ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.194 by root, Sat Dec 22 07:03:31 2007 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
144# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
146# endif 163# endif
147#endif 164#endif
148 165
149/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
150 167
151#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
152# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
153#endif 170#endif
154 171
171# define EV_USE_POLL 1 188# define EV_USE_POLL 1
172# endif 189# endif
173#endif 190#endif
174 191
175#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
176# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
177#endif 198#endif
178 199
179#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
181#endif 202#endif
183#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 205# define EV_USE_PORT 0
185#endif 206#endif
186 207
187#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
188# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
189#endif 214#endif
190 215
191#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 217# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
202# else 227# else
203# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
204# endif 229# endif
205#endif 230#endif
206 231
207/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 259
209#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
212#endif 263#endif
233 284
234#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 286# include <winsock.h>
236#endif 287#endif
237 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
238/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
239 308
240/* 309/*
241 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
257#else 326#else
258# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
259# define noinline 328# define noinline
260# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 330# define inline
262# endif 331# endif
263#endif 332#endif
264 333
265#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
280 349
281typedef ev_watcher *W; 350typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
284 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
288 362
289#ifdef _WIN32 363#ifdef _WIN32
290# include "ev_win32.c" 364# include "ev_win32.c"
291#endif 365#endif
292 366
313 perror (msg); 387 perror (msg);
314 abort (); 388 abort ();
315 } 389 }
316} 390}
317 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
318static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 408
320void 409void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 411{
323 alloc = cb; 412 alloc = cb;
324} 413}
325 414
326inline_speed void * 415inline_speed void *
327ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
328{ 417{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
330 419
331 if (!ptr && size) 420 if (!ptr && size)
332 { 421 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 423 abort ();
357 W w; 446 W w;
358 int events; 447 int events;
359} ANPENDING; 448} ANPENDING;
360 449
361#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
362typedef struct 452typedef struct
363{ 453{
364 WL head; 454 WL head;
365} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
366#endif 474#endif
367 475
368#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
369 477
370 struct ev_loop 478 struct ev_loop
441 ts.tv_sec = (time_t)delay; 549 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 551
444 nanosleep (&ts, 0); 552 nanosleep (&ts, 0);
445#elif defined(_WIN32) 553#elif defined(_WIN32)
446 Sleep (delay * 1e3); 554 Sleep ((unsigned long)(delay * 1e3));
447#else 555#else
448 struct timeval tv; 556 struct timeval tv;
449 557
450 tv.tv_sec = (time_t)delay; 558 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454#endif 562#endif
455 } 563 }
456} 564}
457 565
458/*****************************************************************************/ 566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 569
460int inline_size 570int inline_size
461array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
462{ 572{
463 int ncur = cur + 1; 573 int ncur = cur + 1;
464 574
465 do 575 do
466 ncur <<= 1; 576 ncur <<= 1;
467 while (cnt > ncur); 577 while (cnt > ncur);
468 578
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 581 {
472 ncur *= elem; 582 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 585 ncur /= elem;
476 } 586 }
477 587
478 return ncur; 588 return ncur;
590 700
591#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
592 if (events) 702 if (events)
593 { 703 {
594 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
595 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 } 711 }
598#endif 712#endif
599 713
600 { 714 {
688 } 802 }
689} 803}
690 804
691/*****************************************************************************/ 805/*****************************************************************************/
692 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
693void inline_speed 827void inline_speed
694upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
695{ 829{
696 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
697 832
698 while (k) 833 for (;;)
699 { 834 {
700 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 838
702 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
703 break; 855 break;
704 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
705 heap [k] = heap [p]; 919 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 921 k = p;
708 } 922 }
709 923
710 heap [k] = w; 924 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 926}
741 927
742void inline_size 928void inline_size
743adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
744{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 932 upheap (heap, k);
933 else
746 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
747} 947}
748 948
749/*****************************************************************************/ 949/*****************************************************************************/
750 950
751typedef struct 951typedef struct
752{ 952{
753 WL head; 953 WL head;
754 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
755} ANSIG; 955} ANSIG;
756 956
757static ANSIG *signals; 957static ANSIG *signals;
758static int signalmax; 958static int signalmax;
759 959
760static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 961
764void inline_size 962void inline_size
765signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
766{ 964{
767 while (count--) 965 while (count--)
771 969
772 ++base; 970 ++base;
773 } 971 }
774} 972}
775 973
776static void 974/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 975
827void inline_speed 976void inline_speed
828fd_intern (int fd) 977fd_intern (int fd)
829{ 978{
830#ifdef _WIN32 979#ifdef _WIN32
835 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 985#endif
837} 986}
838 987
839static void noinline 988static void noinline
840siginit (EV_P) 989evpipe_init (EV_P)
841{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
842 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
844 1010
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
848} 1079}
849 1080
850/*****************************************************************************/ 1081/*****************************************************************************/
851 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
852static WL childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
853 1121
854#ifndef _WIN32 1122#ifndef _WIN32
855 1123
856static ev_signal childev; 1124static ev_signal childev;
857 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
858void inline_speed 1130void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
860{ 1132{
861 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1135
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
864 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
865 { 1140 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1142 w->rpid = pid;
868 w->rstatus = status; 1143 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1145 }
1146 }
871} 1147}
872 1148
873#ifndef WCONTINUED 1149#ifndef WCONTINUED
874# define WCONTINUED 0 1150# define WCONTINUED 0
875#endif 1151#endif
884 if (!WCONTINUED 1160 if (!WCONTINUED
885 || errno != EINVAL 1161 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1163 return;
888 1164
889 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1168
893 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1172}
897 1173
898#endif 1174#endif
899 1175
900/*****************************************************************************/ 1176/*****************************************************************************/
972} 1248}
973 1249
974unsigned int 1250unsigned int
975ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
976{ 1252{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1256 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
980} 1260}
981 1261
982unsigned int 1262unsigned int
983ev_backend (EV_P) 1263ev_backend (EV_P)
984{ 1264{
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1295 have_monotonic = 1;
1016 } 1296 }
1017#endif 1297#endif
1018 1298
1019 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
1020 mn_now = get_clock (); 1300 mn_now = get_clock ();
1021 now_floor = mn_now; 1301 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1023 1303
1024 io_blocktime = 0.; 1304 io_blocktime = 0.;
1025 timeout_blocktime = 0.; 1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1026 1312
1027 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
1028#ifndef _WIN32 1314#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1316 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1320 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1323
1038 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1326
1047#if EV_USE_PORT 1327#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1329#endif
1050#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
1058#endif 1338#endif
1059#if EV_USE_SELECT 1339#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1341#endif
1062 1342
1063 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
1065 } 1345 }
1066} 1346}
1067 1347
1068static void noinline 1348static void noinline
1069loop_destroy (EV_P) 1349loop_destroy (EV_P)
1070{ 1350{
1071 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1072 1369
1073#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1075 close (fs_fd); 1372 close (fs_fd);
1076#endif 1373#endif
1113#if EV_FORK_ENABLE 1410#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1411 array_free (fork, EMPTY);
1115#endif 1412#endif
1116 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1118 1418
1119 backend = 0; 1419 backend = 0;
1120} 1420}
1121 1421
1422#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1123 1425
1124void inline_size 1426void inline_size
1125loop_fork (EV_P) 1427loop_fork (EV_P)
1126{ 1428{
1127#if EV_USE_PORT 1429#if EV_USE_PORT
1135#endif 1437#endif
1136#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1439 infy_fork (EV_A);
1138#endif 1440#endif
1139 1441
1140 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1141 { 1443 {
1142 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1143 1450
1144 ev_ref (EV_A); 1451 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1146 close (sigpipe [0]); 1461 close (evpipe [0]);
1147 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1148 1464
1149 while (pipe (sigpipe))
1150 syserr ("(libev) error creating pipe");
1151
1152 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1153 } 1468 }
1154 1469
1155 postfork = 0; 1470 postfork = 0;
1156} 1471}
1157 1472
1158#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1159struct ev_loop * 1475struct ev_loop *
1160ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1161{ 1477{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 1479
1179} 1495}
1180 1496
1181void 1497void
1182ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1183{ 1499{
1184 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1185} 1501}
1186 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1187#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1188 1603
1189#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1190struct ev_loop * 1605struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1192#else 1607#else
1193int 1608int
1194ev_default_loop (unsigned int flags) 1609ev_default_loop (unsigned int flags)
1195#endif 1610#endif
1196{ 1611{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1612 if (!ev_default_loop_ptr)
1202 { 1613 {
1203#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1205#else 1616#else
1208 1619
1209 loop_init (EV_A_ flags); 1620 loop_init (EV_A_ flags);
1210 1621
1211 if (ev_backend (EV_A)) 1622 if (ev_backend (EV_A))
1212 { 1623 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1624#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1236#ifndef _WIN32 1645#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1239#endif 1648#endif
1240 1649
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1248} 1651}
1249 1652
1250void 1653void
1251ev_default_fork (void) 1654ev_default_fork (void)
1253#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif 1658#endif
1256 1659
1257 if (backend) 1660 if (backend)
1258 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1259} 1662}
1260 1663
1261/*****************************************************************************/ 1664/*****************************************************************************/
1262 1665
1263void 1666void
1280 { 1683 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282 1685
1283 p->w->pending = 0; 1686 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1285 } 1689 }
1286 } 1690 }
1287} 1691}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 1692
1369#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1370void inline_size 1694void inline_size
1371idle_reify (EV_P) 1695idle_reify (EV_P)
1372{ 1696{
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break; 1709 break;
1386 } 1710 }
1387 } 1711 }
1388 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1389} 1815}
1390#endif 1816#endif
1391 1817
1392void inline_speed 1818void inline_speed
1393time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1422 */ 1848 */
1423 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1424 { 1850 {
1425 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1426 1852
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 1854 return; /* all is well */
1429 1855
1430 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 1857 mn_now = get_clock ();
1432 now_floor = mn_now; 1858 now_floor = mn_now;
1448#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1450#endif 1876#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1453 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1454 } 1884 }
1455 1885
1456 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1457 } 1887 }
1458} 1888}
1472static int loop_done; 1902static int loop_done;
1473 1903
1474void 1904void
1475ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1476{ 1906{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1907 loop_done = EVUNLOOP_CANCEL;
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480 1908
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1482 1910
1483 do 1911 do
1484 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1485#ifndef _WIN32 1917#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1488 { 1920 {
1489 curpid = getpid (); 1921 curpid = getpid ();
1530 1962
1531 waittime = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1532 1964
1533 if (timercnt) 1965 if (timercnt)
1534 { 1966 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 1968 if (waittime > to) waittime = to;
1537 } 1969 }
1538 1970
1539#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 1972 if (periodiccnt)
1541 { 1973 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 1975 if (waittime > to) waittime = to;
1544 } 1976 }
1545#endif 1977#endif
1546 1978
1547 if (expect_false (waittime < timeout_blocktime)) 1979 if (expect_false (waittime < timeout_blocktime))
1580 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 2015
1584 call_pending (EV_A); 2016 call_pending (EV_A);
1585
1586 } 2017 }
1587 while (expect_true (activecnt && !loop_done)); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1588 2023
1589 if (loop_done == EVUNLOOP_ONE) 2024 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2025 loop_done = EVUNLOOP_CANCEL;
1591} 2026}
1592 2027
1681 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1682 return; 2117 return;
1683 2118
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1685 2120
2121 EV_FREQUENT_CHECK;
2122
1686 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1688 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1689 2126
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1692} 2131}
1693 2132
1694void noinline 2133void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1696{ 2135{
1697 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1699 return; 2138 return;
1700 2139
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
1702 2143
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1705 2146
1706 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1707} 2150}
1708 2151
1709void noinline 2152void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1711{ 2154{
1712 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1713 return; 2156 return;
1714 2157
1715 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1716 2159
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1723 2170
2171 EV_FREQUENT_CHECK;
2172
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2174}
1726 2175
1727void noinline 2176void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2178{
1730 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1732 return; 2181 return;
1733 2182
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2183 EV_FREQUENT_CHECK;
1735 2184
1736 { 2185 {
1737 int active = ((W)w)->active; 2186 int active = ev_active (w);
1738 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1739 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1740 { 2193 {
1741 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1743 } 2196 }
1744 } 2197 }
1745 2198
1746 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1747 2202
1748 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1749} 2204}
1750 2205
1751void noinline 2206void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1753{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1754 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1755 { 2212 {
1756 if (w->repeat) 2213 if (w->repeat)
1757 { 2214 {
1758 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1760 } 2218 }
1761 else 2219 else
1762 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1763 } 2221 }
1764 else if (w->repeat) 2222 else if (w->repeat)
1765 { 2223 {
1766 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1768 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1769} 2229}
1770 2230
1771#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1772void noinline 2232void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2234{
1775 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1776 return; 2236 return;
1777 2237
1778 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2240 else if (w->interval)
1781 { 2241 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2245 }
1786 else 2246 else
1787 ((WT)w)->at = w->offset; 2247 ev_at (w) = w->offset;
1788 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1793 2257
2258 EV_FREQUENT_CHECK;
2259
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2261}
1796 2262
1797void noinline 2263void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2265{
1800 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1802 return; 2268 return;
1803 2269
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2270 EV_FREQUENT_CHECK;
1805 2271
1806 { 2272 {
1807 int active = ((W)w)->active; 2273 int active = ev_active (w);
1808 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1809 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2280 {
1811 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1813 } 2283 }
1814 } 2284 }
1815 2285
2286 EV_FREQUENT_CHECK;
2287
1816 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1817} 2289}
1818 2290
1819void noinline 2291void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1837#endif 2309#endif
1838 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
1839 return; 2311 return;
1840 2312
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
1842 2318
1843 { 2319 {
1844#ifndef _WIN32 2320#ifndef _WIN32
1845 sigset_t full, prev; 2321 sigset_t full, prev;
1846 sigfillset (&full); 2322 sigfillset (&full);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2335
1860 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1861 { 2337 {
1862#if _WIN32 2338#if _WIN32
1863 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1864#else 2340#else
1865 struct sigaction sa; 2341 struct sigaction sa;
1866 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1870#endif 2346#endif
1871 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
1872} 2350}
1873 2351
1874void noinline 2352void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2354{
1877 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1879 return; 2357 return;
1880 2358
2359 EV_FREQUENT_CHECK;
2360
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1883 2363
1884 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1885 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
1886} 2368}
1887 2369
1888void 2370void
1889ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1890{ 2372{
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 2375#endif
1894 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1895 return; 2377 return;
1896 2378
2379 EV_FREQUENT_CHECK;
2380
1897 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
1899} 2385}
1900 2386
1901void 2387void
1902ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1903{ 2389{
1904 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1906 return; 2392 return;
1907 2393
2394 EV_FREQUENT_CHECK;
2395
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1910} 2400}
1911 2401
1912#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
1913 2403
1914# ifdef _WIN32 2404# ifdef _WIN32
1932 if (w->wd < 0) 2422 if (w->wd < 0)
1933 { 2423 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935 2425
1936 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2430 {
1939 char path [4096]; 2431 char path [4096];
1940 strcpy (path, w->path); 2432 strcpy (path, w->path);
1941 2433
2140 else 2632 else
2141#endif 2633#endif
2142 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2143 2635
2144 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2145} 2639}
2146 2640
2147void 2641void
2148ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2149{ 2643{
2150 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2152 return; 2646 return;
2153 2647
2648 EV_FREQUENT_CHECK;
2649
2154#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2156#endif 2652#endif
2157 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2158 2654
2159 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2160} 2658}
2161#endif 2659#endif
2162 2660
2163#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2164void 2662void
2166{ 2664{
2167 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2168 return; 2666 return;
2169 2667
2170 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2171 2671
2172 { 2672 {
2173 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2174 2674
2175 ++idleall; 2675 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2177 2677
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2180 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2181} 2683}
2182 2684
2183void 2685void
2184ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2185{ 2687{
2186 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2188 return; 2690 return;
2189 2691
2692 EV_FREQUENT_CHECK;
2693
2190 { 2694 {
2191 int active = ((W)w)->active; 2695 int active = ev_active (w);
2192 2696
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 2699
2196 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2197 --idleall; 2701 --idleall;
2198 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2199} 2705}
2200#endif 2706#endif
2201 2707
2202void 2708void
2203ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 2710{
2205 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2206 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2207 2715
2208 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2211} 2721}
2212 2722
2213void 2723void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 2725{
2216 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2218 return; 2728 return;
2219 2729
2730 EV_FREQUENT_CHECK;
2731
2220 { 2732 {
2221 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2222 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2224 } 2737 }
2225 2738
2226 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2227} 2742}
2228 2743
2229void 2744void
2230ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2231{ 2746{
2232 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2233 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2234 2751
2235 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2238} 2757}
2239 2758
2240void 2759void
2241ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2242{ 2761{
2243 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2245 return; 2764 return;
2246 2765
2766 EV_FREQUENT_CHECK;
2767
2247 { 2768 {
2248 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2249 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2251 } 2773 }
2252 2774
2253 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2254} 2778}
2255 2779
2256#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2257void noinline 2781void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267 2791
2268 if (ev_cb (w)) 2792 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else 2794 else
2271 ev_embed_sweep (loop, w); 2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2272} 2796}
2273 2797
2274static void 2798static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 2800{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 2802
2279 fd_reify (w->other); 2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2280} 2812}
2813
2814#if 0
2815static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{
2818 ev_idle_stop (EV_A_ idle);
2819}
2820#endif
2281 2821
2282void 2822void
2283ev_embed_start (EV_P_ ev_embed *w) 2823ev_embed_start (EV_P_ ev_embed *w)
2284{ 2824{
2285 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2289 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2290 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2291 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2292 } 2832 }
2293 2833
2834 EV_FREQUENT_CHECK;
2835
2294 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2295 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2296 2838
2297 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2298 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2299 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2300 2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2301 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2302} 2848}
2303 2849
2304void 2850void
2305ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2306{ 2852{
2307 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2309 return; 2855 return;
2310 2856
2857 EV_FREQUENT_CHECK;
2858
2311 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2312 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2313 2861
2314 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2315} 2865}
2316#endif 2866#endif
2317 2867
2318#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2319void 2869void
2320ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2321{ 2871{
2322 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2323 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2324 2876
2325 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2326 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2327 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2328} 2882}
2329 2883
2330void 2884void
2331ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2332{ 2886{
2333 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2334 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2335 return; 2889 return;
2336 2890
2891 EV_FREQUENT_CHECK;
2892
2337 { 2893 {
2338 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2339 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2340 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2341 } 2898 }
2342 2899
2343 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2344} 2950}
2345#endif 2951#endif
2346 2952
2347/*****************************************************************************/ 2953/*****************************************************************************/
2348 2954

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines