ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
233 293
234#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 295# include <winsock.h>
236#endif 296#endif
237 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
238/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
239 317
240/* 318/*
241 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
257#else 335#else
258# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
259# define noinline 337# define noinline
260# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 339# define inline
262# endif 340# endif
263#endif 341#endif
264 342
265#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
280 358
281typedef ev_watcher *W; 359typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
284 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
288 371
289#ifdef _WIN32 372#ifdef _WIN32
290# include "ev_win32.c" 373# include "ev_win32.c"
291#endif 374#endif
292 375
313 perror (msg); 396 perror (msg);
314 abort (); 397 abort ();
315 } 398 }
316} 399}
317 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
318static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 417
320void 418void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 420{
323 alloc = cb; 421 alloc = cb;
324} 422}
325 423
326inline_speed void * 424inline_speed void *
327ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
328{ 426{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
330 428
331 if (!ptr && size) 429 if (!ptr && size)
332 { 430 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 432 abort ();
357 W w; 455 W w;
358 int events; 456 int events;
359} ANPENDING; 457} ANPENDING;
360 458
361#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
362typedef struct 461typedef struct
363{ 462{
364 WL head; 463 WL head;
365} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
366#endif 483#endif
367 484
368#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
369 486
370 struct ev_loop 487 struct ev_loop
441 ts.tv_sec = (time_t)delay; 558 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 560
444 nanosleep (&ts, 0); 561 nanosleep (&ts, 0);
445#elif defined(_WIN32) 562#elif defined(_WIN32)
446 Sleep (delay * 1e3); 563 Sleep ((unsigned long)(delay * 1e3));
447#else 564#else
448 struct timeval tv; 565 struct timeval tv;
449 566
450 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454#endif 571#endif
455 } 572 }
456} 573}
457 574
458/*****************************************************************************/ 575/*****************************************************************************/
576
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 578
460int inline_size 579int inline_size
461array_nextsize (int elem, int cur, int cnt) 580array_nextsize (int elem, int cur, int cnt)
462{ 581{
463 int ncur = cur + 1; 582 int ncur = cur + 1;
464 583
465 do 584 do
466 ncur <<= 1; 585 ncur <<= 1;
467 while (cnt > ncur); 586 while (cnt > ncur);
468 587
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 590 {
472 ncur *= elem; 591 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 593 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 594 ncur /= elem;
476 } 595 }
477 596
478 return ncur; 597 return ncur;
589 events |= (unsigned char)w->events; 708 events |= (unsigned char)w->events;
590 709
591#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
592 if (events) 711 if (events)
593 { 712 {
594 unsigned long argp; 713 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
595 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
718 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 720 }
598#endif 721#endif
599 722
600 { 723 {
601 unsigned char o_events = anfd->events; 724 unsigned char o_events = anfd->events;
654{ 777{
655 int fd; 778 int fd;
656 779
657 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 781 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
661} 784}
662 785
663/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 787static void noinline
688 } 811 }
689} 812}
690 813
691/*****************************************************************************/ 814/*****************************************************************************/
692 815
816/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree.
820 */
821
822/*
823 * at the moment we allow libev the luxury of two heaps,
824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
825 * which is more cache-efficient.
826 * the difference is about 5% with 50000+ watchers.
827 */
828#if EV_USE_4HEAP
829
830#define DHEAP 4
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k))
834
835/* away from the root */
693void inline_speed 836void inline_speed
694upheap (WT *heap, int k) 837downheap (ANHE *heap, int N, int k)
695{ 838{
696 WT w = heap [k]; 839 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0;
697 841
698 while (k) 842 for (;;)
699 { 843 {
700 int p = (k - 1) >> 1; 844 ev_tstamp minat;
845 ANHE *minpos;
846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 847
702 if (heap [p]->at <= w->at) 848 /* find minimum child */
849 if (expect_true (pos + DHEAP - 1 < E))
850 {
851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
855 }
856 else if (pos < E)
857 {
858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
860 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
861 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
862 }
863 else
703 break; 864 break;
704 865
866 if (ANHE_at (he) <= minat)
867 break;
868
869 heap [k] = *minpos;
870 ev_active (ANHE_w (*minpos)) = k;
871
872 k = minpos - heap;
873 }
874
875 heap [k] = he;
876 ev_active (ANHE_w (he)) = k;
877}
878
879#else /* 4HEAP */
880
881#define HEAP0 1
882#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p))
884
885/* away from the root */
886void inline_speed
887downheap (ANHE *heap, int N, int k)
888{
889 ANHE he = heap [k];
890
891 for (;;)
892 {
893 int c = k << 1;
894
895 if (c > N + HEAP0 - 1)
896 break;
897
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0;
900
901 if (ANHE_at (he) <= ANHE_at (heap [c]))
902 break;
903
904 heap [k] = heap [c];
905 ev_active (ANHE_w (heap [k])) = k;
906
907 k = c;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913#endif
914
915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
705 heap [k] = heap [p]; 928 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 930 k = p;
708 } 931 }
709 932
710 heap [k] = w; 933 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 934 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 935}
741 936
742void inline_size 937void inline_size
743adjustheap (WT *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
744{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 941 upheap (heap, k);
942 else
746 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
747} 956}
748 957
749/*****************************************************************************/ 958/*****************************************************************************/
750 959
751typedef struct 960typedef struct
752{ 961{
753 WL head; 962 WL head;
754 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
755} ANSIG; 964} ANSIG;
756 965
757static ANSIG *signals; 966static ANSIG *signals;
758static int signalmax; 967static int signalmax;
759 968
760static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 970
764void inline_size 971void inline_size
765signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
766{ 973{
767 while (count--) 974 while (count--)
771 978
772 ++base; 979 ++base;
773 } 980 }
774} 981}
775 982
776static void 983/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 984
827void inline_speed 985void inline_speed
828fd_intern (int fd) 986fd_intern (int fd)
829{ 987{
830#ifdef _WIN32 988#ifdef _WIN32
831 int arg = 1; 989 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 991#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 994#endif
837} 995}
838 996
839static void noinline 997static void noinline
840siginit (EV_P) 998evpipe_init (EV_P)
841{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
842 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
844 1019
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
848} 1088}
849 1089
850/*****************************************************************************/ 1090/*****************************************************************************/
851 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
852static WL childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
853 1130
854#ifndef _WIN32 1131#ifndef _WIN32
855 1132
856static ev_signal childev; 1133static ev_signal childev;
857 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
858void inline_speed 1139void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
860{ 1141{
861 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1144
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
864 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
865 { 1149 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1151 w->rpid = pid;
868 w->rstatus = status; 1152 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1154 }
1155 }
871} 1156}
872 1157
873#ifndef WCONTINUED 1158#ifndef WCONTINUED
874# define WCONTINUED 0 1159# define WCONTINUED 0
875#endif 1160#endif
884 if (!WCONTINUED 1169 if (!WCONTINUED
885 || errno != EINVAL 1170 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1172 return;
888 1173
889 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1177
893 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1181}
897 1182
898#endif 1183#endif
899 1184
900/*****************************************************************************/ 1185/*****************************************************************************/
972} 1257}
973 1258
974unsigned int 1259unsigned int
975ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
976{ 1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1265 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
980} 1269}
981 1270
982unsigned int 1271unsigned int
983ev_backend (EV_P) 1272ev_backend (EV_P)
984{ 1273{
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1304 have_monotonic = 1;
1016 } 1305 }
1017#endif 1306#endif
1018 1307
1019 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
1020 mn_now = get_clock (); 1309 mn_now = get_clock ();
1021 now_floor = mn_now; 1310 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1023 1312
1024 io_blocktime = 0.; 1313 io_blocktime = 0.;
1025 timeout_blocktime = 0.; 1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1026 1321
1027 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
1028#ifndef _WIN32 1323#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1325 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1329 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1332
1038 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1335
1047#if EV_USE_PORT 1336#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1338#endif
1050#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
1058#endif 1347#endif
1059#if EV_USE_SELECT 1348#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1350#endif
1062 1351
1063 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
1065 } 1354 }
1066} 1355}
1067 1356
1068static void noinline 1357static void noinline
1069loop_destroy (EV_P) 1358loop_destroy (EV_P)
1070{ 1359{
1071 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1072 1378
1073#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
1075 close (fs_fd); 1381 close (fs_fd);
1076#endif 1382#endif
1113#if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1420 array_free (fork, EMPTY);
1115#endif 1421#endif
1116 array_free (prepare, EMPTY); 1422 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1118 1427
1119 backend = 0; 1428 backend = 0;
1120} 1429}
1121 1430
1431#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1123 1434
1124void inline_size 1435void inline_size
1125loop_fork (EV_P) 1436loop_fork (EV_P)
1126{ 1437{
1127#if EV_USE_PORT 1438#if EV_USE_PORT
1135#endif 1446#endif
1136#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1448 infy_fork (EV_A);
1138#endif 1449#endif
1139 1450
1140 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1141 { 1452 {
1142 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1143 1459
1144 ev_ref (EV_A); 1460 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1146 close (sigpipe [0]); 1470 close (evpipe [0]);
1147 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1148 1473
1149 while (pipe (sigpipe))
1150 syserr ("(libev) error creating pipe");
1151
1152 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1153 } 1477 }
1154 1478
1155 postfork = 0; 1479 postfork = 0;
1156} 1480}
1157 1481
1158#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
1483
1159struct ev_loop * 1484struct ev_loop *
1160ev_loop_new (unsigned int flags) 1485ev_loop_new (unsigned int flags)
1161{ 1486{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 1488
1179} 1504}
1180 1505
1181void 1506void
1182ev_loop_fork (EV_P) 1507ev_loop_fork (EV_P)
1183{ 1508{
1184 postfork = 1; 1509 postfork = 1; /* must be in line with ev_default_fork */
1185} 1510}
1186 1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1187#endif 1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
1188 1612
1189#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1190struct ev_loop * 1614struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
1192#else 1616#else
1193int 1617int
1194ev_default_loop (unsigned int flags) 1618ev_default_loop (unsigned int flags)
1195#endif 1619#endif
1196{ 1620{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1621 if (!ev_default_loop_ptr)
1202 { 1622 {
1203#if EV_MULTIPLICITY 1623#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1205#else 1625#else
1208 1628
1209 loop_init (EV_A_ flags); 1629 loop_init (EV_A_ flags);
1210 1630
1211 if (ev_backend (EV_A)) 1631 if (ev_backend (EV_A))
1212 { 1632 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1633#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1634 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1635 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1636 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1637 ev_unref (EV_A); /* child watcher should not keep loop alive */
1236#ifndef _WIN32 1654#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1655 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1656 ev_signal_stop (EV_A_ &childev);
1239#endif 1657#endif
1240 1658
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1659 loop_destroy (EV_A);
1248} 1660}
1249 1661
1250void 1662void
1251ev_default_fork (void) 1663ev_default_fork (void)
1253#if EV_MULTIPLICITY 1665#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1666 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif 1667#endif
1256 1668
1257 if (backend) 1669 if (backend)
1258 postfork = 1; 1670 postfork = 1; /* must be in line with ev_loop_fork */
1259} 1671}
1260 1672
1261/*****************************************************************************/ 1673/*****************************************************************************/
1262 1674
1263void 1675void
1280 { 1692 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282 1694
1283 p->w->pending = 0; 1695 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1285 } 1698 }
1286 } 1699 }
1287} 1700}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 1701
1369#if EV_IDLE_ENABLE 1702#if EV_IDLE_ENABLE
1370void inline_size 1703void inline_size
1371idle_reify (EV_P) 1704idle_reify (EV_P)
1372{ 1705{
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1717 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break; 1718 break;
1386 } 1719 }
1387 } 1720 }
1388 } 1721 }
1722}
1723#endif
1724
1725void inline_size
1726timers_reify (EV_P)
1727{
1728 EV_FREQUENT_CHECK;
1729
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 {
1739 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now;
1742
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744
1745 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0);
1747 }
1748 else
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750
1751 EV_FREQUENT_CHECK;
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 }
1754}
1755
1756#if EV_PERIODIC_ENABLE
1757void inline_size
1758periodics_reify (EV_P)
1759{
1760 EV_FREQUENT_CHECK;
1761
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1765
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0);
1777 }
1778 else if (w->interval)
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1802 }
1803}
1804
1805static void noinline
1806periodics_reschedule (EV_P)
1807{
1808 int i;
1809
1810 /* adjust periodics after time jump */
1811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1812 {
1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1814
1815 if (w->reschedule_cb)
1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1817 else if (w->interval)
1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1819
1820 ANHE_at_cache (periodics [i]);
1821 }
1822
1823 reheap (periodics, periodiccnt);
1389} 1824}
1390#endif 1825#endif
1391 1826
1392void inline_speed 1827void inline_speed
1393time_update (EV_P_ ev_tstamp max_block) 1828time_update (EV_P_ ev_tstamp max_block)
1422 */ 1857 */
1423 for (i = 4; --i; ) 1858 for (i = 4; --i; )
1424 { 1859 {
1425 rtmn_diff = ev_rt_now - mn_now; 1860 rtmn_diff = ev_rt_now - mn_now;
1426 1861
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 1863 return; /* all is well */
1429 1864
1430 ev_rt_now = ev_time (); 1865 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 1866 mn_now = get_clock ();
1432 now_floor = mn_now; 1867 now_floor = mn_now;
1448#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 1884 periodics_reschedule (EV_A);
1450#endif 1885#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */ 1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i) 1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1453 ((WT)timers [i])->at += ev_rt_now - mn_now; 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1454 } 1893 }
1455 1894
1456 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1457 } 1896 }
1458} 1897}
1472static int loop_done; 1911static int loop_done;
1473 1912
1474void 1913void
1475ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1476{ 1915{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480 1917
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1482 1919
1483 do 1920 do
1484 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1485#ifndef _WIN32 1926#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1488 { 1929 {
1489 curpid = getpid (); 1930 curpid = getpid ();
1530 1971
1531 waittime = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1532 1973
1533 if (timercnt) 1974 if (timercnt)
1534 { 1975 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 1977 if (waittime > to) waittime = to;
1537 } 1978 }
1538 1979
1539#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 1981 if (periodiccnt)
1541 { 1982 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 1984 if (waittime > to) waittime = to;
1544 } 1985 }
1545#endif 1986#endif
1546 1987
1547 if (expect_false (waittime < timeout_blocktime)) 1988 if (expect_false (waittime < timeout_blocktime))
1580 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 2024
1584 call_pending (EV_A); 2025 call_pending (EV_A);
1585
1586 } 2026 }
1587 while (expect_true (activecnt && !loop_done)); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1588 2032
1589 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1591} 2035}
1592 2036
1681 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1682 return; 2126 return;
1683 2127
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1685 2129
2130 EV_FREQUENT_CHECK;
2131
1686 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1688 wlist_add (&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1689 2135
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET; 2137 w->events &= ~EV_IOFDSET;
2138
2139 EV_FREQUENT_CHECK;
1692} 2140}
1693 2141
1694void noinline 2142void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1696{ 2144{
1697 clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2146 if (expect_false (!ev_is_active (w)))
1699 return; 2147 return;
1700 2148
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150
2151 EV_FREQUENT_CHECK;
1702 2152
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1705 2155
1706 fd_change (EV_A_ w->fd, 1); 2156 fd_change (EV_A_ w->fd, 1);
2157
2158 EV_FREQUENT_CHECK;
1707} 2159}
1708 2160
1709void noinline 2161void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
1711{ 2163{
1712 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1713 return; 2165 return;
1714 2166
1715 ((WT)w)->at += mn_now; 2167 ev_at (w) += mn_now;
1716 2168
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2177 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w));
1723 2179
2180 EV_FREQUENT_CHECK;
2181
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2183}
1726 2184
1727void noinline 2185void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2187{
1730 clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2189 if (expect_false (!ev_is_active (w)))
1732 return; 2190 return;
1733 2191
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2192 EV_FREQUENT_CHECK;
1735 2193
1736 { 2194 {
1737 int active = ((W)w)->active; 2195 int active = ev_active (w);
1738 2196
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198
2199 --timercnt;
2200
1739 if (expect_true (--active < --timercnt)) 2201 if (expect_true (active < timercnt + HEAP0))
1740 { 2202 {
1741 timers [active] = timers [timercnt]; 2203 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2204 adjustheap (timers, timercnt, active);
1743 } 2205 }
1744 } 2206 }
1745 2207
1746 ((WT)w)->at -= mn_now; 2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now;
1747 2211
1748 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1749} 2213}
1750 2214
1751void noinline 2215void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
1753{ 2217{
2218 EV_FREQUENT_CHECK;
2219
1754 if (ev_is_active (w)) 2220 if (ev_is_active (w))
1755 { 2221 {
1756 if (w->repeat) 2222 if (w->repeat)
1757 { 2223 {
1758 ((WT)w)->at = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2225 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2226 adjustheap (timers, timercnt, ev_active (w));
1760 } 2227 }
1761 else 2228 else
1762 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
1763 } 2230 }
1764 else if (w->repeat) 2231 else if (w->repeat)
1765 { 2232 {
1766 w->at = w->repeat; 2233 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
1768 } 2235 }
2236
2237 EV_FREQUENT_CHECK;
1769} 2238}
1770 2239
1771#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1772void noinline 2241void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2243{
1775 if (expect_false (ev_is_active (w))) 2244 if (expect_false (ev_is_active (w)))
1776 return; 2245 return;
1777 2246
1778 if (w->reschedule_cb) 2247 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2249 else if (w->interval)
1781 { 2250 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2252 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2254 }
1786 else 2255 else
1787 ((WT)w)->at = w->offset; 2256 ev_at (w) = w->offset;
1788 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2264 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w));
1793 2266
2267 EV_FREQUENT_CHECK;
2268
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2270}
1796 2271
1797void noinline 2272void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2273ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2274{
1800 clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2276 if (expect_false (!ev_is_active (w)))
1802 return; 2277 return;
1803 2278
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2279 EV_FREQUENT_CHECK;
1805 2280
1806 { 2281 {
1807 int active = ((W)w)->active; 2282 int active = ev_active (w);
1808 2283
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285
2286 --periodiccnt;
2287
1809 if (expect_true (--active < --periodiccnt)) 2288 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2289 {
1811 periodics [active] = periodics [periodiccnt]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2291 adjustheap (periodics, periodiccnt, active);
1813 } 2292 }
1814 } 2293 }
1815 2294
2295 EV_FREQUENT_CHECK;
2296
1816 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1817} 2298}
1818 2299
1819void noinline 2300void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2301ev_periodic_again (EV_P_ ev_periodic *w)
1837#endif 2318#endif
1838 if (expect_false (ev_is_active (w))) 2319 if (expect_false (ev_is_active (w)))
1839 return; 2320 return;
1840 2321
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2323
2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
1842 2327
1843 { 2328 {
1844#ifndef _WIN32 2329#ifndef _WIN32
1845 sigset_t full, prev; 2330 sigset_t full, prev;
1846 sigfillset (&full); 2331 sigfillset (&full);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2343 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2344
1860 if (!((WL)w)->next) 2345 if (!((WL)w)->next)
1861 { 2346 {
1862#if _WIN32 2347#if _WIN32
1863 signal (w->signum, sighandler); 2348 signal (w->signum, ev_sighandler);
1864#else 2349#else
1865 struct sigaction sa; 2350 struct sigaction sa;
1866 sa.sa_handler = sighandler; 2351 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
1870#endif 2355#endif
1871 } 2356 }
2357
2358 EV_FREQUENT_CHECK;
1872} 2359}
1873 2360
1874void noinline 2361void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2363{
1877 clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
1879 return; 2366 return;
1880 2367
2368 EV_FREQUENT_CHECK;
2369
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1883 2372
1884 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
1885 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
2375
2376 EV_FREQUENT_CHECK;
1886} 2377}
1887 2378
1888void 2379void
1889ev_child_start (EV_P_ ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
1890{ 2381{
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 2384#endif
1894 if (expect_false (ev_is_active (w))) 2385 if (expect_false (ev_is_active (w)))
1895 return; 2386 return;
1896 2387
2388 EV_FREQUENT_CHECK;
2389
1897 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2392
2393 EV_FREQUENT_CHECK;
1899} 2394}
1900 2395
1901void 2396void
1902ev_child_stop (EV_P_ ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
1903{ 2398{
1904 clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
1906 return; 2401 return;
1907 2402
2403 EV_FREQUENT_CHECK;
2404
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
1910} 2409}
1911 2410
1912#if EV_STAT_ENABLE 2411#if EV_STAT_ENABLE
1913 2412
1914# ifdef _WIN32 2413# ifdef _WIN32
1932 if (w->wd < 0) 2431 if (w->wd < 0)
1933 { 2432 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935 2434
1936 /* monitor some parent directory for speedup hints */ 2435 /* monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */
2437 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2439 {
1939 char path [4096]; 2440 char path [4096];
1940 strcpy (path, w->path); 2441 strcpy (path, w->path);
1941 2442
2067 } 2568 }
2068 2569
2069 } 2570 }
2070} 2571}
2071 2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 2579#endif
2073 2580
2074void 2581void
2075ev_stat_stat (EV_P_ ev_stat *w) 2582ev_stat_stat (EV_P_ ev_stat *w)
2076{ 2583{
2140 else 2647 else
2141#endif 2648#endif
2142 ev_timer_start (EV_A_ &w->timer); 2649 ev_timer_start (EV_A_ &w->timer);
2143 2650
2144 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2145} 2654}
2146 2655
2147void 2656void
2148ev_stat_stop (EV_P_ ev_stat *w) 2657ev_stat_stop (EV_P_ ev_stat *w)
2149{ 2658{
2150 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
2152 return; 2661 return;
2153 2662
2663 EV_FREQUENT_CHECK;
2664
2154#if EV_USE_INOTIFY 2665#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 2666 infy_del (EV_A_ w);
2156#endif 2667#endif
2157 ev_timer_stop (EV_A_ &w->timer); 2668 ev_timer_stop (EV_A_ &w->timer);
2158 2669
2159 ev_stop (EV_A_ (W)w); 2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2160} 2673}
2161#endif 2674#endif
2162 2675
2163#if EV_IDLE_ENABLE 2676#if EV_IDLE_ENABLE
2164void 2677void
2166{ 2679{
2167 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2168 return; 2681 return;
2169 2682
2170 pri_adjust (EV_A_ (W)w); 2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2171 2686
2172 { 2687 {
2173 int active = ++idlecnt [ABSPRI (w)]; 2688 int active = ++idlecnt [ABSPRI (w)];
2174 2689
2175 ++idleall; 2690 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 2691 ev_start (EV_A_ (W)w, active);
2177 2692
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 2694 idles [ABSPRI (w)][active - 1] = w;
2180 } 2695 }
2696
2697 EV_FREQUENT_CHECK;
2181} 2698}
2182 2699
2183void 2700void
2184ev_idle_stop (EV_P_ ev_idle *w) 2701ev_idle_stop (EV_P_ ev_idle *w)
2185{ 2702{
2186 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2188 return; 2705 return;
2189 2706
2707 EV_FREQUENT_CHECK;
2708
2190 { 2709 {
2191 int active = ((W)w)->active; 2710 int active = ev_active (w);
2192 2711
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 2714
2196 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2197 --idleall; 2716 --idleall;
2198 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2199} 2720}
2200#endif 2721#endif
2201 2722
2202void 2723void
2203ev_prepare_start (EV_P_ ev_prepare *w) 2724ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 2725{
2205 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
2206 return; 2727 return;
2728
2729 EV_FREQUENT_CHECK;
2207 2730
2208 ev_start (EV_A_ (W)w, ++preparecnt); 2731 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2211} 2736}
2212 2737
2213void 2738void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 2739ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 2740{
2216 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2218 return; 2743 return;
2219 2744
2745 EV_FREQUENT_CHECK;
2746
2220 { 2747 {
2221 int active = ((W)w)->active; 2748 int active = ev_active (w);
2749
2222 prepares [active - 1] = prepares [--preparecnt]; 2750 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 2751 ev_active (prepares [active - 1]) = active;
2224 } 2752 }
2225 2753
2226 ev_stop (EV_A_ (W)w); 2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2227} 2757}
2228 2758
2229void 2759void
2230ev_check_start (EV_P_ ev_check *w) 2760ev_check_start (EV_P_ ev_check *w)
2231{ 2761{
2232 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
2233 return; 2763 return;
2764
2765 EV_FREQUENT_CHECK;
2234 2766
2235 ev_start (EV_A_ (W)w, ++checkcnt); 2767 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2238} 2772}
2239 2773
2240void 2774void
2241ev_check_stop (EV_P_ ev_check *w) 2775ev_check_stop (EV_P_ ev_check *w)
2242{ 2776{
2243 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2245 return; 2779 return;
2246 2780
2781 EV_FREQUENT_CHECK;
2782
2247 { 2783 {
2248 int active = ((W)w)->active; 2784 int active = ev_active (w);
2785
2249 checks [active - 1] = checks [--checkcnt]; 2786 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 2787 ev_active (checks [active - 1]) = active;
2251 } 2788 }
2252 2789
2253 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2254} 2793}
2255 2794
2256#if EV_EMBED_ENABLE 2795#if EV_EMBED_ENABLE
2257void noinline 2796void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 2797ev_embed_sweep (EV_P_ ev_embed *w)
2305 struct ev_loop *loop = w->other; 2844 struct ev_loop *loop = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 2847 }
2309 2848
2849 EV_FREQUENT_CHECK;
2850
2310 ev_set_priority (&w->io, ev_priority (w)); 2851 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 2852 ev_io_start (EV_A_ &w->io);
2312 2853
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 2855 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 2856 ev_prepare_start (EV_A_ &w->prepare);
2316 2857
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 2859
2319 ev_start (EV_A_ (W)w, 1); 2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2320} 2863}
2321 2864
2322void 2865void
2323ev_embed_stop (EV_P_ ev_embed *w) 2866ev_embed_stop (EV_P_ ev_embed *w)
2324{ 2867{
2325 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2327 return; 2870 return;
2328 2871
2872 EV_FREQUENT_CHECK;
2873
2329 ev_io_stop (EV_A_ &w->io); 2874 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 2875 ev_prepare_stop (EV_A_ &w->prepare);
2331 2876
2332 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2333} 2880}
2334#endif 2881#endif
2335 2882
2336#if EV_FORK_ENABLE 2883#if EV_FORK_ENABLE
2337void 2884void
2338ev_fork_start (EV_P_ ev_fork *w) 2885ev_fork_start (EV_P_ ev_fork *w)
2339{ 2886{
2340 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
2341 return; 2888 return;
2889
2890 EV_FREQUENT_CHECK;
2342 2891
2343 ev_start (EV_A_ (W)w, ++forkcnt); 2892 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2346} 2897}
2347 2898
2348void 2899void
2349ev_fork_stop (EV_P_ ev_fork *w) 2900ev_fork_stop (EV_P_ ev_fork *w)
2350{ 2901{
2351 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2353 return; 2904 return;
2354 2905
2906 EV_FREQUENT_CHECK;
2907
2355 { 2908 {
2356 int active = ((W)w)->active; 2909 int active = ev_active (w);
2910
2357 forks [active - 1] = forks [--forkcnt]; 2911 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 2912 ev_active (forks [active - 1]) = active;
2359 } 2913 }
2360 2914
2361 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_ASYNC_ENABLE
2922void
2923ev_async_start (EV_P_ ev_async *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, ++asynccnt);
2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void
2940ev_async_stop (EV_P_ ev_async *w)
2941{
2942 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 {
2949 int active = ev_active (w);
2950
2951 asyncs [active - 1] = asyncs [--asynccnt];
2952 ev_active (asyncs [active - 1]) = active;
2953 }
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960void
2961ev_async_send (EV_P_ ev_async *w)
2962{
2963 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync);
2362} 2965}
2363#endif 2966#endif
2364 2967
2365/*****************************************************************************/ 2968/*****************************************************************************/
2366 2969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines