ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.166 by root, Sat Dec 8 03:53:36 2007 UTC vs.
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 257#else
236# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
240#endif 263#endif
241 264
242#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
244 274
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 277
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 280
251typedef ev_watcher *W; 281typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
254 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
256 288
257#ifdef _WIN32 289#ifdef _WIN32
258# include "ev_win32.c" 290# include "ev_win32.c"
259#endif 291#endif
260 292
396{ 428{
397 return ev_rt_now; 429 return ev_rt_now;
398} 430}
399#endif 431#endif
400 432
433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
401int inline_size 460int inline_size
402array_nextsize (int elem, int cur, int cnt) 461array_nextsize (int elem, int cur, int cnt)
403{ 462{
404 int ncur = cur + 1; 463 int ncur = cur + 1;
405 464
417 } 476 }
418 477
419 return ncur; 478 return ncur;
420} 479}
421 480
422inline_speed void * 481static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 482array_realloc (int elem, void *base, int *cur, int cnt)
424{ 483{
425 *cur = array_nextsize (elem, *cur, cnt); 484 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 485 return ev_realloc (base, elem * *cur);
427} 486}
452 511
453void noinline 512void noinline
454ev_feed_event (EV_P_ void *w, int revents) 513ev_feed_event (EV_P_ void *w, int revents)
455{ 514{
456 W w_ = (W)w; 515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
457 517
458 if (expect_false (w_->pending)) 518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
459 { 521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 525 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 526 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 527}
469 528
470void inline_size 529void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 530queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 531{
473 int i; 532 int i;
474 533
475 for (i = 0; i < eventcnt; ++i) 534 for (i = 0; i < eventcnt; ++i)
507} 566}
508 567
509void 568void
510ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 570{
571 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
513} 573}
514 574
515void inline_size 575void inline_size
516fd_reify (EV_P) 576fd_reify (EV_P)
517{ 577{
521 { 581 {
522 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
524 ev_io *w; 584 ev_io *w;
525 585
526 int events = 0; 586 unsigned char events = 0;
527 587
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 589 events |= (unsigned char)w->events;
530 590
531#if EV_SELECT_IS_WINSOCKET 591#if EV_SELECT_IS_WINSOCKET
532 if (events) 592 if (events)
533 { 593 {
534 unsigned long argp; 594 unsigned long argp;
535 anfd->handle = _get_osfhandle (fd); 595 anfd->handle = _get_osfhandle (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 597 }
538#endif 598#endif
539 599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
540 anfd->reify = 0; 604 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
544 } 610 }
545 611
546 fdchangecnt = 0; 612 fdchangecnt = 0;
547} 613}
548 614
549void inline_size 615void inline_size
550fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
551{ 617{
552 if (expect_false (anfds [fd].reify)) 618 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
556 620
621 if (expect_true (!reify))
622 {
557 ++fdchangecnt; 623 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
560} 627}
561 628
562void inline_speed 629void inline_speed
563fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
564{ 631{
615 682
616 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 684 if (anfds [fd].events)
618 { 685 {
619 anfds [fd].events = 0; 686 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 688 }
622} 689}
623 690
624/*****************************************************************************/ 691/*****************************************************************************/
625 692
626void inline_speed 693void inline_speed
627upheap (WT *heap, int k) 694upheap (WT *heap, int k)
628{ 695{
629 WT w = heap [k]; 696 WT w = heap [k];
630 697
631 while (k && heap [k >> 1]->at > w->at) 698 while (k)
632 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
633 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
635 k >>= 1; 707 k = p;
636 } 708 }
637 709
638 heap [k] = w; 710 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
640
641} 712}
642 713
643void inline_speed 714void inline_speed
644downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
645{ 716{
646 WT w = heap [k]; 717 WT w = heap [k];
647 718
648 while (k < (N >> 1)) 719 for (;;)
649 { 720 {
650 int j = k << 1; 721 int c = (k << 1) + 1;
651 722
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 724 break;
657 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
658 heap [k] = heap [j]; 732 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
660 k = j; 735 k = c;
661 } 736 }
662 737
663 heap [k] = w; 738 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
665} 740}
747 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
750} 825}
751 826
752void inline_size 827void inline_speed
753fd_intern (int fd) 828fd_intern (int fd)
754{ 829{
755#ifdef _WIN32 830#ifdef _WIN32
756 int arg = 1; 831 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
773} 848}
774 849
775/*****************************************************************************/ 850/*****************************************************************************/
776 851
777static ev_child *childs [EV_PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
778 853
779#ifndef _WIN32 854#ifndef _WIN32
780 855
781static ev_signal childev; 856static ev_signal childev;
782 857
897} 972}
898 973
899unsigned int 974unsigned int
900ev_embeddable_backends (void) 975ev_embeddable_backends (void)
901{ 976{
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
902 return EVBACKEND_EPOLL 978 return EVBACKEND_KQUEUE
903 | EVBACKEND_KQUEUE
904 | EVBACKEND_PORT; 979 | EVBACKEND_PORT;
905} 980}
906 981
907unsigned int 982unsigned int
908ev_backend (EV_P) 983ev_backend (EV_P)
912 987
913unsigned int 988unsigned int
914ev_loop_count (EV_P) 989ev_loop_count (EV_P)
915{ 990{
916 return loop_count; 991 return loop_count;
992}
993
994void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
996{
997 io_blocktime = interval;
998}
999
1000void
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 timeout_blocktime = interval;
917} 1004}
918 1005
919static void noinline 1006static void noinline
920loop_init (EV_P_ unsigned int flags) 1007loop_init (EV_P_ unsigned int flags)
921{ 1008{
932 ev_rt_now = ev_time (); 1019 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1020 mn_now = get_clock ();
934 now_floor = mn_now; 1021 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1022 rtmn_diff = ev_rt_now - mn_now;
936 1023
1024 io_blocktime = 0.;
1025 timeout_blocktime = 0.;
1026
937 /* pid check not overridable via env */ 1027 /* pid check not overridable via env */
938#ifndef _WIN32 1028#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1029 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1030 curpid = getpid ();
941#endif 1031#endif
1009 array_free (pending, [i]); 1099 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1100#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1101 array_free (idle, [i]);
1012#endif 1102#endif
1013 } 1103 }
1104
1105 ev_free (anfds); anfdmax = 0;
1014 1106
1015 /* have to use the microsoft-never-gets-it-right macro */ 1107 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1108 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1109 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1110#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1111 array_free (periodic, EMPTY);
1112#endif
1113#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY);
1020#endif 1115#endif
1021 array_free (prepare, EMPTY); 1116 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1117 array_free (check, EMPTY);
1023 1118
1024 backend = 0; 1119 backend = 0;
1163 postfork = 1; 1258 postfork = 1;
1164} 1259}
1165 1260
1166/*****************************************************************************/ 1261/*****************************************************************************/
1167 1262
1263void
1264ev_invoke (EV_P_ void *w, int revents)
1265{
1266 EV_CB_INVOKE ((W)w, revents);
1267}
1268
1168void inline_speed 1269void inline_speed
1169call_pending (EV_P) 1270call_pending (EV_P)
1170{ 1271{
1171 int pri; 1272 int pri;
1172 1273
1188void inline_size 1289void inline_size
1189timers_reify (EV_P) 1290timers_reify (EV_P)
1190{ 1291{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now) 1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 { 1293 {
1193 ev_timer *w = timers [0]; 1294 ev_timer *w = (ev_timer *)timers [0];
1194 1295
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196 1297
1197 /* first reschedule or stop timer */ 1298 /* first reschedule or stop timer */
1198 if (w->repeat) 1299 if (w->repeat)
1201 1302
1202 ((WT)w)->at += w->repeat; 1303 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now) 1304 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now; 1305 ((WT)w)->at = mn_now;
1205 1306
1206 downheap ((WT *)timers, timercnt, 0); 1307 downheap (timers, timercnt, 0);
1207 } 1308 }
1208 else 1309 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1311
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1216void inline_size 1317void inline_size
1217periodics_reify (EV_P) 1318periodics_reify (EV_P)
1218{ 1319{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 { 1321 {
1221 ev_periodic *w = periodics [0]; 1322 ev_periodic *w = (ev_periodic *)periodics [0];
1222 1323
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1325
1225 /* first reschedule or stop timer */ 1326 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1327 if (w->reschedule_cb)
1227 { 1328 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1331 downheap (periodics, periodiccnt, 0);
1231 } 1332 }
1232 else if (w->interval) 1333 else if (w->interval)
1233 { 1334 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1338 downheap (periodics, periodiccnt, 0);
1237 } 1339 }
1238 else 1340 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240 1342
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1248 int i; 1350 int i;
1249 1351
1250 /* adjust periodics after time jump */ 1352 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i) 1353 for (i = 0; i < periodiccnt; ++i)
1252 { 1354 {
1253 ev_periodic *w = periodics [i]; 1355 ev_periodic *w = (ev_periodic *)periodics [i];
1254 1356
1255 if (w->reschedule_cb) 1357 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1359 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1361 }
1260 1362
1261 /* now rebuild the heap */ 1363 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1364 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1365 downheap (periodics, periodiccnt, i);
1264} 1366}
1265#endif 1367#endif
1266 1368
1267#if EV_IDLE_ENABLE 1369#if EV_IDLE_ENABLE
1268void inline_size 1370void inline_size
1285 } 1387 }
1286 } 1388 }
1287} 1389}
1288#endif 1390#endif
1289 1391
1290int inline_size 1392void inline_speed
1291time_update_monotonic (EV_P) 1393time_update (EV_P_ ev_tstamp max_block)
1292{ 1394{
1395 int i;
1396
1397#if EV_USE_MONOTONIC
1398 if (expect_true (have_monotonic))
1399 {
1400 ev_tstamp odiff = rtmn_diff;
1401
1293 mn_now = get_clock (); 1402 mn_now = get_clock ();
1294 1403
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1405 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1406 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1407 {
1297 ev_rt_now = rtmn_diff + mn_now; 1408 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1409 return;
1299 } 1410 }
1300 else 1411
1301 {
1302 now_floor = mn_now; 1412 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1413 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1414
1308void inline_size 1415 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1416 * on the choice of "4": one iteration isn't enough,
1310{ 1417 * in case we get preempted during the calls to
1311 int i; 1418 * ev_time and get_clock. a second call is almost guaranteed
1312 1419 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1420 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1421 * in the unlikely event of having been preempted here.
1315 { 1422 */
1316 if (time_update_monotonic (EV_A)) 1423 for (i = 4; --i; )
1317 { 1424 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1425 rtmn_diff = ev_rt_now - mn_now;
1331 1426
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1428 return; /* all is well */
1334 1429
1335 ev_rt_now = ev_time (); 1430 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1431 mn_now = get_clock ();
1337 now_floor = mn_now; 1432 now_floor = mn_now;
1338 } 1433 }
1339 1434
1340# if EV_PERIODIC_ENABLE 1435# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1436 periodics_reschedule (EV_A);
1342# endif 1437# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1440 }
1347 else 1441 else
1348#endif 1442#endif
1349 { 1443 {
1350 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1351 1445
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1447 {
1354#if EV_PERIODIC_ENABLE 1448#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1449 periodics_reschedule (EV_A);
1356#endif 1450#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1452 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 1454 }
1362 1455
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1500 call_pending (EV_A);
1408 } 1501 }
1409#endif 1502#endif
1410 1503
1411 /* queue check watchers (and execute them) */ 1504 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1505 if (expect_false (preparecnt))
1413 { 1506 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1508 call_pending (EV_A);
1416 } 1509 }
1425 /* update fd-related kernel structures */ 1518 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1519 fd_reify (EV_A);
1427 1520
1428 /* calculate blocking time */ 1521 /* calculate blocking time */
1429 { 1522 {
1430 ev_tstamp block; 1523 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.;
1431 1525
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1527 {
1436 /* update time to cancel out callback processing overhead */ 1528 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1529 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1530
1447 block = MAX_BLOCKTIME; 1531 waittime = MAX_BLOCKTIME;
1448 1532
1449 if (timercnt) 1533 if (timercnt)
1450 { 1534 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1452 if (block > to) block = to; 1536 if (waittime > to) waittime = to;
1453 } 1537 }
1454 1538
1455#if EV_PERIODIC_ENABLE 1539#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1540 if (periodiccnt)
1457 { 1541 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1543 if (waittime > to) waittime = to;
1460 } 1544 }
1461#endif 1545#endif
1462 1546
1463 if (expect_false (block < 0.)) block = 0.; 1547 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime;
1549
1550 sleeptime = waittime - backend_fudge;
1551
1552 if (expect_true (sleeptime > io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 {
1557 ev_sleep (sleeptime);
1558 waittime -= sleeptime;
1559 }
1464 } 1560 }
1465 1561
1466 ++loop_count; 1562 ++loop_count;
1467 backend_poll (EV_A_ block); 1563 backend_poll (EV_A_ waittime);
1564
1565 /* update ev_rt_now, do magic */
1566 time_update (EV_A_ waittime + sleeptime);
1468 } 1567 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1568
1473 /* queue pending timers and reschedule them */ 1569 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1570 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1571#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1572 periodics_reify (EV_A); /* absolute timers called first */
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1628 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 1629 w->pending = 0;
1534 } 1630 }
1535} 1631}
1536 1632
1537void 1633int
1538ev_clear_pending (EV_P_ void *w, int invoke) 1634ev_clear_pending (EV_P_ void *w)
1539{ 1635{
1540 W w_ = (W)w; 1636 W w_ = (W)w;
1541 int pending = w_->pending; 1637 int pending = w_->pending;
1542 1638
1543 if (pending) 1639 if (expect_true (pending))
1544 { 1640 {
1545 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1546
1547 w_->pending = 0; 1642 w_->pending = 0;
1548 p->w = 0; 1643 p->w = 0;
1549 1644 return p->events;
1550 if (invoke)
1551 EV_CB_INVOKE (w_, p->events);
1552 } 1645 }
1646 else
1647 return 0;
1553} 1648}
1554 1649
1555void inline_size 1650void inline_size
1556pri_adjust (EV_P_ W w) 1651pri_adjust (EV_P_ W w)
1557{ 1652{
1576 w->active = 0; 1671 w->active = 0;
1577} 1672}
1578 1673
1579/*****************************************************************************/ 1674/*****************************************************************************/
1580 1675
1581void 1676void noinline
1582ev_io_start (EV_P_ ev_io *w) 1677ev_io_start (EV_P_ ev_io *w)
1583{ 1678{
1584 int fd = w->fd; 1679 int fd = w->fd;
1585 1680
1586 if (expect_false (ev_is_active (w))) 1681 if (expect_false (ev_is_active (w)))
1588 1683
1589 assert (("ev_io_start called with negative fd", fd >= 0)); 1684 assert (("ev_io_start called with negative fd", fd >= 0));
1590 1685
1591 ev_start (EV_A_ (W)w, 1); 1686 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1688 wlist_add (&anfds[fd].head, (WL)w);
1594 1689
1595 fd_change (EV_A_ fd); 1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET;
1596} 1692}
1597 1693
1598void 1694void noinline
1599ev_io_stop (EV_P_ ev_io *w) 1695ev_io_stop (EV_P_ ev_io *w)
1600{ 1696{
1601 clear_pending (EV_A_ (W)w); 1697 clear_pending (EV_A_ (W)w);
1602 if (expect_false (!ev_is_active (w))) 1698 if (expect_false (!ev_is_active (w)))
1603 return; 1699 return;
1604 1700
1605 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1606 1702
1607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1703 wlist_del (&anfds[w->fd].head, (WL)w);
1608 ev_stop (EV_A_ (W)w); 1704 ev_stop (EV_A_ (W)w);
1609 1705
1610 fd_change (EV_A_ w->fd); 1706 fd_change (EV_A_ w->fd, 1);
1611} 1707}
1612 1708
1613void 1709void noinline
1614ev_timer_start (EV_P_ ev_timer *w) 1710ev_timer_start (EV_P_ ev_timer *w)
1615{ 1711{
1616 if (expect_false (ev_is_active (w))) 1712 if (expect_false (ev_is_active (w)))
1617 return; 1713 return;
1618 1714
1619 ((WT)w)->at += mn_now; 1715 ((WT)w)->at += mn_now;
1620 1716
1621 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1622 1718
1623 ev_start (EV_A_ (W)w, ++timercnt); 1719 ev_start (EV_A_ (W)w, ++timercnt);
1624 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1625 timers [timercnt - 1] = w; 1721 timers [timercnt - 1] = (WT)w;
1626 upheap ((WT *)timers, timercnt - 1); 1722 upheap (timers, timercnt - 1);
1627 1723
1628 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1629} 1725}
1630 1726
1631void 1727void noinline
1632ev_timer_stop (EV_P_ ev_timer *w) 1728ev_timer_stop (EV_P_ ev_timer *w)
1633{ 1729{
1634 clear_pending (EV_A_ (W)w); 1730 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 1731 if (expect_false (!ev_is_active (w)))
1636 return; 1732 return;
1637 1733
1638 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1639 1735
1640 { 1736 {
1641 int active = ((W)w)->active; 1737 int active = ((W)w)->active;
1642 1738
1643 if (expect_true (--active < --timercnt)) 1739 if (expect_true (--active < --timercnt))
1644 { 1740 {
1645 timers [active] = timers [timercnt]; 1741 timers [active] = timers [timercnt];
1646 adjustheap ((WT *)timers, timercnt, active); 1742 adjustheap (timers, timercnt, active);
1647 } 1743 }
1648 } 1744 }
1649 1745
1650 ((WT)w)->at -= mn_now; 1746 ((WT)w)->at -= mn_now;
1651 1747
1652 ev_stop (EV_A_ (W)w); 1748 ev_stop (EV_A_ (W)w);
1653} 1749}
1654 1750
1655void 1751void noinline
1656ev_timer_again (EV_P_ ev_timer *w) 1752ev_timer_again (EV_P_ ev_timer *w)
1657{ 1753{
1658 if (ev_is_active (w)) 1754 if (ev_is_active (w))
1659 { 1755 {
1660 if (w->repeat) 1756 if (w->repeat)
1661 { 1757 {
1662 ((WT)w)->at = mn_now + w->repeat; 1758 ((WT)w)->at = mn_now + w->repeat;
1663 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1759 adjustheap (timers, timercnt, ((W)w)->active - 1);
1664 } 1760 }
1665 else 1761 else
1666 ev_timer_stop (EV_A_ w); 1762 ev_timer_stop (EV_A_ w);
1667 } 1763 }
1668 else if (w->repeat) 1764 else if (w->repeat)
1671 ev_timer_start (EV_A_ w); 1767 ev_timer_start (EV_A_ w);
1672 } 1768 }
1673} 1769}
1674 1770
1675#if EV_PERIODIC_ENABLE 1771#if EV_PERIODIC_ENABLE
1676void 1772void noinline
1677ev_periodic_start (EV_P_ ev_periodic *w) 1773ev_periodic_start (EV_P_ ev_periodic *w)
1678{ 1774{
1679 if (expect_false (ev_is_active (w))) 1775 if (expect_false (ev_is_active (w)))
1680 return; 1776 return;
1681 1777
1683 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1684 else if (w->interval) 1780 else if (w->interval)
1685 { 1781 {
1686 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1687 /* this formula differs from the one in periodic_reify because we do not always round up */ 1783 /* this formula differs from the one in periodic_reify because we do not always round up */
1688 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1689 } 1785 }
1786 else
1787 ((WT)w)->at = w->offset;
1690 1788
1691 ev_start (EV_A_ (W)w, ++periodiccnt); 1789 ev_start (EV_A_ (W)w, ++periodiccnt);
1692 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1693 periodics [periodiccnt - 1] = w; 1791 periodics [periodiccnt - 1] = (WT)w;
1694 upheap ((WT *)periodics, periodiccnt - 1); 1792 upheap (periodics, periodiccnt - 1);
1695 1793
1696 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1697} 1795}
1698 1796
1699void 1797void noinline
1700ev_periodic_stop (EV_P_ ev_periodic *w) 1798ev_periodic_stop (EV_P_ ev_periodic *w)
1701{ 1799{
1702 clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 1801 if (expect_false (!ev_is_active (w)))
1704 return; 1802 return;
1705 1803
1706 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1707 1805
1708 { 1806 {
1709 int active = ((W)w)->active; 1807 int active = ((W)w)->active;
1710 1808
1711 if (expect_true (--active < --periodiccnt)) 1809 if (expect_true (--active < --periodiccnt))
1712 { 1810 {
1713 periodics [active] = periodics [periodiccnt]; 1811 periodics [active] = periodics [periodiccnt];
1714 adjustheap ((WT *)periodics, periodiccnt, active); 1812 adjustheap (periodics, periodiccnt, active);
1715 } 1813 }
1716 } 1814 }
1717 1815
1718 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1719} 1817}
1720 1818
1721void 1819void noinline
1722ev_periodic_again (EV_P_ ev_periodic *w) 1820ev_periodic_again (EV_P_ ev_periodic *w)
1723{ 1821{
1724 /* TODO: use adjustheap and recalculation */ 1822 /* TODO: use adjustheap and recalculation */
1725 ev_periodic_stop (EV_A_ w); 1823 ev_periodic_stop (EV_A_ w);
1726 ev_periodic_start (EV_A_ w); 1824 ev_periodic_start (EV_A_ w);
1729 1827
1730#ifndef SA_RESTART 1828#ifndef SA_RESTART
1731# define SA_RESTART 0 1829# define SA_RESTART 0
1732#endif 1830#endif
1733 1831
1734void 1832void noinline
1735ev_signal_start (EV_P_ ev_signal *w) 1833ev_signal_start (EV_P_ ev_signal *w)
1736{ 1834{
1737#if EV_MULTIPLICITY 1835#if EV_MULTIPLICITY
1738 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1739#endif 1837#endif
1740 if (expect_false (ev_is_active (w))) 1838 if (expect_false (ev_is_active (w)))
1741 return; 1839 return;
1742 1840
1743 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1744 1842
1843 {
1844#ifndef _WIN32
1845 sigset_t full, prev;
1846 sigfillset (&full);
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1851
1852#ifndef _WIN32
1853 sigprocmask (SIG_SETMASK, &prev, 0);
1854#endif
1855 }
1856
1745 ev_start (EV_A_ (W)w, 1); 1857 ev_start (EV_A_ (W)w, 1);
1746 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1747 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1858 wlist_add (&signals [w->signum - 1].head, (WL)w);
1748 1859
1749 if (!((WL)w)->next) 1860 if (!((WL)w)->next)
1750 { 1861 {
1751#if _WIN32 1862#if _WIN32
1752 signal (w->signum, sighandler); 1863 signal (w->signum, sighandler);
1758 sigaction (w->signum, &sa, 0); 1869 sigaction (w->signum, &sa, 0);
1759#endif 1870#endif
1760 } 1871 }
1761} 1872}
1762 1873
1763void 1874void noinline
1764ev_signal_stop (EV_P_ ev_signal *w) 1875ev_signal_stop (EV_P_ ev_signal *w)
1765{ 1876{
1766 clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1767 if (expect_false (!ev_is_active (w))) 1878 if (expect_false (!ev_is_active (w)))
1768 return; 1879 return;
1769 1880
1770 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 1882 ev_stop (EV_A_ (W)w);
1772 1883
1773 if (!signals [w->signum - 1].head) 1884 if (!signals [w->signum - 1].head)
1774 signal (w->signum, SIG_DFL); 1885 signal (w->signum, SIG_DFL);
1775} 1886}
1782#endif 1893#endif
1783 if (expect_false (ev_is_active (w))) 1894 if (expect_false (ev_is_active (w)))
1784 return; 1895 return;
1785 1896
1786 ev_start (EV_A_ (W)w, 1); 1897 ev_start (EV_A_ (W)w, 1);
1787 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1788} 1899}
1789 1900
1790void 1901void
1791ev_child_stop (EV_P_ ev_child *w) 1902ev_child_stop (EV_P_ ev_child *w)
1792{ 1903{
1793 clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1794 if (expect_false (!ev_is_active (w))) 1905 if (expect_false (!ev_is_active (w)))
1795 return; 1906 return;
1796 1907
1797 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1798 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1799} 1910}
1800 1911
1801#if EV_STAT_ENABLE 1912#if EV_STAT_ENABLE
1802 1913
2144 2255
2145#if EV_EMBED_ENABLE 2256#if EV_EMBED_ENABLE
2146void noinline 2257void noinline
2147ev_embed_sweep (EV_P_ ev_embed *w) 2258ev_embed_sweep (EV_P_ ev_embed *w)
2148{ 2259{
2149 ev_loop (w->loop, EVLOOP_NONBLOCK); 2260 ev_loop (w->other, EVLOOP_NONBLOCK);
2150} 2261}
2151 2262
2152static void 2263static void
2153embed_cb (EV_P_ ev_io *io, int revents) 2264embed_io_cb (EV_P_ ev_io *io, int revents)
2154{ 2265{
2155 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2156 2267
2157 if (ev_cb (w)) 2268 if (ev_cb (w))
2158 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2269 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2159 else 2270 else
2160 ev_embed_sweep (loop, w); 2271 ev_loop (w->other, EVLOOP_NONBLOCK);
2161} 2272}
2273
2274static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278
2279 {
2280 struct ev_loop *loop = w->other;
2281
2282 while (fdchangecnt)
2283 {
2284 fd_reify (EV_A);
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2286 }
2287 }
2288}
2289
2290#if 0
2291static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2293{
2294 ev_idle_stop (EV_A_ idle);
2295}
2296#endif
2162 2297
2163void 2298void
2164ev_embed_start (EV_P_ ev_embed *w) 2299ev_embed_start (EV_P_ ev_embed *w)
2165{ 2300{
2166 if (expect_false (ev_is_active (w))) 2301 if (expect_false (ev_is_active (w)))
2167 return; 2302 return;
2168 2303
2169 { 2304 {
2170 struct ev_loop *loop = w->loop; 2305 struct ev_loop *loop = w->other;
2171 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2172 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2173 } 2308 }
2174 2309
2175 ev_set_priority (&w->io, ev_priority (w)); 2310 ev_set_priority (&w->io, ev_priority (w));
2176 ev_io_start (EV_A_ &w->io); 2311 ev_io_start (EV_A_ &w->io);
2177 2312
2313 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare);
2316
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318
2178 ev_start (EV_A_ (W)w, 1); 2319 ev_start (EV_A_ (W)w, 1);
2179} 2320}
2180 2321
2181void 2322void
2182ev_embed_stop (EV_P_ ev_embed *w) 2323ev_embed_stop (EV_P_ ev_embed *w)
2184 clear_pending (EV_A_ (W)w); 2325 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2326 if (expect_false (!ev_is_active (w)))
2186 return; 2327 return;
2187 2328
2188 ev_io_stop (EV_A_ &w->io); 2329 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare);
2189 2331
2190 ev_stop (EV_A_ (W)w); 2332 ev_stop (EV_A_ (W)w);
2191} 2333}
2192#endif 2334#endif
2193 2335
2282 ev_timer_set (&once->to, timeout, 0.); 2424 ev_timer_set (&once->to, timeout, 0.);
2283 ev_timer_start (EV_A_ &once->to); 2425 ev_timer_start (EV_A_ &once->to);
2284 } 2426 }
2285} 2427}
2286 2428
2429#if EV_MULTIPLICITY
2430 #include "ev_wrap.h"
2431#endif
2432
2287#ifdef __cplusplus 2433#ifdef __cplusplus
2288} 2434}
2289#endif 2435#endif
2290 2436

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines