ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.455 by root, Sun Apr 28 12:45:20 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
135#endif 197#endif
136 198
137#ifndef _WIN32 199#ifndef _WIN32
138# include <sys/time.h> 200# include <sys/time.h>
139# include <sys/wait.h> 201# include <sys/wait.h>
140# include <unistd.h> 202# include <unistd.h>
141#else 203#else
204# include <io.h>
142# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
143# include <windows.h> 207# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
146# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
147#endif 261# endif
148 262#endif
149/**/
150 263
151#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
152# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
153#endif 270#endif
154 271
155#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 274#endif
158 275
159#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
160# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
161#endif 282#endif
162 283
163#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 286#endif
166 287
167#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
168# ifdef _WIN32 289# ifdef _WIN32
169# define EV_USE_POLL 0 290# define EV_USE_POLL 0
170# else 291# else
171# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 293# endif
173#endif 294#endif
174 295
175#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
176# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
177#endif 302#endif
178 303
179#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
181#endif 306#endif
183#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 309# define EV_USE_PORT 0
185#endif 310#endif
186 311
187#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
188# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
189#endif 318#endif
190 319
191#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 331# else
195# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
196# endif 333# endif
197#endif 334#endif
198 335
199#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 339# else
203# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
204# endif 341# endif
205#endif 342#endif
206 343
207/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 393
209#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
212#endif 397#endif
220# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
222#endif 407#endif
223 408
224#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
226# include <sys/select.h> 412# include <sys/select.h>
227# endif 413# endif
228#endif 414#endif
229 415
230#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
231# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
232#endif 423# endif
424#endif
233 425
234#if EV_SELECT_IS_WINSOCKET 426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
235# include <winsock.h> 428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
236#endif 462#endif
237 463
238/**/ 464/**/
239 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
240/* 472/*
241 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 475 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 478
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 529 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
257#else 545#else
258# define expect(expr,value) (expr) 546 #include <inttypes.h>
259# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
260# if __STDC_VERSION__ < 199901L 548 #define ECB_PTRSIZE 8
261# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
262# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
263#endif 560 #endif
561#endif
264 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
633 #elif defined __alpha__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
635 #elif defined __hppa__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
637 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638 #elif defined __ia64__
639 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
640 #endif
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(4,7)
646 /* see comment below (stdatomic.h) about the C11 memory model. */
647 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
648
649 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
650 * without risking compile time errors with other compilers. We *could*
651 * define our own ecb_clang_has_feature, but I just can't be bothered to work
652 * around this shit time and again.
653 * #elif defined __clang && __has_feature (cxx_atomic)
654 * // see comment below (stdatomic.h) about the C11 memory model.
655 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
656 */
657
658 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
659 #define ECB_MEMORY_FENCE __sync_synchronize ()
660 #elif _MSC_VER >= 1400 /* VC++ 2005 */
661 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
662 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
663 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
664 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
665 #elif defined _WIN32
666 #include <WinNT.h>
667 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
668 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
669 #include <mbarrier.h>
670 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
672 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
673 #elif __xlC__
674 #define ECB_MEMORY_FENCE __sync ()
675 #endif
676#endif
677
678#ifndef ECB_MEMORY_FENCE
679 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
680 /* we assume that these memory fences work on all variables/all memory accesses, */
681 /* not just C11 atomics and atomic accesses */
682 #include <stdatomic.h>
683 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
684 /* any fence other than seq_cst, which isn't very efficient for us. */
685 /* Why that is, we don't know - either the C11 memory model is quite useless */
686 /* for most usages, or gcc and clang have a bug */
687 /* I *currently* lean towards the latter, and inefficiently implement */
688 /* all three of ecb's fences as a seq_cst fence */
689 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
690 #endif
691#endif
692
693#ifndef ECB_MEMORY_FENCE
694 #if !ECB_AVOID_PTHREADS
695 /*
696 * if you get undefined symbol references to pthread_mutex_lock,
697 * or failure to find pthread.h, then you should implement
698 * the ECB_MEMORY_FENCE operations for your cpu/compiler
699 * OR provide pthread.h and link against the posix thread library
700 * of your system.
701 */
702 #include <pthread.h>
703 #define ECB_NEEDS_PTHREADS 1
704 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
705
706 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
707 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
708 #endif
709#endif
710
711#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
712 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
713#endif
714
715#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
716 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
717#endif
718
719/*****************************************************************************/
720
721#if __cplusplus
722 #define ecb_inline static inline
723#elif ECB_GCC_VERSION(2,5)
724 #define ecb_inline static __inline__
725#elif ECB_C99
726 #define ecb_inline static inline
727#else
728 #define ecb_inline static
729#endif
730
731#if ECB_GCC_VERSION(3,3)
732 #define ecb_restrict __restrict__
733#elif ECB_C99
734 #define ecb_restrict restrict
735#else
736 #define ecb_restrict
737#endif
738
739typedef int ecb_bool;
740
741#define ECB_CONCAT_(a, b) a ## b
742#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
743#define ECB_STRINGIFY_(a) # a
744#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
745
746#define ecb_function_ ecb_inline
747
748#if ECB_GCC_VERSION(3,1)
749 #define ecb_attribute(attrlist) __attribute__(attrlist)
750 #define ecb_is_constant(expr) __builtin_constant_p (expr)
751 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
752 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
753#else
754 #define ecb_attribute(attrlist)
755 #define ecb_is_constant(expr) 0
756 #define ecb_expect(expr,value) (expr)
757 #define ecb_prefetch(addr,rw,locality)
758#endif
759
760/* no emulation for ecb_decltype */
761#if ECB_GCC_VERSION(4,5)
762 #define ecb_decltype(x) __decltype(x)
763#elif ECB_GCC_VERSION(3,0)
764 #define ecb_decltype(x) __typeof(x)
765#endif
766
767#define ecb_noinline ecb_attribute ((__noinline__))
768#define ecb_unused ecb_attribute ((__unused__))
769#define ecb_const ecb_attribute ((__const__))
770#define ecb_pure ecb_attribute ((__pure__))
771
772#if ECB_C11
773 #define ecb_noreturn _Noreturn
774#else
775 #define ecb_noreturn ecb_attribute ((__noreturn__))
776#endif
777
778#if ECB_GCC_VERSION(4,3)
779 #define ecb_artificial ecb_attribute ((__artificial__))
780 #define ecb_hot ecb_attribute ((__hot__))
781 #define ecb_cold ecb_attribute ((__cold__))
782#else
783 #define ecb_artificial
784 #define ecb_hot
785 #define ecb_cold
786#endif
787
788/* put around conditional expressions if you are very sure that the */
789/* expression is mostly true or mostly false. note that these return */
790/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 791#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 792#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
793/* for compatibility to the rest of the world */
794#define ecb_likely(expr) ecb_expect_true (expr)
795#define ecb_unlikely(expr) ecb_expect_false (expr)
796
797/* count trailing zero bits and count # of one bits */
798#if ECB_GCC_VERSION(3,4)
799 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
800 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
801 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
802 #define ecb_ctz32(x) __builtin_ctz (x)
803 #define ecb_ctz64(x) __builtin_ctzll (x)
804 #define ecb_popcount32(x) __builtin_popcount (x)
805 /* no popcountll */
806#else
807 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
808 ecb_function_ int
809 ecb_ctz32 (uint32_t x)
810 {
811 int r = 0;
812
813 x &= ~x + 1; /* this isolates the lowest bit */
814
815#if ECB_branchless_on_i386
816 r += !!(x & 0xaaaaaaaa) << 0;
817 r += !!(x & 0xcccccccc) << 1;
818 r += !!(x & 0xf0f0f0f0) << 2;
819 r += !!(x & 0xff00ff00) << 3;
820 r += !!(x & 0xffff0000) << 4;
821#else
822 if (x & 0xaaaaaaaa) r += 1;
823 if (x & 0xcccccccc) r += 2;
824 if (x & 0xf0f0f0f0) r += 4;
825 if (x & 0xff00ff00) r += 8;
826 if (x & 0xffff0000) r += 16;
827#endif
828
829 return r;
830 }
831
832 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
833 ecb_function_ int
834 ecb_ctz64 (uint64_t x)
835 {
836 int shift = x & 0xffffffffU ? 0 : 32;
837 return ecb_ctz32 (x >> shift) + shift;
838 }
839
840 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
841 ecb_function_ int
842 ecb_popcount32 (uint32_t x)
843 {
844 x -= (x >> 1) & 0x55555555;
845 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
846 x = ((x >> 4) + x) & 0x0f0f0f0f;
847 x *= 0x01010101;
848
849 return x >> 24;
850 }
851
852 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
853 ecb_function_ int ecb_ld32 (uint32_t x)
854 {
855 int r = 0;
856
857 if (x >> 16) { x >>= 16; r += 16; }
858 if (x >> 8) { x >>= 8; r += 8; }
859 if (x >> 4) { x >>= 4; r += 4; }
860 if (x >> 2) { x >>= 2; r += 2; }
861 if (x >> 1) { r += 1; }
862
863 return r;
864 }
865
866 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
867 ecb_function_ int ecb_ld64 (uint64_t x)
868 {
869 int r = 0;
870
871 if (x >> 32) { x >>= 32; r += 32; }
872
873 return r + ecb_ld32 (x);
874 }
875#endif
876
877ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
878ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
879ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
880ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
881
882ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
883ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
884{
885 return ( (x * 0x0802U & 0x22110U)
886 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
887}
888
889ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
890ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
891{
892 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
893 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
894 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
895 x = ( x >> 8 ) | ( x << 8);
896
897 return x;
898}
899
900ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
901ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
902{
903 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
904 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
905 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
906 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
907 x = ( x >> 16 ) | ( x << 16);
908
909 return x;
910}
911
912/* popcount64 is only available on 64 bit cpus as gcc builtin */
913/* so for this version we are lazy */
914ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
915ecb_function_ int
916ecb_popcount64 (uint64_t x)
917{
918 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
919}
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
929
930ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
931ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
932ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
933ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
934ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
935ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
936ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
937ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
938
939#if ECB_GCC_VERSION(4,3)
940 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
941 #define ecb_bswap32(x) __builtin_bswap32 (x)
942 #define ecb_bswap64(x) __builtin_bswap64 (x)
943#else
944 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
945 ecb_function_ uint16_t
946 ecb_bswap16 (uint16_t x)
947 {
948 return ecb_rotl16 (x, 8);
949 }
950
951 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
952 ecb_function_ uint32_t
953 ecb_bswap32 (uint32_t x)
954 {
955 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
956 }
957
958 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
959 ecb_function_ uint64_t
960 ecb_bswap64 (uint64_t x)
961 {
962 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
963 }
964#endif
965
966#if ECB_GCC_VERSION(4,5)
967 #define ecb_unreachable() __builtin_unreachable ()
968#else
969 /* this seems to work fine, but gcc always emits a warning for it :/ */
970 ecb_inline void ecb_unreachable (void) ecb_noreturn;
971 ecb_inline void ecb_unreachable (void) { }
972#endif
973
974/* try to tell the compiler that some condition is definitely true */
975#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
976
977ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
978ecb_inline unsigned char
979ecb_byteorder_helper (void)
980{
981 /* the union code still generates code under pressure in gcc, */
982 /* but less than using pointers, and always seems to */
983 /* successfully return a constant. */
984 /* the reason why we have this horrible preprocessor mess */
985 /* is to avoid it in all cases, at least on common architectures */
986 /* or when using a recent enough gcc version (>= 4.6) */
987#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
988 return 0x44;
989#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
990 return 0x44;
991#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
992 return 0x11;
993#else
994 union
995 {
996 uint32_t i;
997 uint8_t c;
998 } u = { 0x11223344 };
999 return u.c;
1000#endif
1001}
1002
1003ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1004ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1005ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1006ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1007
1008#if ECB_GCC_VERSION(3,0) || ECB_C99
1009 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1010#else
1011 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1012#endif
1013
1014#if __cplusplus
1015 template<typename T>
1016 static inline T ecb_div_rd (T val, T div)
1017 {
1018 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1019 }
1020 template<typename T>
1021 static inline T ecb_div_ru (T val, T div)
1022 {
1023 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1024 }
1025#else
1026 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1027 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1028#endif
1029
1030#if ecb_cplusplus_does_not_suck
1031 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1032 template<typename T, int N>
1033 static inline int ecb_array_length (const T (&arr)[N])
1034 {
1035 return N;
1036 }
1037#else
1038 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1039#endif
1040
1041/*******************************************************************************/
1042/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1043
1044/* basically, everything uses "ieee pure-endian" floating point numbers */
1045/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1046#if 0 \
1047 || __i386 || __i386__ \
1048 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1049 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1050 || defined __arm__ && defined __ARM_EABI__ \
1051 || defined __s390__ || defined __s390x__ \
1052 || defined __mips__ \
1053 || defined __alpha__ \
1054 || defined __hppa__ \
1055 || defined __ia64__ \
1056 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1057 #define ECB_STDFP 1
1058 #include <string.h> /* for memcpy */
1059#else
1060 #define ECB_STDFP 0
1061 #include <math.h> /* for frexp*, ldexp* */
1062#endif
1063
1064#ifndef ECB_NO_LIBM
1065
1066 /* convert a float to ieee single/binary32 */
1067 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1068 ecb_function_ uint32_t
1069 ecb_float_to_binary32 (float x)
1070 {
1071 uint32_t r;
1072
1073 #if ECB_STDFP
1074 memcpy (&r, &x, 4);
1075 #else
1076 /* slow emulation, works for anything but -0 */
1077 uint32_t m;
1078 int e;
1079
1080 if (x == 0e0f ) return 0x00000000U;
1081 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1082 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1083 if (x != x ) return 0x7fbfffffU;
1084
1085 m = frexpf (x, &e) * 0x1000000U;
1086
1087 r = m & 0x80000000U;
1088
1089 if (r)
1090 m = -m;
1091
1092 if (e <= -126)
1093 {
1094 m &= 0xffffffU;
1095 m >>= (-125 - e);
1096 e = -126;
1097 }
1098
1099 r |= (e + 126) << 23;
1100 r |= m & 0x7fffffU;
1101 #endif
1102
1103 return r;
1104 }
1105
1106 /* converts an ieee single/binary32 to a float */
1107 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1108 ecb_function_ float
1109 ecb_binary32_to_float (uint32_t x)
1110 {
1111 float r;
1112
1113 #if ECB_STDFP
1114 memcpy (&r, &x, 4);
1115 #else
1116 /* emulation, only works for normals and subnormals and +0 */
1117 int neg = x >> 31;
1118 int e = (x >> 23) & 0xffU;
1119
1120 x &= 0x7fffffU;
1121
1122 if (e)
1123 x |= 0x800000U;
1124 else
1125 e = 1;
1126
1127 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1128 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1129
1130 r = neg ? -r : r;
1131 #endif
1132
1133 return r;
1134 }
1135
1136 /* convert a double to ieee double/binary64 */
1137 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1138 ecb_function_ uint64_t
1139 ecb_double_to_binary64 (double x)
1140 {
1141 uint64_t r;
1142
1143 #if ECB_STDFP
1144 memcpy (&r, &x, 8);
1145 #else
1146 /* slow emulation, works for anything but -0 */
1147 uint64_t m;
1148 int e;
1149
1150 if (x == 0e0 ) return 0x0000000000000000U;
1151 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1152 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1153 if (x != x ) return 0X7ff7ffffffffffffU;
1154
1155 m = frexp (x, &e) * 0x20000000000000U;
1156
1157 r = m & 0x8000000000000000;;
1158
1159 if (r)
1160 m = -m;
1161
1162 if (e <= -1022)
1163 {
1164 m &= 0x1fffffffffffffU;
1165 m >>= (-1021 - e);
1166 e = -1022;
1167 }
1168
1169 r |= ((uint64_t)(e + 1022)) << 52;
1170 r |= m & 0xfffffffffffffU;
1171 #endif
1172
1173 return r;
1174 }
1175
1176 /* converts an ieee double/binary64 to a double */
1177 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1178 ecb_function_ double
1179 ecb_binary64_to_double (uint64_t x)
1180 {
1181 double r;
1182
1183 #if ECB_STDFP
1184 memcpy (&r, &x, 8);
1185 #else
1186 /* emulation, only works for normals and subnormals and +0 */
1187 int neg = x >> 63;
1188 int e = (x >> 52) & 0x7ffU;
1189
1190 x &= 0xfffffffffffffU;
1191
1192 if (e)
1193 x |= 0x10000000000000U;
1194 else
1195 e = 1;
1196
1197 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1198 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1199
1200 r = neg ? -r : r;
1201 #endif
1202
1203 return r;
1204 }
1205
1206#endif
1207
1208#endif
1209
1210/* ECB.H END */
1211
1212#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1213/* if your architecture doesn't need memory fences, e.g. because it is
1214 * single-cpu/core, or if you use libev in a project that doesn't use libev
1215 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1216 * libev, in which cases the memory fences become nops.
1217 * alternatively, you can remove this #error and link against libpthread,
1218 * which will then provide the memory fences.
1219 */
1220# error "memory fences not defined for your architecture, please report"
1221#endif
1222
1223#ifndef ECB_MEMORY_FENCE
1224# define ECB_MEMORY_FENCE do { } while (0)
1225# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1226# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1227#endif
1228
1229#define expect_false(cond) ecb_expect_false (cond)
1230#define expect_true(cond) ecb_expect_true (cond)
1231#define noinline ecb_noinline
1232
267#define inline_size static inline 1233#define inline_size ecb_inline
268 1234
269#if EV_MINIMAL 1235#if EV_FEATURE_CODE
1236# define inline_speed ecb_inline
1237#else
270# define inline_speed static noinline 1238# define inline_speed static noinline
1239#endif
1240
1241#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1242
1243#if EV_MINPRI == EV_MAXPRI
1244# define ABSPRI(w) (((W)w), 0)
271#else 1245#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1246# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1247#endif
277 1248
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1249#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 1250#define EMPTY2(a,b) /* used to suppress some warnings */
280 1251
281typedef ev_watcher *W; 1252typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 1253typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 1254typedef ev_watcher_time *WT;
284 1255
1256#define ev_active(w) ((W)(w))->active
1257#define ev_at(w) ((WT)(w))->at
1258
1259#if EV_USE_REALTIME
1260/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1261/* giving it a reasonably high chance of working on typical architectures */
1262static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1263#endif
1264
1265#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1266static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1267#endif
1268
1269#ifndef EV_FD_TO_WIN32_HANDLE
1270# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1271#endif
1272#ifndef EV_WIN32_HANDLE_TO_FD
1273# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1274#endif
1275#ifndef EV_WIN32_CLOSE_FD
1276# define EV_WIN32_CLOSE_FD(fd) close (fd)
1277#endif
286 1278
287#ifdef _WIN32 1279#ifdef _WIN32
288# include "ev_win32.c" 1280# include "ev_win32.c"
289#endif 1281#endif
290 1282
291/*****************************************************************************/ 1283/*****************************************************************************/
292 1284
1285/* define a suitable floor function (only used by periodics atm) */
1286
1287#if EV_USE_FLOOR
1288# include <math.h>
1289# define ev_floor(v) floor (v)
1290#else
1291
1292#include <float.h>
1293
1294/* a floor() replacement function, should be independent of ev_tstamp type */
1295static ev_tstamp noinline
1296ev_floor (ev_tstamp v)
1297{
1298 /* the choice of shift factor is not terribly important */
1299#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1300 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1301#else
1302 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1303#endif
1304
1305 /* argument too large for an unsigned long? */
1306 if (expect_false (v >= shift))
1307 {
1308 ev_tstamp f;
1309
1310 if (v == v - 1.)
1311 return v; /* very large number */
1312
1313 f = shift * ev_floor (v * (1. / shift));
1314 return f + ev_floor (v - f);
1315 }
1316
1317 /* special treatment for negative args? */
1318 if (expect_false (v < 0.))
1319 {
1320 ev_tstamp f = -ev_floor (-v);
1321
1322 return f - (f == v ? 0 : 1);
1323 }
1324
1325 /* fits into an unsigned long */
1326 return (unsigned long)v;
1327}
1328
1329#endif
1330
1331/*****************************************************************************/
1332
1333#ifdef __linux
1334# include <sys/utsname.h>
1335#endif
1336
1337static unsigned int noinline ecb_cold
1338ev_linux_version (void)
1339{
1340#ifdef __linux
1341 unsigned int v = 0;
1342 struct utsname buf;
1343 int i;
1344 char *p = buf.release;
1345
1346 if (uname (&buf))
1347 return 0;
1348
1349 for (i = 3+1; --i; )
1350 {
1351 unsigned int c = 0;
1352
1353 for (;;)
1354 {
1355 if (*p >= '0' && *p <= '9')
1356 c = c * 10 + *p++ - '0';
1357 else
1358 {
1359 p += *p == '.';
1360 break;
1361 }
1362 }
1363
1364 v = (v << 8) | c;
1365 }
1366
1367 return v;
1368#else
1369 return 0;
1370#endif
1371}
1372
1373/*****************************************************************************/
1374
1375#if EV_AVOID_STDIO
1376static void noinline ecb_cold
1377ev_printerr (const char *msg)
1378{
1379 write (STDERR_FILENO, msg, strlen (msg));
1380}
1381#endif
1382
293static void (*syserr_cb)(const char *msg); 1383static void (*syserr_cb)(const char *msg) EV_THROW;
294 1384
295void 1385void ecb_cold
296ev_set_syserr_cb (void (*cb)(const char *msg)) 1386ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
297{ 1387{
298 syserr_cb = cb; 1388 syserr_cb = cb;
299} 1389}
300 1390
301static void noinline 1391static void noinline ecb_cold
302syserr (const char *msg) 1392ev_syserr (const char *msg)
303{ 1393{
304 if (!msg) 1394 if (!msg)
305 msg = "(libev) system error"; 1395 msg = "(libev) system error";
306 1396
307 if (syserr_cb) 1397 if (syserr_cb)
308 syserr_cb (msg); 1398 syserr_cb (msg);
309 else 1399 else
310 { 1400 {
1401#if EV_AVOID_STDIO
1402 ev_printerr (msg);
1403 ev_printerr (": ");
1404 ev_printerr (strerror (errno));
1405 ev_printerr ("\n");
1406#else
311 perror (msg); 1407 perror (msg);
1408#endif
312 abort (); 1409 abort ();
313 } 1410 }
314} 1411}
315 1412
1413static void *
1414ev_realloc_emul (void *ptr, long size) EV_THROW
1415{
1416 /* some systems, notably openbsd and darwin, fail to properly
1417 * implement realloc (x, 0) (as required by both ansi c-89 and
1418 * the single unix specification, so work around them here.
1419 * recently, also (at least) fedora and debian started breaking it,
1420 * despite documenting it otherwise.
1421 */
1422
1423 if (size)
1424 return realloc (ptr, size);
1425
1426 free (ptr);
1427 return 0;
1428}
1429
316static void *(*alloc)(void *ptr, long size); 1430static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
317 1431
318void 1432void ecb_cold
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 1433ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
320{ 1434{
321 alloc = cb; 1435 alloc = cb;
322} 1436}
323 1437
324inline_speed void * 1438inline_speed void *
325ev_realloc (void *ptr, long size) 1439ev_realloc (void *ptr, long size)
326{ 1440{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1441 ptr = alloc (ptr, size);
328 1442
329 if (!ptr && size) 1443 if (!ptr && size)
330 { 1444 {
1445#if EV_AVOID_STDIO
1446 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1447#else
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1448 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1449#endif
332 abort (); 1450 abort ();
333 } 1451 }
334 1452
335 return ptr; 1453 return ptr;
336} 1454}
338#define ev_malloc(size) ev_realloc (0, (size)) 1456#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 1457#define ev_free(ptr) ev_realloc ((ptr), 0)
340 1458
341/*****************************************************************************/ 1459/*****************************************************************************/
342 1460
1461/* set in reify when reification needed */
1462#define EV_ANFD_REIFY 1
1463
1464/* file descriptor info structure */
343typedef struct 1465typedef struct
344{ 1466{
345 WL head; 1467 WL head;
346 unsigned char events; 1468 unsigned char events; /* the events watched for */
1469 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1470 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 1471 unsigned char unused;
1472#if EV_USE_EPOLL
1473 unsigned int egen; /* generation counter to counter epoll bugs */
1474#endif
348#if EV_SELECT_IS_WINSOCKET 1475#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
349 SOCKET handle; 1476 SOCKET handle;
350#endif 1477#endif
1478#if EV_USE_IOCP
1479 OVERLAPPED or, ow;
1480#endif
351} ANFD; 1481} ANFD;
352 1482
1483/* stores the pending event set for a given watcher */
353typedef struct 1484typedef struct
354{ 1485{
355 W w; 1486 W w;
356 int events; 1487 int events; /* the pending event set for the given watcher */
357} ANPENDING; 1488} ANPENDING;
358 1489
359#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1491/* hash table entry per inotify-id */
360typedef struct 1492typedef struct
361{ 1493{
362 WL head; 1494 WL head;
363} ANFS; 1495} ANFS;
1496#endif
1497
1498/* Heap Entry */
1499#if EV_HEAP_CACHE_AT
1500 /* a heap element */
1501 typedef struct {
1502 ev_tstamp at;
1503 WT w;
1504 } ANHE;
1505
1506 #define ANHE_w(he) (he).w /* access watcher, read-write */
1507 #define ANHE_at(he) (he).at /* access cached at, read-only */
1508 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1509#else
1510 /* a heap element */
1511 typedef WT ANHE;
1512
1513 #define ANHE_w(he) (he)
1514 #define ANHE_at(he) (he)->at
1515 #define ANHE_at_cache(he)
364#endif 1516#endif
365 1517
366#if EV_MULTIPLICITY 1518#if EV_MULTIPLICITY
367 1519
368 struct ev_loop 1520 struct ev_loop
374 #undef VAR 1526 #undef VAR
375 }; 1527 };
376 #include "ev_wrap.h" 1528 #include "ev_wrap.h"
377 1529
378 static struct ev_loop default_loop_struct; 1530 static struct ev_loop default_loop_struct;
379 struct ev_loop *ev_default_loop_ptr; 1531 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
380 1532
381#else 1533#else
382 1534
383 ev_tstamp ev_rt_now; 1535 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
384 #define VAR(name,decl) static decl; 1536 #define VAR(name,decl) static decl;
385 #include "ev_vars.h" 1537 #include "ev_vars.h"
386 #undef VAR 1538 #undef VAR
387 1539
388 static int ev_default_loop_ptr; 1540 static int ev_default_loop_ptr;
389 1541
390#endif 1542#endif
391 1543
1544#if EV_FEATURE_API
1545# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1546# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1547# define EV_INVOKE_PENDING invoke_cb (EV_A)
1548#else
1549# define EV_RELEASE_CB (void)0
1550# define EV_ACQUIRE_CB (void)0
1551# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1552#endif
1553
1554#define EVBREAK_RECURSE 0x80
1555
392/*****************************************************************************/ 1556/*****************************************************************************/
393 1557
1558#ifndef EV_HAVE_EV_TIME
394ev_tstamp 1559ev_tstamp
395ev_time (void) 1560ev_time (void) EV_THROW
396{ 1561{
397#if EV_USE_REALTIME 1562#if EV_USE_REALTIME
1563 if (expect_true (have_realtime))
1564 {
398 struct timespec ts; 1565 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 1566 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 1567 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 1568 }
1569#endif
1570
402 struct timeval tv; 1571 struct timeval tv;
403 gettimeofday (&tv, 0); 1572 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 1573 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 1574}
1575#endif
407 1576
408ev_tstamp inline_size 1577inline_size ev_tstamp
409get_clock (void) 1578get_clock (void)
410{ 1579{
411#if EV_USE_MONOTONIC 1580#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 1581 if (expect_true (have_monotonic))
413 { 1582 {
420 return ev_time (); 1589 return ev_time ();
421} 1590}
422 1591
423#if EV_MULTIPLICITY 1592#if EV_MULTIPLICITY
424ev_tstamp 1593ev_tstamp
425ev_now (EV_P) 1594ev_now (EV_P) EV_THROW
426{ 1595{
427 return ev_rt_now; 1596 return ev_rt_now;
428} 1597}
429#endif 1598#endif
430 1599
431void 1600void
432ev_sleep (ev_tstamp delay) 1601ev_sleep (ev_tstamp delay) EV_THROW
433{ 1602{
434 if (delay > 0.) 1603 if (delay > 0.)
435 { 1604 {
436#if EV_USE_NANOSLEEP 1605#if EV_USE_NANOSLEEP
437 struct timespec ts; 1606 struct timespec ts;
438 1607
439 ts.tv_sec = (time_t)delay; 1608 EV_TS_SET (ts, delay);
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0); 1609 nanosleep (&ts, 0);
443#elif defined(_WIN32) 1610#elif defined _WIN32
444 Sleep (delay * 1e3); 1611 Sleep ((unsigned long)(delay * 1e3));
445#else 1612#else
446 struct timeval tv; 1613 struct timeval tv;
447 1614
448 tv.tv_sec = (time_t)delay; 1615 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1616 /* something not guaranteed by newer posix versions, but guaranteed */
450 1617 /* by older ones */
1618 EV_TV_SET (tv, delay);
451 select (0, 0, 0, 0, &tv); 1619 select (0, 0, 0, 0, &tv);
452#endif 1620#endif
453 } 1621 }
454} 1622}
455 1623
456/*****************************************************************************/ 1624/*****************************************************************************/
457 1625
458int inline_size 1626#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1627
1628/* find a suitable new size for the given array, */
1629/* hopefully by rounding to a nice-to-malloc size */
1630inline_size int
459array_nextsize (int elem, int cur, int cnt) 1631array_nextsize (int elem, int cur, int cnt)
460{ 1632{
461 int ncur = cur + 1; 1633 int ncur = cur + 1;
462 1634
463 do 1635 do
464 ncur <<= 1; 1636 ncur <<= 1;
465 while (cnt > ncur); 1637 while (cnt > ncur);
466 1638
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
468 if (elem * ncur > 4096) 1640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 1641 {
470 ncur *= elem; 1642 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 1644 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 1645 ncur /= elem;
474 } 1646 }
475 1647
476 return ncur; 1648 return ncur;
477} 1649}
478 1650
479static noinline void * 1651static void * noinline ecb_cold
480array_realloc (int elem, void *base, int *cur, int cnt) 1652array_realloc (int elem, void *base, int *cur, int cnt)
481{ 1653{
482 *cur = array_nextsize (elem, *cur, cnt); 1654 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 1655 return ev_realloc (base, elem * *cur);
484} 1656}
1657
1658#define array_init_zero(base,count) \
1659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 1660
486#define array_needsize(type,base,cur,cnt,init) \ 1661#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 1662 if (expect_false ((cnt) > (cur))) \
488 { \ 1663 { \
489 int ocur_ = (cur); \ 1664 int ecb_unused ocur_ = (cur); \
490 (base) = (type *)array_realloc \ 1665 (base) = (type *)array_realloc \
491 (sizeof (type), (base), &(cur), (cnt)); \ 1666 (sizeof (type), (base), &(cur), (cnt)); \
492 init ((base) + (ocur_), (cur) - ocur_); \ 1667 init ((base) + (ocur_), (cur) - ocur_); \
493 } 1668 }
494 1669
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 1677 }
503#endif 1678#endif
504 1679
505#define array_free(stem, idx) \ 1680#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 1682
508/*****************************************************************************/ 1683/*****************************************************************************/
509 1684
1685/* dummy callback for pending events */
1686static void noinline
1687pendingcb (EV_P_ ev_prepare *w, int revents)
1688{
1689}
1690
510void noinline 1691void noinline
511ev_feed_event (EV_P_ void *w, int revents) 1692ev_feed_event (EV_P_ void *w, int revents) EV_THROW
512{ 1693{
513 W w_ = (W)w; 1694 W w_ = (W)w;
514 int pri = ABSPRI (w_); 1695 int pri = ABSPRI (w_);
515 1696
516 if (expect_false (w_->pending)) 1697 if (expect_false (w_->pending))
520 w_->pending = ++pendingcnt [pri]; 1701 w_->pending = ++pendingcnt [pri];
521 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1702 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
522 pendings [pri][w_->pending - 1].w = w_; 1703 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 1704 pendings [pri][w_->pending - 1].events = revents;
524 } 1705 }
525}
526 1706
527void inline_speed 1707 pendingpri = NUMPRI - 1;
1708}
1709
1710inline_speed void
1711feed_reverse (EV_P_ W w)
1712{
1713 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1714 rfeeds [rfeedcnt++] = w;
1715}
1716
1717inline_size void
1718feed_reverse_done (EV_P_ int revents)
1719{
1720 do
1721 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1722 while (rfeedcnt);
1723}
1724
1725inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 1726queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 1727{
530 int i; 1728 int i;
531 1729
532 for (i = 0; i < eventcnt; ++i) 1730 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 1731 ev_feed_event (EV_A_ events [i], type);
534} 1732}
535 1733
536/*****************************************************************************/ 1734/*****************************************************************************/
537 1735
538void inline_size 1736inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 1737fd_event_nocheck (EV_P_ int fd, int revents)
553{ 1738{
554 ANFD *anfd = anfds + fd; 1739 ANFD *anfd = anfds + fd;
555 ev_io *w; 1740 ev_io *w;
556 1741
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1742 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 1746 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 1747 ev_feed_event (EV_A_ (W)w, ev);
563 } 1748 }
564} 1749}
565 1750
1751/* do not submit kernel events for fds that have reify set */
1752/* because that means they changed while we were polling for new events */
1753inline_speed void
1754fd_event (EV_P_ int fd, int revents)
1755{
1756 ANFD *anfd = anfds + fd;
1757
1758 if (expect_true (!anfd->reify))
1759 fd_event_nocheck (EV_A_ fd, revents);
1760}
1761
566void 1762void
567ev_feed_fd_event (EV_P_ int fd, int revents) 1763ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
568{ 1764{
569 if (fd >= 0 && fd < anfdmax) 1765 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 1766 fd_event_nocheck (EV_A_ fd, revents);
571} 1767}
572 1768
573void inline_size 1769/* make sure the external fd watch events are in-sync */
1770/* with the kernel/libev internal state */
1771inline_size void
574fd_reify (EV_P) 1772fd_reify (EV_P)
575{ 1773{
576 int i; 1774 int i;
1775
1776#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1777 for (i = 0; i < fdchangecnt; ++i)
1778 {
1779 int fd = fdchanges [i];
1780 ANFD *anfd = anfds + fd;
1781
1782 if (anfd->reify & EV__IOFDSET && anfd->head)
1783 {
1784 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1785
1786 if (handle != anfd->handle)
1787 {
1788 unsigned long arg;
1789
1790 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1791
1792 /* handle changed, but fd didn't - we need to do it in two steps */
1793 backend_modify (EV_A_ fd, anfd->events, 0);
1794 anfd->events = 0;
1795 anfd->handle = handle;
1796 }
1797 }
1798 }
1799#endif
577 1800
578 for (i = 0; i < fdchangecnt; ++i) 1801 for (i = 0; i < fdchangecnt; ++i)
579 { 1802 {
580 int fd = fdchanges [i]; 1803 int fd = fdchanges [i];
581 ANFD *anfd = anfds + fd; 1804 ANFD *anfd = anfds + fd;
582 ev_io *w; 1805 ev_io *w;
583 1806
584 unsigned char events = 0; 1807 unsigned char o_events = anfd->events;
1808 unsigned char o_reify = anfd->reify;
585 1809
586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1810 anfd->reify = 0;
587 events |= (unsigned char)w->events;
588 1811
589#if EV_SELECT_IS_WINSOCKET 1812 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
590 if (events)
591 { 1813 {
592 unsigned long argp; 1814 anfd->events = 0;
593 anfd->handle = _get_osfhandle (fd); 1815
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1816 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1817 anfd->events |= (unsigned char)w->events;
1818
1819 if (o_events != anfd->events)
1820 o_reify = EV__IOFDSET; /* actually |= */
595 } 1821 }
596#endif
597 1822
598 { 1823 if (o_reify & EV__IOFDSET)
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
602 anfd->reify = 0;
603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 1824 backend_modify (EV_A_ fd, o_events, anfd->events);
607 }
608 } 1825 }
609 1826
610 fdchangecnt = 0; 1827 fdchangecnt = 0;
611} 1828}
612 1829
613void inline_size 1830/* something about the given fd changed */
1831inline_size void
614fd_change (EV_P_ int fd, int flags) 1832fd_change (EV_P_ int fd, int flags)
615{ 1833{
616 unsigned char reify = anfds [fd].reify; 1834 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 1835 anfds [fd].reify |= flags;
618 1836
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1840 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 1841 fdchanges [fdchangecnt - 1] = fd;
624 } 1842 }
625} 1843}
626 1844
627void inline_speed 1845/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1846inline_speed void ecb_cold
628fd_kill (EV_P_ int fd) 1847fd_kill (EV_P_ int fd)
629{ 1848{
630 ev_io *w; 1849 ev_io *w;
631 1850
632 while ((w = (ev_io *)anfds [fd].head)) 1851 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 1853 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1854 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 1855 }
637} 1856}
638 1857
639int inline_size 1858/* check whether the given fd is actually valid, for error recovery */
1859inline_size int ecb_cold
640fd_valid (int fd) 1860fd_valid (int fd)
641{ 1861{
642#ifdef _WIN32 1862#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 1863 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 1864#else
645 return fcntl (fd, F_GETFD) != -1; 1865 return fcntl (fd, F_GETFD) != -1;
646#endif 1866#endif
647} 1867}
648 1868
649/* called on EBADF to verify fds */ 1869/* called on EBADF to verify fds */
650static void noinline 1870static void noinline ecb_cold
651fd_ebadf (EV_P) 1871fd_ebadf (EV_P)
652{ 1872{
653 int fd; 1873 int fd;
654 1874
655 for (fd = 0; fd < anfdmax; ++fd) 1875 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 1876 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 1877 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 1878 fd_kill (EV_A_ fd);
659} 1879}
660 1880
661/* called on ENOMEM in select/poll to kill some fds and retry */ 1881/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 1882static void noinline ecb_cold
663fd_enomem (EV_P) 1883fd_enomem (EV_P)
664{ 1884{
665 int fd; 1885 int fd;
666 1886
667 for (fd = anfdmax; fd--; ) 1887 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1888 if (anfds [fd].events)
669 { 1889 {
670 fd_kill (EV_A_ fd); 1890 fd_kill (EV_A_ fd);
671 return; 1891 break;
672 } 1892 }
673} 1893}
674 1894
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1895/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1896static void noinline
680 1900
681 for (fd = 0; fd < anfdmax; ++fd) 1901 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1902 if (anfds [fd].events)
683 { 1903 {
684 anfds [fd].events = 0; 1904 anfds [fd].events = 0;
1905 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1906 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1907 }
687} 1908}
688 1909
689/*****************************************************************************/ 1910/* used to prepare libev internal fd's */
690 1911/* this is not fork-safe */
691void inline_speed 1912inline_speed void
692upheap (WT *heap, int k)
693{
694 WT w = heap [k];
695
696 while (k)
697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
703 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1;
705 k = p;
706 }
707
708 heap [k] = w;
709 ((W)heap [k])->active = k + 1;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
747/*****************************************************************************/
748
749typedef struct
750{
751 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG;
754
755static ANSIG *signals;
756static int signalmax;
757
758static int sigpipe [2];
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761
762void inline_size
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1913fd_intern (int fd)
827{ 1914{
828#ifdef _WIN32 1915#ifdef _WIN32
829 int arg = 1; 1916 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1917 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1918#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1919 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1920 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1921#endif
835} 1922}
836 1923
837static void noinline
838siginit (EV_P)
839{
840 fd_intern (sigpipe [0]);
841 fd_intern (sigpipe [1]);
842
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */
846}
847
848/*****************************************************************************/ 1924/*****************************************************************************/
849 1925
1926/*
1927 * the heap functions want a real array index. array index 0 is guaranteed to not
1928 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1929 * the branching factor of the d-tree.
1930 */
1931
1932/*
1933 * at the moment we allow libev the luxury of two heaps,
1934 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1935 * which is more cache-efficient.
1936 * the difference is about 5% with 50000+ watchers.
1937 */
1938#if EV_USE_4HEAP
1939
1940#define DHEAP 4
1941#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1942#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1943#define UPHEAP_DONE(p,k) ((p) == (k))
1944
1945/* away from the root */
1946inline_speed void
1947downheap (ANHE *heap, int N, int k)
1948{
1949 ANHE he = heap [k];
1950 ANHE *E = heap + N + HEAP0;
1951
1952 for (;;)
1953 {
1954 ev_tstamp minat;
1955 ANHE *minpos;
1956 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1957
1958 /* find minimum child */
1959 if (expect_true (pos + DHEAP - 1 < E))
1960 {
1961 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1962 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1963 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1964 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1965 }
1966 else if (pos < E)
1967 {
1968 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1969 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1970 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1971 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1972 }
1973 else
1974 break;
1975
1976 if (ANHE_at (he) <= minat)
1977 break;
1978
1979 heap [k] = *minpos;
1980 ev_active (ANHE_w (*minpos)) = k;
1981
1982 k = minpos - heap;
1983 }
1984
1985 heap [k] = he;
1986 ev_active (ANHE_w (he)) = k;
1987}
1988
1989#else /* 4HEAP */
1990
1991#define HEAP0 1
1992#define HPARENT(k) ((k) >> 1)
1993#define UPHEAP_DONE(p,k) (!(p))
1994
1995/* away from the root */
1996inline_speed void
1997downheap (ANHE *heap, int N, int k)
1998{
1999 ANHE he = heap [k];
2000
2001 for (;;)
2002 {
2003 int c = k << 1;
2004
2005 if (c >= N + HEAP0)
2006 break;
2007
2008 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2009 ? 1 : 0;
2010
2011 if (ANHE_at (he) <= ANHE_at (heap [c]))
2012 break;
2013
2014 heap [k] = heap [c];
2015 ev_active (ANHE_w (heap [k])) = k;
2016
2017 k = c;
2018 }
2019
2020 heap [k] = he;
2021 ev_active (ANHE_w (he)) = k;
2022}
2023#endif
2024
2025/* towards the root */
2026inline_speed void
2027upheap (ANHE *heap, int k)
2028{
2029 ANHE he = heap [k];
2030
2031 for (;;)
2032 {
2033 int p = HPARENT (k);
2034
2035 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2036 break;
2037
2038 heap [k] = heap [p];
2039 ev_active (ANHE_w (heap [k])) = k;
2040 k = p;
2041 }
2042
2043 heap [k] = he;
2044 ev_active (ANHE_w (he)) = k;
2045}
2046
2047/* move an element suitably so it is in a correct place */
2048inline_size void
2049adjustheap (ANHE *heap, int N, int k)
2050{
2051 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2052 upheap (heap, k);
2053 else
2054 downheap (heap, N, k);
2055}
2056
2057/* rebuild the heap: this function is used only once and executed rarely */
2058inline_size void
2059reheap (ANHE *heap, int N)
2060{
2061 int i;
2062
2063 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2064 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2065 for (i = 0; i < N; ++i)
2066 upheap (heap, i + HEAP0);
2067}
2068
2069/*****************************************************************************/
2070
2071/* associate signal watchers to a signal signal */
2072typedef struct
2073{
2074 EV_ATOMIC_T pending;
2075#if EV_MULTIPLICITY
2076 EV_P;
2077#endif
2078 WL head;
2079} ANSIG;
2080
2081static ANSIG signals [EV_NSIG - 1];
2082
2083/*****************************************************************************/
2084
2085#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2086
2087static void noinline ecb_cold
2088evpipe_init (EV_P)
2089{
2090 if (!ev_is_active (&pipe_w))
2091 {
2092 int fds [2];
2093
2094# if EV_USE_EVENTFD
2095 fds [0] = -1;
2096 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2097 if (fds [1] < 0 && errno == EINVAL)
2098 fds [1] = eventfd (0, 0);
2099
2100 if (fds [1] < 0)
2101# endif
2102 {
2103 while (pipe (fds))
2104 ev_syserr ("(libev) error creating signal/async pipe");
2105
2106 fd_intern (fds [0]);
2107 }
2108
2109 evpipe [0] = fds [0];
2110
2111 if (evpipe [1] < 0)
2112 evpipe [1] = fds [1]; /* first call, set write fd */
2113 else
2114 {
2115 /* on subsequent calls, do not change evpipe [1] */
2116 /* so that evpipe_write can always rely on its value. */
2117 /* this branch does not do anything sensible on windows, */
2118 /* so must not be executed on windows */
2119
2120 dup2 (fds [1], evpipe [1]);
2121 close (fds [1]);
2122 }
2123
2124 fd_intern (evpipe [1]);
2125
2126 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2127 ev_io_start (EV_A_ &pipe_w);
2128 ev_unref (EV_A); /* watcher should not keep loop alive */
2129 }
2130}
2131
2132inline_speed void
2133evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2134{
2135 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2136
2137 if (expect_true (*flag))
2138 return;
2139
2140 *flag = 1;
2141 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2142
2143 pipe_write_skipped = 1;
2144
2145 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2146
2147 if (pipe_write_wanted)
2148 {
2149 int old_errno;
2150
2151 pipe_write_skipped = 0;
2152 ECB_MEMORY_FENCE_RELEASE;
2153
2154 old_errno = errno; /* save errno because write will clobber it */
2155
2156#if EV_USE_EVENTFD
2157 if (evpipe [0] < 0)
2158 {
2159 uint64_t counter = 1;
2160 write (evpipe [1], &counter, sizeof (uint64_t));
2161 }
2162 else
2163#endif
2164 {
2165#ifdef _WIN32
2166 WSABUF buf;
2167 DWORD sent;
2168 buf.buf = &buf;
2169 buf.len = 1;
2170 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2171#else
2172 write (evpipe [1], &(evpipe [1]), 1);
2173#endif
2174 }
2175
2176 errno = old_errno;
2177 }
2178}
2179
2180/* called whenever the libev signal pipe */
2181/* got some events (signal, async) */
2182static void
2183pipecb (EV_P_ ev_io *iow, int revents)
2184{
2185 int i;
2186
2187 if (revents & EV_READ)
2188 {
2189#if EV_USE_EVENTFD
2190 if (evpipe [0] < 0)
2191 {
2192 uint64_t counter;
2193 read (evpipe [1], &counter, sizeof (uint64_t));
2194 }
2195 else
2196#endif
2197 {
2198 char dummy[4];
2199#ifdef _WIN32
2200 WSABUF buf;
2201 DWORD recvd;
2202 DWORD flags = 0;
2203 buf.buf = dummy;
2204 buf.len = sizeof (dummy);
2205 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2206#else
2207 read (evpipe [0], &dummy, sizeof (dummy));
2208#endif
2209 }
2210 }
2211
2212 pipe_write_skipped = 0;
2213
2214 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2215
2216#if EV_SIGNAL_ENABLE
2217 if (sig_pending)
2218 {
2219 sig_pending = 0;
2220
2221 ECB_MEMORY_FENCE;
2222
2223 for (i = EV_NSIG - 1; i--; )
2224 if (expect_false (signals [i].pending))
2225 ev_feed_signal_event (EV_A_ i + 1);
2226 }
2227#endif
2228
2229#if EV_ASYNC_ENABLE
2230 if (async_pending)
2231 {
2232 async_pending = 0;
2233
2234 ECB_MEMORY_FENCE;
2235
2236 for (i = asynccnt; i--; )
2237 if (asyncs [i]->sent)
2238 {
2239 asyncs [i]->sent = 0;
2240 ECB_MEMORY_FENCE_RELEASE;
2241 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2242 }
2243 }
2244#endif
2245}
2246
2247/*****************************************************************************/
2248
2249void
2250ev_feed_signal (int signum) EV_THROW
2251{
2252#if EV_MULTIPLICITY
2253 EV_P;
2254 ECB_MEMORY_FENCE_ACQUIRE;
2255 EV_A = signals [signum - 1].loop;
2256
2257 if (!EV_A)
2258 return;
2259#endif
2260
2261 signals [signum - 1].pending = 1;
2262 evpipe_write (EV_A_ &sig_pending);
2263}
2264
2265static void
2266ev_sighandler (int signum)
2267{
2268#ifdef _WIN32
2269 signal (signum, ev_sighandler);
2270#endif
2271
2272 ev_feed_signal (signum);
2273}
2274
2275void noinline
2276ev_feed_signal_event (EV_P_ int signum) EV_THROW
2277{
2278 WL w;
2279
2280 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2281 return;
2282
2283 --signum;
2284
2285#if EV_MULTIPLICITY
2286 /* it is permissible to try to feed a signal to the wrong loop */
2287 /* or, likely more useful, feeding a signal nobody is waiting for */
2288
2289 if (expect_false (signals [signum].loop != EV_A))
2290 return;
2291#endif
2292
2293 signals [signum].pending = 0;
2294 ECB_MEMORY_FENCE_RELEASE;
2295
2296 for (w = signals [signum].head; w; w = w->next)
2297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2298}
2299
2300#if EV_USE_SIGNALFD
2301static void
2302sigfdcb (EV_P_ ev_io *iow, int revents)
2303{
2304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2305
2306 for (;;)
2307 {
2308 ssize_t res = read (sigfd, si, sizeof (si));
2309
2310 /* not ISO-C, as res might be -1, but works with SuS */
2311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2313
2314 if (res < (ssize_t)sizeof (si))
2315 break;
2316 }
2317}
2318#endif
2319
2320#endif
2321
2322/*****************************************************************************/
2323
2324#if EV_CHILD_ENABLE
850static WL childs [EV_PID_HASHSIZE]; 2325static WL childs [EV_PID_HASHSIZE];
851 2326
852#ifndef _WIN32
853
854static ev_signal childev; 2327static ev_signal childev;
855 2328
856void inline_speed 2329#ifndef WIFCONTINUED
2330# define WIFCONTINUED(status) 0
2331#endif
2332
2333/* handle a single child status event */
2334inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2335child_reap (EV_P_ int chain, int pid, int status)
858{ 2336{
859 ev_child *w; 2337 ev_child *w;
2338 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 2339
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2340 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2341 {
862 if (w->pid == pid || !w->pid) 2342 if ((w->pid == pid || !w->pid)
2343 && (!traced || (w->flags & 1)))
863 { 2344 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2345 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 2346 w->rpid = pid;
866 w->rstatus = status; 2347 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2348 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 2349 }
2350 }
869} 2351}
870 2352
871#ifndef WCONTINUED 2353#ifndef WCONTINUED
872# define WCONTINUED 0 2354# define WCONTINUED 0
873#endif 2355#endif
874 2356
2357/* called on sigchld etc., calls waitpid */
875static void 2358static void
876childcb (EV_P_ ev_signal *sw, int revents) 2359childcb (EV_P_ ev_signal *sw, int revents)
877{ 2360{
878 int pid, status; 2361 int pid, status;
879 2362
882 if (!WCONTINUED 2365 if (!WCONTINUED
883 || errno != EINVAL 2366 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2367 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 2368 return;
886 2369
887 /* make sure we are called again until all childs have been reaped */ 2370 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 2371 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2372 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 2373
891 child_reap (EV_A_ sw, pid, pid, status); 2374 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 2375 if ((EV_PID_HASHSIZE) > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2376 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 2377}
895 2378
896#endif 2379#endif
897 2380
898/*****************************************************************************/ 2381/*****************************************************************************/
899 2382
2383#if EV_USE_IOCP
2384# include "ev_iocp.c"
2385#endif
900#if EV_USE_PORT 2386#if EV_USE_PORT
901# include "ev_port.c" 2387# include "ev_port.c"
902#endif 2388#endif
903#if EV_USE_KQUEUE 2389#if EV_USE_KQUEUE
904# include "ev_kqueue.c" 2390# include "ev_kqueue.c"
911#endif 2397#endif
912#if EV_USE_SELECT 2398#if EV_USE_SELECT
913# include "ev_select.c" 2399# include "ev_select.c"
914#endif 2400#endif
915 2401
916int 2402int ecb_cold
917ev_version_major (void) 2403ev_version_major (void) EV_THROW
918{ 2404{
919 return EV_VERSION_MAJOR; 2405 return EV_VERSION_MAJOR;
920} 2406}
921 2407
922int 2408int ecb_cold
923ev_version_minor (void) 2409ev_version_minor (void) EV_THROW
924{ 2410{
925 return EV_VERSION_MINOR; 2411 return EV_VERSION_MINOR;
926} 2412}
927 2413
928/* return true if we are running with elevated privileges and should ignore env variables */ 2414/* return true if we are running with elevated privileges and should ignore env variables */
929int inline_size 2415int inline_size ecb_cold
930enable_secure (void) 2416enable_secure (void)
931{ 2417{
932#ifdef _WIN32 2418#ifdef _WIN32
933 return 0; 2419 return 0;
934#else 2420#else
935 return getuid () != geteuid () 2421 return getuid () != geteuid ()
936 || getgid () != getegid (); 2422 || getgid () != getegid ();
937#endif 2423#endif
938} 2424}
939 2425
940unsigned int 2426unsigned int ecb_cold
941ev_supported_backends (void) 2427ev_supported_backends (void) EV_THROW
942{ 2428{
943 unsigned int flags = 0; 2429 unsigned int flags = 0;
944 2430
945 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2431 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
946 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2432 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2435 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
950 2436
951 return flags; 2437 return flags;
952} 2438}
953 2439
954unsigned int 2440unsigned int ecb_cold
955ev_recommended_backends (void) 2441ev_recommended_backends (void) EV_THROW
956{ 2442{
957 unsigned int flags = ev_supported_backends (); 2443 unsigned int flags = ev_supported_backends ();
958 2444
959#ifndef __NetBSD__ 2445#ifndef __NetBSD__
960 /* kqueue is borked on everything but netbsd apparently */ 2446 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 2447 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 2448 flags &= ~EVBACKEND_KQUEUE;
963#endif 2449#endif
964#ifdef __APPLE__ 2450#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 2451 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 2452 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2453 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2454#endif
2455#ifdef __FreeBSD__
2456 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
967#endif 2457#endif
968 2458
969 return flags; 2459 return flags;
970} 2460}
971 2461
2462unsigned int ecb_cold
2463ev_embeddable_backends (void) EV_THROW
2464{
2465 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2466
2467 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2468 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2469 flags &= ~EVBACKEND_EPOLL;
2470
2471 return flags;
2472}
2473
972unsigned int 2474unsigned int
973ev_embeddable_backends (void) 2475ev_backend (EV_P) EV_THROW
974{ 2476{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2477 return backend;
976 return EVBACKEND_KQUEUE
977 | EVBACKEND_PORT;
978} 2478}
979 2479
2480#if EV_FEATURE_API
980unsigned int 2481unsigned int
981ev_backend (EV_P) 2482ev_iteration (EV_P) EV_THROW
982{ 2483{
983 return backend; 2484 return loop_count;
984} 2485}
985 2486
986unsigned int 2487unsigned int
987ev_loop_count (EV_P) 2488ev_depth (EV_P) EV_THROW
988{ 2489{
989 return loop_count; 2490 return loop_depth;
990} 2491}
991 2492
992void 2493void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2494ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
994{ 2495{
995 io_blocktime = interval; 2496 io_blocktime = interval;
996} 2497}
997 2498
998void 2499void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2500ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1000{ 2501{
1001 timeout_blocktime = interval; 2502 timeout_blocktime = interval;
1002} 2503}
1003 2504
2505void
2506ev_set_userdata (EV_P_ void *data) EV_THROW
2507{
2508 userdata = data;
2509}
2510
2511void *
2512ev_userdata (EV_P) EV_THROW
2513{
2514 return userdata;
2515}
2516
2517void
2518ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2519{
2520 invoke_cb = invoke_pending_cb;
2521}
2522
2523void
2524ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2525{
2526 release_cb = release;
2527 acquire_cb = acquire;
2528}
2529#endif
2530
2531/* initialise a loop structure, must be zero-initialised */
1004static void noinline 2532static void noinline ecb_cold
1005loop_init (EV_P_ unsigned int flags) 2533loop_init (EV_P_ unsigned int flags) EV_THROW
1006{ 2534{
1007 if (!backend) 2535 if (!backend)
1008 { 2536 {
2537 origflags = flags;
2538
2539#if EV_USE_REALTIME
2540 if (!have_realtime)
2541 {
2542 struct timespec ts;
2543
2544 if (!clock_gettime (CLOCK_REALTIME, &ts))
2545 have_realtime = 1;
2546 }
2547#endif
2548
1009#if EV_USE_MONOTONIC 2549#if EV_USE_MONOTONIC
2550 if (!have_monotonic)
1010 { 2551 {
1011 struct timespec ts; 2552 struct timespec ts;
2553
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2554 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 2555 have_monotonic = 1;
1014 } 2556 }
1015#endif 2557#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 2558
1025 /* pid check not overridable via env */ 2559 /* pid check not overridable via env */
1026#ifndef _WIN32 2560#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 2561 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 2562 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 2565 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 2566 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 2567 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 2568 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 2569
1036 if (!(flags & 0x0000ffffUL)) 2570 ev_rt_now = ev_time ();
2571 mn_now = get_clock ();
2572 now_floor = mn_now;
2573 rtmn_diff = ev_rt_now - mn_now;
2574#if EV_FEATURE_API
2575 invoke_cb = ev_invoke_pending;
2576#endif
2577
2578 io_blocktime = 0.;
2579 timeout_blocktime = 0.;
2580 backend = 0;
2581 backend_fd = -1;
2582 sig_pending = 0;
2583#if EV_ASYNC_ENABLE
2584 async_pending = 0;
2585#endif
2586 pipe_write_skipped = 0;
2587 pipe_write_wanted = 0;
2588 evpipe [0] = -1;
2589 evpipe [1] = -1;
2590#if EV_USE_INOTIFY
2591 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2592#endif
2593#if EV_USE_SIGNALFD
2594 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2595#endif
2596
2597 if (!(flags & EVBACKEND_MASK))
1037 flags |= ev_recommended_backends (); 2598 flags |= ev_recommended_backends ();
1038 2599
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY 2600#if EV_USE_IOCP
1042 fs_fd = -2; 2601 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1043#endif 2602#endif
1044
1045#if EV_USE_PORT 2603#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2604 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 2605#endif
1048#if EV_USE_KQUEUE 2606#if EV_USE_KQUEUE
1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2607 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1056#endif 2614#endif
1057#if EV_USE_SELECT 2615#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2616 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 2617#endif
1060 2618
2619 ev_prepare_init (&pending_w, pendingcb);
2620
2621#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1061 ev_init (&sigev, sigcb); 2622 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 2623 ev_set_priority (&pipe_w, EV_MAXPRI);
2624#endif
1063 } 2625 }
1064} 2626}
1065 2627
1066static void noinline 2628/* free up a loop structure */
2629void ecb_cold
1067loop_destroy (EV_P) 2630ev_loop_destroy (EV_P)
1068{ 2631{
1069 int i; 2632 int i;
2633
2634#if EV_MULTIPLICITY
2635 /* mimic free (0) */
2636 if (!EV_A)
2637 return;
2638#endif
2639
2640#if EV_CLEANUP_ENABLE
2641 /* queue cleanup watchers (and execute them) */
2642 if (expect_false (cleanupcnt))
2643 {
2644 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2645 EV_INVOKE_PENDING;
2646 }
2647#endif
2648
2649#if EV_CHILD_ENABLE
2650 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2651 {
2652 ev_ref (EV_A); /* child watcher */
2653 ev_signal_stop (EV_A_ &childev);
2654 }
2655#endif
2656
2657 if (ev_is_active (&pipe_w))
2658 {
2659 /*ev_ref (EV_A);*/
2660 /*ev_io_stop (EV_A_ &pipe_w);*/
2661
2662 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2663 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2664 }
2665
2666#if EV_USE_SIGNALFD
2667 if (ev_is_active (&sigfd_w))
2668 close (sigfd);
2669#endif
1070 2670
1071#if EV_USE_INOTIFY 2671#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 2672 if (fs_fd >= 0)
1073 close (fs_fd); 2673 close (fs_fd);
1074#endif 2674#endif
1075 2675
1076 if (backend_fd >= 0) 2676 if (backend_fd >= 0)
1077 close (backend_fd); 2677 close (backend_fd);
1078 2678
2679#if EV_USE_IOCP
2680 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2681#endif
1079#if EV_USE_PORT 2682#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2683 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1081#endif 2684#endif
1082#if EV_USE_KQUEUE 2685#if EV_USE_KQUEUE
1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2686 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1098#if EV_IDLE_ENABLE 2701#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 2702 array_free (idle, [i]);
1100#endif 2703#endif
1101 } 2704 }
1102 2705
1103 ev_free (anfds); anfdmax = 0; 2706 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 2707
1105 /* have to use the microsoft-never-gets-it-right macro */ 2708 /* have to use the microsoft-never-gets-it-right macro */
2709 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 2710 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 2711 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 2712#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 2713 array_free (periodic, EMPTY);
1110#endif 2714#endif
1111#if EV_FORK_ENABLE 2715#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 2716 array_free (fork, EMPTY);
1113#endif 2717#endif
2718#if EV_CLEANUP_ENABLE
2719 array_free (cleanup, EMPTY);
2720#endif
1114 array_free (prepare, EMPTY); 2721 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 2722 array_free (check, EMPTY);
2723#if EV_ASYNC_ENABLE
2724 array_free (async, EMPTY);
2725#endif
1116 2726
1117 backend = 0; 2727 backend = 0;
1118}
1119 2728
2729#if EV_MULTIPLICITY
2730 if (ev_is_default_loop (EV_A))
2731#endif
2732 ev_default_loop_ptr = 0;
2733#if EV_MULTIPLICITY
2734 else
2735 ev_free (EV_A);
2736#endif
2737}
2738
2739#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 2740inline_size void infy_fork (EV_P);
2741#endif
1121 2742
1122void inline_size 2743inline_size void
1123loop_fork (EV_P) 2744loop_fork (EV_P)
1124{ 2745{
1125#if EV_USE_PORT 2746#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2747 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 2748#endif
1133#endif 2754#endif
1134#if EV_USE_INOTIFY 2755#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 2756 infy_fork (EV_A);
1136#endif 2757#endif
1137 2758
2759#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1138 if (ev_is_active (&sigev)) 2760 if (ev_is_active (&pipe_w))
1139 { 2761 {
1140 /* default loop */ 2762 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1141 2763
1142 ev_ref (EV_A); 2764 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 2765 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 2766
1147 while (pipe (sigpipe)) 2767 if (evpipe [0] >= 0)
1148 syserr ("(libev) error creating pipe"); 2768 EV_WIN32_CLOSE_FD (evpipe [0]);
1149 2769
1150 siginit (EV_A); 2770 evpipe_init (EV_A);
2771 /* iterate over everything, in case we missed something before */
2772 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1151 } 2773 }
2774#endif
1152 2775
1153 postfork = 0; 2776 postfork = 0;
1154} 2777}
1155 2778
1156#if EV_MULTIPLICITY 2779#if EV_MULTIPLICITY
2780
1157struct ev_loop * 2781struct ev_loop * ecb_cold
1158ev_loop_new (unsigned int flags) 2782ev_loop_new (unsigned int flags) EV_THROW
1159{ 2783{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2784 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 2785
1162 memset (loop, 0, sizeof (struct ev_loop)); 2786 memset (EV_A, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags); 2787 loop_init (EV_A_ flags);
1165 2788
1166 if (ev_backend (EV_A)) 2789 if (ev_backend (EV_A))
1167 return loop; 2790 return EV_A;
1168 2791
2792 ev_free (EV_A);
1169 return 0; 2793 return 0;
1170} 2794}
1171 2795
1172void 2796#endif /* multiplicity */
1173ev_loop_destroy (EV_P)
1174{
1175 loop_destroy (EV_A);
1176 ev_free (loop);
1177}
1178 2797
1179void 2798#if EV_VERIFY
1180ev_loop_fork (EV_P) 2799static void noinline ecb_cold
2800verify_watcher (EV_P_ W w)
1181{ 2801{
1182 postfork = 1; 2802 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1183}
1184 2803
2804 if (w->pending)
2805 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2806}
2807
2808static void noinline ecb_cold
2809verify_heap (EV_P_ ANHE *heap, int N)
2810{
2811 int i;
2812
2813 for (i = HEAP0; i < N + HEAP0; ++i)
2814 {
2815 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2816 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2817 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2818
2819 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2820 }
2821}
2822
2823static void noinline ecb_cold
2824array_verify (EV_P_ W *ws, int cnt)
2825{
2826 while (cnt--)
2827 {
2828 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2829 verify_watcher (EV_A_ ws [cnt]);
2830 }
2831}
2832#endif
2833
2834#if EV_FEATURE_API
2835void ecb_cold
2836ev_verify (EV_P) EV_THROW
2837{
2838#if EV_VERIFY
2839 int i;
2840 WL w, w2;
2841
2842 assert (activecnt >= -1);
2843
2844 assert (fdchangemax >= fdchangecnt);
2845 for (i = 0; i < fdchangecnt; ++i)
2846 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2847
2848 assert (anfdmax >= 0);
2849 for (i = 0; i < anfdmax; ++i)
2850 {
2851 int j = 0;
2852
2853 for (w = w2 = anfds [i].head; w; w = w->next)
2854 {
2855 verify_watcher (EV_A_ (W)w);
2856
2857 if (j++ & 1)
2858 {
2859 assert (("libev: io watcher list contains a loop", w != w2));
2860 w2 = w2->next;
2861 }
2862
2863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2865 }
2866 }
2867
2868 assert (timermax >= timercnt);
2869 verify_heap (EV_A_ timers, timercnt);
2870
2871#if EV_PERIODIC_ENABLE
2872 assert (periodicmax >= periodiccnt);
2873 verify_heap (EV_A_ periodics, periodiccnt);
2874#endif
2875
2876 for (i = NUMPRI; i--; )
2877 {
2878 assert (pendingmax [i] >= pendingcnt [i]);
2879#if EV_IDLE_ENABLE
2880 assert (idleall >= 0);
2881 assert (idlemax [i] >= idlecnt [i]);
2882 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2883#endif
2884 }
2885
2886#if EV_FORK_ENABLE
2887 assert (forkmax >= forkcnt);
2888 array_verify (EV_A_ (W *)forks, forkcnt);
2889#endif
2890
2891#if EV_CLEANUP_ENABLE
2892 assert (cleanupmax >= cleanupcnt);
2893 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2894#endif
2895
2896#if EV_ASYNC_ENABLE
2897 assert (asyncmax >= asynccnt);
2898 array_verify (EV_A_ (W *)asyncs, asynccnt);
2899#endif
2900
2901#if EV_PREPARE_ENABLE
2902 assert (preparemax >= preparecnt);
2903 array_verify (EV_A_ (W *)prepares, preparecnt);
2904#endif
2905
2906#if EV_CHECK_ENABLE
2907 assert (checkmax >= checkcnt);
2908 array_verify (EV_A_ (W *)checks, checkcnt);
2909#endif
2910
2911# if 0
2912#if EV_CHILD_ENABLE
2913 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2914 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2915#endif
2916# endif
2917#endif
2918}
1185#endif 2919#endif
1186 2920
1187#if EV_MULTIPLICITY 2921#if EV_MULTIPLICITY
1188struct ev_loop * 2922struct ev_loop * ecb_cold
1189ev_default_loop_init (unsigned int flags)
1190#else 2923#else
1191int 2924int
2925#endif
1192ev_default_loop (unsigned int flags) 2926ev_default_loop (unsigned int flags) EV_THROW
1193#endif
1194{ 2927{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 2928 if (!ev_default_loop_ptr)
1200 { 2929 {
1201#if EV_MULTIPLICITY 2930#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2931 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 2932#else
1204 ev_default_loop_ptr = 1; 2933 ev_default_loop_ptr = 1;
1205#endif 2934#endif
1206 2935
1207 loop_init (EV_A_ flags); 2936 loop_init (EV_A_ flags);
1208 2937
1209 if (ev_backend (EV_A)) 2938 if (ev_backend (EV_A))
1210 { 2939 {
1211 siginit (EV_A); 2940#if EV_CHILD_ENABLE
1212
1213#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 2941 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 2942 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 2943 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2944 ev_unref (EV_A); /* child watcher should not keep loop alive */
1218#endif 2945#endif
1223 2950
1224 return ev_default_loop_ptr; 2951 return ev_default_loop_ptr;
1225} 2952}
1226 2953
1227void 2954void
1228ev_default_destroy (void) 2955ev_loop_fork (EV_P) EV_THROW
1229{ 2956{
1230#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif
1233
1234#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev);
1237#endif
1238
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A);
1246}
1247
1248void
1249ev_default_fork (void)
1250{
1251#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255 if (backend)
1256 postfork = 1; 2957 postfork = 1;
1257} 2958}
1258 2959
1259/*****************************************************************************/ 2960/*****************************************************************************/
1260 2961
1261void 2962void
1262ev_invoke (EV_P_ void *w, int revents) 2963ev_invoke (EV_P_ void *w, int revents)
1263{ 2964{
1264 EV_CB_INVOKE ((W)w, revents); 2965 EV_CB_INVOKE ((W)w, revents);
1265} 2966}
1266 2967
1267void inline_speed 2968unsigned int
1268call_pending (EV_P) 2969ev_pending_count (EV_P) EV_THROW
1269{ 2970{
1270 int pri; 2971 int pri;
2972 unsigned int count = 0;
1271 2973
1272 for (pri = NUMPRI; pri--; ) 2974 for (pri = NUMPRI; pri--; )
2975 count += pendingcnt [pri];
2976
2977 return count;
2978}
2979
2980void noinline
2981ev_invoke_pending (EV_P)
2982{
2983 pendingpri = NUMPRI;
2984
2985 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2986 {
2987 --pendingpri;
2988
1273 while (pendingcnt [pri]) 2989 while (pendingcnt [pendingpri])
1274 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
1281 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events);
1283 }
1284 }
1285}
1286
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 { 2990 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2991 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1300 2992
1301 ((WT)w)->at += w->repeat; 2993 p->w->pending = 0;
1302 if (((WT)w)->at < mn_now) 2994 EV_CB_INVOKE (p->w, p->events);
1303 ((WT)w)->at = mn_now; 2995 EV_FREQUENT_CHECK;
1304
1305 downheap (timers, timercnt, 0);
1306 } 2996 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 { 2997 }
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343} 2998}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366 2999
1367#if EV_IDLE_ENABLE 3000#if EV_IDLE_ENABLE
1368void inline_size 3001/* make idle watchers pending. this handles the "call-idle */
3002/* only when higher priorities are idle" logic */
3003inline_size void
1369idle_reify (EV_P) 3004idle_reify (EV_P)
1370{ 3005{
1371 if (expect_false (idleall)) 3006 if (expect_false (idleall))
1372 { 3007 {
1373 int pri; 3008 int pri;
1385 } 3020 }
1386 } 3021 }
1387} 3022}
1388#endif 3023#endif
1389 3024
1390void inline_speed 3025/* make timers pending */
3026inline_size void
3027timers_reify (EV_P)
3028{
3029 EV_FREQUENT_CHECK;
3030
3031 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3032 {
3033 do
3034 {
3035 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3036
3037 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3038
3039 /* first reschedule or stop timer */
3040 if (w->repeat)
3041 {
3042 ev_at (w) += w->repeat;
3043 if (ev_at (w) < mn_now)
3044 ev_at (w) = mn_now;
3045
3046 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3047
3048 ANHE_at_cache (timers [HEAP0]);
3049 downheap (timers, timercnt, HEAP0);
3050 }
3051 else
3052 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3053
3054 EV_FREQUENT_CHECK;
3055 feed_reverse (EV_A_ (W)w);
3056 }
3057 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3058
3059 feed_reverse_done (EV_A_ EV_TIMER);
3060 }
3061}
3062
3063#if EV_PERIODIC_ENABLE
3064
3065static void noinline
3066periodic_recalc (EV_P_ ev_periodic *w)
3067{
3068 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3069 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3070
3071 /* the above almost always errs on the low side */
3072 while (at <= ev_rt_now)
3073 {
3074 ev_tstamp nat = at + w->interval;
3075
3076 /* when resolution fails us, we use ev_rt_now */
3077 if (expect_false (nat == at))
3078 {
3079 at = ev_rt_now;
3080 break;
3081 }
3082
3083 at = nat;
3084 }
3085
3086 ev_at (w) = at;
3087}
3088
3089/* make periodics pending */
3090inline_size void
3091periodics_reify (EV_P)
3092{
3093 EV_FREQUENT_CHECK;
3094
3095 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3096 {
3097 do
3098 {
3099 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3100
3101 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3102
3103 /* first reschedule or stop timer */
3104 if (w->reschedule_cb)
3105 {
3106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3107
3108 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3109
3110 ANHE_at_cache (periodics [HEAP0]);
3111 downheap (periodics, periodiccnt, HEAP0);
3112 }
3113 else if (w->interval)
3114 {
3115 periodic_recalc (EV_A_ w);
3116 ANHE_at_cache (periodics [HEAP0]);
3117 downheap (periodics, periodiccnt, HEAP0);
3118 }
3119 else
3120 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3121
3122 EV_FREQUENT_CHECK;
3123 feed_reverse (EV_A_ (W)w);
3124 }
3125 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3126
3127 feed_reverse_done (EV_A_ EV_PERIODIC);
3128 }
3129}
3130
3131/* simply recalculate all periodics */
3132/* TODO: maybe ensure that at least one event happens when jumping forward? */
3133static void noinline ecb_cold
3134periodics_reschedule (EV_P)
3135{
3136 int i;
3137
3138 /* adjust periodics after time jump */
3139 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3140 {
3141 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3142
3143 if (w->reschedule_cb)
3144 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3145 else if (w->interval)
3146 periodic_recalc (EV_A_ w);
3147
3148 ANHE_at_cache (periodics [i]);
3149 }
3150
3151 reheap (periodics, periodiccnt);
3152}
3153#endif
3154
3155/* adjust all timers by a given offset */
3156static void noinline ecb_cold
3157timers_reschedule (EV_P_ ev_tstamp adjust)
3158{
3159 int i;
3160
3161 for (i = 0; i < timercnt; ++i)
3162 {
3163 ANHE *he = timers + i + HEAP0;
3164 ANHE_w (*he)->at += adjust;
3165 ANHE_at_cache (*he);
3166 }
3167}
3168
3169/* fetch new monotonic and realtime times from the kernel */
3170/* also detect if there was a timejump, and act accordingly */
3171inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 3172time_update (EV_P_ ev_tstamp max_block)
1392{ 3173{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 3174#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 3175 if (expect_true (have_monotonic))
1397 { 3176 {
3177 int i;
1398 ev_tstamp odiff = rtmn_diff; 3178 ev_tstamp odiff = rtmn_diff;
1399 3179
1400 mn_now = get_clock (); 3180 mn_now = get_clock ();
1401 3181
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3182 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1418 * doesn't hurt either as we only do this on time-jumps or 3198 * doesn't hurt either as we only do this on time-jumps or
1419 * in the unlikely event of having been preempted here. 3199 * in the unlikely event of having been preempted here.
1420 */ 3200 */
1421 for (i = 4; --i; ) 3201 for (i = 4; --i; )
1422 { 3202 {
3203 ev_tstamp diff;
1423 rtmn_diff = ev_rt_now - mn_now; 3204 rtmn_diff = ev_rt_now - mn_now;
1424 3205
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3206 diff = odiff - rtmn_diff;
3207
3208 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 3209 return; /* all is well */
1427 3210
1428 ev_rt_now = ev_time (); 3211 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 3212 mn_now = get_clock ();
1430 now_floor = mn_now; 3213 now_floor = mn_now;
1431 } 3214 }
1432 3215
3216 /* no timer adjustment, as the monotonic clock doesn't jump */
3217 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 3218# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 3219 periodics_reschedule (EV_A);
1435# endif 3220# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 3221 }
1439 else 3222 else
1440#endif 3223#endif
1441 { 3224 {
1442 ev_rt_now = ev_time (); 3225 ev_rt_now = ev_time ();
1443 3226
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3227 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 3228 {
3229 /* adjust timers. this is easy, as the offset is the same for all of them */
3230 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 3231#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 3232 periodics_reschedule (EV_A);
1448#endif 3233#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 3234 }
1453 3235
1454 mn_now = ev_rt_now; 3236 mn_now = ev_rt_now;
1455 } 3237 }
1456} 3238}
1457 3239
1458void 3240int
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 3241ev_run (EV_P_ int flags)
1474{ 3242{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3243#if EV_FEATURE_API
1476 ? EVUNLOOP_ONE 3244 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 3245#endif
1478 3246
3247 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3248
3249 loop_done = EVBREAK_CANCEL;
3250
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3251 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 3252
1481 do 3253 do
1482 { 3254 {
3255#if EV_VERIFY >= 2
3256 ev_verify (EV_A);
3257#endif
3258
1483#ifndef _WIN32 3259#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 3260 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 3261 if (expect_false (getpid () != curpid))
1486 { 3262 {
1487 curpid = getpid (); 3263 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 3269 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 3270 if (expect_false (postfork))
1495 if (forkcnt) 3271 if (forkcnt)
1496 { 3272 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3273 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 3274 EV_INVOKE_PENDING;
1499 } 3275 }
1500#endif 3276#endif
1501 3277
3278#if EV_PREPARE_ENABLE
1502 /* queue prepare watchers (and execute them) */ 3279 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 3280 if (expect_false (preparecnt))
1504 { 3281 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3282 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 3283 EV_INVOKE_PENDING;
1507 } 3284 }
3285#endif
1508 3286
1509 if (expect_false (!activecnt)) 3287 if (expect_false (loop_done))
1510 break; 3288 break;
1511 3289
1512 /* we might have forked, so reify kernel state if necessary */ 3290 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 3291 if (expect_false (postfork))
1514 loop_fork (EV_A); 3292 loop_fork (EV_A);
1519 /* calculate blocking time */ 3297 /* calculate blocking time */
1520 { 3298 {
1521 ev_tstamp waittime = 0.; 3299 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 3300 ev_tstamp sleeptime = 0.;
1523 3301
3302 /* remember old timestamp for io_blocktime calculation */
3303 ev_tstamp prev_mn_now = mn_now;
3304
3305 /* update time to cancel out callback processing overhead */
3306 time_update (EV_A_ 1e100);
3307
3308 /* from now on, we want a pipe-wake-up */
3309 pipe_write_wanted = 1;
3310
3311 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3312
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3313 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1525 { 3314 {
1526 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100);
1528
1529 waittime = MAX_BLOCKTIME; 3315 waittime = MAX_BLOCKTIME;
1530 3316
1531 if (timercnt) 3317 if (timercnt)
1532 { 3318 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3319 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1534 if (waittime > to) waittime = to; 3320 if (waittime > to) waittime = to;
1535 } 3321 }
1536 3322
1537#if EV_PERIODIC_ENABLE 3323#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 3324 if (periodiccnt)
1539 { 3325 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3326 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1541 if (waittime > to) waittime = to; 3327 if (waittime > to) waittime = to;
1542 } 3328 }
1543#endif 3329#endif
1544 3330
3331 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 3332 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 3333 waittime = timeout_blocktime;
1547 3334
1548 sleeptime = waittime - backend_fudge; 3335 /* at this point, we NEED to wait, so we have to ensure */
3336 /* to pass a minimum nonzero value to the backend */
3337 if (expect_false (waittime < backend_mintime))
3338 waittime = backend_mintime;
1549 3339
3340 /* extra check because io_blocktime is commonly 0 */
1550 if (expect_true (sleeptime > io_blocktime)) 3341 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 3342 {
3343 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3344
3345 if (sleeptime > waittime - backend_mintime)
3346 sleeptime = waittime - backend_mintime;
3347
3348 if (expect_true (sleeptime > 0.))
3349 {
1555 ev_sleep (sleeptime); 3350 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 3351 waittime -= sleeptime;
3352 }
1557 } 3353 }
1558 } 3354 }
1559 3355
3356#if EV_FEATURE_API
1560 ++loop_count; 3357 ++loop_count;
3358#endif
3359 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 3360 backend_poll (EV_A_ waittime);
3361 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3362
3363 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3364
3365 ECB_MEMORY_FENCE_ACQUIRE;
3366 if (pipe_write_skipped)
3367 {
3368 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3369 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3370 }
3371
1562 3372
1563 /* update ev_rt_now, do magic */ 3373 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 3374 time_update (EV_A_ waittime + sleeptime);
1565 } 3375 }
1566 3376
1573#if EV_IDLE_ENABLE 3383#if EV_IDLE_ENABLE
1574 /* queue idle watchers unless other events are pending */ 3384 /* queue idle watchers unless other events are pending */
1575 idle_reify (EV_A); 3385 idle_reify (EV_A);
1576#endif 3386#endif
1577 3387
3388#if EV_CHECK_ENABLE
1578 /* queue check watchers, to be executed first */ 3389 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 3390 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3391 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3392#endif
1581 3393
1582 call_pending (EV_A); 3394 EV_INVOKE_PENDING;
1583
1584 } 3395 }
1585 while (expect_true (activecnt && !loop_done)); 3396 while (expect_true (
3397 activecnt
3398 && !loop_done
3399 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3400 ));
1586 3401
1587 if (loop_done == EVUNLOOP_ONE) 3402 if (loop_done == EVBREAK_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 3403 loop_done = EVBREAK_CANCEL;
3404
3405#if EV_FEATURE_API
3406 --loop_depth;
3407#endif
3408
3409 return activecnt;
1589} 3410}
1590 3411
1591void 3412void
1592ev_unloop (EV_P_ int how) 3413ev_break (EV_P_ int how) EV_THROW
1593{ 3414{
1594 loop_done = how; 3415 loop_done = how;
1595} 3416}
1596 3417
3418void
3419ev_ref (EV_P) EV_THROW
3420{
3421 ++activecnt;
3422}
3423
3424void
3425ev_unref (EV_P) EV_THROW
3426{
3427 --activecnt;
3428}
3429
3430void
3431ev_now_update (EV_P) EV_THROW
3432{
3433 time_update (EV_A_ 1e100);
3434}
3435
3436void
3437ev_suspend (EV_P) EV_THROW
3438{
3439 ev_now_update (EV_A);
3440}
3441
3442void
3443ev_resume (EV_P) EV_THROW
3444{
3445 ev_tstamp mn_prev = mn_now;
3446
3447 ev_now_update (EV_A);
3448 timers_reschedule (EV_A_ mn_now - mn_prev);
3449#if EV_PERIODIC_ENABLE
3450 /* TODO: really do this? */
3451 periodics_reschedule (EV_A);
3452#endif
3453}
3454
1597/*****************************************************************************/ 3455/*****************************************************************************/
3456/* singly-linked list management, used when the expected list length is short */
1598 3457
1599void inline_size 3458inline_size void
1600wlist_add (WL *head, WL elem) 3459wlist_add (WL *head, WL elem)
1601{ 3460{
1602 elem->next = *head; 3461 elem->next = *head;
1603 *head = elem; 3462 *head = elem;
1604} 3463}
1605 3464
1606void inline_size 3465inline_size void
1607wlist_del (WL *head, WL elem) 3466wlist_del (WL *head, WL elem)
1608{ 3467{
1609 while (*head) 3468 while (*head)
1610 { 3469 {
1611 if (*head == elem) 3470 if (expect_true (*head == elem))
1612 { 3471 {
1613 *head = elem->next; 3472 *head = elem->next;
1614 return; 3473 break;
1615 } 3474 }
1616 3475
1617 head = &(*head)->next; 3476 head = &(*head)->next;
1618 } 3477 }
1619} 3478}
1620 3479
1621void inline_speed 3480/* internal, faster, version of ev_clear_pending */
3481inline_speed void
1622clear_pending (EV_P_ W w) 3482clear_pending (EV_P_ W w)
1623{ 3483{
1624 if (w->pending) 3484 if (w->pending)
1625 { 3485 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3486 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 3487 w->pending = 0;
1628 } 3488 }
1629} 3489}
1630 3490
1631int 3491int
1632ev_clear_pending (EV_P_ void *w) 3492ev_clear_pending (EV_P_ void *w) EV_THROW
1633{ 3493{
1634 W w_ = (W)w; 3494 W w_ = (W)w;
1635 int pending = w_->pending; 3495 int pending = w_->pending;
1636 3496
1637 if (expect_true (pending)) 3497 if (expect_true (pending))
1638 { 3498 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3499 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3500 p->w = (W)&pending_w;
1640 w_->pending = 0; 3501 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 3502 return p->events;
1643 } 3503 }
1644 else 3504 else
1645 return 0; 3505 return 0;
1646} 3506}
1647 3507
1648void inline_size 3508inline_size void
1649pri_adjust (EV_P_ W w) 3509pri_adjust (EV_P_ W w)
1650{ 3510{
1651 int pri = w->priority; 3511 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3512 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3513 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 3514 ev_set_priority (w, pri);
1655} 3515}
1656 3516
1657void inline_speed 3517inline_speed void
1658ev_start (EV_P_ W w, int active) 3518ev_start (EV_P_ W w, int active)
1659{ 3519{
1660 pri_adjust (EV_A_ w); 3520 pri_adjust (EV_A_ w);
1661 w->active = active; 3521 w->active = active;
1662 ev_ref (EV_A); 3522 ev_ref (EV_A);
1663} 3523}
1664 3524
1665void inline_size 3525inline_size void
1666ev_stop (EV_P_ W w) 3526ev_stop (EV_P_ W w)
1667{ 3527{
1668 ev_unref (EV_A); 3528 ev_unref (EV_A);
1669 w->active = 0; 3529 w->active = 0;
1670} 3530}
1671 3531
1672/*****************************************************************************/ 3532/*****************************************************************************/
1673 3533
1674void noinline 3534void noinline
1675ev_io_start (EV_P_ ev_io *w) 3535ev_io_start (EV_P_ ev_io *w) EV_THROW
1676{ 3536{
1677 int fd = w->fd; 3537 int fd = w->fd;
1678 3538
1679 if (expect_false (ev_is_active (w))) 3539 if (expect_false (ev_is_active (w)))
1680 return; 3540 return;
1681 3541
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 3542 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3543 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3544
3545 EV_FREQUENT_CHECK;
1683 3546
1684 ev_start (EV_A_ (W)w, 1); 3547 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3548 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 3549 wlist_add (&anfds[fd].head, (WL)w);
1687 3550
3551 /* common bug, apparently */
3552 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3553
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3554 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 3555 w->events &= ~EV__IOFDSET;
3556
3557 EV_FREQUENT_CHECK;
1690} 3558}
1691 3559
1692void noinline 3560void noinline
1693ev_io_stop (EV_P_ ev_io *w) 3561ev_io_stop (EV_P_ ev_io *w) EV_THROW
1694{ 3562{
1695 clear_pending (EV_A_ (W)w); 3563 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 3564 if (expect_false (!ev_is_active (w)))
1697 return; 3565 return;
1698 3566
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3567 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3568
3569 EV_FREQUENT_CHECK;
1700 3570
1701 wlist_del (&anfds[w->fd].head, (WL)w); 3571 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 3572 ev_stop (EV_A_ (W)w);
1703 3573
1704 fd_change (EV_A_ w->fd, 1); 3574 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3575
3576 EV_FREQUENT_CHECK;
1705} 3577}
1706 3578
1707void noinline 3579void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 3580ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1709{ 3581{
1710 if (expect_false (ev_is_active (w))) 3582 if (expect_false (ev_is_active (w)))
1711 return; 3583 return;
1712 3584
1713 ((WT)w)->at += mn_now; 3585 ev_at (w) += mn_now;
1714 3586
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3587 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 3588
3589 EV_FREQUENT_CHECK;
3590
3591 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 3592 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3593 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 3594 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 3595 ANHE_at_cache (timers [ev_active (w)]);
3596 upheap (timers, ev_active (w));
1721 3597
3598 EV_FREQUENT_CHECK;
3599
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3600 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 3601}
1724 3602
1725void noinline 3603void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 3604ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1727{ 3605{
1728 clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
1730 return; 3608 return;
1731 3609
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3610 EV_FREQUENT_CHECK;
1733 3611
1734 { 3612 {
1735 int active = ((W)w)->active; 3613 int active = ev_active (w);
1736 3614
3615 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3616
3617 --timercnt;
3618
1737 if (expect_true (--active < --timercnt)) 3619 if (expect_true (active < timercnt + HEAP0))
1738 { 3620 {
1739 timers [active] = timers [timercnt]; 3621 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 3622 adjustheap (timers, timercnt, active);
1741 } 3623 }
1742 } 3624 }
1743 3625
1744 ((WT)w)->at -= mn_now; 3626 ev_at (w) -= mn_now;
1745 3627
1746 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
3629
3630 EV_FREQUENT_CHECK;
1747} 3631}
1748 3632
1749void noinline 3633void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 3634ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1751{ 3635{
3636 EV_FREQUENT_CHECK;
3637
3638 clear_pending (EV_A_ (W)w);
3639
1752 if (ev_is_active (w)) 3640 if (ev_is_active (w))
1753 { 3641 {
1754 if (w->repeat) 3642 if (w->repeat)
1755 { 3643 {
1756 ((WT)w)->at = mn_now + w->repeat; 3644 ev_at (w) = mn_now + w->repeat;
3645 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 3646 adjustheap (timers, timercnt, ev_active (w));
1758 } 3647 }
1759 else 3648 else
1760 ev_timer_stop (EV_A_ w); 3649 ev_timer_stop (EV_A_ w);
1761 } 3650 }
1762 else if (w->repeat) 3651 else if (w->repeat)
1763 { 3652 {
1764 w->at = w->repeat; 3653 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 3654 ev_timer_start (EV_A_ w);
1766 } 3655 }
3656
3657 EV_FREQUENT_CHECK;
3658}
3659
3660ev_tstamp
3661ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3662{
3663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 3664}
1768 3665
1769#if EV_PERIODIC_ENABLE 3666#if EV_PERIODIC_ENABLE
1770void noinline 3667void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 3668ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1772{ 3669{
1773 if (expect_false (ev_is_active (w))) 3670 if (expect_false (ev_is_active (w)))
1774 return; 3671 return;
1775 3672
1776 if (w->reschedule_cb) 3673 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 3675 else if (w->interval)
1779 { 3676 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 3678 periodic_recalc (EV_A_ w);
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 3679 }
1784 else 3680 else
1785 ((WT)w)->at = w->offset; 3681 ev_at (w) = w->offset;
1786 3682
3683 EV_FREQUENT_CHECK;
3684
3685 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 3686 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3687 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 3688 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 3689 ANHE_at_cache (periodics [ev_active (w)]);
3690 upheap (periodics, ev_active (w));
1791 3691
3692 EV_FREQUENT_CHECK;
3693
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3694 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 3695}
1794 3696
1795void noinline 3697void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 3698ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1797{ 3699{
1798 clear_pending (EV_A_ (W)w); 3700 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3701 if (expect_false (!ev_is_active (w)))
1800 return; 3702 return;
1801 3703
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3704 EV_FREQUENT_CHECK;
1803 3705
1804 { 3706 {
1805 int active = ((W)w)->active; 3707 int active = ev_active (w);
1806 3708
3709 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3710
3711 --periodiccnt;
3712
1807 if (expect_true (--active < --periodiccnt)) 3713 if (expect_true (active < periodiccnt + HEAP0))
1808 { 3714 {
1809 periodics [active] = periodics [periodiccnt]; 3715 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 3716 adjustheap (periodics, periodiccnt, active);
1811 } 3717 }
1812 } 3718 }
1813 3719
1814 ev_stop (EV_A_ (W)w); 3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
1815} 3723}
1816 3724
1817void noinline 3725void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 3726ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1819{ 3727{
1820 /* TODO: use adjustheap and recalculation */ 3728 /* TODO: use adjustheap and recalculation */
1821 ev_periodic_stop (EV_A_ w); 3729 ev_periodic_stop (EV_A_ w);
1822 ev_periodic_start (EV_A_ w); 3730 ev_periodic_start (EV_A_ w);
1823} 3731}
1825 3733
1826#ifndef SA_RESTART 3734#ifndef SA_RESTART
1827# define SA_RESTART 0 3735# define SA_RESTART 0
1828#endif 3736#endif
1829 3737
3738#if EV_SIGNAL_ENABLE
3739
1830void noinline 3740void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 3741ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1832{ 3742{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
1837 return; 3744 return;
1838 3745
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3746 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 3747
3748#if EV_MULTIPLICITY
3749 assert (("libev: a signal must not be attached to two different loops",
3750 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3751
3752 signals [w->signum - 1].loop = EV_A;
3753 ECB_MEMORY_FENCE_RELEASE;
3754#endif
3755
3756 EV_FREQUENT_CHECK;
3757
3758#if EV_USE_SIGNALFD
3759 if (sigfd == -2)
1841 { 3760 {
1842#ifndef _WIN32 3761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 3762 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 3763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 3764
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3765 if (sigfd >= 0)
3766 {
3767 fd_intern (sigfd); /* doing it twice will not hurt */
1849 3768
1850#ifndef _WIN32 3769 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 3770
1852#endif 3771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3772 ev_set_priority (&sigfd_w, EV_MAXPRI);
3773 ev_io_start (EV_A_ &sigfd_w);
3774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3775 }
1853 } 3776 }
3777
3778 if (sigfd >= 0)
3779 {
3780 /* TODO: check .head */
3781 sigaddset (&sigfd_set, w->signum);
3782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3783
3784 signalfd (sigfd, &sigfd_set, 0);
3785 }
3786#endif
1854 3787
1855 ev_start (EV_A_ (W)w, 1); 3788 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 3789 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 3790
1858 if (!((WL)w)->next) 3791 if (!((WL)w)->next)
3792# if EV_USE_SIGNALFD
3793 if (sigfd < 0) /*TODO*/
3794# endif
1859 { 3795 {
1860#if _WIN32 3796# ifdef _WIN32
3797 evpipe_init (EV_A);
3798
1861 signal (w->signum, sighandler); 3799 signal (w->signum, ev_sighandler);
1862#else 3800# else
1863 struct sigaction sa; 3801 struct sigaction sa;
3802
3803 evpipe_init (EV_A);
3804
1864 sa.sa_handler = sighandler; 3805 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 3806 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 3808 sigaction (w->signum, &sa, 0);
3809
3810 if (origflags & EVFLAG_NOSIGMASK)
3811 {
3812 sigemptyset (&sa.sa_mask);
3813 sigaddset (&sa.sa_mask, w->signum);
3814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3815 }
1868#endif 3816#endif
1869 } 3817 }
3818
3819 EV_FREQUENT_CHECK;
1870} 3820}
1871 3821
1872void noinline 3822void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 3823ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1874{ 3824{
1875 clear_pending (EV_A_ (W)w); 3825 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 3826 if (expect_false (!ev_is_active (w)))
1877 return; 3827 return;
1878 3828
3829 EV_FREQUENT_CHECK;
3830
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 3831 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3832 ev_stop (EV_A_ (W)w);
1881 3833
1882 if (!signals [w->signum - 1].head) 3834 if (!signals [w->signum - 1].head)
3835 {
3836#if EV_MULTIPLICITY
3837 signals [w->signum - 1].loop = 0; /* unattach from signal */
3838#endif
3839#if EV_USE_SIGNALFD
3840 if (sigfd >= 0)
3841 {
3842 sigset_t ss;
3843
3844 sigemptyset (&ss);
3845 sigaddset (&ss, w->signum);
3846 sigdelset (&sigfd_set, w->signum);
3847
3848 signalfd (sigfd, &sigfd_set, 0);
3849 sigprocmask (SIG_UNBLOCK, &ss, 0);
3850 }
3851 else
3852#endif
1883 signal (w->signum, SIG_DFL); 3853 signal (w->signum, SIG_DFL);
3854 }
3855
3856 EV_FREQUENT_CHECK;
1884} 3857}
3858
3859#endif
3860
3861#if EV_CHILD_ENABLE
1885 3862
1886void 3863void
1887ev_child_start (EV_P_ ev_child *w) 3864ev_child_start (EV_P_ ev_child *w) EV_THROW
1888{ 3865{
1889#if EV_MULTIPLICITY 3866#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3867 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 3868#endif
1892 if (expect_false (ev_is_active (w))) 3869 if (expect_false (ev_is_active (w)))
1893 return; 3870 return;
1894 3871
3872 EV_FREQUENT_CHECK;
3873
1895 ev_start (EV_A_ (W)w, 1); 3874 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3875 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3876
3877 EV_FREQUENT_CHECK;
1897} 3878}
1898 3879
1899void 3880void
1900ev_child_stop (EV_P_ ev_child *w) 3881ev_child_stop (EV_P_ ev_child *w) EV_THROW
1901{ 3882{
1902 clear_pending (EV_A_ (W)w); 3883 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 3884 if (expect_false (!ev_is_active (w)))
1904 return; 3885 return;
1905 3886
3887 EV_FREQUENT_CHECK;
3888
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3889 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 3890 ev_stop (EV_A_ (W)w);
3891
3892 EV_FREQUENT_CHECK;
1908} 3893}
3894
3895#endif
1909 3896
1910#if EV_STAT_ENABLE 3897#if EV_STAT_ENABLE
1911 3898
1912# ifdef _WIN32 3899# ifdef _WIN32
1913# undef lstat 3900# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 3901# define lstat(a,b) _stati64 (a,b)
1915# endif 3902# endif
1916 3903
1917#define DEF_STAT_INTERVAL 5.0074891 3904#define DEF_STAT_INTERVAL 5.0074891
3905#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 3906#define MIN_STAT_INTERVAL 0.1074891
1919 3907
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3908static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 3909
1922#if EV_USE_INOTIFY 3910#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 3911
3912/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3913# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 3914
1925static void noinline 3915static void noinline
1926infy_add (EV_P_ ev_stat *w) 3916infy_add (EV_P_ ev_stat *w)
1927{ 3917{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3918 w->wd = inotify_add_watch (fs_fd, w->path,
3919 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3920 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3921 | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 3922
1930 if (w->wd < 0) 3923 if (w->wd >= 0)
3924 {
3925 struct statfs sfs;
3926
3927 /* now local changes will be tracked by inotify, but remote changes won't */
3928 /* unless the filesystem is known to be local, we therefore still poll */
3929 /* also do poll on <2.6.25, but with normal frequency */
3930
3931 if (!fs_2625)
3932 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3933 else if (!statfs (w->path, &sfs)
3934 && (sfs.f_type == 0x1373 /* devfs */
3935 || sfs.f_type == 0x4006 /* fat */
3936 || sfs.f_type == 0x4d44 /* msdos */
3937 || sfs.f_type == 0xEF53 /* ext2/3 */
3938 || sfs.f_type == 0x72b6 /* jffs2 */
3939 || sfs.f_type == 0x858458f6 /* ramfs */
3940 || sfs.f_type == 0x5346544e /* ntfs */
3941 || sfs.f_type == 0x3153464a /* jfs */
3942 || sfs.f_type == 0x9123683e /* btrfs */
3943 || sfs.f_type == 0x52654973 /* reiser3 */
3944 || sfs.f_type == 0x01021994 /* tmpfs */
3945 || sfs.f_type == 0x58465342 /* xfs */))
3946 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3947 else
3948 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 3949 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3950 else
3951 {
3952 /* can't use inotify, continue to stat */
3953 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 3954
1934 /* monitor some parent directory for speedup hints */ 3955 /* if path is not there, monitor some parent directory for speedup hints */
3956 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3957 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3958 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 3959 {
1937 char path [4096]; 3960 char path [4096];
1938 strcpy (path, w->path); 3961 strcpy (path, w->path);
1939 3962
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3965 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3966 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 3967
1945 char *pend = strrchr (path, '/'); 3968 char *pend = strrchr (path, '/');
1946 3969
1947 if (!pend) 3970 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 3971 break;
1949 3972
1950 *pend = 0; 3973 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 3974 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 3975 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3976 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 3977 }
1955 } 3978 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 3979
1959 if (w->wd >= 0) 3980 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3981 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3982
3983 /* now re-arm timer, if required */
3984 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3985 ev_timer_again (EV_A_ &w->timer);
3986 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 3987}
1962 3988
1963static void noinline 3989static void noinline
1964infy_del (EV_P_ ev_stat *w) 3990infy_del (EV_P_ ev_stat *w)
1965{ 3991{
1968 3994
1969 if (wd < 0) 3995 if (wd < 0)
1970 return; 3996 return;
1971 3997
1972 w->wd = -2; 3998 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3999 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w); 4000 wlist_del (&fs_hash [slot].head, (WL)w);
1975 4001
1976 /* remove this watcher, if others are watching it, they will rearm */ 4002 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd); 4003 inotify_rm_watch (fs_fd, wd);
1978} 4004}
1979 4005
1980static void noinline 4006static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4007infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 4008{
1983 if (slot < 0) 4009 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 4010 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4011 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 4012 infy_wd (EV_A_ slot, wd, ev);
1987 else 4013 else
1988 { 4014 {
1989 WL w_; 4015 WL w_;
1990 4016
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4017 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1992 { 4018 {
1993 ev_stat *w = (ev_stat *)w_; 4019 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */ 4020 w_ = w_->next; /* lets us remove this watcher and all before it */
1995 4021
1996 if (w->wd == wd || wd == -1) 4022 if (w->wd == wd || wd == -1)
1997 { 4023 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4024 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 4025 {
4026 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2000 w->wd = -1; 4027 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 4028 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 4029 }
2003 4030
2004 stat_timer_cb (EV_A_ &w->timer, 0); 4031 stat_timer_cb (EV_A_ &w->timer, 0);
2009 4036
2010static void 4037static void
2011infy_cb (EV_P_ ev_io *w, int revents) 4038infy_cb (EV_P_ ev_io *w, int revents)
2012{ 4039{
2013 char buf [EV_INOTIFY_BUFSIZE]; 4040 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 4041 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 4042 int len = read (fs_fd, buf, sizeof (buf));
2017 4043
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4044 for (ofs = 0; ofs < len; )
4045 {
4046 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4047 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4048 ofs += sizeof (struct inotify_event) + ev->len;
4049 }
2020} 4050}
2021 4051
2022void inline_size 4052inline_size void ecb_cold
4053ev_check_2625 (EV_P)
4054{
4055 /* kernels < 2.6.25 are borked
4056 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4057 */
4058 if (ev_linux_version () < 0x020619)
4059 return;
4060
4061 fs_2625 = 1;
4062}
4063
4064inline_size int
4065infy_newfd (void)
4066{
4067#if defined IN_CLOEXEC && defined IN_NONBLOCK
4068 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4069 if (fd >= 0)
4070 return fd;
4071#endif
4072 return inotify_init ();
4073}
4074
4075inline_size void
2023infy_init (EV_P) 4076infy_init (EV_P)
2024{ 4077{
2025 if (fs_fd != -2) 4078 if (fs_fd != -2)
2026 return; 4079 return;
2027 4080
4081 fs_fd = -1;
4082
4083 ev_check_2625 (EV_A);
4084
2028 fs_fd = inotify_init (); 4085 fs_fd = infy_newfd ();
2029 4086
2030 if (fs_fd >= 0) 4087 if (fs_fd >= 0)
2031 { 4088 {
4089 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4090 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 4091 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 4092 ev_io_start (EV_A_ &fs_w);
4093 ev_unref (EV_A);
2035 } 4094 }
2036} 4095}
2037 4096
2038void inline_size 4097inline_size void
2039infy_fork (EV_P) 4098infy_fork (EV_P)
2040{ 4099{
2041 int slot; 4100 int slot;
2042 4101
2043 if (fs_fd < 0) 4102 if (fs_fd < 0)
2044 return; 4103 return;
2045 4104
4105 ev_ref (EV_A);
4106 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 4107 close (fs_fd);
2047 fs_fd = inotify_init (); 4108 fs_fd = infy_newfd ();
2048 4109
4110 if (fs_fd >= 0)
4111 {
4112 fd_intern (fs_fd);
4113 ev_io_set (&fs_w, fs_fd, EV_READ);
4114 ev_io_start (EV_A_ &fs_w);
4115 ev_unref (EV_A);
4116 }
4117
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4118 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2050 { 4119 {
2051 WL w_ = fs_hash [slot].head; 4120 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 4121 fs_hash [slot].head = 0;
2053 4122
2054 while (w_) 4123 while (w_)
2059 w->wd = -1; 4128 w->wd = -1;
2060 4129
2061 if (fs_fd >= 0) 4130 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 4131 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 4132 else
4133 {
4134 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4135 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 4136 ev_timer_again (EV_A_ &w->timer);
4137 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4138 }
2065 } 4139 }
2066
2067 } 4140 }
2068} 4141}
2069 4142
4143#endif
4144
4145#ifdef _WIN32
4146# define EV_LSTAT(p,b) _stati64 (p, b)
4147#else
4148# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 4149#endif
2071 4150
2072void 4151void
2073ev_stat_stat (EV_P_ ev_stat *w) 4152ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2074{ 4153{
2075 if (lstat (w->path, &w->attr) < 0) 4154 if (lstat (w->path, &w->attr) < 0)
2076 w->attr.st_nlink = 0; 4155 w->attr.st_nlink = 0;
2077 else if (!w->attr.st_nlink) 4156 else if (!w->attr.st_nlink)
2078 w->attr.st_nlink = 1; 4157 w->attr.st_nlink = 1;
2081static void noinline 4160static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4161stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 4162{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4163 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 4164
2086 /* we copy this here each the time so that */ 4165 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 4166 ev_stat_stat (EV_A_ w);
2090 4167
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4168 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 4169 if (
2093 w->prev.st_dev != w->attr.st_dev 4170 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 4171 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 4172 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 4173 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 4174 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 4175 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 4176 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 4177 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 4178 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 4179 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 4180 || prev.st_ctime != w->attr.st_ctime
2104 ) { 4181 ) {
4182 /* we only update w->prev on actual differences */
4183 /* in case we test more often than invoke the callback, */
4184 /* to ensure that prev is always different to attr */
4185 w->prev = prev;
4186
2105 #if EV_USE_INOTIFY 4187 #if EV_USE_INOTIFY
4188 if (fs_fd >= 0)
4189 {
2106 infy_del (EV_A_ w); 4190 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 4191 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 4192 ev_stat_stat (EV_A_ w); /* avoid race... */
4193 }
2109 #endif 4194 #endif
2110 4195
2111 ev_feed_event (EV_A_ w, EV_STAT); 4196 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 4197 }
2113} 4198}
2114 4199
2115void 4200void
2116ev_stat_start (EV_P_ ev_stat *w) 4201ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2117{ 4202{
2118 if (expect_false (ev_is_active (w))) 4203 if (expect_false (ev_is_active (w)))
2119 return; 4204 return;
2120 4205
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 4206 ev_stat_stat (EV_A_ w);
2126 4207
4208 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 4209 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 4210
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4211 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 4212 ev_set_priority (&w->timer, ev_priority (w));
2132 4213
2133#if EV_USE_INOTIFY 4214#if EV_USE_INOTIFY
2134 infy_init (EV_A); 4215 infy_init (EV_A);
2135 4216
2136 if (fs_fd >= 0) 4217 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 4218 infy_add (EV_A_ w);
2138 else 4219 else
2139#endif 4220#endif
4221 {
2140 ev_timer_start (EV_A_ &w->timer); 4222 ev_timer_again (EV_A_ &w->timer);
4223 ev_unref (EV_A);
4224 }
2141 4225
2142 ev_start (EV_A_ (W)w, 1); 4226 ev_start (EV_A_ (W)w, 1);
4227
4228 EV_FREQUENT_CHECK;
2143} 4229}
2144 4230
2145void 4231void
2146ev_stat_stop (EV_P_ ev_stat *w) 4232ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2147{ 4233{
2148 clear_pending (EV_A_ (W)w); 4234 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 4235 if (expect_false (!ev_is_active (w)))
2150 return; 4236 return;
2151 4237
4238 EV_FREQUENT_CHECK;
4239
2152#if EV_USE_INOTIFY 4240#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 4241 infy_del (EV_A_ w);
2154#endif 4242#endif
4243
4244 if (ev_is_active (&w->timer))
4245 {
4246 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 4247 ev_timer_stop (EV_A_ &w->timer);
4248 }
2156 4249
2157 ev_stop (EV_A_ (W)w); 4250 ev_stop (EV_A_ (W)w);
4251
4252 EV_FREQUENT_CHECK;
2158} 4253}
2159#endif 4254#endif
2160 4255
2161#if EV_IDLE_ENABLE 4256#if EV_IDLE_ENABLE
2162void 4257void
2163ev_idle_start (EV_P_ ev_idle *w) 4258ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2164{ 4259{
2165 if (expect_false (ev_is_active (w))) 4260 if (expect_false (ev_is_active (w)))
2166 return; 4261 return;
2167 4262
2168 pri_adjust (EV_A_ (W)w); 4263 pri_adjust (EV_A_ (W)w);
4264
4265 EV_FREQUENT_CHECK;
2169 4266
2170 { 4267 {
2171 int active = ++idlecnt [ABSPRI (w)]; 4268 int active = ++idlecnt [ABSPRI (w)];
2172 4269
2173 ++idleall; 4270 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 4271 ev_start (EV_A_ (W)w, active);
2175 4272
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4273 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 4274 idles [ABSPRI (w)][active - 1] = w;
2178 } 4275 }
4276
4277 EV_FREQUENT_CHECK;
2179} 4278}
2180 4279
2181void 4280void
2182ev_idle_stop (EV_P_ ev_idle *w) 4281ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2183{ 4282{
2184 clear_pending (EV_A_ (W)w); 4283 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 4284 if (expect_false (!ev_is_active (w)))
2186 return; 4285 return;
2187 4286
4287 EV_FREQUENT_CHECK;
4288
2188 { 4289 {
2189 int active = ((W)w)->active; 4290 int active = ev_active (w);
2190 4291
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4292 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4293 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 4294
2194 ev_stop (EV_A_ (W)w); 4295 ev_stop (EV_A_ (W)w);
2195 --idleall; 4296 --idleall;
2196 } 4297 }
2197}
2198#endif
2199 4298
4299 EV_FREQUENT_CHECK;
4300}
4301#endif
4302
4303#if EV_PREPARE_ENABLE
2200void 4304void
2201ev_prepare_start (EV_P_ ev_prepare *w) 4305ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2202{ 4306{
2203 if (expect_false (ev_is_active (w))) 4307 if (expect_false (ev_is_active (w)))
2204 return; 4308 return;
4309
4310 EV_FREQUENT_CHECK;
2205 4311
2206 ev_start (EV_A_ (W)w, ++preparecnt); 4312 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4313 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 4314 prepares [preparecnt - 1] = w;
4315
4316 EV_FREQUENT_CHECK;
2209} 4317}
2210 4318
2211void 4319void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 4320ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2213{ 4321{
2214 clear_pending (EV_A_ (W)w); 4322 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4323 if (expect_false (!ev_is_active (w)))
2216 return; 4324 return;
2217 4325
4326 EV_FREQUENT_CHECK;
4327
2218 { 4328 {
2219 int active = ((W)w)->active; 4329 int active = ev_active (w);
4330
2220 prepares [active - 1] = prepares [--preparecnt]; 4331 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 4332 ev_active (prepares [active - 1]) = active;
2222 } 4333 }
2223 4334
2224 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
2225}
2226 4336
4337 EV_FREQUENT_CHECK;
4338}
4339#endif
4340
4341#if EV_CHECK_ENABLE
2227void 4342void
2228ev_check_start (EV_P_ ev_check *w) 4343ev_check_start (EV_P_ ev_check *w) EV_THROW
2229{ 4344{
2230 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2231 return; 4346 return;
4347
4348 EV_FREQUENT_CHECK;
2232 4349
2233 ev_start (EV_A_ (W)w, ++checkcnt); 4350 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4351 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 4352 checks [checkcnt - 1] = w;
4353
4354 EV_FREQUENT_CHECK;
2236} 4355}
2237 4356
2238void 4357void
2239ev_check_stop (EV_P_ ev_check *w) 4358ev_check_stop (EV_P_ ev_check *w) EV_THROW
2240{ 4359{
2241 clear_pending (EV_A_ (W)w); 4360 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 4361 if (expect_false (!ev_is_active (w)))
2243 return; 4362 return;
2244 4363
4364 EV_FREQUENT_CHECK;
4365
2245 { 4366 {
2246 int active = ((W)w)->active; 4367 int active = ev_active (w);
4368
2247 checks [active - 1] = checks [--checkcnt]; 4369 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 4370 ev_active (checks [active - 1]) = active;
2249 } 4371 }
2250 4372
2251 ev_stop (EV_A_ (W)w); 4373 ev_stop (EV_A_ (W)w);
4374
4375 EV_FREQUENT_CHECK;
2252} 4376}
4377#endif
2253 4378
2254#if EV_EMBED_ENABLE 4379#if EV_EMBED_ENABLE
2255void noinline 4380void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 4381ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2257{ 4382{
2258 ev_loop (w->other, EVLOOP_NONBLOCK); 4383 ev_run (w->other, EVRUN_NOWAIT);
2259} 4384}
2260 4385
2261static void 4386static void
2262embed_io_cb (EV_P_ ev_io *io, int revents) 4387embed_io_cb (EV_P_ ev_io *io, int revents)
2263{ 4388{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4389 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 4390
2266 if (ev_cb (w)) 4391 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4392 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 4393 else
2269 ev_embed_sweep (loop, w); 4394 ev_run (w->other, EVRUN_NOWAIT);
2270} 4395}
2271 4396
2272static void 4397static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4398embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 4399{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4400 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 4401
2277 fd_reify (w->other); 4402 {
4403 EV_P = w->other;
4404
4405 while (fdchangecnt)
4406 {
4407 fd_reify (EV_A);
4408 ev_run (EV_A_ EVRUN_NOWAIT);
4409 }
4410 }
2278} 4411}
4412
4413static void
4414embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4415{
4416 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4417
4418 ev_embed_stop (EV_A_ w);
4419
4420 {
4421 EV_P = w->other;
4422
4423 ev_loop_fork (EV_A);
4424 ev_run (EV_A_ EVRUN_NOWAIT);
4425 }
4426
4427 ev_embed_start (EV_A_ w);
4428}
4429
4430#if 0
4431static void
4432embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4433{
4434 ev_idle_stop (EV_A_ idle);
4435}
4436#endif
2279 4437
2280void 4438void
2281ev_embed_start (EV_P_ ev_embed *w) 4439ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2282{ 4440{
2283 if (expect_false (ev_is_active (w))) 4441 if (expect_false (ev_is_active (w)))
2284 return; 4442 return;
2285 4443
2286 { 4444 {
2287 struct ev_loop *loop = w->other; 4445 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4446 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4447 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 4448 }
4449
4450 EV_FREQUENT_CHECK;
2291 4451
2292 ev_set_priority (&w->io, ev_priority (w)); 4452 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 4453 ev_io_start (EV_A_ &w->io);
2294 4454
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 4455 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 4456 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 4457 ev_prepare_start (EV_A_ &w->prepare);
2298 4458
4459 ev_fork_init (&w->fork, embed_fork_cb);
4460 ev_fork_start (EV_A_ &w->fork);
4461
4462 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4463
2299 ev_start (EV_A_ (W)w, 1); 4464 ev_start (EV_A_ (W)w, 1);
4465
4466 EV_FREQUENT_CHECK;
2300} 4467}
2301 4468
2302void 4469void
2303ev_embed_stop (EV_P_ ev_embed *w) 4470ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2304{ 4471{
2305 clear_pending (EV_A_ (W)w); 4472 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 4473 if (expect_false (!ev_is_active (w)))
2307 return; 4474 return;
2308 4475
4476 EV_FREQUENT_CHECK;
4477
2309 ev_io_stop (EV_A_ &w->io); 4478 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 4479 ev_prepare_stop (EV_A_ &w->prepare);
4480 ev_fork_stop (EV_A_ &w->fork);
2311 4481
2312 ev_stop (EV_A_ (W)w); 4482 ev_stop (EV_A_ (W)w);
4483
4484 EV_FREQUENT_CHECK;
2313} 4485}
2314#endif 4486#endif
2315 4487
2316#if EV_FORK_ENABLE 4488#if EV_FORK_ENABLE
2317void 4489void
2318ev_fork_start (EV_P_ ev_fork *w) 4490ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2319{ 4491{
2320 if (expect_false (ev_is_active (w))) 4492 if (expect_false (ev_is_active (w)))
2321 return; 4493 return;
4494
4495 EV_FREQUENT_CHECK;
2322 4496
2323 ev_start (EV_A_ (W)w, ++forkcnt); 4497 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4498 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 4499 forks [forkcnt - 1] = w;
4500
4501 EV_FREQUENT_CHECK;
2326} 4502}
2327 4503
2328void 4504void
2329ev_fork_stop (EV_P_ ev_fork *w) 4505ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2330{ 4506{
2331 clear_pending (EV_A_ (W)w); 4507 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 4508 if (expect_false (!ev_is_active (w)))
2333 return; 4509 return;
2334 4510
4511 EV_FREQUENT_CHECK;
4512
2335 { 4513 {
2336 int active = ((W)w)->active; 4514 int active = ev_active (w);
4515
2337 forks [active - 1] = forks [--forkcnt]; 4516 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 4517 ev_active (forks [active - 1]) = active;
2339 } 4518 }
2340 4519
2341 ev_stop (EV_A_ (W)w); 4520 ev_stop (EV_A_ (W)w);
4521
4522 EV_FREQUENT_CHECK;
4523}
4524#endif
4525
4526#if EV_CLEANUP_ENABLE
4527void
4528ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4529{
4530 if (expect_false (ev_is_active (w)))
4531 return;
4532
4533 EV_FREQUENT_CHECK;
4534
4535 ev_start (EV_A_ (W)w, ++cleanupcnt);
4536 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4537 cleanups [cleanupcnt - 1] = w;
4538
4539 /* cleanup watchers should never keep a refcount on the loop */
4540 ev_unref (EV_A);
4541 EV_FREQUENT_CHECK;
4542}
4543
4544void
4545ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4546{
4547 clear_pending (EV_A_ (W)w);
4548 if (expect_false (!ev_is_active (w)))
4549 return;
4550
4551 EV_FREQUENT_CHECK;
4552 ev_ref (EV_A);
4553
4554 {
4555 int active = ev_active (w);
4556
4557 cleanups [active - 1] = cleanups [--cleanupcnt];
4558 ev_active (cleanups [active - 1]) = active;
4559 }
4560
4561 ev_stop (EV_A_ (W)w);
4562
4563 EV_FREQUENT_CHECK;
4564}
4565#endif
4566
4567#if EV_ASYNC_ENABLE
4568void
4569ev_async_start (EV_P_ ev_async *w) EV_THROW
4570{
4571 if (expect_false (ev_is_active (w)))
4572 return;
4573
4574 w->sent = 0;
4575
4576 evpipe_init (EV_A);
4577
4578 EV_FREQUENT_CHECK;
4579
4580 ev_start (EV_A_ (W)w, ++asynccnt);
4581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4582 asyncs [asynccnt - 1] = w;
4583
4584 EV_FREQUENT_CHECK;
4585}
4586
4587void
4588ev_async_stop (EV_P_ ev_async *w) EV_THROW
4589{
4590 clear_pending (EV_A_ (W)w);
4591 if (expect_false (!ev_is_active (w)))
4592 return;
4593
4594 EV_FREQUENT_CHECK;
4595
4596 {
4597 int active = ev_active (w);
4598
4599 asyncs [active - 1] = asyncs [--asynccnt];
4600 ev_active (asyncs [active - 1]) = active;
4601 }
4602
4603 ev_stop (EV_A_ (W)w);
4604
4605 EV_FREQUENT_CHECK;
4606}
4607
4608void
4609ev_async_send (EV_P_ ev_async *w) EV_THROW
4610{
4611 w->sent = 1;
4612 evpipe_write (EV_A_ &async_pending);
2342} 4613}
2343#endif 4614#endif
2344 4615
2345/*****************************************************************************/ 4616/*****************************************************************************/
2346 4617
2356once_cb (EV_P_ struct ev_once *once, int revents) 4627once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 4628{
2358 void (*cb)(int revents, void *arg) = once->cb; 4629 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 4630 void *arg = once->arg;
2360 4631
2361 ev_io_stop (EV_A_ &once->io); 4632 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 4633 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 4634 ev_free (once);
2364 4635
2365 cb (revents, arg); 4636 cb (revents, arg);
2366} 4637}
2367 4638
2368static void 4639static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 4640once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 4641{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4643
4644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 4645}
2373 4646
2374static void 4647static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 4648once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 4649{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4651
4652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 4653}
2379 4654
2380void 4655void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2382{ 4657{
2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2384 4659
2385 if (expect_false (!once)) 4660 if (expect_false (!once))
2386 { 4661 {
2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2388 return; 4663 return;
2389 } 4664 }
2390 4665
2391 once->cb = cb; 4666 once->cb = cb;
2392 once->arg = arg; 4667 once->arg = arg;
2404 ev_timer_set (&once->to, timeout, 0.); 4679 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 4680 ev_timer_start (EV_A_ &once->to);
2406 } 4681 }
2407} 4682}
2408 4683
4684/*****************************************************************************/
4685
4686#if EV_WALK_ENABLE
4687void ecb_cold
4688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4689{
4690 int i, j;
4691 ev_watcher_list *wl, *wn;
4692
4693 if (types & (EV_IO | EV_EMBED))
4694 for (i = 0; i < anfdmax; ++i)
4695 for (wl = anfds [i].head; wl; )
4696 {
4697 wn = wl->next;
4698
4699#if EV_EMBED_ENABLE
4700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4701 {
4702 if (types & EV_EMBED)
4703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4704 }
4705 else
4706#endif
4707#if EV_USE_INOTIFY
4708 if (ev_cb ((ev_io *)wl) == infy_cb)
4709 ;
4710 else
4711#endif
4712 if ((ev_io *)wl != &pipe_w)
4713 if (types & EV_IO)
4714 cb (EV_A_ EV_IO, wl);
4715
4716 wl = wn;
4717 }
4718
4719 if (types & (EV_TIMER | EV_STAT))
4720 for (i = timercnt + HEAP0; i-- > HEAP0; )
4721#if EV_STAT_ENABLE
4722 /*TODO: timer is not always active*/
4723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4724 {
4725 if (types & EV_STAT)
4726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4727 }
4728 else
4729#endif
4730 if (types & EV_TIMER)
4731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4732
4733#if EV_PERIODIC_ENABLE
4734 if (types & EV_PERIODIC)
4735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4737#endif
4738
4739#if EV_IDLE_ENABLE
4740 if (types & EV_IDLE)
4741 for (j = NUMPRI; j--; )
4742 for (i = idlecnt [j]; i--; )
4743 cb (EV_A_ EV_IDLE, idles [j][i]);
4744#endif
4745
4746#if EV_FORK_ENABLE
4747 if (types & EV_FORK)
4748 for (i = forkcnt; i--; )
4749 if (ev_cb (forks [i]) != embed_fork_cb)
4750 cb (EV_A_ EV_FORK, forks [i]);
4751#endif
4752
4753#if EV_ASYNC_ENABLE
4754 if (types & EV_ASYNC)
4755 for (i = asynccnt; i--; )
4756 cb (EV_A_ EV_ASYNC, asyncs [i]);
4757#endif
4758
4759#if EV_PREPARE_ENABLE
4760 if (types & EV_PREPARE)
4761 for (i = preparecnt; i--; )
4762# if EV_EMBED_ENABLE
4763 if (ev_cb (prepares [i]) != embed_prepare_cb)
4764# endif
4765 cb (EV_A_ EV_PREPARE, prepares [i]);
4766#endif
4767
4768#if EV_CHECK_ENABLE
4769 if (types & EV_CHECK)
4770 for (i = checkcnt; i--; )
4771 cb (EV_A_ EV_CHECK, checks [i]);
4772#endif
4773
4774#if EV_SIGNAL_ENABLE
4775 if (types & EV_SIGNAL)
4776 for (i = 0; i < EV_NSIG - 1; ++i)
4777 for (wl = signals [i].head; wl; )
4778 {
4779 wn = wl->next;
4780 cb (EV_A_ EV_SIGNAL, wl);
4781 wl = wn;
4782 }
4783#endif
4784
4785#if EV_CHILD_ENABLE
4786 if (types & EV_CHILD)
4787 for (i = (EV_PID_HASHSIZE); i--; )
4788 for (wl = childs [i]; wl; )
4789 {
4790 wn = wl->next;
4791 cb (EV_A_ EV_CHILD, wl);
4792 wl = wn;
4793 }
4794#endif
4795/* EV_STAT 0x00001000 /* stat data changed */
4796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4797}
4798#endif
4799
2409#if EV_MULTIPLICITY 4800#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 4801 #include "ev_wrap.h"
2411#endif 4802#endif
2412 4803
2413#ifdef __cplusplus
2414}
2415#endif
2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines