inline
268 483
269#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
270# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
271#else 494#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
277 497
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
280 500
281typedef ev_watcher *W; 501typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
284 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
286 527
287#ifdef _WIN32 528#ifdef _WIN32
288# include "ev_win32.c" 529# include "ev_win32.c"
289#endif 530#endif
290 531
291/*****************************************************************************/ 532/*****************************************************************************/
292 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
293static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
294 633
295void 634void
296ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
297{ 636{
298 syserr_cb = cb; 637 syserr_cb = cb;
299} 638}
300 639
301static void noinline 640static void noinline
302syserr (const char *msg) 641ev_syserr (const char *msg)
303{ 642{
304 if (!msg) 643 if (!msg)
305 msg = "(libev) system error"; 644 msg = "(libev) system error";
306 645
307 if (syserr_cb) 646 if (syserr_cb)
308 syserr_cb (msg); 647 syserr_cb (msg);
309 else 648 else
310 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
311 perror (msg); 656 perror (msg);
657#endif
312 abort (); 658 abort ();
313 } 659 }
314} 660}
315 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
316static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 682
318void 683void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 685{
321 alloc = cb; 686 alloc = cb;
322} 687}
323 688
324inline_speed void * 689inline_speed void *
325ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
326{ 691{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
328 693
329 if (!ptr && size) 694 if (!ptr && size)
330 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
332 abort (); 701 abort ();
333 } 702 }
334 703
335 return ptr; 704 return ptr;
336} 705}
338#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
340 709
341/*****************************************************************************/ 710/*****************************************************************************/
342 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
343typedef struct 716typedef struct
344{ 717{
345 WL head; 718 WL head;
346 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
348#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
349 SOCKET handle; 727 SOCKET handle;
350#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
351} ANFD; 732} ANFD;
352 733
734/* stores the pending event set for a given watcher */
353typedef struct 735typedef struct
354{ 736{
355 W w; 737 W w;
356 int events; 738 int events; /* the pending event set for the given watcher */
357} ANPENDING; 739} ANPENDING;
358 740
359#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
360typedef struct 743typedef struct
361{ 744{
362 WL head; 745 WL head;
363} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
364#endif 767#endif
365 768
366#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
367 770
368 struct ev_loop 771 struct ev_loop
387 790
388 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
389 792
390#endif 793#endif
391 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
392/*****************************************************************************/ 807/*****************************************************************************/
393 808
809#ifndef EV_HAVE_EV_TIME
394ev_tstamp 810ev_tstamp
395ev_time (void) 811ev_time (void)
396{ 812{
397#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
398 struct timespec ts; 816 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 819 }
820#endif
821
402 struct timeval tv; 822 struct timeval tv;
403 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 825}
826#endif
407 827
408ev_tstamp inline_size 828inline_size ev_tstamp
409get_clock (void) 829get_clock (void)
410{ 830{
411#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
413 { 833 {
434 if (delay > 0.) 854 if (delay > 0.)
435 { 855 {
436#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
437 struct timespec ts; 857 struct timespec ts;
438 858
439 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
443#elif defined(_WIN32) 861#elif defined(_WIN32)
444 Sleep (delay * 1e3); 862 Sleep ((unsigned long)(delay * 1e3));
445#else 863#else
446 struct timeval tv; 864 struct timeval tv;
447 865
448 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
450 868 /* by older ones */
869 EV_TV_SET (tv, delay);
451 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
452#endif 871#endif
453 } 872 }
454} 873}
455 874
456/*****************************************************************************/ 875/*****************************************************************************/
457 876
458int inline_size 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
459array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
460{ 883{
461 int ncur = cur + 1; 884 int ncur = cur + 1;
462 885
463 do 886 do
464 ncur <<= 1; 887 ncur <<= 1;
465 while (cnt > ncur); 888 while (cnt > ncur);
466 889
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 892 {
470 ncur *= elem; 893 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 895 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 896 ncur /= elem;
474 } 897 }
475 898
476 return ncur; 899 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 903array_realloc (int elem, void *base, int *cur, int cnt)
481{ 904{
482 *cur = array_nextsize (elem, *cur, cnt); 905 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 906 return ev_realloc (base, elem * *cur);
484} 907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 911
486#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 913 if (expect_false ((cnt) > (cur))) \
488 { \ 914 { \
489 int ocur_ = (cur); \ 915 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 928 }
503#endif 929#endif
504 930
505#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 933
508/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
509 941
510void noinline 942void noinline
511ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
512{ 944{
513 W w_ = (W)w; 945 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
524 } 956 }
525} 957}
526 958
527void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 976{
530 int i; 977 int i;
531 978
532 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
534} 981}
535 982
536/*****************************************************************************/ 983/*****************************************************************************/
537 984
538void inline_size 985inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
553{ 987{
554 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
555 ev_io *w; 989 ev_io *w;
556 990
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 995 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
563 } 997 }
564} 998}
565 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
566void 1011void
567ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
568{ 1013{
569 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
571} 1016}
572 1017
573void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
574fd_reify (EV_P) 1021fd_reify (EV_P)
575{ 1022{
576 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
577 1049
578 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
579 { 1051 {
580 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
581 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
582 ev_io *w; 1054 ev_io *w;
583 1055
584 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
585 1058
586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
587 events |= (unsigned char)w->events;
588 1060
589#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
590 if (events)
591 { 1062 {
592 unsigned long argp; 1063 anfd->events = 0;
593 anfd->handle = _get_osfhandle (fd); 1064
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
595 } 1070 }
596#endif
597 1071
598 { 1072 if (o_reify & EV__IOFDSET)
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
602 anfd->reify = 0;
603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
607 }
608 } 1074 }
609 1075
610 fdchangecnt = 0; 1076 fdchangecnt = 0;
611} 1077}
612 1078
613void inline_size 1079/* something about the given fd changed */
1080inline_size void
614fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
615{ 1082{
616 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
618 1085
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
624 } 1091 }
625} 1092}
626 1093
627void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
628fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
629{ 1097{
630 ev_io *w; 1098 ev_io *w;
631 1099
632 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 1104 }
637} 1105}
638 1106
639int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
640fd_valid (int fd) 1109fd_valid (int fd)
641{ 1110{
642#ifdef _WIN32 1111#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 1113#else
645 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
646#endif 1115#endif
647} 1116}
648 1117
652{ 1121{
653 int fd; 1122 int fd;
654 1123
655 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 1125 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
659} 1128}
660 1129
661/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 1131static void noinline
666 1135
667 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1137 if (anfds [fd].events)
669 { 1138 {
670 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
671 return; 1140 break;
672 } 1141 }
673} 1142}
674 1143
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1145static void noinline
680 1149
681 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1151 if (anfds [fd].events)
683 { 1152 {
684 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1156 }
687} 1157}
688 1158
689/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
690 1160/* this is not fork-safe */
691void inline_speed 1161inline_speed void
692upheap (WT *heap, int k)
693{
694 WT w = heap [k];
695
696 while (k)
697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
703 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1;
705 k = p;
706 }
707
708 heap [k] = w;
709 ((W)heap [k])->active = k + 1;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
747/*****************************************************************************/
748
749typedef struct
750{
751 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG;
754
755static ANSIG *signals;
756static int signalmax;
757
758static int sigpipe [2];
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761
762void inline_size
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1162fd_intern (int fd)
827{ 1163{
828#ifdef _WIN32 1164#ifdef _WIN32
829 int arg = 1; 1165 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1167#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1170#endif
835} 1171}
836 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
837static void noinline 1336static void noinline
838siginit (EV_P) 1337evpipe_init (EV_P)
839{ 1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
840 fd_intern (sigpipe [0]); 1358 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
842 1362
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1363 ev_io_start (EV_A_ &pipe_w);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 *flag = 1;
1374
1375 pipe_write_skipped = 1;
1376
1377 if (pipe_write_wanted)
1378 {
1379 int old_errno = errno; /* save errno because write will clobber it */
1380 char dummy;
1381
1382 pipe_write_skipped = 0;
1383
1384#if EV_USE_EVENTFD
1385 if (evfd >= 0)
1386 {
1387 uint64_t counter = 1;
1388 write (evfd, &counter, sizeof (uint64_t));
1389 }
1390 else
1391#endif
1392 {
1393 /* win32 people keep sending patches that change this write() to send() */
1394 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1395 /* so when you think this write should be a send instead, please find out */
1396 /* where your send() is from - it's definitely not the microsoft send, and */
1397 /* tell me. thank you. */
1398 write (evpipe [1], &dummy, 1);
1399 }
1400
1401 errno = old_errno;
1402 }
1403 }
1404}
1405
1406/* called whenever the libev signal pipe */
1407/* got some events (signal, async) */
1408static void
1409pipecb (EV_P_ ev_io *iow, int revents)
1410{
1411 int i;
1412
1413 if (revents & EV_READ)
1414 {
1415#if EV_USE_EVENTFD
1416 if (evfd >= 0)
1417 {
1418 uint64_t counter;
1419 read (evfd, &counter, sizeof (uint64_t));
1420 }
1421 else
1422#endif
1423 {
1424 char dummy;
1425 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1426 read (evpipe [0], &dummy, 1);
1427 }
1428 }
1429
1430 pipe_write_skipped = 0;
1431
1432#if EV_SIGNAL_ENABLE
1433 if (sig_pending)
1434 {
1435 sig_pending = 0;
1436
1437 for (i = EV_NSIG - 1; i--; )
1438 if (expect_false (signals [i].pending))
1439 ev_feed_signal_event (EV_A_ i + 1);
1440 }
1441#endif
1442
1443#if EV_ASYNC_ENABLE
1444 if (async_pending)
1445 {
1446 async_pending = 0;
1447
1448 for (i = asynccnt; i--; )
1449 if (asyncs [i]->sent)
1450 {
1451 asyncs [i]->sent = 0;
1452 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1453 }
1454 }
1455#endif
846} 1456}
847 1457
848/*****************************************************************************/ 1458/*****************************************************************************/
849 1459
1460void
1461ev_feed_signal (int signum)
1462{
1463#if EV_MULTIPLICITY
1464 EV_P = signals [signum - 1].loop;
1465
1466 if (!EV_A)
1467 return;
1468#endif
1469
1470 evpipe_init (EV_A);
1471
1472 signals [signum - 1].pending = 1;
1473 evpipe_write (EV_A_ &sig_pending);
1474}
1475
1476static void
1477ev_sighandler (int signum)
1478{
1479#ifdef _WIN32
1480 signal (signum, ev_sighandler);
1481#endif
1482
1483 ev_feed_signal (signum);
1484}
1485
1486void noinline
1487ev_feed_signal_event (EV_P_ int signum)
1488{
1489 WL w;
1490
1491 if (expect_false (signum <= 0 || signum > EV_NSIG))
1492 return;
1493
1494 --signum;
1495
1496#if EV_MULTIPLICITY
1497 /* it is permissible to try to feed a signal to the wrong loop */
1498 /* or, likely more useful, feeding a signal nobody is waiting for */
1499
1500 if (expect_false (signals [signum].loop != EV_A))
1501 return;
1502#endif
1503
1504 signals [signum].pending = 0;
1505
1506 for (w = signals [signum].head; w; w = w->next)
1507 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1508}
1509
1510#if EV_USE_SIGNALFD
1511static void
1512sigfdcb (EV_P_ ev_io *iow, int revents)
1513{
1514 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1515
1516 for (;;)
1517 {
1518 ssize_t res = read (sigfd, si, sizeof (si));
1519
1520 /* not ISO-C, as res might be -1, but works with SuS */
1521 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1522 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1523
1524 if (res < (ssize_t)sizeof (si))
1525 break;
1526 }
1527}
1528#endif
1529
1530#endif
1531
1532/*****************************************************************************/
1533
1534#if EV_CHILD_ENABLE
850static WL childs [EV_PID_HASHSIZE]; 1535static WL childs [EV_PID_HASHSIZE];
851 1536
852#ifndef _WIN32
853
854static ev_signal childev; 1537static ev_signal childev;
855 1538
856void inline_speed 1539#ifndef WIFCONTINUED
1540# define WIFCONTINUED(status) 0
1541#endif
1542
1543/* handle a single child status event */
1544inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1545child_reap (EV_P_ int chain, int pid, int status)
858{ 1546{
859 ev_child *w; 1547 ev_child *w;
1548 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1549
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1550 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1551 {
862 if (w->pid == pid || !w->pid) 1552 if ((w->pid == pid || !w->pid)
1553 && (!traced || (w->flags & 1)))
863 { 1554 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1555 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1556 w->rpid = pid;
866 w->rstatus = status; 1557 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1558 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1559 }
1560 }
869} 1561}
870 1562
871#ifndef WCONTINUED 1563#ifndef WCONTINUED
872# define WCONTINUED 0 1564# define WCONTINUED 0
873#endif 1565#endif
874 1566
1567/* called on sigchld etc., calls waitpid */
875static void 1568static void
876childcb (EV_P_ ev_signal *sw, int revents) 1569childcb (EV_P_ ev_signal *sw, int revents)
877{ 1570{
878 int pid, status; 1571 int pid, status;
879 1572
882 if (!WCONTINUED 1575 if (!WCONTINUED
883 || errno != EINVAL 1576 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1577 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1578 return;
886 1579
887 /* make sure we are called again until all childs have been reaped */ 1580 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1581 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1582 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1583
891 child_reap (EV_A_ sw, pid, pid, status); 1584 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1585 if ((EV_PID_HASHSIZE) > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1586 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1587}
895 1588
896#endif 1589#endif
897 1590
898/*****************************************************************************/ 1591/*****************************************************************************/
899 1592
1593#if EV_USE_IOCP
1594# include "ev_iocp.c"
1595#endif
900#if EV_USE_PORT 1596#if EV_USE_PORT
901# include "ev_port.c" 1597# include "ev_port.c"
902#endif 1598#endif
903#if EV_USE_KQUEUE 1599#if EV_USE_KQUEUE
904# include "ev_kqueue.c" 1600# include "ev_kqueue.c"
960 /* kqueue is borked on everything but netbsd apparently */ 1656 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1657 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1658 flags &= ~EVBACKEND_KQUEUE;
963#endif 1659#endif
964#ifdef __APPLE__ 1660#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1661 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1662 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1663 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1664#endif
1665#ifdef __FreeBSD__
1666 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
967#endif 1667#endif
968 1668
969 return flags; 1669 return flags;
970} 1670}
971 1671
972unsigned int 1672unsigned int
973ev_embeddable_backends (void) 1673ev_embeddable_backends (void)
974{ 1674{
1675 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1676
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1677 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1678 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
977 | EVBACKEND_PORT; 1679 flags &= ~EVBACKEND_EPOLL;
1680
1681 return flags;
978} 1682}
979 1683
980unsigned int 1684unsigned int
981ev_backend (EV_P) 1685ev_backend (EV_P)
982{ 1686{
983 return backend; 1687 return backend;
984} 1688}
985 1689
1690#if EV_FEATURE_API
986unsigned int 1691unsigned int
987ev_loop_count (EV_P) 1692ev_iteration (EV_P)
988{ 1693{
989 return loop_count; 1694 return loop_count;
990} 1695}
991 1696
1697unsigned int
1698ev_depth (EV_P)
1699{
1700 return loop_depth;
1701}
1702
992void 1703void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1704ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{ 1705{
995 io_blocktime = interval; 1706 io_blocktime = interval;
996} 1707}
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1710ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1711{
1001 timeout_blocktime = interval; 1712 timeout_blocktime = interval;
1002} 1713}
1003 1714
1715void
1716ev_set_userdata (EV_P_ void *data)
1717{
1718 userdata = data;
1719}
1720
1721void *
1722ev_userdata (EV_P)
1723{
1724 return userdata;
1725}
1726
1727void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1728{
1729 invoke_cb = invoke_pending_cb;
1730}
1731
1732void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1733{
1734 release_cb = release;
1735 acquire_cb = acquire;
1736}
1737#endif
1738
1739/* initialise a loop structure, must be zero-initialised */
1004static void noinline 1740static void noinline
1005loop_init (EV_P_ unsigned int flags) 1741loop_init (EV_P_ unsigned int flags)
1006{ 1742{
1007 if (!backend) 1743 if (!backend)
1008 { 1744 {
1745 origflags = flags;
1746
1747#if EV_USE_REALTIME
1748 if (!have_realtime)
1749 {
1750 struct timespec ts;
1751
1752 if (!clock_gettime (CLOCK_REALTIME, &ts))
1753 have_realtime = 1;
1754 }
1755#endif
1756
1009#if EV_USE_MONOTONIC 1757#if EV_USE_MONOTONIC
1758 if (!have_monotonic)
1010 { 1759 {
1011 struct timespec ts; 1760 struct timespec ts;
1761
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1762 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1763 have_monotonic = 1;
1014 } 1764 }
1015#endif 1765#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 1766
1025 /* pid check not overridable via env */ 1767 /* pid check not overridable via env */
1026#ifndef _WIN32 1768#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1769 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1770 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1773 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1774 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1775 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1776 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1777
1036 if (!(flags & 0x0000ffffUL)) 1778 ev_rt_now = ev_time ();
1779 mn_now = get_clock ();
1780 now_floor = mn_now;
1781 rtmn_diff = ev_rt_now - mn_now;
1782#if EV_FEATURE_API
1783 invoke_cb = ev_invoke_pending;
1784#endif
1785
1786 io_blocktime = 0.;
1787 timeout_blocktime = 0.;
1788 backend = 0;
1789 backend_fd = -1;
1790 sig_pending = 0;
1791#if EV_ASYNC_ENABLE
1792 async_pending = 0;
1793#endif
1794 pipe_write_skipped = 0;
1795 pipe_write_wanted = 0;
1796#if EV_USE_INOTIFY
1797 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1798#endif
1799#if EV_USE_SIGNALFD
1800 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1801#endif
1802
1803 if (!(flags & EVBACKEND_MASK))
1037 flags |= ev_recommended_backends (); 1804 flags |= ev_recommended_backends ();
1038 1805
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY 1806#if EV_USE_IOCP
1042 fs_fd = -2; 1807 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1043#endif 1808#endif
1044
1045#if EV_USE_PORT 1809#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1810 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1811#endif
1048#if EV_USE_KQUEUE 1812#if EV_USE_KQUEUE
1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1813 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1056#endif 1820#endif
1057#if EV_USE_SELECT 1821#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1822 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1823#endif
1060 1824
1825 ev_prepare_init (&pending_w, pendingcb);
1826
1827#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1061 ev_init (&sigev, sigcb); 1828 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1829 ev_set_priority (&pipe_w, EV_MAXPRI);
1830#endif
1063 } 1831 }
1064} 1832}
1065 1833
1066static void noinline 1834/* free up a loop structure */
1835void
1067loop_destroy (EV_P) 1836ev_loop_destroy (EV_P)
1068{ 1837{
1069 int i; 1838 int i;
1839
1840#if EV_MULTIPLICITY
1841 /* mimic free (0) */
1842 if (!EV_A)
1843 return;
1844#endif
1845
1846#if EV_CLEANUP_ENABLE
1847 /* queue cleanup watchers (and execute them) */
1848 if (expect_false (cleanupcnt))
1849 {
1850 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1851 EV_INVOKE_PENDING;
1852 }
1853#endif
1854
1855#if EV_CHILD_ENABLE
1856 if (ev_is_active (&childev))
1857 {
1858 ev_ref (EV_A); /* child watcher */
1859 ev_signal_stop (EV_A_ &childev);
1860 }
1861#endif
1862
1863 if (ev_is_active (&pipe_w))
1864 {
1865 /*ev_ref (EV_A);*/
1866 /*ev_io_stop (EV_A_ &pipe_w);*/
1867
1868#if EV_USE_EVENTFD
1869 if (evfd >= 0)
1870 close (evfd);
1871#endif
1872
1873 if (evpipe [0] >= 0)
1874 {
1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1877 }
1878 }
1879
1880#if EV_USE_SIGNALFD
1881 if (ev_is_active (&sigfd_w))
1882 close (sigfd);
1883#endif
1070 1884
1071#if EV_USE_INOTIFY 1885#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1886 if (fs_fd >= 0)
1073 close (fs_fd); 1887 close (fs_fd);
1074#endif 1888#endif
1075 1889
1076 if (backend_fd >= 0) 1890 if (backend_fd >= 0)
1077 close (backend_fd); 1891 close (backend_fd);
1078 1892
1893#if EV_USE_IOCP
1894 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1895#endif
1079#if EV_USE_PORT 1896#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1081#endif 1898#endif
1082#if EV_USE_KQUEUE 1899#if EV_USE_KQUEUE
1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1098#if EV_IDLE_ENABLE 1915#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 1916 array_free (idle, [i]);
1100#endif 1917#endif
1101 } 1918 }
1102 1919
1103 ev_free (anfds); anfdmax = 0; 1920 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 1921
1105 /* have to use the microsoft-never-gets-it-right macro */ 1922 /* have to use the microsoft-never-gets-it-right macro */
1923 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1924 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1925 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1926#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1927 array_free (periodic, EMPTY);
1110#endif 1928#endif
1111#if EV_FORK_ENABLE 1929#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1930 array_free (fork, EMPTY);
1113#endif 1931#endif
1932#if EV_CLEANUP_ENABLE
1933 array_free (cleanup, EMPTY);
1934#endif
1114 array_free (prepare, EMPTY); 1935 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1936 array_free (check, EMPTY);
1937#if EV_ASYNC_ENABLE
1938 array_free (async, EMPTY);
1939#endif
1116 1940
1117 backend = 0; 1941 backend = 0;
1118}
1119 1942
1943#if EV_MULTIPLICITY
1944 if (ev_is_default_loop (EV_A))
1945#endif
1946 ev_default_loop_ptr = 0;
1947#if EV_MULTIPLICITY
1948 else
1949 ev_free (EV_A);
1950#endif
1951}
1952
1953#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1954inline_size void infy_fork (EV_P);
1955#endif
1121 1956
1122void inline_size 1957inline_size void
1123loop_fork (EV_P) 1958loop_fork (EV_P)
1124{ 1959{
1125#if EV_USE_PORT 1960#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1961 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1962#endif
1133#endif 1968#endif
1134#if EV_USE_INOTIFY 1969#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1970 infy_fork (EV_A);
1136#endif 1971#endif
1137 1972
1138 if (ev_is_active (&sigev)) 1973 if (ev_is_active (&pipe_w))
1139 { 1974 {
1140 /* default loop */ 1975 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1141 1976
1142 ev_ref (EV_A); 1977 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1978 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 1979
1147 while (pipe (sigpipe)) 1980#if EV_USE_EVENTFD
1148 syserr ("(libev) error creating pipe"); 1981 if (evfd >= 0)
1982 close (evfd);
1983#endif
1149 1984
1985 if (evpipe [0] >= 0)
1986 {
1987 EV_WIN32_CLOSE_FD (evpipe [0]);
1988 EV_WIN32_CLOSE_FD (evpipe [1]);
1989 }
1990
1991#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1150 siginit (EV_A); 1992 evpipe_init (EV_A);
1993 /* now iterate over everything, in case we missed something */
1994 pipecb (EV_A_ &pipe_w, EV_READ);
1995#endif
1151 } 1996 }
1152 1997
1153 postfork = 0; 1998 postfork = 0;
1154} 1999}
2000
2001#if EV_MULTIPLICITY
2002
2003struct ev_loop *
2004ev_loop_new (unsigned int flags)
2005{
2006 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2007
2008 memset (EV_A, 0, sizeof (struct ev_loop));
2009 loop_init (EV_A_ flags);
2010
2011 if (ev_backend (EV_A))
2012 return EV_A;
2013
2014 ev_free (EV_A);
2015 return 0;
2016}
2017
2018#endif /* multiplicity */
2019
2020#if EV_VERIFY
2021static void noinline
2022verify_watcher (EV_P_ W w)
2023{
2024 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2025
2026 if (w->pending)
2027 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2028}
2029
2030static void noinline
2031verify_heap (EV_P_ ANHE *heap, int N)
2032{
2033 int i;
2034
2035 for (i = HEAP0; i < N + HEAP0; ++i)
2036 {
2037 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2038 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2039 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2040
2041 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2042 }
2043}
2044
2045static void noinline
2046array_verify (EV_P_ W *ws, int cnt)
2047{
2048 while (cnt--)
2049 {
2050 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2051 verify_watcher (EV_A_ ws [cnt]);
2052 }
2053}
2054#endif
2055
2056#if EV_FEATURE_API
2057void
2058ev_verify (EV_P)
2059{
2060#if EV_VERIFY
2061 int i;
2062 WL w;
2063
2064 assert (activecnt >= -1);
2065
2066 assert (fdchangemax >= fdchangecnt);
2067 for (i = 0; i < fdchangecnt; ++i)
2068 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2069
2070 assert (anfdmax >= 0);
2071 for (i = 0; i < anfdmax; ++i)
2072 for (w = anfds [i].head; w; w = w->next)
2073 {
2074 verify_watcher (EV_A_ (W)w);
2075 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2076 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2077 }
2078
2079 assert (timermax >= timercnt);
2080 verify_heap (EV_A_ timers, timercnt);
2081
2082#if EV_PERIODIC_ENABLE
2083 assert (periodicmax >= periodiccnt);
2084 verify_heap (EV_A_ periodics, periodiccnt);
2085#endif
2086
2087 for (i = NUMPRI; i--; )
2088 {
2089 assert (pendingmax [i] >= pendingcnt [i]);
2090#if EV_IDLE_ENABLE
2091 assert (idleall >= 0);
2092 assert (idlemax [i] >= idlecnt [i]);
2093 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2094#endif
2095 }
2096
2097#if EV_FORK_ENABLE
2098 assert (forkmax >= forkcnt);
2099 array_verify (EV_A_ (W *)forks, forkcnt);
2100#endif
2101
2102#if EV_CLEANUP_ENABLE
2103 assert (cleanupmax >= cleanupcnt);
2104 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2105#endif
2106
2107#if EV_ASYNC_ENABLE
2108 assert (asyncmax >= asynccnt);
2109 array_verify (EV_A_ (W *)asyncs, asynccnt);
2110#endif
2111
2112#if EV_PREPARE_ENABLE
2113 assert (preparemax >= preparecnt);
2114 array_verify (EV_A_ (W *)prepares, preparecnt);
2115#endif
2116
2117#if EV_CHECK_ENABLE
2118 assert (checkmax >= checkcnt);
2119 array_verify (EV_A_ (W *)checks, checkcnt);
2120#endif
2121
2122# if 0
2123#if EV_CHILD_ENABLE
2124 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2125 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2126#endif
2127# endif
2128#endif
2129}
2130#endif
1155 2131
1156#if EV_MULTIPLICITY 2132#if EV_MULTIPLICITY
1157struct ev_loop * 2133struct ev_loop *
1158ev_loop_new (unsigned int flags)
1159{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161
1162 memset (loop, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags);
1165
1166 if (ev_backend (EV_A))
1167 return loop;
1168
1169 return 0;
1170}
1171
1172void
1173ev_loop_destroy (EV_P)
1174{
1175 loop_destroy (EV_A);
1176 ev_free (loop);
1177}
1178
1179void
1180ev_loop_fork (EV_P)
1181{
1182 postfork = 1;
1183}
1184
1185#endif
1186
1187#if EV_MULTIPLICITY
1188struct ev_loop *
1189ev_default_loop_init (unsigned int flags)
1190#else 2134#else
1191int 2135int
2136#endif
1192ev_default_loop (unsigned int flags) 2137ev_default_loop (unsigned int flags)
1193#endif
1194{ 2138{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 2139 if (!ev_default_loop_ptr)
1200 { 2140 {
1201#if EV_MULTIPLICITY 2141#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2142 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 2143#else
1204 ev_default_loop_ptr = 1; 2144 ev_default_loop_ptr = 1;
1205#endif 2145#endif
1206 2146
1207 loop_init (EV_A_ flags); 2147 loop_init (EV_A_ flags);
1208 2148
1209 if (ev_backend (EV_A)) 2149 if (ev_backend (EV_A))
1210 { 2150 {
1211 siginit (EV_A); 2151#if EV_CHILD_ENABLE
1212
1213#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 2152 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 2153 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 2154 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2155 ev_unref (EV_A); /* child watcher should not keep loop alive */
1218#endif 2156#endif
1223 2161
1224 return ev_default_loop_ptr; 2162 return ev_default_loop_ptr;
1225} 2163}
1226 2164
1227void 2165void
1228ev_default_destroy (void) 2166ev_loop_fork (EV_P)
1229{ 2167{
1230#if EV_MULTIPLICITY 2168 postfork = 1; /* must be in line with ev_default_fork */
1231 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif
1233
1234#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev);
1237#endif
1238
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A);
1246}
1247
1248void
1249ev_default_fork (void)
1250{
1251#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255 if (backend)
1256 postfork = 1;
1257} 2169}
1258 2170
1259/*****************************************************************************/ 2171/*****************************************************************************/
1260 2172
1261void 2173void
1262ev_invoke (EV_P_ void *w, int revents) 2174ev_invoke (EV_P_ void *w, int revents)
1263{ 2175{
1264 EV_CB_INVOKE ((W)w, revents); 2176 EV_CB_INVOKE ((W)w, revents);
1265} 2177}
1266 2178
1267void inline_speed 2179unsigned int
1268call_pending (EV_P) 2180ev_pending_count (EV_P)
2181{
2182 int pri;
2183 unsigned int count = 0;
2184
2185 for (pri = NUMPRI; pri--; )
2186 count += pendingcnt [pri];
2187
2188 return count;
2189}
2190
2191void noinline
2192ev_invoke_pending (EV_P)
1269{ 2193{
1270 int pri; 2194 int pri;
1271 2195
1272 for (pri = NUMPRI; pri--; ) 2196 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 2197 while (pendingcnt [pri])
1274 { 2198 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2199 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 2200
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
1281 p->w->pending = 0; 2201 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 2202 EV_CB_INVOKE (p->w, p->events);
1283 } 2203 EV_FREQUENT_CHECK;
1284 } 2204 }
1285} 2205}
1286 2206
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 2207#if EV_IDLE_ENABLE
1368void inline_size 2208/* make idle watchers pending. this handles the "call-idle */
2209/* only when higher priorities are idle" logic */
2210inline_size void
1369idle_reify (EV_P) 2211idle_reify (EV_P)
1370{ 2212{
1371 if (expect_false (idleall)) 2213 if (expect_false (idleall))
1372 { 2214 {
1373 int pri; 2215 int pri;
1385 } 2227 }
1386 } 2228 }
1387} 2229}
1388#endif 2230#endif
1389 2231
1390void inline_speed 2232/* make timers pending */
2233inline_size void
2234timers_reify (EV_P)
2235{
2236 EV_FREQUENT_CHECK;
2237
2238 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2239 {
2240 do
2241 {
2242 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2243
2244 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2245
2246 /* first reschedule or stop timer */
2247 if (w->repeat)
2248 {
2249 ev_at (w) += w->repeat;
2250 if (ev_at (w) < mn_now)
2251 ev_at (w) = mn_now;
2252
2253 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2254
2255 ANHE_at_cache (timers [HEAP0]);
2256 downheap (timers, timercnt, HEAP0);
2257 }
2258 else
2259 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2260
2261 EV_FREQUENT_CHECK;
2262 feed_reverse (EV_A_ (W)w);
2263 }
2264 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2265
2266 feed_reverse_done (EV_A_ EV_TIMER);
2267 }
2268}
2269
2270#if EV_PERIODIC_ENABLE
2271
2272static void noinline
2273periodic_recalc (EV_P_ ev_periodic *w)
2274{
2275 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2276 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2277
2278 /* the above almost always errs on the low side */
2279 while (at <= ev_rt_now)
2280 {
2281 ev_tstamp nat = at + w->interval;
2282
2283 /* when resolution fails us, we use ev_rt_now */
2284 if (expect_false (nat == at))
2285 {
2286 at = ev_rt_now;
2287 break;
2288 }
2289
2290 at = nat;
2291 }
2292
2293 ev_at (w) = at;
2294}
2295
2296/* make periodics pending */
2297inline_size void
2298periodics_reify (EV_P)
2299{
2300 EV_FREQUENT_CHECK;
2301
2302 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2303 {
2304 int feed_count = 0;
2305
2306 do
2307 {
2308 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2309
2310 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2311
2312 /* first reschedule or stop timer */
2313 if (w->reschedule_cb)
2314 {
2315 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2316
2317 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2318
2319 ANHE_at_cache (periodics [HEAP0]);
2320 downheap (periodics, periodiccnt, HEAP0);
2321 }
2322 else if (w->interval)
2323 {
2324 periodic_recalc (EV_A_ w);
2325 ANHE_at_cache (periodics [HEAP0]);
2326 downheap (periodics, periodiccnt, HEAP0);
2327 }
2328 else
2329 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2330
2331 EV_FREQUENT_CHECK;
2332 feed_reverse (EV_A_ (W)w);
2333 }
2334 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2335
2336 feed_reverse_done (EV_A_ EV_PERIODIC);
2337 }
2338}
2339
2340/* simply recalculate all periodics */
2341/* TODO: maybe ensure that at least one event happens when jumping forward? */
2342static void noinline
2343periodics_reschedule (EV_P)
2344{
2345 int i;
2346
2347 /* adjust periodics after time jump */
2348 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2349 {
2350 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2351
2352 if (w->reschedule_cb)
2353 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2354 else if (w->interval)
2355 periodic_recalc (EV_A_ w);
2356
2357 ANHE_at_cache (periodics [i]);
2358 }
2359
2360 reheap (periodics, periodiccnt);
2361}
2362#endif
2363
2364/* adjust all timers by a given offset */
2365static void noinline
2366timers_reschedule (EV_P_ ev_tstamp adjust)
2367{
2368 int i;
2369
2370 for (i = 0; i < timercnt; ++i)
2371 {
2372 ANHE *he = timers + i + HEAP0;
2373 ANHE_w (*he)->at += adjust;
2374 ANHE_at_cache (*he);
2375 }
2376}
2377
2378/* fetch new monotonic and realtime times from the kernel */
2379/* also detect if there was a timejump, and act accordingly */
2380inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2381time_update (EV_P_ ev_tstamp max_block)
1392{ 2382{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2383#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2384 if (expect_true (have_monotonic))
1397 { 2385 {
2386 int i;
1398 ev_tstamp odiff = rtmn_diff; 2387 ev_tstamp odiff = rtmn_diff;
1399 2388
1400 mn_now = get_clock (); 2389 mn_now = get_clock ();
1401 2390
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2391 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1418 * doesn't hurt either as we only do this on time-jumps or 2407 * doesn't hurt either as we only do this on time-jumps or
1419 * in the unlikely event of having been preempted here. 2408 * in the unlikely event of having been preempted here.
1420 */ 2409 */
1421 for (i = 4; --i; ) 2410 for (i = 4; --i; )
1422 { 2411 {
2412 ev_tstamp diff;
1423 rtmn_diff = ev_rt_now - mn_now; 2413 rtmn_diff = ev_rt_now - mn_now;
1424 2414
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2415 diff = odiff - rtmn_diff;
2416
2417 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2418 return; /* all is well */
1427 2419
1428 ev_rt_now = ev_time (); 2420 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2421 mn_now = get_clock ();
1430 now_floor = mn_now; 2422 now_floor = mn_now;
1431 } 2423 }
1432 2424
2425 /* no timer adjustment, as the monotonic clock doesn't jump */
2426 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2427# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1435# endif 2429# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2430 }
1439 else 2431 else
1440#endif 2432#endif
1441 { 2433 {
1442 ev_rt_now = ev_time (); 2434 ev_rt_now = ev_time ();
1443 2435
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2436 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2437 {
2438 /* adjust timers. this is easy, as the offset is the same for all of them */
2439 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2440#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2441 periodics_reschedule (EV_A);
1448#endif 2442#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2443 }
1453 2444
1454 mn_now = ev_rt_now; 2445 mn_now = ev_rt_now;
1455 } 2446 }
1456} 2447}
1457 2448
1458void 2449void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2450ev_run (EV_P_ int flags)
1474{ 2451{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2452#if EV_FEATURE_API
1476 ? EVUNLOOP_ONE 2453 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2454#endif
1478 2455
2456 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2457
2458 loop_done = EVBREAK_CANCEL;
2459
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2460 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2461
1481 do 2462 do
1482 { 2463 {
2464#if EV_VERIFY >= 2
2465 ev_verify (EV_A);
2466#endif
2467
1483#ifndef _WIN32 2468#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2469 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2470 if (expect_false (getpid () != curpid))
1486 { 2471 {
1487 curpid = getpid (); 2472 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2478 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2479 if (expect_false (postfork))
1495 if (forkcnt) 2480 if (forkcnt)
1496 { 2481 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2482 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1499 } 2484 }
1500#endif 2485#endif
1501 2486
2487#if EV_PREPARE_ENABLE
1502 /* queue prepare watchers (and execute them) */ 2488 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2489 if (expect_false (preparecnt))
1504 { 2490 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2491 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2492 EV_INVOKE_PENDING;
1507 } 2493 }
2494#endif
1508 2495
1509 if (expect_false (!activecnt)) 2496 if (expect_false (loop_done))
1510 break; 2497 break;
1511 2498
1512 /* we might have forked, so reify kernel state if necessary */ 2499 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2500 if (expect_false (postfork))
1514 loop_fork (EV_A); 2501 loop_fork (EV_A);
1519 /* calculate blocking time */ 2506 /* calculate blocking time */
1520 { 2507 {
1521 ev_tstamp waittime = 0.; 2508 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2509 ev_tstamp sleeptime = 0.;
1523 2510
2511 /* remember old timestamp for io_blocktime calculation */
2512 ev_tstamp prev_mn_now = mn_now;
2513
2514 /* update time to cancel out callback processing overhead */
2515 time_update (EV_A_ 1e100);
2516
2517 /* from now on, we want a pipe-wake-up */
2518 pipe_write_wanted = 1;
2519
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2520 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1525 { 2521 {
1526 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100);
1528
1529 waittime = MAX_BLOCKTIME; 2522 waittime = MAX_BLOCKTIME;
1530 2523
1531 if (timercnt) 2524 if (timercnt)
1532 { 2525 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2526 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1534 if (waittime > to) waittime = to; 2527 if (waittime > to) waittime = to;
1535 } 2528 }
1536 2529
1537#if EV_PERIODIC_ENABLE 2530#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2531 if (periodiccnt)
1539 { 2532 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2533 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1541 if (waittime > to) waittime = to; 2534 if (waittime > to) waittime = to;
1542 } 2535 }
1543#endif 2536#endif
1544 2537
2538 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 2539 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 2540 waittime = timeout_blocktime;
1547 2541
1548 sleeptime = waittime - backend_fudge; 2542 /* at this point, we NEED to wait, so we have to ensure */
2543 /* to pass a minimum nonzero value to the backend */
2544 if (expect_false (waittime < backend_mintime))
2545 waittime = backend_mintime;
1549 2546
2547 /* extra check because io_blocktime is commonly 0 */
1550 if (expect_true (sleeptime > io_blocktime)) 2548 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 2549 {
2550 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2551
2552 if (sleeptime > waittime - backend_mintime)
2553 sleeptime = waittime - backend_mintime;
2554
2555 if (expect_true (sleeptime > 0.))
2556 {
1555 ev_sleep (sleeptime); 2557 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 2558 waittime -= sleeptime;
2559 }
1557 } 2560 }
1558 } 2561 }
1559 2562
2563#if EV_FEATURE_API
1560 ++loop_count; 2564 ++loop_count;
2565#endif
2566 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 2567 backend_poll (EV_A_ waittime);
2568 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2569
2570 pipe_write_wanted = 0;
2571
2572 if (pipe_write_skipped)
2573 {
2574 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2575 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2576 }
2577
1562 2578
1563 /* update ev_rt_now, do magic */ 2579 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 2580 time_update (EV_A_ waittime + sleeptime);
1565 } 2581 }
1566 2582
1573#if EV_IDLE_ENABLE 2589#if EV_IDLE_ENABLE
1574 /* queue idle watchers unless other events are pending */ 2590 /* queue idle watchers unless other events are pending */
1575 idle_reify (EV_A); 2591 idle_reify (EV_A);
1576#endif 2592#endif
1577 2593
2594#if EV_CHECK_ENABLE
1578 /* queue check watchers, to be executed first */ 2595 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2596 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2597 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2598#endif
1581 2599
1582 call_pending (EV_A); 2600 EV_INVOKE_PENDING;
1583
1584 } 2601 }
1585 while (expect_true (activecnt && !loop_done)); 2602 while (expect_true (
2603 activecnt
2604 && !loop_done
2605 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2606 ));
1586 2607
1587 if (loop_done == EVUNLOOP_ONE) 2608 if (loop_done == EVBREAK_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2609 loop_done = EVBREAK_CANCEL;
1589}
1590 2610
2611#if EV_FEATURE_API
2612 --loop_depth;
2613#endif
2614}
2615
1591void 2616void
1592ev_unloop (EV_P_ int how) 2617ev_break (EV_P_ int how)
1593{ 2618{
1594 loop_done = how; 2619 loop_done = how;
1595} 2620}
1596 2621
2622void
2623ev_ref (EV_P)
2624{
2625 ++activecnt;
2626}
2627
2628void
2629ev_unref (EV_P)
2630{
2631 --activecnt;
2632}
2633
2634void
2635ev_now_update (EV_P)
2636{
2637 time_update (EV_A_ 1e100);
2638}
2639
2640void
2641ev_suspend (EV_P)
2642{
2643 ev_now_update (EV_A);
2644}
2645
2646void
2647ev_resume (EV_P)
2648{
2649 ev_tstamp mn_prev = mn_now;
2650
2651 ev_now_update (EV_A);
2652 timers_reschedule (EV_A_ mn_now - mn_prev);
2653#if EV_PERIODIC_ENABLE
2654 /* TODO: really do this? */
2655 periodics_reschedule (EV_A);
2656#endif
2657}
2658
1597/*****************************************************************************/ 2659/*****************************************************************************/
2660/* singly-linked list management, used when the expected list length is short */
1598 2661
1599void inline_size 2662inline_size void
1600wlist_add (WL *head, WL elem) 2663wlist_add (WL *head, WL elem)
1601{ 2664{
1602 elem->next = *head; 2665 elem->next = *head;
1603 *head = elem; 2666 *head = elem;
1604} 2667}
1605 2668
1606void inline_size 2669inline_size void
1607wlist_del (WL *head, WL elem) 2670wlist_del (WL *head, WL elem)
1608{ 2671{
1609 while (*head) 2672 while (*head)
1610 { 2673 {
1611 if (*head == elem) 2674 if (expect_true (*head == elem))
1612 { 2675 {
1613 *head = elem->next; 2676 *head = elem->next;
1614 return; 2677 break;
1615 } 2678 }
1616 2679
1617 head = &(*head)->next; 2680 head = &(*head)->next;
1618 } 2681 }
1619} 2682}
1620 2683
1621void inline_speed 2684/* internal, faster, version of ev_clear_pending */
2685inline_speed void
1622clear_pending (EV_P_ W w) 2686clear_pending (EV_P_ W w)
1623{ 2687{
1624 if (w->pending) 2688 if (w->pending)
1625 { 2689 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2690 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 2691 w->pending = 0;
1628 } 2692 }
1629} 2693}
1630 2694
1631int 2695int
1635 int pending = w_->pending; 2699 int pending = w_->pending;
1636 2700
1637 if (expect_true (pending)) 2701 if (expect_true (pending))
1638 { 2702 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2703 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2704 p->w = (W)&pending_w;
1640 w_->pending = 0; 2705 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 2706 return p->events;
1643 } 2707 }
1644 else 2708 else
1645 return 0; 2709 return 0;
1646} 2710}
1647 2711
1648void inline_size 2712inline_size void
1649pri_adjust (EV_P_ W w) 2713pri_adjust (EV_P_ W w)
1650{ 2714{
1651 int pri = w->priority; 2715 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2716 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2717 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2718 ev_set_priority (w, pri);
1655} 2719}
1656 2720
1657void inline_speed 2721inline_speed void
1658ev_start (EV_P_ W w, int active) 2722ev_start (EV_P_ W w, int active)
1659{ 2723{
1660 pri_adjust (EV_A_ w); 2724 pri_adjust (EV_A_ w);
1661 w->active = active; 2725 w->active = active;
1662 ev_ref (EV_A); 2726 ev_ref (EV_A);
1663} 2727}
1664 2728
1665void inline_size 2729inline_size void
1666ev_stop (EV_P_ W w) 2730ev_stop (EV_P_ W w)
1667{ 2731{
1668 ev_unref (EV_A); 2732 ev_unref (EV_A);
1669 w->active = 0; 2733 w->active = 0;
1670} 2734}
1677 int fd = w->fd; 2741 int fd = w->fd;
1678 2742
1679 if (expect_false (ev_is_active (w))) 2743 if (expect_false (ev_is_active (w)))
1680 return; 2744 return;
1681 2745
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2746 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2747 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2748
2749 EV_FREQUENT_CHECK;
1683 2750
1684 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2752 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2753 wlist_add (&anfds[fd].head, (WL)w);
1687 2754
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2755 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 2756 w->events &= ~EV__IOFDSET;
2757
2758 EV_FREQUENT_CHECK;
1690} 2759}
1691 2760
1692void noinline 2761void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2762ev_io_stop (EV_P_ ev_io *w)
1694{ 2763{
1695 clear_pending (EV_A_ (W)w); 2764 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2765 if (expect_false (!ev_is_active (w)))
1697 return; 2766 return;
1698 2767
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2768 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2769
2770 EV_FREQUENT_CHECK;
1700 2771
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2772 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2773 ev_stop (EV_A_ (W)w);
1703 2774
1704 fd_change (EV_A_ w->fd, 1); 2775 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2776
2777 EV_FREQUENT_CHECK;
1705} 2778}
1706 2779
1707void noinline 2780void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2781ev_timer_start (EV_P_ ev_timer *w)
1709{ 2782{
1710 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
1711 return; 2784 return;
1712 2785
1713 ((WT)w)->at += mn_now; 2786 ev_at (w) += mn_now;
1714 2787
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2788 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2789
2790 EV_FREQUENT_CHECK;
2791
2792 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2793 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2794 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2795 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2796 ANHE_at_cache (timers [ev_active (w)]);
2797 upheap (timers, ev_active (w));
1721 2798
2799 EV_FREQUENT_CHECK;
2800
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2801 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2802}
1724 2803
1725void noinline 2804void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2805ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2806{
1728 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1730 return; 2809 return;
1731 2810
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2811 EV_FREQUENT_CHECK;
1733 2812
1734 { 2813 {
1735 int active = ((W)w)->active; 2814 int active = ev_active (w);
1736 2815
2816 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2817
2818 --timercnt;
2819
1737 if (expect_true (--active < --timercnt)) 2820 if (expect_true (active < timercnt + HEAP0))
1738 { 2821 {
1739 timers [active] = timers [timercnt]; 2822 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2823 adjustheap (timers, timercnt, active);
1741 } 2824 }
1742 } 2825 }
1743 2826
1744 ((WT)w)->at -= mn_now; 2827 ev_at (w) -= mn_now;
1745 2828
1746 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
2830
2831 EV_FREQUENT_CHECK;
1747} 2832}
1748 2833
1749void noinline 2834void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2835ev_timer_again (EV_P_ ev_timer *w)
1751{ 2836{
2837 EV_FREQUENT_CHECK;
2838
1752 if (ev_is_active (w)) 2839 if (ev_is_active (w))
1753 { 2840 {
1754 if (w->repeat) 2841 if (w->repeat)
1755 { 2842 {
1756 ((WT)w)->at = mn_now + w->repeat; 2843 ev_at (w) = mn_now + w->repeat;
2844 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2845 adjustheap (timers, timercnt, ev_active (w));
1758 } 2846 }
1759 else 2847 else
1760 ev_timer_stop (EV_A_ w); 2848 ev_timer_stop (EV_A_ w);
1761 } 2849 }
1762 else if (w->repeat) 2850 else if (w->repeat)
1763 { 2851 {
1764 w->at = w->repeat; 2852 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2853 ev_timer_start (EV_A_ w);
1766 } 2854 }
2855
2856 EV_FREQUENT_CHECK;
2857}
2858
2859ev_tstamp
2860ev_timer_remaining (EV_P_ ev_timer *w)
2861{
2862 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 2863}
1768 2864
1769#if EV_PERIODIC_ENABLE 2865#if EV_PERIODIC_ENABLE
1770void noinline 2866void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2867ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2868{
1773 if (expect_false (ev_is_active (w))) 2869 if (expect_false (ev_is_active (w)))
1774 return; 2870 return;
1775 2871
1776 if (w->reschedule_cb) 2872 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2873 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2874 else if (w->interval)
1779 { 2875 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2876 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2877 periodic_recalc (EV_A_ w);
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2878 }
1784 else 2879 else
1785 ((WT)w)->at = w->offset; 2880 ev_at (w) = w->offset;
1786 2881
2882 EV_FREQUENT_CHECK;
2883
2884 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2885 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2886 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2887 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2888 ANHE_at_cache (periodics [ev_active (w)]);
2889 upheap (periodics, ev_active (w));
1791 2890
2891 EV_FREQUENT_CHECK;
2892
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2893 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2894}
1794 2895
1795void noinline 2896void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2897ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2898{
1798 clear_pending (EV_A_ (W)w); 2899 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2900 if (expect_false (!ev_is_active (w)))
1800 return; 2901 return;
1801 2902
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2903 EV_FREQUENT_CHECK;
1803 2904
1804 { 2905 {
1805 int active = ((W)w)->active; 2906 int active = ev_active (w);
1806 2907
2908 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2909
2910 --periodiccnt;
2911
1807 if (expect_true (--active < --periodiccnt)) 2912 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2913 {
1809 periodics [active] = periodics [periodiccnt]; 2914 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2915 adjustheap (periodics, periodiccnt, active);
1811 } 2916 }
1812 } 2917 }
1813 2918
1814 ev_stop (EV_A_ (W)w); 2919 ev_stop (EV_A_ (W)w);
2920
2921 EV_FREQUENT_CHECK;
1815} 2922}
1816 2923
1817void noinline 2924void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2925ev_periodic_again (EV_P_ ev_periodic *w)
1819{ 2926{
1825 2932
1826#ifndef SA_RESTART 2933#ifndef SA_RESTART
1827# define SA_RESTART 0 2934# define SA_RESTART 0
1828#endif 2935#endif
1829 2936
2937#if EV_SIGNAL_ENABLE
2938
1830void noinline 2939void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2940ev_signal_start (EV_P_ ev_signal *w)
1832{ 2941{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
1837 return; 2943 return;
1838 2944
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2945 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 2946
2947#if EV_MULTIPLICITY
2948 assert (("libev: a signal must not be attached to two different loops",
2949 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2950
2951 signals [w->signum - 1].loop = EV_A;
2952#endif
2953
2954 EV_FREQUENT_CHECK;
2955
2956#if EV_USE_SIGNALFD
2957 if (sigfd == -2)
1841 { 2958 {
1842#ifndef _WIN32 2959 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 2960 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 2961 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 2962
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2963 if (sigfd >= 0)
2964 {
2965 fd_intern (sigfd); /* doing it twice will not hurt */
1849 2966
1850#ifndef _WIN32 2967 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2968
1852#endif 2969 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2970 ev_set_priority (&sigfd_w, EV_MAXPRI);
2971 ev_io_start (EV_A_ &sigfd_w);
2972 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2973 }
1853 } 2974 }
2975
2976 if (sigfd >= 0)
2977 {
2978 /* TODO: check .head */
2979 sigaddset (&sigfd_set, w->signum);
2980 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2981
2982 signalfd (sigfd, &sigfd_set, 0);
2983 }
2984#endif
1854 2985
1855 ev_start (EV_A_ (W)w, 1); 2986 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2987 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2988
1858 if (!((WL)w)->next) 2989 if (!((WL)w)->next)
2990# if EV_USE_SIGNALFD
2991 if (sigfd < 0) /*TODO*/
2992# endif
1859 { 2993 {
1860#if _WIN32 2994# ifdef _WIN32
2995 evpipe_init (EV_A);
2996
1861 signal (w->signum, sighandler); 2997 signal (w->signum, ev_sighandler);
1862#else 2998# else
1863 struct sigaction sa; 2999 struct sigaction sa;
3000
3001 evpipe_init (EV_A);
3002
1864 sa.sa_handler = sighandler; 3003 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 3004 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3005 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 3006 sigaction (w->signum, &sa, 0);
3007
3008 if (origflags & EVFLAG_NOSIGMASK)
3009 {
3010 sigemptyset (&sa.sa_mask);
3011 sigaddset (&sa.sa_mask, w->signum);
3012 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3013 }
1868#endif 3014#endif
1869 } 3015 }
3016
3017 EV_FREQUENT_CHECK;
1870} 3018}
1871 3019
1872void noinline 3020void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 3021ev_signal_stop (EV_P_ ev_signal *w)
1874{ 3022{
1875 clear_pending (EV_A_ (W)w); 3023 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 3024 if (expect_false (!ev_is_active (w)))
1877 return; 3025 return;
1878 3026
3027 EV_FREQUENT_CHECK;
3028
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 3029 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3030 ev_stop (EV_A_ (W)w);
1881 3031
1882 if (!signals [w->signum - 1].head) 3032 if (!signals [w->signum - 1].head)
3033 {
3034#if EV_MULTIPLICITY
3035 signals [w->signum - 1].loop = 0; /* unattach from signal */
3036#endif
3037#if EV_USE_SIGNALFD
3038 if (sigfd >= 0)
3039 {
3040 sigset_t ss;
3041
3042 sigemptyset (&ss);
3043 sigaddset (&ss, w->signum);
3044 sigdelset (&sigfd_set, w->signum);
3045
3046 signalfd (sigfd, &sigfd_set, 0);
3047 sigprocmask (SIG_UNBLOCK, &ss, 0);
3048 }
3049 else
3050#endif
1883 signal (w->signum, SIG_DFL); 3051 signal (w->signum, SIG_DFL);
3052 }
3053
3054 EV_FREQUENT_CHECK;
1884} 3055}
3056
3057#endif
3058
3059#if EV_CHILD_ENABLE
1885 3060
1886void 3061void
1887ev_child_start (EV_P_ ev_child *w) 3062ev_child_start (EV_P_ ev_child *w)
1888{ 3063{
1889#if EV_MULTIPLICITY 3064#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3065 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 3066#endif
1892 if (expect_false (ev_is_active (w))) 3067 if (expect_false (ev_is_active (w)))
1893 return; 3068 return;
1894 3069
3070 EV_FREQUENT_CHECK;
3071
1895 ev_start (EV_A_ (W)w, 1); 3072 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3073 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3074
3075 EV_FREQUENT_CHECK;
1897} 3076}
1898 3077
1899void 3078void
1900ev_child_stop (EV_P_ ev_child *w) 3079ev_child_stop (EV_P_ ev_child *w)
1901{ 3080{
1902 clear_pending (EV_A_ (W)w); 3081 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 3082 if (expect_false (!ev_is_active (w)))
1904 return; 3083 return;
1905 3084
3085 EV_FREQUENT_CHECK;
3086
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3087 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 3088 ev_stop (EV_A_ (W)w);
3089
3090 EV_FREQUENT_CHECK;
1908} 3091}
3092
3093#endif
1909 3094
1910#if EV_STAT_ENABLE 3095#if EV_STAT_ENABLE
1911 3096
1912# ifdef _WIN32 3097# ifdef _WIN32
1913# undef lstat 3098# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 3099# define lstat(a,b) _stati64 (a,b)
1915# endif 3100# endif
1916 3101
1917#define DEF_STAT_INTERVAL 5.0074891 3102#define DEF_STAT_INTERVAL 5.0074891
3103#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 3104#define MIN_STAT_INTERVAL 0.1074891
1919 3105
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 3107
1922#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 3109
3110/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3111# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 3112
1925static void noinline 3113static void noinline
1926infy_add (EV_P_ ev_stat *w) 3114infy_add (EV_P_ ev_stat *w)
1927{ 3115{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3116 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 3117
1930 if (w->wd < 0) 3118 if (w->wd >= 0)
3119 {
3120 struct statfs sfs;
3121
3122 /* now local changes will be tracked by inotify, but remote changes won't */
3123 /* unless the filesystem is known to be local, we therefore still poll */
3124 /* also do poll on <2.6.25, but with normal frequency */
3125
3126 if (!fs_2625)
3127 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3128 else if (!statfs (w->path, &sfs)
3129 && (sfs.f_type == 0x1373 /* devfs */
3130 || sfs.f_type == 0xEF53 /* ext2/3 */
3131 || sfs.f_type == 0x3153464a /* jfs */
3132 || sfs.f_type == 0x52654973 /* reiser3 */
3133 || sfs.f_type == 0x01021994 /* tempfs */
3134 || sfs.f_type == 0x58465342 /* xfs */))
3135 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3136 else
3137 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 3138 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3139 else
3140 {
3141 /* can't use inotify, continue to stat */
3142 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 3143
1934 /* monitor some parent directory for speedup hints */ 3144 /* if path is not there, monitor some parent directory for speedup hints */
3145 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3146 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3147 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 3148 {
1937 char path [4096]; 3149 char path [4096];
1938 strcpy (path, w->path); 3150 strcpy (path, w->path);
1939 3151
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3154 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3155 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 3156
1945 char *pend = strrchr (path, '/'); 3157 char *pend = strrchr (path, '/');
1946 3158
1947 if (!pend) 3159 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 3160 break;
1949 3161
1950 *pend = 0; 3162 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 3163 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 3164 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3165 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 3166 }
1955 } 3167 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 3168
1959 if (w->wd >= 0) 3169 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3170 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3171
3172 /* now re-arm timer, if required */
3173 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3174 ev_timer_again (EV_A_ &w->timer);
3175 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 3176}
1962 3177
1963static void noinline 3178static void noinline
1964infy_del (EV_P_ ev_stat *w) 3179infy_del (EV_P_ ev_stat *w)
1965{ 3180{
1968 3183
1969 if (wd < 0) 3184 if (wd < 0)
1970 return; 3185 return;
1971 3186
1972 w->wd = -2; 3187 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3188 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w); 3189 wlist_del (&fs_hash [slot].head, (WL)w);
1975 3190
1976 /* remove this watcher, if others are watching it, they will rearm */ 3191 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd); 3192 inotify_rm_watch (fs_fd, wd);
1978} 3193}
1979 3194
1980static void noinline 3195static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3196infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 3197{
1983 if (slot < 0) 3198 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 3199 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3200 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 3201 infy_wd (EV_A_ slot, wd, ev);
1987 else 3202 else
1988 { 3203 {
1989 WL w_; 3204 WL w_;
1990 3205
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3206 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1992 { 3207 {
1993 ev_stat *w = (ev_stat *)w_; 3208 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */ 3209 w_ = w_->next; /* lets us remove this watcher and all before it */
1995 3210
1996 if (w->wd == wd || wd == -1) 3211 if (w->wd == wd || wd == -1)
1997 { 3212 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3213 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 3214 {
3215 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2000 w->wd = -1; 3216 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 3217 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 3218 }
2003 3219
2004 stat_timer_cb (EV_A_ &w->timer, 0); 3220 stat_timer_cb (EV_A_ &w->timer, 0);
2009 3225
2010static void 3226static void
2011infy_cb (EV_P_ ev_io *w, int revents) 3227infy_cb (EV_P_ ev_io *w, int revents)
2012{ 3228{
2013 char buf [EV_INOTIFY_BUFSIZE]; 3229 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 3230 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 3231 int len = read (fs_fd, buf, sizeof (buf));
2017 3232
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3233 for (ofs = 0; ofs < len; )
3234 {
3235 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3236 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3237 ofs += sizeof (struct inotify_event) + ev->len;
3238 }
2020} 3239}
2021 3240
2022void inline_size 3241inline_size void
3242ev_check_2625 (EV_P)
3243{
3244 /* kernels < 2.6.25 are borked
3245 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3246 */
3247 if (ev_linux_version () < 0x020619)
3248 return;
3249
3250 fs_2625 = 1;
3251}
3252
3253inline_size int
3254infy_newfd (void)
3255{
3256#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3257 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3258 if (fd >= 0)
3259 return fd;
3260#endif
3261 return inotify_init ();
3262}
3263
3264inline_size void
2023infy_init (EV_P) 3265infy_init (EV_P)
2024{ 3266{
2025 if (fs_fd != -2) 3267 if (fs_fd != -2)
2026 return; 3268 return;
2027 3269
3270 fs_fd = -1;
3271
3272 ev_check_2625 (EV_A);
3273
2028 fs_fd = inotify_init (); 3274 fs_fd = infy_newfd ();
2029 3275
2030 if (fs_fd >= 0) 3276 if (fs_fd >= 0)
2031 { 3277 {
3278 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3279 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 3280 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
2035 } 3283 }
2036} 3284}
2037 3285
2038void inline_size 3286inline_size void
2039infy_fork (EV_P) 3287infy_fork (EV_P)
2040{ 3288{
2041 int slot; 3289 int slot;
2042 3290
2043 if (fs_fd < 0) 3291 if (fs_fd < 0)
2044 return; 3292 return;
2045 3293
3294 ev_ref (EV_A);
3295 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 3296 close (fs_fd);
2047 fs_fd = inotify_init (); 3297 fs_fd = infy_newfd ();
2048 3298
3299 if (fs_fd >= 0)
3300 {
3301 fd_intern (fs_fd);
3302 ev_io_set (&fs_w, fs_fd, EV_READ);
3303 ev_io_start (EV_A_ &fs_w);
3304 ev_unref (EV_A);
3305 }
3306
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3307 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2050 { 3308 {
2051 WL w_ = fs_hash [slot].head; 3309 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 3310 fs_hash [slot].head = 0;
2053 3311
2054 while (w_) 3312 while (w_)
2059 w->wd = -1; 3317 w->wd = -1;
2060 3318
2061 if (fs_fd >= 0) 3319 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3320 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3321 else
3322 {
3323 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 3325 ev_timer_again (EV_A_ &w->timer);
3326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3327 }
2065 } 3328 }
2066
2067 } 3329 }
2068} 3330}
2069 3331
3332#endif
3333
3334#ifdef _WIN32
3335# define EV_LSTAT(p,b) _stati64 (p, b)
3336#else
3337# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3338#endif
2071 3339
2072void 3340void
2073ev_stat_stat (EV_P_ ev_stat *w) 3341ev_stat_stat (EV_P_ ev_stat *w)
2074{ 3342{
2081static void noinline 3349static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3350stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 3351{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3352 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 3353
2086 /* we copy this here each the time so that */ 3354 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 3355 ev_stat_stat (EV_A_ w);
2090 3356
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3357 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 3358 if (
2093 w->prev.st_dev != w->attr.st_dev 3359 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 3360 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 3361 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 3362 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 3363 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 3364 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 3365 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 3366 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 3367 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3368 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3369 || prev.st_ctime != w->attr.st_ctime
2104 ) { 3370 ) {
3371 /* we only update w->prev on actual differences */
3372 /* in case we test more often than invoke the callback, */
3373 /* to ensure that prev is always different to attr */
3374 w->prev = prev;
3375
2105 #if EV_USE_INOTIFY 3376 #if EV_USE_INOTIFY
3377 if (fs_fd >= 0)
3378 {
2106 infy_del (EV_A_ w); 3379 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3380 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3381 ev_stat_stat (EV_A_ w); /* avoid race... */
3382 }
2109 #endif 3383 #endif
2110 3384
2111 ev_feed_event (EV_A_ w, EV_STAT); 3385 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3386 }
2113} 3387}
2116ev_stat_start (EV_P_ ev_stat *w) 3390ev_stat_start (EV_P_ ev_stat *w)
2117{ 3391{
2118 if (expect_false (ev_is_active (w))) 3392 if (expect_false (ev_is_active (w)))
2119 return; 3393 return;
2120 3394
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3395 ev_stat_stat (EV_A_ w);
2126 3396
3397 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3398 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3399
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3400 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3401 ev_set_priority (&w->timer, ev_priority (w));
2132 3402
2133#if EV_USE_INOTIFY 3403#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3404 infy_init (EV_A);
2135 3405
2136 if (fs_fd >= 0) 3406 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3407 infy_add (EV_A_ w);
2138 else 3408 else
2139#endif 3409#endif
3410 {
2140 ev_timer_start (EV_A_ &w->timer); 3411 ev_timer_again (EV_A_ &w->timer);
3412 ev_unref (EV_A);
3413 }
2141 3414
2142 ev_start (EV_A_ (W)w, 1); 3415 ev_start (EV_A_ (W)w, 1);
3416
3417 EV_FREQUENT_CHECK;
2143} 3418}
2144 3419
2145void 3420void
2146ev_stat_stop (EV_P_ ev_stat *w) 3421ev_stat_stop (EV_P_ ev_stat *w)
2147{ 3422{
2148 clear_pending (EV_A_ (W)w); 3423 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3424 if (expect_false (!ev_is_active (w)))
2150 return; 3425 return;
2151 3426
3427 EV_FREQUENT_CHECK;
3428
2152#if EV_USE_INOTIFY 3429#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3430 infy_del (EV_A_ w);
2154#endif 3431#endif
3432
3433 if (ev_is_active (&w->timer))
3434 {
3435 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 3436 ev_timer_stop (EV_A_ &w->timer);
3437 }
2156 3438
2157 ev_stop (EV_A_ (W)w); 3439 ev_stop (EV_A_ (W)w);
3440
3441 EV_FREQUENT_CHECK;
2158} 3442}
2159#endif 3443#endif
2160 3444
2161#if EV_IDLE_ENABLE 3445#if EV_IDLE_ENABLE
2162void 3446void
2164{ 3448{
2165 if (expect_false (ev_is_active (w))) 3449 if (expect_false (ev_is_active (w)))
2166 return; 3450 return;
2167 3451
2168 pri_adjust (EV_A_ (W)w); 3452 pri_adjust (EV_A_ (W)w);
3453
3454 EV_FREQUENT_CHECK;
2169 3455
2170 { 3456 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3457 int active = ++idlecnt [ABSPRI (w)];
2172 3458
2173 ++idleall; 3459 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3460 ev_start (EV_A_ (W)w, active);
2175 3461
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3462 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3463 idles [ABSPRI (w)][active - 1] = w;
2178 } 3464 }
3465
3466 EV_FREQUENT_CHECK;
2179} 3467}
2180 3468
2181void 3469void
2182ev_idle_stop (EV_P_ ev_idle *w) 3470ev_idle_stop (EV_P_ ev_idle *w)
2183{ 3471{
2184 clear_pending (EV_A_ (W)w); 3472 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3473 if (expect_false (!ev_is_active (w)))
2186 return; 3474 return;
2187 3475
3476 EV_FREQUENT_CHECK;
3477
2188 { 3478 {
2189 int active = ((W)w)->active; 3479 int active = ev_active (w);
2190 3480
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3481 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3482 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3483
2194 ev_stop (EV_A_ (W)w); 3484 ev_stop (EV_A_ (W)w);
2195 --idleall; 3485 --idleall;
2196 } 3486 }
2197}
2198#endif
2199 3487
3488 EV_FREQUENT_CHECK;
3489}
3490#endif
3491
3492#if EV_PREPARE_ENABLE
2200void 3493void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3494ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 3495{
2203 if (expect_false (ev_is_active (w))) 3496 if (expect_false (ev_is_active (w)))
2204 return; 3497 return;
3498
3499 EV_FREQUENT_CHECK;
2205 3500
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3501 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3502 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3503 prepares [preparecnt - 1] = w;
3504
3505 EV_FREQUENT_CHECK;
2209} 3506}
2210 3507
2211void 3508void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 3509ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 3510{
2214 clear_pending (EV_A_ (W)w); 3511 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3512 if (expect_false (!ev_is_active (w)))
2216 return; 3513 return;
2217 3514
3515 EV_FREQUENT_CHECK;
3516
2218 { 3517 {
2219 int active = ((W)w)->active; 3518 int active = ev_active (w);
3519
2220 prepares [active - 1] = prepares [--preparecnt]; 3520 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 3521 ev_active (prepares [active - 1]) = active;
2222 } 3522 }
2223 3523
2224 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
2225}
2226 3525
3526 EV_FREQUENT_CHECK;
3527}
3528#endif
3529
3530#if EV_CHECK_ENABLE
2227void 3531void
2228ev_check_start (EV_P_ ev_check *w) 3532ev_check_start (EV_P_ ev_check *w)
2229{ 3533{
2230 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2231 return; 3535 return;
3536
3537 EV_FREQUENT_CHECK;
2232 3538
2233 ev_start (EV_A_ (W)w, ++checkcnt); 3539 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3540 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 3541 checks [checkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
2236} 3544}
2237 3545
2238void 3546void
2239ev_check_stop (EV_P_ ev_check *w) 3547ev_check_stop (EV_P_ ev_check *w)
2240{ 3548{
2241 clear_pending (EV_A_ (W)w); 3549 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 3550 if (expect_false (!ev_is_active (w)))
2243 return; 3551 return;
2244 3552
3553 EV_FREQUENT_CHECK;
3554
2245 { 3555 {
2246 int active = ((W)w)->active; 3556 int active = ev_active (w);
3557
2247 checks [active - 1] = checks [--checkcnt]; 3558 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 3559 ev_active (checks [active - 1]) = active;
2249 } 3560 }
2250 3561
2251 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
2252} 3565}
3566#endif
2253 3567
2254#if EV_EMBED_ENABLE 3568#if EV_EMBED_ENABLE
2255void noinline 3569void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 3570ev_embed_sweep (EV_P_ ev_embed *w)
2257{ 3571{
2258 ev_loop (w->other, EVLOOP_NONBLOCK); 3572 ev_run (w->other, EVRUN_NOWAIT);
2259} 3573}
2260 3574
2261static void 3575static void
2262embed_io_cb (EV_P_ ev_io *io, int revents) 3576embed_io_cb (EV_P_ ev_io *io, int revents)
2263{ 3577{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3578 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 3579
2266 if (ev_cb (w)) 3580 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3581 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 3582 else
2269 ev_embed_sweep (loop, w); 3583 ev_run (w->other, EVRUN_NOWAIT);
2270} 3584}
2271 3585
2272static void 3586static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3587embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 3588{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3589 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 3590
2277 fd_reify (w->other); 3591 {
3592 EV_P = w->other;
3593
3594 while (fdchangecnt)
3595 {
3596 fd_reify (EV_A);
3597 ev_run (EV_A_ EVRUN_NOWAIT);
3598 }
3599 }
2278} 3600}
3601
3602static void
3603embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3604{
3605 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3606
3607 ev_embed_stop (EV_A_ w);
3608
3609 {
3610 EV_P = w->other;
3611
3612 ev_loop_fork (EV_A);
3613 ev_run (EV_A_ EVRUN_NOWAIT);
3614 }
3615
3616 ev_embed_start (EV_A_ w);
3617}
3618
3619#if 0
3620static void
3621embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3622{
3623 ev_idle_stop (EV_A_ idle);
3624}
3625#endif
2279 3626
2280void 3627void
2281ev_embed_start (EV_P_ ev_embed *w) 3628ev_embed_start (EV_P_ ev_embed *w)
2282{ 3629{
2283 if (expect_false (ev_is_active (w))) 3630 if (expect_false (ev_is_active (w)))
2284 return; 3631 return;
2285 3632
2286 { 3633 {
2287 struct ev_loop *loop = w->other; 3634 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3635 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3636 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3637 }
3638
3639 EV_FREQUENT_CHECK;
2291 3640
2292 ev_set_priority (&w->io, ev_priority (w)); 3641 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3642 ev_io_start (EV_A_ &w->io);
2294 3643
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3644 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3645 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3646 ev_prepare_start (EV_A_ &w->prepare);
2298 3647
3648 ev_fork_init (&w->fork, embed_fork_cb);
3649 ev_fork_start (EV_A_ &w->fork);
3650
3651 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3652
2299 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
3654
3655 EV_FREQUENT_CHECK;
2300} 3656}
2301 3657
2302void 3658void
2303ev_embed_stop (EV_P_ ev_embed *w) 3659ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3660{
2305 clear_pending (EV_A_ (W)w); 3661 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3662 if (expect_false (!ev_is_active (w)))
2307 return; 3663 return;
2308 3664
3665 EV_FREQUENT_CHECK;
3666
2309 ev_io_stop (EV_A_ &w->io); 3667 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3668 ev_prepare_stop (EV_A_ &w->prepare);
3669 ev_fork_stop (EV_A_ &w->fork);
2311 3670
2312 ev_stop (EV_A_ (W)w); 3671 ev_stop (EV_A_ (W)w);
3672
3673 EV_FREQUENT_CHECK;
2313} 3674}
2314#endif 3675#endif
2315 3676
2316#if EV_FORK_ENABLE 3677#if EV_FORK_ENABLE
2317void 3678void
2318ev_fork_start (EV_P_ ev_fork *w) 3679ev_fork_start (EV_P_ ev_fork *w)
2319{ 3680{
2320 if (expect_false (ev_is_active (w))) 3681 if (expect_false (ev_is_active (w)))
2321 return; 3682 return;
3683
3684 EV_FREQUENT_CHECK;
2322 3685
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3686 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3687 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3688 forks [forkcnt - 1] = w;
3689
3690 EV_FREQUENT_CHECK;
2326} 3691}
2327 3692
2328void 3693void
2329ev_fork_stop (EV_P_ ev_fork *w) 3694ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3695{
2331 clear_pending (EV_A_ (W)w); 3696 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3697 if (expect_false (!ev_is_active (w)))
2333 return; 3698 return;
2334 3699
3700 EV_FREQUENT_CHECK;
3701
2335 { 3702 {
2336 int active = ((W)w)->active; 3703 int active = ev_active (w);
3704
2337 forks [active - 1] = forks [--forkcnt]; 3705 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3706 ev_active (forks [active - 1]) = active;
2339 } 3707 }
2340 3708
2341 ev_stop (EV_A_ (W)w); 3709 ev_stop (EV_A_ (W)w);
3710
3711 EV_FREQUENT_CHECK;
3712}
3713#endif
3714
3715#if EV_CLEANUP_ENABLE
3716void
3717ev_cleanup_start (EV_P_ ev_cleanup *w)
3718{
3719 if (expect_false (ev_is_active (w)))
3720 return;
3721
3722 EV_FREQUENT_CHECK;
3723
3724 ev_start (EV_A_ (W)w, ++cleanupcnt);
3725 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3726 cleanups [cleanupcnt - 1] = w;
3727
3728 /* cleanup watchers should never keep a refcount on the loop */
3729 ev_unref (EV_A);
3730 EV_FREQUENT_CHECK;
3731}
3732
3733void
3734ev_cleanup_stop (EV_P_ ev_cleanup *w)
3735{
3736 clear_pending (EV_A_ (W)w);
3737 if (expect_false (!ev_is_active (w)))
3738 return;
3739
3740 EV_FREQUENT_CHECK;
3741 ev_ref (EV_A);
3742
3743 {
3744 int active = ev_active (w);
3745
3746 cleanups [active - 1] = cleanups [--cleanupcnt];
3747 ev_active (cleanups [active - 1]) = active;
3748 }
3749
3750 ev_stop (EV_A_ (W)w);
3751
3752 EV_FREQUENT_CHECK;
3753}
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757void
3758ev_async_start (EV_P_ ev_async *w)
3759{
3760 if (expect_false (ev_is_active (w)))
3761 return;
3762
3763 w->sent = 0;
3764
3765 evpipe_init (EV_A);
3766
3767 EV_FREQUENT_CHECK;
3768
3769 ev_start (EV_A_ (W)w, ++asynccnt);
3770 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3771 asyncs [asynccnt - 1] = w;
3772
3773 EV_FREQUENT_CHECK;
3774}
3775
3776void
3777ev_async_stop (EV_P_ ev_async *w)
3778{
3779 clear_pending (EV_A_ (W)w);
3780 if (expect_false (!ev_is_active (w)))
3781 return;
3782
3783 EV_FREQUENT_CHECK;
3784
3785 {
3786 int active = ev_active (w);
3787
3788 asyncs [active - 1] = asyncs [--asynccnt];
3789 ev_active (asyncs [active - 1]) = active;
3790 }
3791
3792 ev_stop (EV_A_ (W)w);
3793
3794 EV_FREQUENT_CHECK;
3795}
3796
3797void
3798ev_async_send (EV_P_ ev_async *w)
3799{
3800 w->sent = 1;
3801 evpipe_write (EV_A_ &async_pending);
2342} 3802}
2343#endif 3803#endif
2344 3804
2345/*****************************************************************************/ 3805/*****************************************************************************/
2346 3806
2356once_cb (EV_P_ struct ev_once *once, int revents) 3816once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3817{
2358 void (*cb)(int revents, void *arg) = once->cb; 3818 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3819 void *arg = once->arg;
2360 3820
2361 ev_io_stop (EV_A_ &once->io); 3821 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3822 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3823 ev_free (once);
2364 3824
2365 cb (revents, arg); 3825 cb (revents, arg);
2366} 3826}
2367 3827
2368static void 3828static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3829once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3830{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3831 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3832
3833 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3834}
2373 3835
2374static void 3836static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3837once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3838{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3839 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3840
3841 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3842}
2379 3843
2380void 3844void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3845ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3846{
2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3847 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2384 3848
2385 if (expect_false (!once)) 3849 if (expect_false (!once))
2386 { 3850 {
2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3851 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2388 return; 3852 return;
2389 } 3853 }
2390 3854
2391 once->cb = cb; 3855 once->cb = cb;
2392 once->arg = arg; 3856 once->arg = arg;
2404 ev_timer_set (&once->to, timeout, 0.); 3868 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3869 ev_timer_start (EV_A_ &once->to);
2406 } 3870 }
2407} 3871}
2408 3872
3873/*****************************************************************************/
3874
3875#if EV_WALK_ENABLE
3876void
3877ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3878{
3879 int i, j;
3880 ev_watcher_list *wl, *wn;
3881
3882 if (types & (EV_IO | EV_EMBED))
3883 for (i = 0; i < anfdmax; ++i)
3884 for (wl = anfds [i].head; wl; )
3885 {
3886 wn = wl->next;
3887
3888#if EV_EMBED_ENABLE
3889 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3890 {
3891 if (types & EV_EMBED)
3892 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3893 }
3894 else
3895#endif
3896#if EV_USE_INOTIFY
3897 if (ev_cb ((ev_io *)wl) == infy_cb)
3898 ;
3899 else
3900#endif
3901 if ((ev_io *)wl != &pipe_w)
3902 if (types & EV_IO)
3903 cb (EV_A_ EV_IO, wl);
3904
3905 wl = wn;
3906 }
3907
3908 if (types & (EV_TIMER | EV_STAT))
3909 for (i = timercnt + HEAP0; i-- > HEAP0; )
3910#if EV_STAT_ENABLE
3911 /*TODO: timer is not always active*/
3912 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3913 {
3914 if (types & EV_STAT)
3915 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3916 }
3917 else
3918#endif
3919 if (types & EV_TIMER)
3920 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3921
3922#if EV_PERIODIC_ENABLE
3923 if (types & EV_PERIODIC)
3924 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3925 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3926#endif
3927
3928#if EV_IDLE_ENABLE
3929 if (types & EV_IDLE)
3930 for (j = NUMPRI; i--; )
3931 for (i = idlecnt [j]; i--; )
3932 cb (EV_A_ EV_IDLE, idles [j][i]);
3933#endif
3934
3935#if EV_FORK_ENABLE
3936 if (types & EV_FORK)
3937 for (i = forkcnt; i--; )
3938 if (ev_cb (forks [i]) != embed_fork_cb)
3939 cb (EV_A_ EV_FORK, forks [i]);
3940#endif
3941
3942#if EV_ASYNC_ENABLE
3943 if (types & EV_ASYNC)
3944 for (i = asynccnt; i--; )
3945 cb (EV_A_ EV_ASYNC, asyncs [i]);
3946#endif
3947
3948#if EV_PREPARE_ENABLE
3949 if (types & EV_PREPARE)
3950 for (i = preparecnt; i--; )
3951# if EV_EMBED_ENABLE
3952 if (ev_cb (prepares [i]) != embed_prepare_cb)
3953# endif
3954 cb (EV_A_ EV_PREPARE, prepares [i]);
3955#endif
3956
3957#if EV_CHECK_ENABLE
3958 if (types & EV_CHECK)
3959 for (i = checkcnt; i--; )
3960 cb (EV_A_ EV_CHECK, checks [i]);
3961#endif
3962
3963#if EV_SIGNAL_ENABLE
3964 if (types & EV_SIGNAL)
3965 for (i = 0; i < EV_NSIG - 1; ++i)
3966 for (wl = signals [i].head; wl; )
3967 {
3968 wn = wl->next;
3969 cb (EV_A_ EV_SIGNAL, wl);
3970 wl = wn;
3971 }
3972#endif
3973
3974#if EV_CHILD_ENABLE
3975 if (types & EV_CHILD)
3976 for (i = (EV_PID_HASHSIZE); i--; )
3977 for (wl = childs [i]; wl; )
3978 {
3979 wn = wl->next;
3980 cb (EV_A_ EV_CHILD, wl);
3981 wl = wn;
3982 }
3983#endif
3984/* EV_STAT 0x00001000 /* stat data changed */
3985/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3986}
3987#endif
3988
2409#if EV_MULTIPLICITY 3989#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3990 #include "ev_wrap.h"
2411#endif 3991#endif
2412 3992
2413#ifdef __cplusplus 3993EV_CPP(})
2414}
2415#endif
2416 3994

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines