ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
41# endif 65# endif
42 66
43# if HAVE_POLL && HAVE_POLL_H 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
45# endif 73# endif
46 74
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
53# endif 113# endif
54 114
55#endif 115#endif
56 116
57#include <math.h> 117#include <math.h>
58#include <stdlib.h> 118#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 119#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 120#include <stddef.h>
63 121
64#include <stdio.h> 122#include <stdio.h>
65 123
66#include <assert.h> 124#include <assert.h>
67#include <errno.h> 125#include <errno.h>
68#include <sys/types.h> 126#include <sys/types.h>
127#include <time.h>
128
129#include <signal.h>
130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
69#ifndef WIN32 137#ifndef _WIN32
138# include <sys/time.h>
70# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
141#else
142# define WIN32_LEAN_AND_MEAN
143# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1
71#endif 146# endif
72#include <sys/time.h> 147#endif
73#include <time.h>
74 148
75/**/ 149/**/
76 150
77#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
79#endif 161#endif
80 162
81#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
83#endif 165#endif
84 166
85#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 168# ifdef _WIN32
169# define EV_USE_POLL 0
170# else
171# define EV_USE_POLL 1
172# endif
87#endif 173#endif
88 174
89#ifndef EV_USE_EPOLL 175#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 176# define EV_USE_EPOLL 0
91#endif 177#endif
92 178
93#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
95#endif 181#endif
96 182
183#ifndef EV_USE_PORT
184# define EV_USE_PORT 0
185#endif
186
97#ifndef EV_USE_WIN32 187#ifndef EV_USE_INOTIFY
98# ifdef WIN32 188# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 189#endif
190
191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
100# else 194# else
101# define EV_USE_WIN32 0 195# define EV_PID_HASHSIZE 16
102# endif 196# endif
103#endif 197#endif
104 198
105#ifndef EV_USE_REALTIME 199#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
107#endif 205#endif
108 206
109/**/ 207/**/
110 208
111#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
119#endif 217#endif
120 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
234#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h>
236#endif
237
121/**/ 238/**/
122 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 253
128#include "ev.h"
129
130#if __GNUC__ >= 3 254#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 256# define noinline __attribute__ ((noinline))
133#else 257#else
134# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
135# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
136#endif 263#endif
137 264
138#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
140 274
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 277
278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
280
144typedef struct ev_watcher *W; 281typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
147 284
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 286
150#if WIN32 287#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 288# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 289#endif
155 290
156/*****************************************************************************/ 291/*****************************************************************************/
157 292
293static void (*syserr_cb)(const char *msg);
294
295void
296ev_set_syserr_cb (void (*cb)(const char *msg))
297{
298 syserr_cb = cb;
299}
300
301static void noinline
302syserr (const char *msg)
303{
304 if (!msg)
305 msg = "(libev) system error";
306
307 if (syserr_cb)
308 syserr_cb (msg);
309 else
310 {
311 perror (msg);
312 abort ();
313 }
314}
315
316static void *(*alloc)(void *ptr, long size);
317
318void
319ev_set_allocator (void *(*cb)(void *ptr, long size))
320{
321 alloc = cb;
322}
323
324inline_speed void *
325ev_realloc (void *ptr, long size)
326{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
328
329 if (!ptr && size)
330 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort ();
333 }
334
335 return ptr;
336}
337
338#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0)
340
341/*****************************************************************************/
342
158typedef struct 343typedef struct
159{ 344{
160 struct ev_watcher_list *head; 345 WL head;
161 unsigned char events; 346 unsigned char events;
162 unsigned char reify; 347 unsigned char reify;
348#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle;
350#endif
163} ANFD; 351} ANFD;
164 352
165typedef struct 353typedef struct
166{ 354{
167 W w; 355 W w;
168 int events; 356 int events;
169} ANPENDING; 357} ANPENDING;
170 358
359#if EV_USE_INOTIFY
360typedef struct
361{
362 WL head;
363} ANFS;
364#endif
365
171#if EV_MULTIPLICITY 366#if EV_MULTIPLICITY
172 367
173struct ev_loop 368 struct ev_loop
174{ 369 {
370 ev_tstamp ev_rt_now;
371 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 372 #define VAR(name,decl) decl;
176# include "ev_vars.h" 373 #include "ev_vars.h"
177};
178# undef VAR 374 #undef VAR
375 };
179# include "ev_wrap.h" 376 #include "ev_wrap.h"
377
378 static struct ev_loop default_loop_struct;
379 struct ev_loop *ev_default_loop_ptr;
180 380
181#else 381#else
182 382
383 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 384 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 385 #include "ev_vars.h"
185# undef VAR 386 #undef VAR
387
388 static int ev_default_loop_ptr;
186 389
187#endif 390#endif
188 391
189/*****************************************************************************/ 392/*****************************************************************************/
190 393
191inline ev_tstamp 394ev_tstamp
192ev_time (void) 395ev_time (void)
193{ 396{
194#if EV_USE_REALTIME 397#if EV_USE_REALTIME
195 struct timespec ts; 398 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 399 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 403 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 404 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 405#endif
203} 406}
204 407
205inline ev_tstamp 408ev_tstamp inline_size
206get_clock (void) 409get_clock (void)
207{ 410{
208#if EV_USE_MONOTONIC 411#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 412 if (expect_true (have_monotonic))
210 { 413 {
215#endif 418#endif
216 419
217 return ev_time (); 420 return ev_time ();
218} 421}
219 422
423#if EV_MULTIPLICITY
220ev_tstamp 424ev_tstamp
221ev_now (EV_P) 425ev_now (EV_P)
222{ 426{
223 return rt_now; 427 return ev_rt_now;
224} 428}
429#endif
225 430
226#define array_roundsize(base,n) ((n) | 4 & ~3) 431void
432ev_sleep (ev_tstamp delay)
433{
434 if (delay > 0.)
435 {
436#if EV_USE_NANOSLEEP
437 struct timespec ts;
227 438
439 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0);
443#elif defined(_WIN32)
444 Sleep (delay * 1e3);
445#else
446 struct timeval tv;
447
448 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450
451 select (0, 0, 0, 0, &tv);
452#endif
453 }
454}
455
456/*****************************************************************************/
457
458int inline_size
459array_nextsize (int elem, int cur, int cnt)
460{
461 int ncur = cur + 1;
462
463 do
464 ncur <<= 1;
465 while (cnt > ncur);
466
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096)
469 {
470 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
472 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem;
474 }
475
476 return ncur;
477}
478
479static noinline void *
480array_realloc (int elem, void *base, int *cur, int cnt)
481{
482 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur);
484}
485
228#define array_needsize(base,cur,cnt,init) \ 486#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 487 if (expect_false ((cnt) > (cur))) \
230 { \ 488 { \
231 int newcnt = cur; \ 489 int ocur_ = (cur); \
232 do \ 490 (base) = (type *)array_realloc \
233 { \ 491 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 492 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 493 }
242 494
495#if 0
243#define array_slim(stem) \ 496#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 497 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 498 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 499 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 500 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 502 }
503#endif
250 504
251#define array_free(stem, idx) \ 505#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 507
254/*****************************************************************************/ 508/*****************************************************************************/
255 509
256static void 510void noinline
511ev_feed_event (EV_P_ void *w, int revents)
512{
513 W w_ = (W)w;
514 int pri = ABSPRI (w_);
515
516 if (expect_false (w_->pending))
517 pendings [pri][w_->pending - 1].events |= revents;
518 else
519 {
520 w_->pending = ++pendingcnt [pri];
521 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
522 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents;
524 }
525}
526
527void inline_speed
528queue_events (EV_P_ W *events, int eventcnt, int type)
529{
530 int i;
531
532 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type);
534}
535
536/*****************************************************************************/
537
538void inline_size
257anfds_init (ANFD *base, int count) 539anfds_init (ANFD *base, int count)
258{ 540{
259 while (count--) 541 while (count--)
260 { 542 {
261 base->head = 0; 543 base->head = 0;
264 546
265 ++base; 547 ++base;
266 } 548 }
267} 549}
268 550
269static void 551void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 552fd_event (EV_P_ int fd, int revents)
295{ 553{
296 ANFD *anfd = anfds + fd; 554 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 555 ev_io *w;
298 556
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 558 {
301 int ev = w->events & events; 559 int ev = w->events & revents;
302 560
303 if (ev) 561 if (ev)
304 event (EV_A_ (W)w, ev); 562 ev_feed_event (EV_A_ (W)w, ev);
305 } 563 }
306} 564}
307 565
308/*****************************************************************************/ 566void
567ev_feed_fd_event (EV_P_ int fd, int revents)
568{
569 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents);
571}
309 572
310static void 573void inline_size
311fd_reify (EV_P) 574fd_reify (EV_P)
312{ 575{
313 int i; 576 int i;
314 577
315 for (i = 0; i < fdchangecnt; ++i) 578 for (i = 0; i < fdchangecnt; ++i)
316 { 579 {
317 int fd = fdchanges [i]; 580 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 581 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 582 ev_io *w;
320 583
321 int events = 0; 584 unsigned char events = 0;
322 585
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 587 events |= (unsigned char)w->events;
325 588
589#if EV_SELECT_IS_WINSOCKET
590 if (events)
591 {
592 unsigned long argp;
593 anfd->handle = _get_osfhandle (fd);
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
595 }
596#endif
597
598 {
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
326 anfd->reify = 0; 602 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events);
607 }
330 } 608 }
331 609
332 fdchangecnt = 0; 610 fdchangecnt = 0;
333} 611}
334 612
335static void 613void inline_size
336fd_change (EV_P_ int fd) 614fd_change (EV_P_ int fd, int flags)
337{ 615{
338 if (anfds [fd].reify || fdchangecnt < 0) 616 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 617 anfds [fd].reify |= flags;
342 618
619 if (expect_true (!reify))
620 {
343 ++fdchangecnt; 621 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 623 fdchanges [fdchangecnt - 1] = fd;
624 }
346} 625}
347 626
348static void 627void inline_speed
349fd_kill (EV_P_ int fd) 628fd_kill (EV_P_ int fd)
350{ 629{
351 struct ev_io *w; 630 ev_io *w;
352 631
353 while ((w = (struct ev_io *)anfds [fd].head)) 632 while ((w = (ev_io *)anfds [fd].head))
354 { 633 {
355 ev_io_stop (EV_A_ w); 634 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 636 }
637}
638
639int inline_size
640fd_valid (int fd)
641{
642#ifdef _WIN32
643 return _get_osfhandle (fd) != -1;
644#else
645 return fcntl (fd, F_GETFD) != -1;
646#endif
358} 647}
359 648
360/* called on EBADF to verify fds */ 649/* called on EBADF to verify fds */
361static void 650static void noinline
362fd_ebadf (EV_P) 651fd_ebadf (EV_P)
363{ 652{
364 int fd; 653 int fd;
365 654
366 for (fd = 0; fd < anfdmax; ++fd) 655 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 656 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 657 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 658 fd_kill (EV_A_ fd);
370} 659}
371 660
372/* called on ENOMEM in select/poll to kill some fds and retry */ 661/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 662static void noinline
374fd_enomem (EV_P) 663fd_enomem (EV_P)
375{ 664{
376 int fd; 665 int fd;
377 666
378 for (fd = anfdmax; fd--; ) 667 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 668 if (anfds [fd].events)
380 { 669 {
381 close (fd);
382 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
383 return; 671 return;
384 } 672 }
385} 673}
386 674
387/* susually called after fork if method needs to re-arm all fds from scratch */ 675/* usually called after fork if backend needs to re-arm all fds from scratch */
388static void 676static void noinline
389fd_rearm_all (EV_P) 677fd_rearm_all (EV_P)
390{ 678{
391 int fd; 679 int fd;
392 680
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd) 681 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events) 682 if (anfds [fd].events)
396 { 683 {
397 anfds [fd].events = 0; 684 anfds [fd].events = 0;
398 fd_change (EV_A_ fd); 685 fd_change (EV_A_ fd, EV_IOFDSET | 1);
399 } 686 }
400} 687}
401 688
402/*****************************************************************************/ 689/*****************************************************************************/
403 690
404static void 691void inline_speed
405upheap (WT *heap, int k) 692upheap (WT *heap, int k)
406{ 693{
407 WT w = heap [k]; 694 WT w = heap [k];
408 695
409 while (k && heap [k >> 1]->at > w->at) 696 while (k)
410 { 697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
411 heap [k] = heap [k >> 1]; 703 heap [k] = heap [p];
412 ((W)heap [k])->active = k + 1; 704 ((W)heap [k])->active = k + 1;
413 k >>= 1; 705 k = p;
414 } 706 }
415 707
416 heap [k] = w; 708 heap [k] = w;
417 ((W)heap [k])->active = k + 1; 709 ((W)heap [k])->active = k + 1;
418
419} 710}
420 711
421static void 712void inline_speed
422downheap (WT *heap, int N, int k) 713downheap (WT *heap, int N, int k)
423{ 714{
424 WT w = heap [k]; 715 WT w = heap [k];
425 716
426 while (k < (N >> 1)) 717 for (;;)
427 { 718 {
428 int j = k << 1; 719 int c = (k << 1) + 1;
429 720
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 721 if (c >= N)
431 ++j;
432
433 if (w->at <= heap [j]->at)
434 break; 722 break;
435 723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
436 heap [k] = heap [j]; 730 heap [k] = heap [c];
437 ((W)heap [k])->active = k + 1; 731 ((W)heap [k])->active = k + 1;
732
438 k = j; 733 k = c;
439 } 734 }
440 735
441 heap [k] = w; 736 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 737 ((W)heap [k])->active = k + 1;
443} 738}
444 739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
445/*****************************************************************************/ 747/*****************************************************************************/
446 748
447typedef struct 749typedef struct
448{ 750{
449 struct ev_watcher_list *head; 751 WL head;
450 sig_atomic_t volatile gotsig; 752 sig_atomic_t volatile gotsig;
451} ANSIG; 753} ANSIG;
452 754
453static ANSIG *signals; 755static ANSIG *signals;
454static int signalmax; 756static int signalmax;
455 757
456static int sigpipe [2]; 758static int sigpipe [2];
457static sig_atomic_t volatile gotsig; 759static sig_atomic_t volatile gotsig;
458static struct ev_io sigev; 760static ev_io sigev;
459 761
460static void 762void inline_size
461signals_init (ANSIG *base, int count) 763signals_init (ANSIG *base, int count)
462{ 764{
463 while (count--) 765 while (count--)
464 { 766 {
465 base->head = 0; 767 base->head = 0;
470} 772}
471 773
472static void 774static void
473sighandler (int signum) 775sighandler (int signum)
474{ 776{
475#if WIN32 777#if _WIN32
476 signal (signum, sighandler); 778 signal (signum, sighandler);
477#endif 779#endif
478 780
479 signals [signum - 1].gotsig = 1; 781 signals [signum - 1].gotsig = 1;
480 782
485 write (sigpipe [1], &signum, 1); 787 write (sigpipe [1], &signum, 1);
486 errno = old_errno; 788 errno = old_errno;
487 } 789 }
488} 790}
489 791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
490static void 812static void
491sigcb (EV_P_ struct ev_io *iow, int revents) 813sigcb (EV_P_ ev_io *iow, int revents)
492{ 814{
493 struct ev_watcher_list *w;
494 int signum; 815 int signum;
495 816
496 read (sigpipe [0], &revents, 1); 817 read (sigpipe [0], &revents, 1);
497 gotsig = 0; 818 gotsig = 0;
498 819
499 for (signum = signalmax; signum--; ) 820 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig) 821 if (signals [signum].gotsig)
501 { 822 ev_feed_signal_event (EV_A_ signum + 1);
502 signals [signum].gotsig = 0;
503
504 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL);
506 }
507} 823}
508 824
509static void 825void inline_speed
826fd_intern (int fd)
827{
828#ifdef _WIN32
829 int arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif
835}
836
837static void noinline
510siginit (EV_P) 838siginit (EV_P)
511{ 839{
512#ifndef WIN32 840 fd_intern (sigpipe [0]);
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 841 fd_intern (sigpipe [1]);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520 842
521 ev_io_set (&sigev, sigpipe [0], EV_READ); 843 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev); 844 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 846}
525 847
526/*****************************************************************************/ 848/*****************************************************************************/
527 849
850static WL childs [EV_PID_HASHSIZE];
851
528#ifndef WIN32 852#ifndef _WIN32
529 853
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 854static ev_signal childev;
855
856void inline_speed
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
858{
859 ev_child *w;
860
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
862 if (w->pid == pid || !w->pid)
863 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
865 w->rpid = pid;
866 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 }
869}
532 870
533#ifndef WCONTINUED 871#ifndef WCONTINUED
534# define WCONTINUED 0 872# define WCONTINUED 0
535#endif 873#endif
536 874
537static void 875static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 876childcb (EV_P_ ev_signal *sw, int revents)
554{ 877{
555 int pid, status; 878 int pid, status;
556 879
880 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 881 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 882 if (!WCONTINUED
883 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return;
886
559 /* make sure we are called again until all childs have been reaped */ 887 /* make sure we are called again until all childs have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */
560 event (EV_A_ (W)sw, EV_SIGNAL); 889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 890
562 child_reap (EV_A_ sw, pid, pid, status); 891 child_reap (EV_A_ sw, pid, pid, status);
892 if (EV_PID_HASHSIZE > 1)
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
564 }
565} 894}
566 895
567#endif 896#endif
568 897
569/*****************************************************************************/ 898/*****************************************************************************/
570 899
900#if EV_USE_PORT
901# include "ev_port.c"
902#endif
571#if EV_USE_KQUEUE 903#if EV_USE_KQUEUE
572# include "ev_kqueue.c" 904# include "ev_kqueue.c"
573#endif 905#endif
574#if EV_USE_EPOLL 906#if EV_USE_EPOLL
575# include "ev_epoll.c" 907# include "ev_epoll.c"
592{ 924{
593 return EV_VERSION_MINOR; 925 return EV_VERSION_MINOR;
594} 926}
595 927
596/* return true if we are running with elevated privileges and should ignore env variables */ 928/* return true if we are running with elevated privileges and should ignore env variables */
597static int 929int inline_size
598enable_secure (void) 930enable_secure (void)
599{ 931{
600#ifdef WIN32 932#ifdef _WIN32
601 return 0; 933 return 0;
602#else 934#else
603 return getuid () != geteuid () 935 return getuid () != geteuid ()
604 || getgid () != getegid (); 936 || getgid () != getegid ();
605#endif 937#endif
606} 938}
607 939
608int 940unsigned int
609ev_method (EV_P) 941ev_supported_backends (void)
610{ 942{
611 return method; 943 unsigned int flags = 0;
612}
613 944
614static void 945 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
615loop_init (EV_P_ int methods) 946 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
947 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
948 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
949 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
950
951 return flags;
952}
953
954unsigned int
955ev_recommended_backends (void)
616{ 956{
617 if (!method) 957 unsigned int flags = ev_supported_backends ();
958
959#ifndef __NetBSD__
960 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE;
963#endif
964#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation
966 flags &= ~EVBACKEND_POLL;
967#endif
968
969 return flags;
970}
971
972unsigned int
973ev_embeddable_backends (void)
974{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE
977 | EVBACKEND_PORT;
978}
979
980unsigned int
981ev_backend (EV_P)
982{
983 return backend;
984}
985
986unsigned int
987ev_loop_count (EV_P)
988{
989 return loop_count;
990}
991
992void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{
995 io_blocktime = interval;
996}
997
998void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 timeout_blocktime = interval;
1002}
1003
1004static void noinline
1005loop_init (EV_P_ unsigned int flags)
1006{
1007 if (!backend)
618 { 1008 {
619#if EV_USE_MONOTONIC 1009#if EV_USE_MONOTONIC
620 { 1010 {
621 struct timespec ts; 1011 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 1013 have_monotonic = 1;
624 } 1014 }
625#endif 1015#endif
626 1016
627 rt_now = ev_time (); 1017 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 1018 mn_now = get_clock ();
629 now_floor = mn_now; 1019 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 1020 rtmn_diff = ev_rt_now - mn_now;
631 1021
632 if (methods == EVMETHOD_AUTO) 1022 io_blocktime = 0.;
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1023 timeout_blocktime = 0.;
1024
1025 /* pid check not overridable via env */
1026#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid ();
1029#endif
1030
1031 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 1034 flags = atoi (getenv ("LIBEV_FLAGS"));
635 else
636 methods = EVMETHOD_ANY;
637 1035
638 method = 0; 1036 if (!(flags & 0x0000ffffUL))
1037 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
639#if EV_USE_WIN32 1041#if EV_USE_INOTIFY
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1042 fs_fd = -2;
1043#endif
1044
1045#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
641#endif 1047#endif
642#if EV_USE_KQUEUE 1048#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
644#endif 1050#endif
645#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1052 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
647#endif 1053#endif
648#if EV_USE_POLL 1054#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1055 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
650#endif 1056#endif
651#if EV_USE_SELECT 1057#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
653#endif 1059#endif
654 }
655}
656 1060
657void 1061 ev_init (&sigev, sigcb);
1062 ev_set_priority (&sigev, EV_MAXPRI);
1063 }
1064}
1065
1066static void noinline
658loop_destroy (EV_P) 1067loop_destroy (EV_P)
659{ 1068{
660 int i; 1069 int i;
661 1070
662#if EV_USE_WIN32 1071#if EV_USE_INOTIFY
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1072 if (fs_fd >= 0)
1073 close (fs_fd);
1074#endif
1075
1076 if (backend_fd >= 0)
1077 close (backend_fd);
1078
1079#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
664#endif 1081#endif
665#if EV_USE_KQUEUE 1082#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
667#endif 1084#endif
668#if EV_USE_EPOLL 1085#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1086 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
670#endif 1087#endif
671#if EV_USE_POLL 1088#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1089 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
673#endif 1090#endif
674#if EV_USE_SELECT 1091#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1092 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
676#endif 1093#endif
677 1094
678 for (i = NUMPRI; i--; ) 1095 for (i = NUMPRI; i--; )
1096 {
679 array_free (pending, [i]); 1097 array_free (pending, [i]);
1098#if EV_IDLE_ENABLE
1099 array_free (idle, [i]);
1100#endif
1101 }
680 1102
1103 ev_free (anfds); anfdmax = 0;
1104
1105 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 1106 array_free (fdchange, EMPTY);
682 array_free (timer, ); 1107 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE
683 array_free (periodic, ); 1109 array_free (periodic, EMPTY);
684 array_free (idle, ); 1110#endif
1111#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY);
1113#endif
685 array_free (prepare, ); 1114 array_free (prepare, EMPTY);
686 array_free (check, ); 1115 array_free (check, EMPTY);
687 1116
688 method = 0; 1117 backend = 0;
689 /*TODO*/
690} 1118}
691 1119
692void 1120void inline_size infy_fork (EV_P);
1121
1122void inline_size
693loop_fork (EV_P) 1123loop_fork (EV_P)
694{ 1124{
695 /*TODO*/ 1125#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif
1128#if EV_USE_KQUEUE
1129 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1130#endif
696#if EV_USE_EPOLL 1131#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1132 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
698#endif 1133#endif
699#if EV_USE_KQUEUE 1134#if EV_USE_INOTIFY
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1135 infy_fork (EV_A);
701#endif 1136#endif
1137
1138 if (ev_is_active (&sigev))
1139 {
1140 /* default loop */
1141
1142 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A);
1151 }
1152
1153 postfork = 0;
702} 1154}
703 1155
704#if EV_MULTIPLICITY 1156#if EV_MULTIPLICITY
705struct ev_loop * 1157struct ev_loop *
706ev_loop_new (int methods) 1158ev_loop_new (unsigned int flags)
707{ 1159{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
709 1161
1162 memset (loop, 0, sizeof (struct ev_loop));
1163
710 loop_init (EV_A_ methods); 1164 loop_init (EV_A_ flags);
711 1165
712 if (ev_method (EV_A)) 1166 if (ev_backend (EV_A))
713 return loop; 1167 return loop;
714 1168
715 return 0; 1169 return 0;
716} 1170}
717 1171
718void 1172void
719ev_loop_destroy (EV_P) 1173ev_loop_destroy (EV_P)
720{ 1174{
721 loop_destroy (EV_A); 1175 loop_destroy (EV_A);
722 free (loop); 1176 ev_free (loop);
723} 1177}
724 1178
725void 1179void
726ev_loop_fork (EV_P) 1180ev_loop_fork (EV_P)
727{ 1181{
728 loop_fork (EV_A); 1182 postfork = 1;
729} 1183}
730 1184
731#endif 1185#endif
732 1186
733#if EV_MULTIPLICITY 1187#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 1188struct ev_loop *
1189ev_default_loop_init (unsigned int flags)
738#else 1190#else
739static int default_loop;
740
741int 1191int
1192ev_default_loop (unsigned int flags)
742#endif 1193#endif
743ev_default_loop (int methods)
744{ 1194{
745 if (sigpipe [0] == sigpipe [1]) 1195 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe)) 1196 if (pipe (sigpipe))
747 return 0; 1197 return 0;
748 1198
749 if (!default_loop) 1199 if (!ev_default_loop_ptr)
750 { 1200 {
751#if EV_MULTIPLICITY 1201#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct; 1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
753#else 1203#else
754 default_loop = 1; 1204 ev_default_loop_ptr = 1;
755#endif 1205#endif
756 1206
757 loop_init (EV_A_ methods); 1207 loop_init (EV_A_ flags);
758 1208
759 if (ev_method (EV_A)) 1209 if (ev_backend (EV_A))
760 { 1210 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A); 1211 siginit (EV_A);
764 1212
765#ifndef WIN32 1213#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 1214 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 1215 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 1216 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1217 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 1218#endif
771 } 1219 }
772 else 1220 else
773 default_loop = 0; 1221 ev_default_loop_ptr = 0;
774 } 1222 }
775 1223
776 return default_loop; 1224 return ev_default_loop_ptr;
777} 1225}
778 1226
779void 1227void
780ev_default_destroy (void) 1228ev_default_destroy (void)
781{ 1229{
782#if EV_MULTIPLICITY 1230#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 1231 struct ev_loop *loop = ev_default_loop_ptr;
784#endif 1232#endif
785 1233
1234#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 1235 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 1236 ev_signal_stop (EV_A_ &childev);
1237#endif
788 1238
789 ev_ref (EV_A); /* signal watcher */ 1239 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev); 1240 ev_io_stop (EV_A_ &sigev);
791 1241
792 close (sigpipe [0]); sigpipe [0] = 0; 1242 close (sigpipe [0]); sigpipe [0] = 0;
797 1247
798void 1248void
799ev_default_fork (void) 1249ev_default_fork (void)
800{ 1250{
801#if EV_MULTIPLICITY 1251#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 1252 struct ev_loop *loop = ev_default_loop_ptr;
803#endif 1253#endif
804 1254
805 loop_fork (EV_A); 1255 if (backend)
806 1256 postfork = 1;
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 1257}
815 1258
816/*****************************************************************************/ 1259/*****************************************************************************/
817 1260
818static void 1261void
1262ev_invoke (EV_P_ void *w, int revents)
1263{
1264 EV_CB_INVOKE ((W)w, revents);
1265}
1266
1267void inline_speed
819call_pending (EV_P) 1268call_pending (EV_P)
820{ 1269{
821 int pri; 1270 int pri;
822 1271
823 for (pri = NUMPRI; pri--; ) 1272 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri]) 1273 while (pendingcnt [pri])
825 { 1274 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 1276
828 if (p->w) 1277 if (expect_true (p->w))
829 { 1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
830 p->w->pending = 0; 1281 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 1282 EV_CB_INVOKE (p->w, p->events);
832 } 1283 }
833 } 1284 }
834} 1285}
835 1286
836static void 1287void inline_size
837timers_reify (EV_P) 1288timers_reify (EV_P)
838{ 1289{
839 while (timercnt && ((WT)timers [0])->at <= mn_now) 1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
840 { 1291 {
841 struct ev_timer *w = timers [0]; 1292 ev_timer *w = (ev_timer *)timers [0];
842 1293
843 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
844 1295
845 /* first reschedule or stop timer */ 1296 /* first reschedule or stop timer */
846 if (w->repeat) 1297 if (w->repeat)
847 { 1298 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
849 ((WT)w)->at = mn_now + w->repeat; 1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
850 downheap ((WT *)timers, timercnt, 0); 1305 downheap (timers, timercnt, 0);
851 } 1306 }
852 else 1307 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1309
855 event (EV_A_ (W)w, EV_TIMEOUT); 1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 1311 }
857} 1312}
858 1313
859static void 1314#if EV_PERIODIC_ENABLE
1315void inline_size
860periodics_reify (EV_P) 1316periodics_reify (EV_P)
861{ 1317{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 1319 {
864 struct ev_periodic *w = periodics [0]; 1320 ev_periodic *w = (ev_periodic *)periodics [0];
865 1321
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
867 1323
868 /* first reschedule or stop timer */ 1324 /* first reschedule or stop timer */
869 if (w->interval) 1325 if (w->reschedule_cb)
870 { 1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1336 downheap (periodics, periodiccnt, 0);
874 } 1337 }
875 else 1338 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1340
878 event (EV_A_ (W)w, EV_PERIODIC); 1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1342 }
880} 1343}
881 1344
882static void 1345static void noinline
883periodics_reschedule (EV_P) 1346periodics_reschedule (EV_P)
884{ 1347{
885 int i; 1348 int i;
886 1349
887 /* adjust periodics after time jump */ 1350 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1351 for (i = 0; i < periodiccnt; ++i)
889 { 1352 {
890 struct ev_periodic *w = periodics [i]; 1353 ev_periodic *w = (ev_periodic *)periodics [i];
891 1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE
1368void inline_size
1369idle_reify (EV_P)
1370{
1371 if (expect_false (idleall))
1372 {
1373 int pri;
1374
1375 for (pri = NUMPRI; pri--; )
893 { 1376 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1377 if (pendingcnt [pri])
1378 break;
895 1379
896 if (fabs (diff) >= 1e-4) 1380 if (idlecnt [pri])
897 { 1381 {
898 ev_periodic_stop (EV_A_ w); 1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
899 ev_periodic_start (EV_A_ w); 1383 break;
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 } 1384 }
903 } 1385 }
904 } 1386 }
905} 1387}
1388#endif
906 1389
907inline int 1390void inline_speed
908time_update_monotonic (EV_P) 1391time_update (EV_P_ ev_tstamp max_block)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
925static void
926time_update (EV_P)
927{ 1392{
928 int i; 1393 int i;
929 1394
930#if EV_USE_MONOTONIC 1395#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1396 if (expect_true (have_monotonic))
932 { 1397 {
933 if (time_update_monotonic (EV_A)) 1398 ev_tstamp odiff = rtmn_diff;
1399
1400 mn_now = get_clock ();
1401
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1403 /* interpolate in the meantime */
1404 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
934 { 1405 {
935 ev_tstamp odiff = rtmn_diff; 1406 ev_rt_now = rtmn_diff + mn_now;
1407 return;
1408 }
936 1409
1410 now_floor = mn_now;
1411 ev_rt_now = ev_time ();
1412
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1413 /* loop a few times, before making important decisions.
1414 * on the choice of "4": one iteration isn't enough,
1415 * in case we get preempted during the calls to
1416 * ev_time and get_clock. a second call is almost guaranteed
1417 * to succeed in that case, though. and looping a few more times
1418 * doesn't hurt either as we only do this on time-jumps or
1419 * in the unlikely event of having been preempted here.
1420 */
1421 for (i = 4; --i; )
938 { 1422 {
939 rtmn_diff = rt_now - mn_now; 1423 rtmn_diff = ev_rt_now - mn_now;
940 1424
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1426 return; /* all is well */
943 1427
944 rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1429 mn_now = get_clock ();
946 now_floor = mn_now; 1430 now_floor = mn_now;
947 } 1431 }
948 1432
1433# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A);
1435# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 }
1439 else
1440#endif
1441 {
1442 ev_rt_now = ev_time ();
1443
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 {
1446#if EV_PERIODIC_ENABLE
949 periodics_reschedule (EV_A); 1447 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 1448#endif
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
952 } 1452 }
953 }
954 else
955#endif
956 {
957 rt_now = ev_time ();
958 1453
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
967
968 mn_now = rt_now; 1454 mn_now = ev_rt_now;
969 } 1455 }
970} 1456}
971 1457
972void 1458void
973ev_ref (EV_P) 1459ev_ref (EV_P)
984static int loop_done; 1470static int loop_done;
985 1471
986void 1472void
987ev_loop (EV_P_ int flags) 1473ev_loop (EV_P_ int flags)
988{ 1474{
989 double block;
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
991 1480
992 do 1481 do
993 { 1482 {
1483#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid))
1486 {
1487 curpid = getpid ();
1488 postfork = 1;
1489 }
1490#endif
1491
1492#if EV_FORK_ENABLE
1493 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork))
1495 if (forkcnt)
1496 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A);
1499 }
1500#endif
1501
994 /* queue check watchers (and execute them) */ 1502 /* queue prepare watchers (and execute them) */
995 if (expect_false (preparecnt)) 1503 if (expect_false (preparecnt))
996 { 1504 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1506 call_pending (EV_A);
999 } 1507 }
1000 1508
1509 if (expect_false (!activecnt))
1510 break;
1511
1512 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork))
1514 loop_fork (EV_A);
1515
1001 /* update fd-related kernel structures */ 1516 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1517 fd_reify (EV_A);
1003 1518
1004 /* calculate blocking time */ 1519 /* calculate blocking time */
1520 {
1521 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.;
1005 1523
1006 /* we only need this for !monotonic clockor timers, but as we basically 1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 { 1525 {
1014 rt_now = ev_time (); 1526 /* update time to cancel out callback processing overhead */
1015 mn_now = rt_now; 1527 time_update (EV_A_ 1e100);
1016 }
1017 1528
1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.;
1020 else
1021 {
1022 block = MAX_BLOCKTIME; 1529 waittime = MAX_BLOCKTIME;
1023 1530
1024 if (timercnt) 1531 if (timercnt)
1025 { 1532 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1027 if (block > to) block = to; 1534 if (waittime > to) waittime = to;
1028 } 1535 }
1029 1536
1537#if EV_PERIODIC_ENABLE
1030 if (periodiccnt) 1538 if (periodiccnt)
1031 { 1539 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1033 if (block > to) block = to; 1541 if (waittime > to) waittime = to;
1034 } 1542 }
1543#endif
1035 1544
1036 if (block < 0.) block = 0.; 1545 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime;
1547
1548 sleeptime = waittime - backend_fudge;
1549
1550 if (expect_true (sleeptime > io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 {
1555 ev_sleep (sleeptime);
1556 waittime -= sleeptime;
1557 }
1037 } 1558 }
1038 1559
1039 method_poll (EV_A_ block); 1560 ++loop_count;
1561 backend_poll (EV_A_ waittime);
1040 1562
1041 /* update rt_now, do magic */ 1563 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1564 time_update (EV_A_ waittime + sleeptime);
1565 }
1043 1566
1044 /* queue pending timers and reschedule them */ 1567 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1568 timers_reify (EV_A); /* relative timers called last */
1569#if EV_PERIODIC_ENABLE
1046 periodics_reify (EV_A); /* absolute timers called first */ 1570 periodics_reify (EV_A); /* absolute timers called first */
1571#endif
1047 1572
1573#if EV_IDLE_ENABLE
1048 /* queue idle watchers unless io or timers are pending */ 1574 /* queue idle watchers unless other events are pending */
1049 if (!pendingcnt) 1575 idle_reify (EV_A);
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1576#endif
1051 1577
1052 /* queue check watchers, to be executed first */ 1578 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1579 if (expect_false (checkcnt))
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 1581
1056 call_pending (EV_A); 1582 call_pending (EV_A);
1583
1057 } 1584 }
1058 while (activecnt && !loop_done); 1585 while (expect_true (activecnt && !loop_done));
1059 1586
1060 if (loop_done != 2) 1587 if (loop_done == EVUNLOOP_ONE)
1061 loop_done = 0; 1588 loop_done = EVUNLOOP_CANCEL;
1062} 1589}
1063 1590
1064void 1591void
1065ev_unloop (EV_P_ int how) 1592ev_unloop (EV_P_ int how)
1066{ 1593{
1067 loop_done = how; 1594 loop_done = how;
1068} 1595}
1069 1596
1070/*****************************************************************************/ 1597/*****************************************************************************/
1071 1598
1072inline void 1599void inline_size
1073wlist_add (WL *head, WL elem) 1600wlist_add (WL *head, WL elem)
1074{ 1601{
1075 elem->next = *head; 1602 elem->next = *head;
1076 *head = elem; 1603 *head = elem;
1077} 1604}
1078 1605
1079inline void 1606void inline_size
1080wlist_del (WL *head, WL elem) 1607wlist_del (WL *head, WL elem)
1081{ 1608{
1082 while (*head) 1609 while (*head)
1083 { 1610 {
1084 if (*head == elem) 1611 if (*head == elem)
1089 1616
1090 head = &(*head)->next; 1617 head = &(*head)->next;
1091 } 1618 }
1092} 1619}
1093 1620
1094inline void 1621void inline_speed
1095ev_clear_pending (EV_P_ W w) 1622clear_pending (EV_P_ W w)
1096{ 1623{
1097 if (w->pending) 1624 if (w->pending)
1098 { 1625 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1626 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 w->pending = 0; 1627 w->pending = 0;
1101 } 1628 }
1102} 1629}
1103 1630
1104inline void 1631int
1632ev_clear_pending (EV_P_ void *w)
1633{
1634 W w_ = (W)w;
1635 int pending = w_->pending;
1636
1637 if (expect_true (pending))
1638 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1640 w_->pending = 0;
1641 p->w = 0;
1642 return p->events;
1643 }
1644 else
1645 return 0;
1646}
1647
1648void inline_size
1649pri_adjust (EV_P_ W w)
1650{
1651 int pri = w->priority;
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri;
1655}
1656
1657void inline_speed
1105ev_start (EV_P_ W w, int active) 1658ev_start (EV_P_ W w, int active)
1106{ 1659{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1660 pri_adjust (EV_A_ w);
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
1110 w->active = active; 1661 w->active = active;
1111 ev_ref (EV_A); 1662 ev_ref (EV_A);
1112} 1663}
1113 1664
1114inline void 1665void inline_size
1115ev_stop (EV_P_ W w) 1666ev_stop (EV_P_ W w)
1116{ 1667{
1117 ev_unref (EV_A); 1668 ev_unref (EV_A);
1118 w->active = 0; 1669 w->active = 0;
1119} 1670}
1120 1671
1121/*****************************************************************************/ 1672/*****************************************************************************/
1122 1673
1123void 1674void noinline
1124ev_io_start (EV_P_ struct ev_io *w) 1675ev_io_start (EV_P_ ev_io *w)
1125{ 1676{
1126 int fd = w->fd; 1677 int fd = w->fd;
1127 1678
1128 if (ev_is_active (w)) 1679 if (expect_false (ev_is_active (w)))
1129 return; 1680 return;
1130 1681
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1682 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1683
1133 ev_start (EV_A_ (W)w, 1); 1684 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1686 wlist_add (&anfds[fd].head, (WL)w);
1136 1687
1137 fd_change (EV_A_ fd); 1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET;
1138} 1690}
1139 1691
1140void 1692void noinline
1141ev_io_stop (EV_P_ struct ev_io *w) 1693ev_io_stop (EV_P_ ev_io *w)
1142{ 1694{
1143 ev_clear_pending (EV_A_ (W)w); 1695 clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 1696 if (expect_false (!ev_is_active (w)))
1145 return; 1697 return;
1146 1698
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1700
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1701 wlist_del (&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 1702 ev_stop (EV_A_ (W)w);
1149 1703
1150 fd_change (EV_A_ w->fd); 1704 fd_change (EV_A_ w->fd, 1);
1151} 1705}
1152 1706
1153void 1707void noinline
1154ev_timer_start (EV_P_ struct ev_timer *w) 1708ev_timer_start (EV_P_ ev_timer *w)
1155{ 1709{
1156 if (ev_is_active (w)) 1710 if (expect_false (ev_is_active (w)))
1157 return; 1711 return;
1158 1712
1159 ((WT)w)->at += mn_now; 1713 ((WT)w)->at += mn_now;
1160 1714
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1716
1163 ev_start (EV_A_ (W)w, ++timercnt); 1717 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1165 timers [timercnt - 1] = w; 1719 timers [timercnt - 1] = (WT)w;
1166 upheap ((WT *)timers, timercnt - 1); 1720 upheap (timers, timercnt - 1);
1167 1721
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1169} 1723}
1170 1724
1171void 1725void noinline
1172ev_timer_stop (EV_P_ struct ev_timer *w) 1726ev_timer_stop (EV_P_ ev_timer *w)
1173{ 1727{
1174 ev_clear_pending (EV_A_ (W)w); 1728 clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w)) 1729 if (expect_false (!ev_is_active (w)))
1176 return; 1730 return;
1177 1731
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1179 1733
1180 if (((W)w)->active < timercnt--) 1734 {
1735 int active = ((W)w)->active;
1736
1737 if (expect_true (--active < --timercnt))
1181 { 1738 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 1739 timers [active] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1740 adjustheap (timers, timercnt, active);
1184 } 1741 }
1742 }
1185 1743
1186 ((WT)w)->at = w->repeat; 1744 ((WT)w)->at -= mn_now;
1187 1745
1188 ev_stop (EV_A_ (W)w); 1746 ev_stop (EV_A_ (W)w);
1189} 1747}
1190 1748
1191void 1749void noinline
1192ev_timer_again (EV_P_ struct ev_timer *w) 1750ev_timer_again (EV_P_ ev_timer *w)
1193{ 1751{
1194 if (ev_is_active (w)) 1752 if (ev_is_active (w))
1195 { 1753 {
1196 if (w->repeat) 1754 if (w->repeat)
1197 { 1755 {
1198 ((WT)w)->at = mn_now + w->repeat; 1756 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1757 adjustheap (timers, timercnt, ((W)w)->active - 1);
1200 } 1758 }
1201 else 1759 else
1202 ev_timer_stop (EV_A_ w); 1760 ev_timer_stop (EV_A_ w);
1203 } 1761 }
1204 else if (w->repeat) 1762 else if (w->repeat)
1763 {
1764 w->at = w->repeat;
1205 ev_timer_start (EV_A_ w); 1765 ev_timer_start (EV_A_ w);
1766 }
1206} 1767}
1207 1768
1208void 1769#if EV_PERIODIC_ENABLE
1770void noinline
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1771ev_periodic_start (EV_P_ ev_periodic *w)
1210{ 1772{
1211 if (ev_is_active (w)) 1773 if (expect_false (ev_is_active (w)))
1212 return; 1774 return;
1213 1775
1776 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval)
1779 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1781 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 }
1784 else
1785 ((WT)w)->at = w->offset;
1219 1786
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1787 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1222 periodics [periodiccnt - 1] = w; 1789 periodics [periodiccnt - 1] = (WT)w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1790 upheap (periodics, periodiccnt - 1);
1224 1791
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1226} 1793}
1227 1794
1228void 1795void noinline
1229ev_periodic_stop (EV_P_ struct ev_periodic *w) 1796ev_periodic_stop (EV_P_ ev_periodic *w)
1230{ 1797{
1231 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1799 if (expect_false (!ev_is_active (w)))
1233 return; 1800 return;
1234 1801
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1236 1803
1237 if (((W)w)->active < periodiccnt--) 1804 {
1805 int active = ((W)w)->active;
1806
1807 if (expect_true (--active < --periodiccnt))
1238 { 1808 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1809 periodics [active] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1810 adjustheap (periodics, periodiccnt, active);
1241 } 1811 }
1812 }
1242 1813
1243 ev_stop (EV_A_ (W)w); 1814 ev_stop (EV_A_ (W)w);
1244} 1815}
1245 1816
1246void 1817void noinline
1247ev_idle_start (EV_P_ struct ev_idle *w) 1818ev_periodic_again (EV_P_ ev_periodic *w)
1248{ 1819{
1249 if (ev_is_active (w)) 1820 /* TODO: use adjustheap and recalculation */
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 1821 ev_periodic_stop (EV_A_ w);
1822 ev_periodic_start (EV_A_ w);
1266} 1823}
1267 1824#endif
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311 1825
1312#ifndef SA_RESTART 1826#ifndef SA_RESTART
1313# define SA_RESTART 0 1827# define SA_RESTART 0
1314#endif 1828#endif
1315 1829
1316void 1830void noinline
1317ev_signal_start (EV_P_ struct ev_signal *w) 1831ev_signal_start (EV_P_ ev_signal *w)
1318{ 1832{
1319#if EV_MULTIPLICITY 1833#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1321#endif 1835#endif
1322 if (ev_is_active (w)) 1836 if (expect_false (ev_is_active (w)))
1323 return; 1837 return;
1324 1838
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1840
1841 {
1842#ifndef _WIN32
1843 sigset_t full, prev;
1844 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1849
1850#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif
1853 }
1854
1327 ev_start (EV_A_ (W)w, 1); 1855 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1330 1857
1331 if (!((WL)w)->next) 1858 if (!((WL)w)->next)
1332 { 1859 {
1333#if WIN32 1860#if _WIN32
1334 signal (w->signum, sighandler); 1861 signal (w->signum, sighandler);
1335#else 1862#else
1336 struct sigaction sa; 1863 struct sigaction sa;
1337 sa.sa_handler = sighandler; 1864 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask); 1865 sigfillset (&sa.sa_mask);
1340 sigaction (w->signum, &sa, 0); 1867 sigaction (w->signum, &sa, 0);
1341#endif 1868#endif
1342 } 1869 }
1343} 1870}
1344 1871
1345void 1872void noinline
1346ev_signal_stop (EV_P_ struct ev_signal *w) 1873ev_signal_stop (EV_P_ ev_signal *w)
1347{ 1874{
1348 ev_clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w)) 1876 if (expect_false (!ev_is_active (w)))
1350 return; 1877 return;
1351 1878
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1879 wlist_del (&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1354 1881
1355 if (!signals [w->signum - 1].head) 1882 if (!signals [w->signum - 1].head)
1356 signal (w->signum, SIG_DFL); 1883 signal (w->signum, SIG_DFL);
1357} 1884}
1358 1885
1359void 1886void
1360ev_child_start (EV_P_ struct ev_child *w) 1887ev_child_start (EV_P_ ev_child *w)
1361{ 1888{
1362#if EV_MULTIPLICITY 1889#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1364#endif 1891#endif
1365 if (ev_is_active (w)) 1892 if (expect_false (ev_is_active (w)))
1366 return; 1893 return;
1367 1894
1368 ev_start (EV_A_ (W)w, 1); 1895 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1370} 1897}
1371 1898
1372void 1899void
1373ev_child_stop (EV_P_ struct ev_child *w) 1900ev_child_stop (EV_P_ ev_child *w)
1374{ 1901{
1375 ev_clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 1903 if (expect_false (!ev_is_active (w)))
1377 return; 1904 return;
1378 1905
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 1907 ev_stop (EV_A_ (W)w);
1381} 1908}
1382 1909
1910#if EV_STAT_ENABLE
1911
1912# ifdef _WIN32
1913# undef lstat
1914# define lstat(a,b) _stati64 (a,b)
1915# endif
1916
1917#define DEF_STAT_INTERVAL 5.0074891
1918#define MIN_STAT_INTERVAL 0.1074891
1919
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921
1922#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192
1924
1925static void noinline
1926infy_add (EV_P_ ev_stat *w)
1927{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929
1930 if (w->wd < 0)
1931 {
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933
1934 /* monitor some parent directory for speedup hints */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 {
1937 char path [4096];
1938 strcpy (path, w->path);
1939
1940 do
1941 {
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944
1945 char *pend = strrchr (path, '/');
1946
1947 if (!pend)
1948 break; /* whoops, no '/', complain to your admin */
1949
1950 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 }
1955 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958
1959 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1961}
1962
1963static void noinline
1964infy_del (EV_P_ ev_stat *w)
1965{
1966 int slot;
1967 int wd = w->wd;
1968
1969 if (wd < 0)
1970 return;
1971
1972 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w);
1975
1976 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd);
1978}
1979
1980static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{
1983 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev);
1987 else
1988 {
1989 WL w_;
1990
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1992 {
1993 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */
1995
1996 if (w->wd == wd || wd == -1)
1997 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 {
2000 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */
2002 }
2003
2004 stat_timer_cb (EV_A_ &w->timer, 0);
2005 }
2006 }
2007 }
2008}
2009
2010static void
2011infy_cb (EV_P_ ev_io *w, int revents)
2012{
2013 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf));
2017
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2020}
2021
2022void inline_size
2023infy_init (EV_P)
2024{
2025 if (fs_fd != -2)
2026 return;
2027
2028 fs_fd = inotify_init ();
2029
2030 if (fs_fd >= 0)
2031 {
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w);
2035 }
2036}
2037
2038void inline_size
2039infy_fork (EV_P)
2040{
2041 int slot;
2042
2043 if (fs_fd < 0)
2044 return;
2045
2046 close (fs_fd);
2047 fs_fd = inotify_init ();
2048
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2050 {
2051 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0;
2053
2054 while (w_)
2055 {
2056 ev_stat *w = (ev_stat *)w_;
2057 w_ = w_->next; /* lets us add this watcher */
2058
2059 w->wd = -1;
2060
2061 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else
2064 ev_timer_start (EV_A_ &w->timer);
2065 }
2066
2067 }
2068}
2069
2070#endif
2071
2072void
2073ev_stat_stat (EV_P_ ev_stat *w)
2074{
2075 if (lstat (w->path, &w->attr) < 0)
2076 w->attr.st_nlink = 0;
2077 else if (!w->attr.st_nlink)
2078 w->attr.st_nlink = 1;
2079}
2080
2081static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085
2086 /* we copy this here each the time so that */
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w);
2090
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if (
2093 w->prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime
2104 ) {
2105 #if EV_USE_INOTIFY
2106 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */
2109 #endif
2110
2111 ev_feed_event (EV_A_ w, EV_STAT);
2112 }
2113}
2114
2115void
2116ev_stat_start (EV_P_ ev_stat *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w);
2126
2127 if (w->interval < MIN_STAT_INTERVAL)
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2131 ev_set_priority (&w->timer, ev_priority (w));
2132
2133#if EV_USE_INOTIFY
2134 infy_init (EV_A);
2135
2136 if (fs_fd >= 0)
2137 infy_add (EV_A_ w);
2138 else
2139#endif
2140 ev_timer_start (EV_A_ &w->timer);
2141
2142 ev_start (EV_A_ (W)w, 1);
2143}
2144
2145void
2146ev_stat_stop (EV_P_ ev_stat *w)
2147{
2148 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w)))
2150 return;
2151
2152#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w);
2154#endif
2155 ev_timer_stop (EV_A_ &w->timer);
2156
2157 ev_stop (EV_A_ (W)w);
2158}
2159#endif
2160
2161#if EV_IDLE_ENABLE
2162void
2163ev_idle_start (EV_P_ ev_idle *w)
2164{
2165 if (expect_false (ev_is_active (w)))
2166 return;
2167
2168 pri_adjust (EV_A_ (W)w);
2169
2170 {
2171 int active = ++idlecnt [ABSPRI (w)];
2172
2173 ++idleall;
2174 ev_start (EV_A_ (W)w, active);
2175
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w;
2178 }
2179}
2180
2181void
2182ev_idle_stop (EV_P_ ev_idle *w)
2183{
2184 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w)))
2186 return;
2187
2188 {
2189 int active = ((W)w)->active;
2190
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2193
2194 ev_stop (EV_A_ (W)w);
2195 --idleall;
2196 }
2197}
2198#endif
2199
2200void
2201ev_prepare_start (EV_P_ ev_prepare *w)
2202{
2203 if (expect_false (ev_is_active (w)))
2204 return;
2205
2206 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w;
2209}
2210
2211void
2212ev_prepare_stop (EV_P_ ev_prepare *w)
2213{
2214 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w)))
2216 return;
2217
2218 {
2219 int active = ((W)w)->active;
2220 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active;
2222 }
2223
2224 ev_stop (EV_A_ (W)w);
2225}
2226
2227void
2228ev_check_start (EV_P_ ev_check *w)
2229{
2230 if (expect_false (ev_is_active (w)))
2231 return;
2232
2233 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w;
2236}
2237
2238void
2239ev_check_stop (EV_P_ ev_check *w)
2240{
2241 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w)))
2243 return;
2244
2245 {
2246 int active = ((W)w)->active;
2247 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active;
2249 }
2250
2251 ev_stop (EV_A_ (W)w);
2252}
2253
2254#if EV_EMBED_ENABLE
2255void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w)
2257{
2258 ev_loop (w->other, EVLOOP_NONBLOCK);
2259}
2260
2261static void
2262embed_io_cb (EV_P_ ev_io *io, int revents)
2263{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265
2266 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else
2269 ev_embed_sweep (loop, w);
2270}
2271
2272static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276
2277 fd_reify (w->other);
2278}
2279
2280void
2281ev_embed_start (EV_P_ ev_embed *w)
2282{
2283 if (expect_false (ev_is_active (w)))
2284 return;
2285
2286 {
2287 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 }
2291
2292 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io);
2294
2295 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare);
2298
2299 ev_start (EV_A_ (W)w, 1);
2300}
2301
2302void
2303ev_embed_stop (EV_P_ ev_embed *w)
2304{
2305 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w)))
2307 return;
2308
2309 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare);
2311
2312 ev_stop (EV_A_ (W)w);
2313}
2314#endif
2315
2316#if EV_FORK_ENABLE
2317void
2318ev_fork_start (EV_P_ ev_fork *w)
2319{
2320 if (expect_false (ev_is_active (w)))
2321 return;
2322
2323 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w;
2326}
2327
2328void
2329ev_fork_stop (EV_P_ ev_fork *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335 {
2336 int active = ((W)w)->active;
2337 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active;
2339 }
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
1383/*****************************************************************************/ 2345/*****************************************************************************/
1384 2346
1385struct ev_once 2347struct ev_once
1386{ 2348{
1387 struct ev_io io; 2349 ev_io io;
1388 struct ev_timer to; 2350 ev_timer to;
1389 void (*cb)(int revents, void *arg); 2351 void (*cb)(int revents, void *arg);
1390 void *arg; 2352 void *arg;
1391}; 2353};
1392 2354
1393static void 2355static void
1396 void (*cb)(int revents, void *arg) = once->cb; 2358 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 2359 void *arg = once->arg;
1398 2360
1399 ev_io_stop (EV_A_ &once->io); 2361 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 2362 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 2363 ev_free (once);
1402 2364
1403 cb (revents, arg); 2365 cb (revents, arg);
1404} 2366}
1405 2367
1406static void 2368static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents) 2369once_cb_io (EV_P_ ev_io *w, int revents)
1408{ 2370{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410} 2372}
1411 2373
1412static void 2374static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents) 2375once_cb_to (EV_P_ ev_timer *w, int revents)
1414{ 2376{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416} 2378}
1417 2379
1418void 2380void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 2382{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 2384
1423 if (!once) 2385 if (expect_false (!once))
2386 {
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 2388 return;
1426 { 2389 }
2390
1427 once->cb = cb; 2391 once->cb = cb;
1428 once->arg = arg; 2392 once->arg = arg;
1429 2393
1430 ev_watcher_init (&once->io, once_cb_io); 2394 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 2395 if (fd >= 0)
1432 { 2396 {
1433 ev_io_set (&once->io, fd, events); 2397 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 2398 ev_io_start (EV_A_ &once->io);
1435 } 2399 }
1436 2400
1437 ev_watcher_init (&once->to, once_cb_to); 2401 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 2402 if (timeout >= 0.)
1439 { 2403 {
1440 ev_timer_set (&once->to, timeout, 0.); 2404 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 2405 ev_timer_start (EV_A_ &once->to);
1442 }
1443 } 2406 }
1444} 2407}
1445 2408
2409#if EV_MULTIPLICITY
2410 #include "ev_wrap.h"
2411#endif
2412
2413#ifdef __cplusplus
2414}
2415#endif
2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines