ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.376 by root, Sat Jun 4 05:33:29 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
135#endif 186#endif
187
188EV_CPP(extern "C" {)
136 189
137#ifndef _WIN32 190#ifndef _WIN32
138# include <sys/time.h> 191# include <sys/time.h>
139# include <sys/wait.h> 192# include <sys/wait.h>
140# include <unistd.h> 193# include <unistd.h>
141#else 194#else
195# include <io.h>
142# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 197# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
146# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
147#endif 251# endif
148 252#endif
149/**/
150 253
151#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
152# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
153#endif 260#endif
154 261
155#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 264#endif
158 265
159#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
160# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
161#endif 272#endif
162 273
163#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 276#endif
166 277
167#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
168# ifdef _WIN32 279# ifdef _WIN32
169# define EV_USE_POLL 0 280# define EV_USE_POLL 0
170# else 281# else
171# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 283# endif
173#endif 284#endif
174 285
175#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
176# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
177#endif 292#endif
178 293
179#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
181#endif 296#endif
183#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 299# define EV_USE_PORT 0
185#endif 300#endif
186 301
187#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
188# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
189#endif 308#endif
190 309
191#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 321# else
195# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
196# endif 323# endif
197#endif 324#endif
198 325
199#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 329# else
203# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
204# endif 331# endif
205#endif 332#endif
206 333
207/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
208 373
209#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
212#endif 377#endif
220# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
222#endif 387#endif
223 388
224#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
226# include <sys/select.h> 392# include <sys/select.h>
227# endif 393# endif
228#endif 394#endif
229 395
230#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
231# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
232#endif 404#endif
233 405
234#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 407# include <winsock.h>
236#endif 408#endif
237 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
238/**/ 448/**/
239 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
240/* 456/*
241 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 459 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 462
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
253 468
254#if __GNUC__ >= 4 469#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
257#else 472#else
258# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
259# define noinline 474# define noinline
260# if __STDC_VERSION__ < 199901L 475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 476# define inline
262# endif 477# endif
263#endif 478#endif
264 479
265#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 482#define inline_size static inline
268 483
269#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
270# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
271#else 494#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
277 497
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
280 500
281typedef ev_watcher *W; 501typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
284 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
288 527
289#ifdef _WIN32 528#ifdef _WIN32
290# include "ev_win32.c" 529# include "ev_win32.c"
291#endif 530#endif
292 531
293/*****************************************************************************/ 532/*****************************************************************************/
294 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
295static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
296 633
297void 634void
298ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
299{ 636{
300 syserr_cb = cb; 637 syserr_cb = cb;
301} 638}
302 639
303static void noinline 640static void noinline
304syserr (const char *msg) 641ev_syserr (const char *msg)
305{ 642{
306 if (!msg) 643 if (!msg)
307 msg = "(libev) system error"; 644 msg = "(libev) system error";
308 645
309 if (syserr_cb) 646 if (syserr_cb)
310 syserr_cb (msg); 647 syserr_cb (msg);
311 else 648 else
312 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
313 perror (msg); 656 perror (msg);
657#endif
314 abort (); 658 abort ();
315 } 659 }
316} 660}
317 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
318static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 682
320void 683void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 685{
323 alloc = cb; 686 alloc = cb;
324} 687}
325 688
326inline_speed void * 689inline_speed void *
327ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
328{ 691{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
330 693
331 if (!ptr && size) 694 if (!ptr && size)
332 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
334 abort (); 701 abort ();
335 } 702 }
336 703
337 return ptr; 704 return ptr;
338} 705}
340#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
342 709
343/*****************************************************************************/ 710/*****************************************************************************/
344 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
345typedef struct 716typedef struct
346{ 717{
347 WL head; 718 WL head;
348 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
350#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
351 SOCKET handle; 727 SOCKET handle;
352#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
353} ANFD; 732} ANFD;
354 733
734/* stores the pending event set for a given watcher */
355typedef struct 735typedef struct
356{ 736{
357 W w; 737 W w;
358 int events; 738 int events; /* the pending event set for the given watcher */
359} ANPENDING; 739} ANPENDING;
360 740
361#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
362typedef struct 743typedef struct
363{ 744{
364 WL head; 745 WL head;
365} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
366#endif 767#endif
367 768
368#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
369 770
370 struct ev_loop 771 struct ev_loop
389 790
390 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
391 792
392#endif 793#endif
393 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
394/*****************************************************************************/ 807/*****************************************************************************/
395 808
809#ifndef EV_HAVE_EV_TIME
396ev_tstamp 810ev_tstamp
397ev_time (void) 811ev_time (void)
398{ 812{
399#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
400 struct timespec ts; 816 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 819 }
820#endif
821
404 struct timeval tv; 822 struct timeval tv;
405 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 825}
826#endif
409 827
410ev_tstamp inline_size 828inline_size ev_tstamp
411get_clock (void) 829get_clock (void)
412{ 830{
413#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
415 { 833 {
436 if (delay > 0.) 854 if (delay > 0.)
437 { 855 {
438#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
439 struct timespec ts; 857 struct timespec ts;
440 858
441 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
445#elif defined(_WIN32) 861#elif defined(_WIN32)
446 Sleep (delay * 1e3); 862 Sleep ((unsigned long)(delay * 1e3));
447#else 863#else
448 struct timeval tv; 864 struct timeval tv;
449 865
450 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
452 868 /* by older ones */
869 EV_TV_SET (tv, delay);
453 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
454#endif 871#endif
455 } 872 }
456} 873}
457 874
458/*****************************************************************************/ 875/*****************************************************************************/
459 876
460int inline_size 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
461array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
462{ 883{
463 int ncur = cur + 1; 884 int ncur = cur + 1;
464 885
465 do 886 do
466 ncur <<= 1; 887 ncur <<= 1;
467 while (cnt > ncur); 888 while (cnt > ncur);
468 889
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 892 {
472 ncur *= elem; 893 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 895 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 896 ncur /= elem;
476 } 897 }
477 898
478 return ncur; 899 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 903array_realloc (int elem, void *base, int *cur, int cnt)
483{ 904{
484 *cur = array_nextsize (elem, *cur, cnt); 905 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 906 return ev_realloc (base, elem * *cur);
486} 907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 911
488#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 913 if (expect_false ((cnt) > (cur))) \
490 { \ 914 { \
491 int ocur_ = (cur); \ 915 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 928 }
505#endif 929#endif
506 930
507#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 933
510/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
511 941
512void noinline 942void noinline
513ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
514{ 944{
515 W w_ = (W)w; 945 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
526 } 956 }
527} 957}
528 958
529void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 976{
532 int i; 977 int i;
533 978
534 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
536} 981}
537 982
538/*****************************************************************************/ 983/*****************************************************************************/
539 984
540void inline_size 985inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
555{ 987{
556 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
557 ev_io *w; 989 ev_io *w;
558 990
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 995 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
565 } 997 }
566} 998}
567 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
568void 1011void
569ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 1013{
571 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
573} 1016}
574 1017
575void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
576fd_reify (EV_P) 1021fd_reify (EV_P)
577{ 1022{
578 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
579 1049
580 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
581 { 1051 {
582 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
583 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
584 ev_io *w; 1054 ev_io *w;
585 1055
586 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
587 1058
588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
589 events |= (unsigned char)w->events;
590 1060
591#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
592 if (events)
593 { 1062 {
594 unsigned long argp; 1063 anfd->events = 0;
595 anfd->handle = _get_osfhandle (fd); 1064
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
597 } 1070 }
598#endif
599 1071
600 { 1072 if (o_reify & EV__IOFDSET)
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
604 anfd->reify = 0;
605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
609 }
610 } 1074 }
611 1075
612 fdchangecnt = 0; 1076 fdchangecnt = 0;
613} 1077}
614 1078
615void inline_size 1079/* something about the given fd changed */
1080inline_size void
616fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
617{ 1082{
618 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
620 1085
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
626 } 1091 }
627} 1092}
628 1093
629void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
630fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
631{ 1097{
632 ev_io *w; 1098 ev_io *w;
633 1099
634 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 1104 }
639} 1105}
640 1106
641int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
642fd_valid (int fd) 1109fd_valid (int fd)
643{ 1110{
644#ifdef _WIN32 1111#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1113#else
647 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
648#endif 1115#endif
649} 1116}
650 1117
654{ 1121{
655 int fd; 1122 int fd;
656 1123
657 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 1125 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
661} 1128}
662 1129
663/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 1131static void noinline
668 1135
669 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1137 if (anfds [fd].events)
671 { 1138 {
672 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
673 return; 1140 break;
674 } 1141 }
675} 1142}
676 1143
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1145static void noinline
682 1149
683 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1151 if (anfds [fd].events)
685 { 1152 {
686 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1156 }
689} 1157}
690 1158
691/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
692 1160/* this is not fork-safe */
693void inline_speed 1161inline_speed void
694upheap (WT *heap, int k)
695{
696 WT w = heap [k];
697
698 while (k)
699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
705 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1;
707 k = p;
708 }
709
710 heap [k] = w;
711 ((W)heap [k])->active = k + 1;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
747}
748
749/*****************************************************************************/
750
751typedef struct
752{
753 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG;
756
757static ANSIG *signals;
758static int signalmax;
759
760static int sigpipe [2];
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763
764void inline_size
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1162fd_intern (int fd)
829{ 1163{
830#ifdef _WIN32 1164#ifdef _WIN32
831 int arg = 1; 1165 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1167#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1170#endif
837} 1171}
838 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
839static void noinline 1336static void noinline
840siginit (EV_P) 1337evpipe_init (EV_P)
841{ 1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
842 fd_intern (sigpipe [0]); 1358 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
844 1362
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1363 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
1399static void
1400pipecb (EV_P_ ev_io *iow, int revents)
1401{
1402 int i;
1403
1404#if EV_USE_EVENTFD
1405 if (evfd >= 0)
1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
1417
1418#if EV_SIGNAL_ENABLE
1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
848} 1442}
849 1443
850/*****************************************************************************/ 1444/*****************************************************************************/
851 1445
1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
1460static void
1461ev_sighandler (int signum)
1462{
1463#ifdef _WIN32
1464 signal (signum, ev_sighandler);
1465#endif
1466
1467 ev_feed_signal (signum);
1468}
1469
1470void noinline
1471ev_feed_signal_event (EV_P_ int signum)
1472{
1473 WL w;
1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1480#if EV_MULTIPLICITY
1481 /* it is permissible to try to feed a signal to the wrong loop */
1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1483
1484 if (expect_false (signals [signum].loop != EV_A))
1485 return;
1486#endif
1487
1488 signals [signum].pending = 0;
1489
1490 for (w = signals [signum].head; w; w = w->next)
1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492}
1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
1516/*****************************************************************************/
1517
1518#if EV_CHILD_ENABLE
852static WL childs [EV_PID_HASHSIZE]; 1519static WL childs [EV_PID_HASHSIZE];
853 1520
854#ifndef _WIN32
855
856static ev_signal childev; 1521static ev_signal childev;
857 1522
858void inline_speed 1523#ifndef WIFCONTINUED
1524# define WIFCONTINUED(status) 0
1525#endif
1526
1527/* handle a single child status event */
1528inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1529child_reap (EV_P_ int chain, int pid, int status)
860{ 1530{
861 ev_child *w; 1531 ev_child *w;
1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1533
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 {
864 if (w->pid == pid || !w->pid) 1536 if ((w->pid == pid || !w->pid)
1537 && (!traced || (w->flags & 1)))
865 { 1538 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1540 w->rpid = pid;
868 w->rstatus = status; 1541 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1543 }
1544 }
871} 1545}
872 1546
873#ifndef WCONTINUED 1547#ifndef WCONTINUED
874# define WCONTINUED 0 1548# define WCONTINUED 0
875#endif 1549#endif
876 1550
1551/* called on sigchld etc., calls waitpid */
877static void 1552static void
878childcb (EV_P_ ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
879{ 1554{
880 int pid, status; 1555 int pid, status;
881 1556
884 if (!WCONTINUED 1559 if (!WCONTINUED
885 || errno != EINVAL 1560 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1562 return;
888 1563
889 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1565 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1567
893 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1569 if ((EV_PID_HASHSIZE) > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1571}
897 1572
898#endif 1573#endif
899 1574
900/*****************************************************************************/ 1575/*****************************************************************************/
901 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
902#if EV_USE_PORT 1580#if EV_USE_PORT
903# include "ev_port.c" 1581# include "ev_port.c"
904#endif 1582#endif
905#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
906# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
962 /* kqueue is borked on everything but netbsd apparently */ 1640 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1641 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1642 flags &= ~EVBACKEND_KQUEUE;
965#endif 1643#endif
966#ifdef __APPLE__ 1644#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1645 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
969#endif 1651#endif
970 1652
971 return flags; 1653 return flags;
972} 1654}
973 1655
974unsigned int 1656unsigned int
975ev_embeddable_backends (void) 1657ev_embeddable_backends (void)
976{ 1658{
1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1660
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
979 | EVBACKEND_PORT; 1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
980} 1666}
981 1667
982unsigned int 1668unsigned int
983ev_backend (EV_P) 1669ev_backend (EV_P)
984{ 1670{
985 return backend; 1671 return backend;
986} 1672}
987 1673
1674#if EV_FEATURE_API
988unsigned int 1675unsigned int
989ev_loop_count (EV_P) 1676ev_iteration (EV_P)
990{ 1677{
991 return loop_count; 1678 return loop_count;
992} 1679}
993 1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
994void 1687void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
996{ 1689{
997 io_blocktime = interval; 1690 io_blocktime = interval;
998} 1691}
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1695{
1003 timeout_blocktime = interval; 1696 timeout_blocktime = interval;
1004} 1697}
1005 1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1006static void noinline 1724static void noinline
1007loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
1008{ 1726{
1009 if (!backend) 1727 if (!backend)
1010 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
1011#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1012 { 1743 {
1013 struct timespec ts; 1744 struct timespec ts;
1745
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1747 have_monotonic = 1;
1016 } 1748 }
1017#endif 1749#endif
1018
1019 ev_rt_now = ev_time ();
1020 mn_now = get_clock ();
1021 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now;
1023
1024 io_blocktime = 0.;
1025 timeout_blocktime = 0.;
1026 1750
1027 /* pid check not overridable via env */ 1751 /* pid check not overridable via env */
1028#ifndef _WIN32 1752#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1753 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1754 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1757 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1758 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1759 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1761
1038 if (!(flags & 0x0000ffffUL)) 1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
1039 flags |= ev_recommended_backends (); 1786 flags |= ev_recommended_backends ();
1040 1787
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY 1788#if EV_USE_IOCP
1044 fs_fd = -2; 1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1045#endif 1790#endif
1046
1047#if EV_USE_PORT 1791#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1793#endif
1050#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
1051 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1058#endif 1802#endif
1059#if EV_USE_SELECT 1803#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1805#endif
1062 1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1063 ev_init (&sigev, sigcb); 1810 ev_init (&pipe_w, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1065 } 1813 }
1066} 1814}
1067 1815
1068static void noinline 1816/* free up a loop structure */
1817void
1069loop_destroy (EV_P) 1818ev_loop_destroy (EV_P)
1070{ 1819{
1071 int i; 1820 int i;
1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1072 1866
1073#if EV_USE_INOTIFY 1867#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1868 if (fs_fd >= 0)
1075 close (fs_fd); 1869 close (fs_fd);
1076#endif 1870#endif
1077 1871
1078 if (backend_fd >= 0) 1872 if (backend_fd >= 0)
1079 close (backend_fd); 1873 close (backend_fd);
1080 1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1081#if EV_USE_PORT 1878#if EV_USE_PORT
1082 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1083#endif 1880#endif
1084#if EV_USE_KQUEUE 1881#if EV_USE_KQUEUE
1085 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1100#if EV_IDLE_ENABLE 1897#if EV_IDLE_ENABLE
1101 array_free (idle, [i]); 1898 array_free (idle, [i]);
1102#endif 1899#endif
1103 } 1900 }
1104 1901
1105 ev_free (anfds); anfdmax = 0; 1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1106 1903
1107 /* have to use the microsoft-never-gets-it-right macro */ 1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1108 array_free (fdchange, EMPTY); 1906 array_free (fdchange, EMPTY);
1109 array_free (timer, EMPTY); 1907 array_free (timer, EMPTY);
1110#if EV_PERIODIC_ENABLE 1908#if EV_PERIODIC_ENABLE
1111 array_free (periodic, EMPTY); 1909 array_free (periodic, EMPTY);
1112#endif 1910#endif
1113#if EV_FORK_ENABLE 1911#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1912 array_free (fork, EMPTY);
1115#endif 1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1116 array_free (prepare, EMPTY); 1917 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
1118 1922
1119 backend = 0; 1923 backend = 0;
1120}
1121 1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1936inline_size void infy_fork (EV_P);
1937#endif
1123 1938
1124void inline_size 1939inline_size void
1125loop_fork (EV_P) 1940loop_fork (EV_P)
1126{ 1941{
1127#if EV_USE_PORT 1942#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif 1944#endif
1135#endif 1950#endif
1136#if EV_USE_INOTIFY 1951#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1952 infy_fork (EV_A);
1138#endif 1953#endif
1139 1954
1140 if (ev_is_active (&sigev)) 1955 if (ev_is_active (&pipe_w))
1141 { 1956 {
1142 /* default loop */ 1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
1143 1963
1144 ev_ref (EV_A); 1964 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1965 ev_io_stop (EV_A_ &pipe_w);
1146 close (sigpipe [0]);
1147 close (sigpipe [1]);
1148 1966
1149 while (pipe (sigpipe)) 1967#if EV_USE_EVENTFD
1150 syserr ("(libev) error creating pipe"); 1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
1151 1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1152 siginit (EV_A); 1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1153 } 1983 }
1154 1984
1155 postfork = 0; 1985 postfork = 0;
1156} 1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
2060 {
2061 verify_watcher (EV_A_ (W)w);
2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 }
2065
2066 assert (timermax >= timercnt);
2067 verify_heap (EV_A_ timers, timercnt);
2068
2069#if EV_PERIODIC_ENABLE
2070 assert (periodicmax >= periodiccnt);
2071 verify_heap (EV_A_ periodics, periodiccnt);
2072#endif
2073
2074 for (i = NUMPRI; i--; )
2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
2083
2084#if EV_FORK_ENABLE
2085 assert (forkmax >= forkcnt);
2086 array_verify (EV_A_ (W *)forks, forkcnt);
2087#endif
2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
2114# endif
2115#endif
2116}
2117#endif
1157 2118
1158#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
1159struct ev_loop * 2120struct ev_loop *
1160ev_loop_new (unsigned int flags)
1161{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163
1164 memset (loop, 0, sizeof (struct ev_loop));
1165
1166 loop_init (EV_A_ flags);
1167
1168 if (ev_backend (EV_A))
1169 return loop;
1170
1171 return 0;
1172}
1173
1174void
1175ev_loop_destroy (EV_P)
1176{
1177 loop_destroy (EV_A);
1178 ev_free (loop);
1179}
1180
1181void
1182ev_loop_fork (EV_P)
1183{
1184 postfork = 1;
1185}
1186
1187#endif
1188
1189#if EV_MULTIPLICITY
1190struct ev_loop *
1191ev_default_loop_init (unsigned int flags)
1192#else 2121#else
1193int 2122int
2123#endif
1194ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
1195#endif
1196{ 2125{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
1202 { 2127 {
1203#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
1205#else 2130#else
1206 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
1207#endif 2132#endif
1208 2133
1209 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
1210 2135
1211 if (ev_backend (EV_A)) 2136 if (ev_backend (EV_A))
1212 { 2137 {
1213 siginit (EV_A); 2138#if EV_CHILD_ENABLE
1214
1215#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
1220#endif 2143#endif
1225 2148
1226 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
1227} 2150}
1228 2151
1229void 2152void
1230ev_default_destroy (void) 2153ev_loop_fork (EV_P)
1231{ 2154{
1232#if EV_MULTIPLICITY 2155 postfork = 1; /* must be in line with ev_default_fork */
1233 struct ev_loop *loop = ev_default_loop_ptr;
1234#endif
1235
1236#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev);
1239#endif
1240
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A);
1248}
1249
1250void
1251ev_default_fork (void)
1252{
1253#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif
1256
1257 if (backend)
1258 postfork = 1;
1259} 2156}
1260 2157
1261/*****************************************************************************/ 2158/*****************************************************************************/
1262 2159
1263void 2160void
1264ev_invoke (EV_P_ void *w, int revents) 2161ev_invoke (EV_P_ void *w, int revents)
1265{ 2162{
1266 EV_CB_INVOKE ((W)w, revents); 2163 EV_CB_INVOKE ((W)w, revents);
1267} 2164}
1268 2165
1269void inline_speed 2166unsigned int
1270call_pending (EV_P) 2167ev_pending_count (EV_P)
2168{
2169 int pri;
2170 unsigned int count = 0;
2171
2172 for (pri = NUMPRI; pri--; )
2173 count += pendingcnt [pri];
2174
2175 return count;
2176}
2177
2178void noinline
2179ev_invoke_pending (EV_P)
1271{ 2180{
1272 int pri; 2181 int pri;
1273 2182
1274 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1275 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1276 { 2185 {
1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1278 2187
1279 if (expect_true (p->w))
1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282
1283 p->w->pending = 0; 2188 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1285 } 2190 EV_FREQUENT_CHECK;
1286 } 2191 }
1287} 2192}
1288 2193
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368
1369#if EV_IDLE_ENABLE 2194#if EV_IDLE_ENABLE
1370void inline_size 2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
1371idle_reify (EV_P) 2198idle_reify (EV_P)
1372{ 2199{
1373 if (expect_false (idleall)) 2200 if (expect_false (idleall))
1374 { 2201 {
1375 int pri; 2202 int pri;
1387 } 2214 }
1388 } 2215 }
1389} 2216}
1390#endif 2217#endif
1391 2218
1392void inline_speed 2219/* make timers pending */
2220inline_size void
2221timers_reify (EV_P)
2222{
2223 EV_FREQUENT_CHECK;
2224
2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2226 {
2227 do
2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2241
2242 ANHE_at_cache (timers [HEAP0]);
2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
2250 }
2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2252
2253 feed_reverse_done (EV_A_ EV_TIMER);
2254 }
2255}
2256
2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
2267 {
2268 ev_tstamp nat = at + w->interval;
2269
2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
2285periodics_reify (EV_P)
2286{
2287 EV_FREQUENT_CHECK;
2288
2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2290 {
2291 int feed_count = 0;
2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
2331{
2332 int i;
2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
1393time_update (EV_P_ ev_tstamp max_block) 2368time_update (EV_P_ ev_tstamp max_block)
1394{ 2369{
1395 int i;
1396
1397#if EV_USE_MONOTONIC 2370#if EV_USE_MONOTONIC
1398 if (expect_true (have_monotonic)) 2371 if (expect_true (have_monotonic))
1399 { 2372 {
2373 int i;
1400 ev_tstamp odiff = rtmn_diff; 2374 ev_tstamp odiff = rtmn_diff;
1401 2375
1402 mn_now = get_clock (); 2376 mn_now = get_clock ();
1403 2377
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1420 * doesn't hurt either as we only do this on time-jumps or 2394 * doesn't hurt either as we only do this on time-jumps or
1421 * in the unlikely event of having been preempted here. 2395 * in the unlikely event of having been preempted here.
1422 */ 2396 */
1423 for (i = 4; --i; ) 2397 for (i = 4; --i; )
1424 { 2398 {
2399 ev_tstamp diff;
1425 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1426 2401
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 2405 return; /* all is well */
1429 2406
1430 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 2408 mn_now = get_clock ();
1432 now_floor = mn_now; 2409 now_floor = mn_now;
1433 } 2410 }
1434 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1435# if EV_PERIODIC_ENABLE 2414# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A); 2415 periodics_reschedule (EV_A);
1437# endif 2416# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 } 2417 }
1441 else 2418 else
1442#endif 2419#endif
1443 { 2420 {
1444 ev_rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
1445 2422
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 { 2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1448#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1450#endif 2429#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1454 } 2430 }
1455 2431
1456 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1457 } 2433 }
1458} 2434}
1459 2435
1460void 2436void
1461ev_ref (EV_P)
1462{
1463 ++activecnt;
1464}
1465
1466void
1467ev_unref (EV_P)
1468{
1469 --activecnt;
1470}
1471
1472static int loop_done;
1473
1474void
1475ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1476{ 2438{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2439#if EV_FEATURE_API
1478 ? EVUNLOOP_ONE 2440 ++loop_depth;
1479 : EVUNLOOP_CANCEL; 2441#endif
1480 2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1482 2448
1483 do 2449 do
1484 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
1485#ifndef _WIN32 2455#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 2456 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 2457 if (expect_false (getpid () != curpid))
1488 { 2458 {
1489 curpid = getpid (); 2459 curpid = getpid ();
1495 /* we might have forked, so queue fork handlers */ 2465 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork)) 2466 if (expect_false (postfork))
1497 if (forkcnt) 2467 if (forkcnt)
1498 { 2468 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1501 } 2471 }
1502#endif 2472#endif
1503 2473
2474#if EV_PREPARE_ENABLE
1504 /* queue prepare watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1505 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1506 { 2477 {
1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1508 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1509 } 2480 }
2481#endif
1510 2482
1511 if (expect_false (!activecnt)) 2483 if (expect_false (loop_done))
1512 break; 2484 break;
1513 2485
1514 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1515 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1516 loop_fork (EV_A); 2488 loop_fork (EV_A);
1521 /* calculate blocking time */ 2493 /* calculate blocking time */
1522 { 2494 {
1523 ev_tstamp waittime = 0.; 2495 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.; 2496 ev_tstamp sleeptime = 0.;
1525 2497
2498 /* remember old timestamp for io_blocktime calculation */
2499 ev_tstamp prev_mn_now = mn_now;
2500
2501 /* update time to cancel out callback processing overhead */
2502 time_update (EV_A_ 1e100);
2503
1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1527 { 2505 {
1528 /* update time to cancel out callback processing overhead */
1529 time_update (EV_A_ 1e100);
1530
1531 waittime = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1532 2507
1533 if (timercnt) 2508 if (timercnt)
1534 { 2509 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_mintime;
1536 if (waittime > to) waittime = to; 2511 if (waittime > to) waittime = to;
1537 } 2512 }
1538 2513
1539#if EV_PERIODIC_ENABLE 2514#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 2515 if (periodiccnt)
1541 { 2516 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_mintime;
1543 if (waittime > to) waittime = to; 2518 if (waittime > to) waittime = to;
1544 } 2519 }
1545#endif 2520#endif
1546 2521
2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
1547 if (expect_false (waittime < timeout_blocktime)) 2523 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime; 2524 waittime = timeout_blocktime;
1549 2525
1550 sleeptime = waittime - backend_fudge; 2526 /* extra check because io_blocktime is commonly 0 */
1551
1552 if (expect_true (sleeptime > io_blocktime)) 2527 if (expect_false (io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 { 2528 {
2529 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2530
2531 if (sleeptime > waittime - backend_mintime)
2532 sleeptime = waittime - backend_mintime;
2533
2534 if (expect_true (sleeptime > 0.))
2535 {
1557 ev_sleep (sleeptime); 2536 ev_sleep (sleeptime);
1558 waittime -= sleeptime; 2537 waittime -= sleeptime;
2538 }
1559 } 2539 }
1560 } 2540 }
1561 2541
2542#if EV_FEATURE_API
1562 ++loop_count; 2543 ++loop_count;
2544#endif
2545 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1563 backend_poll (EV_A_ waittime); 2546 backend_poll (EV_A_ waittime);
2547 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1564 2548
1565 /* update ev_rt_now, do magic */ 2549 /* update ev_rt_now, do magic */
1566 time_update (EV_A_ waittime + sleeptime); 2550 time_update (EV_A_ waittime + sleeptime);
1567 } 2551 }
1568 2552
1575#if EV_IDLE_ENABLE 2559#if EV_IDLE_ENABLE
1576 /* queue idle watchers unless other events are pending */ 2560 /* queue idle watchers unless other events are pending */
1577 idle_reify (EV_A); 2561 idle_reify (EV_A);
1578#endif 2562#endif
1579 2563
2564#if EV_CHECK_ENABLE
1580 /* queue check watchers, to be executed first */ 2565 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2566 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2567 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2568#endif
1583 2569
1584 call_pending (EV_A); 2570 EV_INVOKE_PENDING;
1585
1586 } 2571 }
1587 while (expect_true (activecnt && !loop_done)); 2572 while (expect_true (
2573 activecnt
2574 && !loop_done
2575 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2576 ));
1588 2577
1589 if (loop_done == EVUNLOOP_ONE) 2578 if (loop_done == EVBREAK_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2579 loop_done = EVBREAK_CANCEL;
1591}
1592 2580
2581#if EV_FEATURE_API
2582 --loop_depth;
2583#endif
2584}
2585
1593void 2586void
1594ev_unloop (EV_P_ int how) 2587ev_break (EV_P_ int how)
1595{ 2588{
1596 loop_done = how; 2589 loop_done = how;
1597} 2590}
1598 2591
2592void
2593ev_ref (EV_P)
2594{
2595 ++activecnt;
2596}
2597
2598void
2599ev_unref (EV_P)
2600{
2601 --activecnt;
2602}
2603
2604void
2605ev_now_update (EV_P)
2606{
2607 time_update (EV_A_ 1e100);
2608}
2609
2610void
2611ev_suspend (EV_P)
2612{
2613 ev_now_update (EV_A);
2614}
2615
2616void
2617ev_resume (EV_P)
2618{
2619 ev_tstamp mn_prev = mn_now;
2620
2621 ev_now_update (EV_A);
2622 timers_reschedule (EV_A_ mn_now - mn_prev);
2623#if EV_PERIODIC_ENABLE
2624 /* TODO: really do this? */
2625 periodics_reschedule (EV_A);
2626#endif
2627}
2628
1599/*****************************************************************************/ 2629/*****************************************************************************/
2630/* singly-linked list management, used when the expected list length is short */
1600 2631
1601void inline_size 2632inline_size void
1602wlist_add (WL *head, WL elem) 2633wlist_add (WL *head, WL elem)
1603{ 2634{
1604 elem->next = *head; 2635 elem->next = *head;
1605 *head = elem; 2636 *head = elem;
1606} 2637}
1607 2638
1608void inline_size 2639inline_size void
1609wlist_del (WL *head, WL elem) 2640wlist_del (WL *head, WL elem)
1610{ 2641{
1611 while (*head) 2642 while (*head)
1612 { 2643 {
1613 if (*head == elem) 2644 if (expect_true (*head == elem))
1614 { 2645 {
1615 *head = elem->next; 2646 *head = elem->next;
1616 return; 2647 break;
1617 } 2648 }
1618 2649
1619 head = &(*head)->next; 2650 head = &(*head)->next;
1620 } 2651 }
1621} 2652}
1622 2653
1623void inline_speed 2654/* internal, faster, version of ev_clear_pending */
2655inline_speed void
1624clear_pending (EV_P_ W w) 2656clear_pending (EV_P_ W w)
1625{ 2657{
1626 if (w->pending) 2658 if (w->pending)
1627 { 2659 {
1628 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2660 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1629 w->pending = 0; 2661 w->pending = 0;
1630 } 2662 }
1631} 2663}
1632 2664
1633int 2665int
1637 int pending = w_->pending; 2669 int pending = w_->pending;
1638 2670
1639 if (expect_true (pending)) 2671 if (expect_true (pending))
1640 { 2672 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2673 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2674 p->w = (W)&pending_w;
1642 w_->pending = 0; 2675 w_->pending = 0;
1643 p->w = 0;
1644 return p->events; 2676 return p->events;
1645 } 2677 }
1646 else 2678 else
1647 return 0; 2679 return 0;
1648} 2680}
1649 2681
1650void inline_size 2682inline_size void
1651pri_adjust (EV_P_ W w) 2683pri_adjust (EV_P_ W w)
1652{ 2684{
1653 int pri = w->priority; 2685 int pri = ev_priority (w);
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2686 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2687 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri; 2688 ev_set_priority (w, pri);
1657} 2689}
1658 2690
1659void inline_speed 2691inline_speed void
1660ev_start (EV_P_ W w, int active) 2692ev_start (EV_P_ W w, int active)
1661{ 2693{
1662 pri_adjust (EV_A_ w); 2694 pri_adjust (EV_A_ w);
1663 w->active = active; 2695 w->active = active;
1664 ev_ref (EV_A); 2696 ev_ref (EV_A);
1665} 2697}
1666 2698
1667void inline_size 2699inline_size void
1668ev_stop (EV_P_ W w) 2700ev_stop (EV_P_ W w)
1669{ 2701{
1670 ev_unref (EV_A); 2702 ev_unref (EV_A);
1671 w->active = 0; 2703 w->active = 0;
1672} 2704}
1679 int fd = w->fd; 2711 int fd = w->fd;
1680 2712
1681 if (expect_false (ev_is_active (w))) 2713 if (expect_false (ev_is_active (w)))
1682 return; 2714 return;
1683 2715
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2716 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2717 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2718
2719 EV_FREQUENT_CHECK;
1685 2720
1686 ev_start (EV_A_ (W)w, 1); 2721 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2722 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1688 wlist_add (&anfds[fd].head, (WL)w); 2723 wlist_add (&anfds[fd].head, (WL)w);
1689 2724
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2725 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1691 w->events &= ~EV_IOFDSET; 2726 w->events &= ~EV__IOFDSET;
2727
2728 EV_FREQUENT_CHECK;
1692} 2729}
1693 2730
1694void noinline 2731void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2732ev_io_stop (EV_P_ ev_io *w)
1696{ 2733{
1697 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
1699 return; 2736 return;
1700 2737
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2738 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2739
2740 EV_FREQUENT_CHECK;
1702 2741
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2742 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1705 2744
1706 fd_change (EV_A_ w->fd, 1); 2745 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2746
2747 EV_FREQUENT_CHECK;
1707} 2748}
1708 2749
1709void noinline 2750void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2751ev_timer_start (EV_P_ ev_timer *w)
1711{ 2752{
1712 if (expect_false (ev_is_active (w))) 2753 if (expect_false (ev_is_active (w)))
1713 return; 2754 return;
1714 2755
1715 ((WT)w)->at += mn_now; 2756 ev_at (w) += mn_now;
1716 2757
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2758 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2763 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2764 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2765 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2766 ANHE_at_cache (timers [ev_active (w)]);
2767 upheap (timers, ev_active (w));
1723 2768
2769 EV_FREQUENT_CHECK;
2770
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2771 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2772}
1726 2773
1727void noinline 2774void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2775ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2776{
1730 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1732 return; 2779 return;
1733 2780
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2781 EV_FREQUENT_CHECK;
1735 2782
1736 { 2783 {
1737 int active = ((W)w)->active; 2784 int active = ev_active (w);
1738 2785
2786 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2787
2788 --timercnt;
2789
1739 if (expect_true (--active < --timercnt)) 2790 if (expect_true (active < timercnt + HEAP0))
1740 { 2791 {
1741 timers [active] = timers [timercnt]; 2792 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2793 adjustheap (timers, timercnt, active);
1743 } 2794 }
1744 } 2795 }
1745 2796
1746 ((WT)w)->at -= mn_now; 2797 ev_at (w) -= mn_now;
1747 2798
1748 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
1749} 2802}
1750 2803
1751void noinline 2804void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2805ev_timer_again (EV_P_ ev_timer *w)
1753{ 2806{
2807 EV_FREQUENT_CHECK;
2808
1754 if (ev_is_active (w)) 2809 if (ev_is_active (w))
1755 { 2810 {
1756 if (w->repeat) 2811 if (w->repeat)
1757 { 2812 {
1758 ((WT)w)->at = mn_now + w->repeat; 2813 ev_at (w) = mn_now + w->repeat;
2814 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2815 adjustheap (timers, timercnt, ev_active (w));
1760 } 2816 }
1761 else 2817 else
1762 ev_timer_stop (EV_A_ w); 2818 ev_timer_stop (EV_A_ w);
1763 } 2819 }
1764 else if (w->repeat) 2820 else if (w->repeat)
1765 { 2821 {
1766 w->at = w->repeat; 2822 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2823 ev_timer_start (EV_A_ w);
1768 } 2824 }
2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829ev_tstamp
2830ev_timer_remaining (EV_P_ ev_timer *w)
2831{
2832 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1769} 2833}
1770 2834
1771#if EV_PERIODIC_ENABLE 2835#if EV_PERIODIC_ENABLE
1772void noinline 2836void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2837ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2838{
1775 if (expect_false (ev_is_active (w))) 2839 if (expect_false (ev_is_active (w)))
1776 return; 2840 return;
1777 2841
1778 if (w->reschedule_cb) 2842 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2843 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2844 else if (w->interval)
1781 { 2845 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2846 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2847 periodic_recalc (EV_A_ w);
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2848 }
1786 else 2849 else
1787 ((WT)w)->at = w->offset; 2850 ev_at (w) = w->offset;
1788 2851
2852 EV_FREQUENT_CHECK;
2853
2854 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2855 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2856 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2857 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2858 ANHE_at_cache (periodics [ev_active (w)]);
2859 upheap (periodics, ev_active (w));
1793 2860
2861 EV_FREQUENT_CHECK;
2862
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2863 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2864}
1796 2865
1797void noinline 2866void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2867ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2868{
1800 clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2870 if (expect_false (!ev_is_active (w)))
1802 return; 2871 return;
1803 2872
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2873 EV_FREQUENT_CHECK;
1805 2874
1806 { 2875 {
1807 int active = ((W)w)->active; 2876 int active = ev_active (w);
1808 2877
2878 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2879
2880 --periodiccnt;
2881
1809 if (expect_true (--active < --periodiccnt)) 2882 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2883 {
1811 periodics [active] = periodics [periodiccnt]; 2884 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2885 adjustheap (periodics, periodiccnt, active);
1813 } 2886 }
1814 } 2887 }
1815 2888
1816 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1817} 2892}
1818 2893
1819void noinline 2894void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2895ev_periodic_again (EV_P_ ev_periodic *w)
1821{ 2896{
1827 2902
1828#ifndef SA_RESTART 2903#ifndef SA_RESTART
1829# define SA_RESTART 0 2904# define SA_RESTART 0
1830#endif 2905#endif
1831 2906
2907#if EV_SIGNAL_ENABLE
2908
1832void noinline 2909void noinline
1833ev_signal_start (EV_P_ ev_signal *w) 2910ev_signal_start (EV_P_ ev_signal *w)
1834{ 2911{
1835#if EV_MULTIPLICITY
1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1837#endif
1838 if (expect_false (ev_is_active (w))) 2912 if (expect_false (ev_is_active (w)))
1839 return; 2913 return;
1840 2914
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2915 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1842 2916
2917#if EV_MULTIPLICITY
2918 assert (("libev: a signal must not be attached to two different loops",
2919 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2920
2921 signals [w->signum - 1].loop = EV_A;
2922#endif
2923
2924 EV_FREQUENT_CHECK;
2925
2926#if EV_USE_SIGNALFD
2927 if (sigfd == -2)
1843 { 2928 {
1844#ifndef _WIN32 2929 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1845 sigset_t full, prev; 2930 if (sigfd < 0 && errno == EINVAL)
1846 sigfillset (&full); 2931 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849 2932
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2933 if (sigfd >= 0)
2934 {
2935 fd_intern (sigfd); /* doing it twice will not hurt */
1851 2936
1852#ifndef _WIN32 2937 sigemptyset (&sigfd_set);
1853 sigprocmask (SIG_SETMASK, &prev, 0); 2938
1854#endif 2939 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2940 ev_set_priority (&sigfd_w, EV_MAXPRI);
2941 ev_io_start (EV_A_ &sigfd_w);
2942 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2943 }
1855 } 2944 }
2945
2946 if (sigfd >= 0)
2947 {
2948 /* TODO: check .head */
2949 sigaddset (&sigfd_set, w->signum);
2950 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2951
2952 signalfd (sigfd, &sigfd_set, 0);
2953 }
2954#endif
1856 2955
1857 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2957 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2958
1860 if (!((WL)w)->next) 2959 if (!((WL)w)->next)
2960# if EV_USE_SIGNALFD
2961 if (sigfd < 0) /*TODO*/
2962# endif
1861 { 2963 {
1862#if _WIN32 2964# ifdef _WIN32
2965 evpipe_init (EV_A);
2966
1863 signal (w->signum, sighandler); 2967 signal (w->signum, ev_sighandler);
1864#else 2968# else
1865 struct sigaction sa; 2969 struct sigaction sa;
2970
2971 evpipe_init (EV_A);
2972
1866 sa.sa_handler = sighandler; 2973 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2974 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2975 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2976 sigaction (w->signum, &sa, 0);
2977
2978 if (origflags & EVFLAG_NOSIGMASK)
2979 {
2980 sigemptyset (&sa.sa_mask);
2981 sigaddset (&sa.sa_mask, w->signum);
2982 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2983 }
1870#endif 2984#endif
1871 } 2985 }
2986
2987 EV_FREQUENT_CHECK;
1872} 2988}
1873 2989
1874void noinline 2990void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2991ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2992{
1877 clear_pending (EV_A_ (W)w); 2993 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2994 if (expect_false (!ev_is_active (w)))
1879 return; 2995 return;
1880 2996
2997 EV_FREQUENT_CHECK;
2998
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2999 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
1883 3001
1884 if (!signals [w->signum - 1].head) 3002 if (!signals [w->signum - 1].head)
3003 {
3004#if EV_MULTIPLICITY
3005 signals [w->signum - 1].loop = 0; /* unattach from signal */
3006#endif
3007#if EV_USE_SIGNALFD
3008 if (sigfd >= 0)
3009 {
3010 sigset_t ss;
3011
3012 sigemptyset (&ss);
3013 sigaddset (&ss, w->signum);
3014 sigdelset (&sigfd_set, w->signum);
3015
3016 signalfd (sigfd, &sigfd_set, 0);
3017 sigprocmask (SIG_UNBLOCK, &ss, 0);
3018 }
3019 else
3020#endif
1885 signal (w->signum, SIG_DFL); 3021 signal (w->signum, SIG_DFL);
3022 }
3023
3024 EV_FREQUENT_CHECK;
1886} 3025}
3026
3027#endif
3028
3029#if EV_CHILD_ENABLE
1887 3030
1888void 3031void
1889ev_child_start (EV_P_ ev_child *w) 3032ev_child_start (EV_P_ ev_child *w)
1890{ 3033{
1891#if EV_MULTIPLICITY 3034#if EV_MULTIPLICITY
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3035 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 3036#endif
1894 if (expect_false (ev_is_active (w))) 3037 if (expect_false (ev_is_active (w)))
1895 return; 3038 return;
1896 3039
3040 EV_FREQUENT_CHECK;
3041
1897 ev_start (EV_A_ (W)w, 1); 3042 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3043 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3044
3045 EV_FREQUENT_CHECK;
1899} 3046}
1900 3047
1901void 3048void
1902ev_child_stop (EV_P_ ev_child *w) 3049ev_child_stop (EV_P_ ev_child *w)
1903{ 3050{
1904 clear_pending (EV_A_ (W)w); 3051 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 3052 if (expect_false (!ev_is_active (w)))
1906 return; 3053 return;
1907 3054
3055 EV_FREQUENT_CHECK;
3056
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3057 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 3058 ev_stop (EV_A_ (W)w);
3059
3060 EV_FREQUENT_CHECK;
1910} 3061}
3062
3063#endif
1911 3064
1912#if EV_STAT_ENABLE 3065#if EV_STAT_ENABLE
1913 3066
1914# ifdef _WIN32 3067# ifdef _WIN32
1915# undef lstat 3068# undef lstat
1916# define lstat(a,b) _stati64 (a,b) 3069# define lstat(a,b) _stati64 (a,b)
1917# endif 3070# endif
1918 3071
1919#define DEF_STAT_INTERVAL 5.0074891 3072#define DEF_STAT_INTERVAL 5.0074891
3073#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1920#define MIN_STAT_INTERVAL 0.1074891 3074#define MIN_STAT_INTERVAL 0.1074891
1921 3075
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3076static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923 3077
1924#if EV_USE_INOTIFY 3078#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192 3079
3080/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3081# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1926 3082
1927static void noinline 3083static void noinline
1928infy_add (EV_P_ ev_stat *w) 3084infy_add (EV_P_ ev_stat *w)
1929{ 3085{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3086 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1931 3087
1932 if (w->wd < 0) 3088 if (w->wd >= 0)
3089 {
3090 struct statfs sfs;
3091
3092 /* now local changes will be tracked by inotify, but remote changes won't */
3093 /* unless the filesystem is known to be local, we therefore still poll */
3094 /* also do poll on <2.6.25, but with normal frequency */
3095
3096 if (!fs_2625)
3097 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3098 else if (!statfs (w->path, &sfs)
3099 && (sfs.f_type == 0x1373 /* devfs */
3100 || sfs.f_type == 0xEF53 /* ext2/3 */
3101 || sfs.f_type == 0x3153464a /* jfs */
3102 || sfs.f_type == 0x52654973 /* reiser3 */
3103 || sfs.f_type == 0x01021994 /* tempfs */
3104 || sfs.f_type == 0x58465342 /* xfs */))
3105 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3106 else
3107 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1933 { 3108 }
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3109 else
3110 {
3111 /* can't use inotify, continue to stat */
3112 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1935 3113
1936 /* monitor some parent directory for speedup hints */ 3114 /* if path is not there, monitor some parent directory for speedup hints */
3115 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3116 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3117 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 3118 {
1939 char path [4096]; 3119 char path [4096];
1940 strcpy (path, w->path); 3120 strcpy (path, w->path);
1941 3121
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3124 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3125 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946 3126
1947 char *pend = strrchr (path, '/'); 3127 char *pend = strrchr (path, '/');
1948 3128
1949 if (!pend) 3129 if (!pend || pend == path)
1950 break; /* whoops, no '/', complain to your admin */ 3130 break;
1951 3131
1952 *pend = 0; 3132 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask); 3133 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 } 3134 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3135 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 } 3136 }
1957 } 3137 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960 3138
1961 if (w->wd >= 0) 3139 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3140 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3141
3142 /* now re-arm timer, if required */
3143 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3144 ev_timer_again (EV_A_ &w->timer);
3145 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1963} 3146}
1964 3147
1965static void noinline 3148static void noinline
1966infy_del (EV_P_ ev_stat *w) 3149infy_del (EV_P_ ev_stat *w)
1967{ 3150{
1970 3153
1971 if (wd < 0) 3154 if (wd < 0)
1972 return; 3155 return;
1973 3156
1974 w->wd = -2; 3157 w->wd = -2;
1975 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3158 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1976 wlist_del (&fs_hash [slot].head, (WL)w); 3159 wlist_del (&fs_hash [slot].head, (WL)w);
1977 3160
1978 /* remove this watcher, if others are watching it, they will rearm */ 3161 /* remove this watcher, if others are watching it, they will rearm */
1979 inotify_rm_watch (fs_fd, wd); 3162 inotify_rm_watch (fs_fd, wd);
1980} 3163}
1981 3164
1982static void noinline 3165static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3166infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{ 3167{
1985 if (slot < 0) 3168 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */ 3169 /* overflow, need to check for all hash slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3170 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1988 infy_wd (EV_A_ slot, wd, ev); 3171 infy_wd (EV_A_ slot, wd, ev);
1989 else 3172 else
1990 { 3173 {
1991 WL w_; 3174 WL w_;
1992 3175
1993 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3176 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1994 { 3177 {
1995 ev_stat *w = (ev_stat *)w_; 3178 ev_stat *w = (ev_stat *)w_;
1996 w_ = w_->next; /* lets us remove this watcher and all before it */ 3179 w_ = w_->next; /* lets us remove this watcher and all before it */
1997 3180
1998 if (w->wd == wd || wd == -1) 3181 if (w->wd == wd || wd == -1)
1999 { 3182 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3183 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 { 3184 {
3185 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2002 w->wd = -1; 3186 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */ 3187 infy_add (EV_A_ w); /* re-add, no matter what */
2004 } 3188 }
2005 3189
2006 stat_timer_cb (EV_A_ &w->timer, 0); 3190 stat_timer_cb (EV_A_ &w->timer, 0);
2011 3195
2012static void 3196static void
2013infy_cb (EV_P_ ev_io *w, int revents) 3197infy_cb (EV_P_ ev_io *w, int revents)
2014{ 3198{
2015 char buf [EV_INOTIFY_BUFSIZE]; 3199 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs; 3200 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf)); 3201 int len = read (fs_fd, buf, sizeof (buf));
2019 3202
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3203 for (ofs = 0; ofs < len; )
3204 {
3205 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3207 ofs += sizeof (struct inotify_event) + ev->len;
3208 }
2022} 3209}
2023 3210
2024void inline_size 3211inline_size void
3212ev_check_2625 (EV_P)
3213{
3214 /* kernels < 2.6.25 are borked
3215 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3216 */
3217 if (ev_linux_version () < 0x020619)
3218 return;
3219
3220 fs_2625 = 1;
3221}
3222
3223inline_size int
3224infy_newfd (void)
3225{
3226#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3227 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3228 if (fd >= 0)
3229 return fd;
3230#endif
3231 return inotify_init ();
3232}
3233
3234inline_size void
2025infy_init (EV_P) 3235infy_init (EV_P)
2026{ 3236{
2027 if (fs_fd != -2) 3237 if (fs_fd != -2)
2028 return; 3238 return;
2029 3239
3240 fs_fd = -1;
3241
3242 ev_check_2625 (EV_A);
3243
2030 fs_fd = inotify_init (); 3244 fs_fd = infy_newfd ();
2031 3245
2032 if (fs_fd >= 0) 3246 if (fs_fd >= 0)
2033 { 3247 {
3248 fd_intern (fs_fd);
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3249 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI); 3250 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w); 3251 ev_io_start (EV_A_ &fs_w);
3252 ev_unref (EV_A);
2037 } 3253 }
2038} 3254}
2039 3255
2040void inline_size 3256inline_size void
2041infy_fork (EV_P) 3257infy_fork (EV_P)
2042{ 3258{
2043 int slot; 3259 int slot;
2044 3260
2045 if (fs_fd < 0) 3261 if (fs_fd < 0)
2046 return; 3262 return;
2047 3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &fs_w);
2048 close (fs_fd); 3266 close (fs_fd);
2049 fs_fd = inotify_init (); 3267 fs_fd = infy_newfd ();
2050 3268
3269 if (fs_fd >= 0)
3270 {
3271 fd_intern (fs_fd);
3272 ev_io_set (&fs_w, fs_fd, EV_READ);
3273 ev_io_start (EV_A_ &fs_w);
3274 ev_unref (EV_A);
3275 }
3276
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3277 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2052 { 3278 {
2053 WL w_ = fs_hash [slot].head; 3279 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0; 3280 fs_hash [slot].head = 0;
2055 3281
2056 while (w_) 3282 while (w_)
2061 w->wd = -1; 3287 w->wd = -1;
2062 3288
2063 if (fs_fd >= 0) 3289 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */ 3290 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else 3291 else
3292 {
3293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3294 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2066 ev_timer_start (EV_A_ &w->timer); 3295 ev_timer_again (EV_A_ &w->timer);
3296 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3297 }
2067 } 3298 }
2068
2069 } 3299 }
2070} 3300}
2071 3301
3302#endif
3303
3304#ifdef _WIN32
3305# define EV_LSTAT(p,b) _stati64 (p, b)
3306#else
3307# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 3308#endif
2073 3309
2074void 3310void
2075ev_stat_stat (EV_P_ ev_stat *w) 3311ev_stat_stat (EV_P_ ev_stat *w)
2076{ 3312{
2083static void noinline 3319static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3320stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{ 3321{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3322 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087 3323
2088 /* we copy this here each the time so that */ 3324 ev_statdata prev = w->attr;
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w); 3325 ev_stat_stat (EV_A_ w);
2092 3326
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3327 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if ( 3328 if (
2095 w->prev.st_dev != w->attr.st_dev 3329 prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino 3330 || prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode 3331 || prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink 3332 || prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid 3333 || prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid 3334 || prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev 3335 || prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size 3336 || prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime 3337 || prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime 3338 || prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime 3339 || prev.st_ctime != w->attr.st_ctime
2106 ) { 3340 ) {
3341 /* we only update w->prev on actual differences */
3342 /* in case we test more often than invoke the callback, */
3343 /* to ensure that prev is always different to attr */
3344 w->prev = prev;
3345
2107 #if EV_USE_INOTIFY 3346 #if EV_USE_INOTIFY
3347 if (fs_fd >= 0)
3348 {
2108 infy_del (EV_A_ w); 3349 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w); 3350 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */ 3351 ev_stat_stat (EV_A_ w); /* avoid race... */
3352 }
2111 #endif 3353 #endif
2112 3354
2113 ev_feed_event (EV_A_ w, EV_STAT); 3355 ev_feed_event (EV_A_ w, EV_STAT);
2114 } 3356 }
2115} 3357}
2118ev_stat_start (EV_P_ ev_stat *w) 3360ev_stat_start (EV_P_ ev_stat *w)
2119{ 3361{
2120 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
2121 return; 3363 return;
2122 3364
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w); 3365 ev_stat_stat (EV_A_ w);
2128 3366
3367 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2129 if (w->interval < MIN_STAT_INTERVAL) 3368 w->interval = MIN_STAT_INTERVAL;
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131 3369
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3370 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2133 ev_set_priority (&w->timer, ev_priority (w)); 3371 ev_set_priority (&w->timer, ev_priority (w));
2134 3372
2135#if EV_USE_INOTIFY 3373#if EV_USE_INOTIFY
2136 infy_init (EV_A); 3374 infy_init (EV_A);
2137 3375
2138 if (fs_fd >= 0) 3376 if (fs_fd >= 0)
2139 infy_add (EV_A_ w); 3377 infy_add (EV_A_ w);
2140 else 3378 else
2141#endif 3379#endif
3380 {
2142 ev_timer_start (EV_A_ &w->timer); 3381 ev_timer_again (EV_A_ &w->timer);
3382 ev_unref (EV_A);
3383 }
2143 3384
2144 ev_start (EV_A_ (W)w, 1); 3385 ev_start (EV_A_ (W)w, 1);
3386
3387 EV_FREQUENT_CHECK;
2145} 3388}
2146 3389
2147void 3390void
2148ev_stat_stop (EV_P_ ev_stat *w) 3391ev_stat_stop (EV_P_ ev_stat *w)
2149{ 3392{
2150 clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
2152 return; 3395 return;
2153 3396
3397 EV_FREQUENT_CHECK;
3398
2154#if EV_USE_INOTIFY 3399#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 3400 infy_del (EV_A_ w);
2156#endif 3401#endif
3402
3403 if (ev_is_active (&w->timer))
3404 {
3405 ev_ref (EV_A);
2157 ev_timer_stop (EV_A_ &w->timer); 3406 ev_timer_stop (EV_A_ &w->timer);
3407 }
2158 3408
2159 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
3410
3411 EV_FREQUENT_CHECK;
2160} 3412}
2161#endif 3413#endif
2162 3414
2163#if EV_IDLE_ENABLE 3415#if EV_IDLE_ENABLE
2164void 3416void
2166{ 3418{
2167 if (expect_false (ev_is_active (w))) 3419 if (expect_false (ev_is_active (w)))
2168 return; 3420 return;
2169 3421
2170 pri_adjust (EV_A_ (W)w); 3422 pri_adjust (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2171 3425
2172 { 3426 {
2173 int active = ++idlecnt [ABSPRI (w)]; 3427 int active = ++idlecnt [ABSPRI (w)];
2174 3428
2175 ++idleall; 3429 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 3430 ev_start (EV_A_ (W)w, active);
2177 3431
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3432 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 3433 idles [ABSPRI (w)][active - 1] = w;
2180 } 3434 }
3435
3436 EV_FREQUENT_CHECK;
2181} 3437}
2182 3438
2183void 3439void
2184ev_idle_stop (EV_P_ ev_idle *w) 3440ev_idle_stop (EV_P_ ev_idle *w)
2185{ 3441{
2186 clear_pending (EV_A_ (W)w); 3442 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 3443 if (expect_false (!ev_is_active (w)))
2188 return; 3444 return;
2189 3445
3446 EV_FREQUENT_CHECK;
3447
2190 { 3448 {
2191 int active = ((W)w)->active; 3449 int active = ev_active (w);
2192 3450
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3451 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3452 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 3453
2196 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
2197 --idleall; 3455 --idleall;
2198 } 3456 }
2199}
2200#endif
2201 3457
3458 EV_FREQUENT_CHECK;
3459}
3460#endif
3461
3462#if EV_PREPARE_ENABLE
2202void 3463void
2203ev_prepare_start (EV_P_ ev_prepare *w) 3464ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 3465{
2205 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
2206 return; 3467 return;
3468
3469 EV_FREQUENT_CHECK;
2207 3470
2208 ev_start (EV_A_ (W)w, ++preparecnt); 3471 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3472 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 3473 prepares [preparecnt - 1] = w;
3474
3475 EV_FREQUENT_CHECK;
2211} 3476}
2212 3477
2213void 3478void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 3479ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 3480{
2216 clear_pending (EV_A_ (W)w); 3481 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 3482 if (expect_false (!ev_is_active (w)))
2218 return; 3483 return;
2219 3484
3485 EV_FREQUENT_CHECK;
3486
2220 { 3487 {
2221 int active = ((W)w)->active; 3488 int active = ev_active (w);
3489
2222 prepares [active - 1] = prepares [--preparecnt]; 3490 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 3491 ev_active (prepares [active - 1]) = active;
2224 } 3492 }
2225 3493
2226 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
2227}
2228 3495
3496 EV_FREQUENT_CHECK;
3497}
3498#endif
3499
3500#if EV_CHECK_ENABLE
2229void 3501void
2230ev_check_start (EV_P_ ev_check *w) 3502ev_check_start (EV_P_ ev_check *w)
2231{ 3503{
2232 if (expect_false (ev_is_active (w))) 3504 if (expect_false (ev_is_active (w)))
2233 return; 3505 return;
3506
3507 EV_FREQUENT_CHECK;
2234 3508
2235 ev_start (EV_A_ (W)w, ++checkcnt); 3509 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3510 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 3511 checks [checkcnt - 1] = w;
3512
3513 EV_FREQUENT_CHECK;
2238} 3514}
2239 3515
2240void 3516void
2241ev_check_stop (EV_P_ ev_check *w) 3517ev_check_stop (EV_P_ ev_check *w)
2242{ 3518{
2243 clear_pending (EV_A_ (W)w); 3519 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 3520 if (expect_false (!ev_is_active (w)))
2245 return; 3521 return;
2246 3522
3523 EV_FREQUENT_CHECK;
3524
2247 { 3525 {
2248 int active = ((W)w)->active; 3526 int active = ev_active (w);
3527
2249 checks [active - 1] = checks [--checkcnt]; 3528 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 3529 ev_active (checks [active - 1]) = active;
2251 } 3530 }
2252 3531
2253 ev_stop (EV_A_ (W)w); 3532 ev_stop (EV_A_ (W)w);
3533
3534 EV_FREQUENT_CHECK;
2254} 3535}
3536#endif
2255 3537
2256#if EV_EMBED_ENABLE 3538#if EV_EMBED_ENABLE
2257void noinline 3539void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 3540ev_embed_sweep (EV_P_ ev_embed *w)
2259{ 3541{
2260 ev_loop (w->other, EVLOOP_NONBLOCK); 3542 ev_run (w->other, EVRUN_NOWAIT);
2261} 3543}
2262 3544
2263static void 3545static void
2264embed_io_cb (EV_P_ ev_io *io, int revents) 3546embed_io_cb (EV_P_ ev_io *io, int revents)
2265{ 3547{
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3548 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267 3549
2268 if (ev_cb (w)) 3550 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3551 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else 3552 else
2271 ev_loop (w->other, EVLOOP_NONBLOCK); 3553 ev_run (w->other, EVRUN_NOWAIT);
2272} 3554}
2273 3555
2274static void 3556static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3557embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 3558{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3559 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 3560
2279 { 3561 {
2280 struct ev_loop *loop = w->other; 3562 EV_P = w->other;
2281 3563
2282 while (fdchangecnt) 3564 while (fdchangecnt)
2283 { 3565 {
2284 fd_reify (EV_A); 3566 fd_reify (EV_A);
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3567 ev_run (EV_A_ EVRUN_NOWAIT);
2286 } 3568 }
2287 } 3569 }
3570}
3571
3572static void
3573embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3574{
3575 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3576
3577 ev_embed_stop (EV_A_ w);
3578
3579 {
3580 EV_P = w->other;
3581
3582 ev_loop_fork (EV_A);
3583 ev_run (EV_A_ EVRUN_NOWAIT);
3584 }
3585
3586 ev_embed_start (EV_A_ w);
2288} 3587}
2289 3588
2290#if 0 3589#if 0
2291static void 3590static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3591embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2300{ 3599{
2301 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
2302 return; 3601 return;
2303 3602
2304 { 3603 {
2305 struct ev_loop *loop = w->other; 3604 EV_P = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3605 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3606 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 3607 }
3608
3609 EV_FREQUENT_CHECK;
2309 3610
2310 ev_set_priority (&w->io, ev_priority (w)); 3611 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 3612 ev_io_start (EV_A_ &w->io);
2312 3613
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 3614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 3615 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 3616 ev_prepare_start (EV_A_ &w->prepare);
2316 3617
3618 ev_fork_init (&w->fork, embed_fork_cb);
3619 ev_fork_start (EV_A_ &w->fork);
3620
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3621 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 3622
2319 ev_start (EV_A_ (W)w, 1); 3623 ev_start (EV_A_ (W)w, 1);
3624
3625 EV_FREQUENT_CHECK;
2320} 3626}
2321 3627
2322void 3628void
2323ev_embed_stop (EV_P_ ev_embed *w) 3629ev_embed_stop (EV_P_ ev_embed *w)
2324{ 3630{
2325 clear_pending (EV_A_ (W)w); 3631 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 3632 if (expect_false (!ev_is_active (w)))
2327 return; 3633 return;
2328 3634
3635 EV_FREQUENT_CHECK;
3636
2329 ev_io_stop (EV_A_ &w->io); 3637 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 3638 ev_prepare_stop (EV_A_ &w->prepare);
3639 ev_fork_stop (EV_A_ &w->fork);
2331 3640
2332 ev_stop (EV_A_ (W)w); 3641 ev_stop (EV_A_ (W)w);
3642
3643 EV_FREQUENT_CHECK;
2333} 3644}
2334#endif 3645#endif
2335 3646
2336#if EV_FORK_ENABLE 3647#if EV_FORK_ENABLE
2337void 3648void
2338ev_fork_start (EV_P_ ev_fork *w) 3649ev_fork_start (EV_P_ ev_fork *w)
2339{ 3650{
2340 if (expect_false (ev_is_active (w))) 3651 if (expect_false (ev_is_active (w)))
2341 return; 3652 return;
3653
3654 EV_FREQUENT_CHECK;
2342 3655
2343 ev_start (EV_A_ (W)w, ++forkcnt); 3656 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3657 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 3658 forks [forkcnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
2346} 3661}
2347 3662
2348void 3663void
2349ev_fork_stop (EV_P_ ev_fork *w) 3664ev_fork_stop (EV_P_ ev_fork *w)
2350{ 3665{
2351 clear_pending (EV_A_ (W)w); 3666 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 3667 if (expect_false (!ev_is_active (w)))
2353 return; 3668 return;
2354 3669
3670 EV_FREQUENT_CHECK;
3671
2355 { 3672 {
2356 int active = ((W)w)->active; 3673 int active = ev_active (w);
3674
2357 forks [active - 1] = forks [--forkcnt]; 3675 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 3676 ev_active (forks [active - 1]) = active;
2359 } 3677 }
2360 3678
2361 ev_stop (EV_A_ (W)w); 3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683#endif
3684
3685#if EV_CLEANUP_ENABLE
3686void
3687ev_cleanup_start (EV_P_ ev_cleanup *w)
3688{
3689 if (expect_false (ev_is_active (w)))
3690 return;
3691
3692 EV_FREQUENT_CHECK;
3693
3694 ev_start (EV_A_ (W)w, ++cleanupcnt);
3695 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3696 cleanups [cleanupcnt - 1] = w;
3697
3698 /* cleanup watchers should never keep a refcount on the loop */
3699 ev_unref (EV_A);
3700 EV_FREQUENT_CHECK;
3701}
3702
3703void
3704ev_cleanup_stop (EV_P_ ev_cleanup *w)
3705{
3706 clear_pending (EV_A_ (W)w);
3707 if (expect_false (!ev_is_active (w)))
3708 return;
3709
3710 EV_FREQUENT_CHECK;
3711 ev_ref (EV_A);
3712
3713 {
3714 int active = ev_active (w);
3715
3716 cleanups [active - 1] = cleanups [--cleanupcnt];
3717 ev_active (cleanups [active - 1]) = active;
3718 }
3719
3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
3723}
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727void
3728ev_async_start (EV_P_ ev_async *w)
3729{
3730 if (expect_false (ev_is_active (w)))
3731 return;
3732
3733 w->sent = 0;
3734
3735 evpipe_init (EV_A);
3736
3737 EV_FREQUENT_CHECK;
3738
3739 ev_start (EV_A_ (W)w, ++asynccnt);
3740 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3741 asyncs [asynccnt - 1] = w;
3742
3743 EV_FREQUENT_CHECK;
3744}
3745
3746void
3747ev_async_stop (EV_P_ ev_async *w)
3748{
3749 clear_pending (EV_A_ (W)w);
3750 if (expect_false (!ev_is_active (w)))
3751 return;
3752
3753 EV_FREQUENT_CHECK;
3754
3755 {
3756 int active = ev_active (w);
3757
3758 asyncs [active - 1] = asyncs [--asynccnt];
3759 ev_active (asyncs [active - 1]) = active;
3760 }
3761
3762 ev_stop (EV_A_ (W)w);
3763
3764 EV_FREQUENT_CHECK;
3765}
3766
3767void
3768ev_async_send (EV_P_ ev_async *w)
3769{
3770 w->sent = 1;
3771 evpipe_write (EV_A_ &async_pending);
2362} 3772}
2363#endif 3773#endif
2364 3774
2365/*****************************************************************************/ 3775/*****************************************************************************/
2366 3776
2376once_cb (EV_P_ struct ev_once *once, int revents) 3786once_cb (EV_P_ struct ev_once *once, int revents)
2377{ 3787{
2378 void (*cb)(int revents, void *arg) = once->cb; 3788 void (*cb)(int revents, void *arg) = once->cb;
2379 void *arg = once->arg; 3789 void *arg = once->arg;
2380 3790
2381 ev_io_stop (EV_A_ &once->io); 3791 ev_io_stop (EV_A_ &once->io);
2382 ev_timer_stop (EV_A_ &once->to); 3792 ev_timer_stop (EV_A_ &once->to);
2383 ev_free (once); 3793 ev_free (once);
2384 3794
2385 cb (revents, arg); 3795 cb (revents, arg);
2386} 3796}
2387 3797
2388static void 3798static void
2389once_cb_io (EV_P_ ev_io *w, int revents) 3799once_cb_io (EV_P_ ev_io *w, int revents)
2390{ 3800{
2391 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3801 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3802
3803 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2392} 3804}
2393 3805
2394static void 3806static void
2395once_cb_to (EV_P_ ev_timer *w, int revents) 3807once_cb_to (EV_P_ ev_timer *w, int revents)
2396{ 3808{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2398} 3812}
2399 3813
2400void 3814void
2401ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3815ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2402{ 3816{
2403 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3817 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2404 3818
2405 if (expect_false (!once)) 3819 if (expect_false (!once))
2406 { 3820 {
2407 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3821 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2408 return; 3822 return;
2409 } 3823 }
2410 3824
2411 once->cb = cb; 3825 once->cb = cb;
2412 once->arg = arg; 3826 once->arg = arg;
2424 ev_timer_set (&once->to, timeout, 0.); 3838 ev_timer_set (&once->to, timeout, 0.);
2425 ev_timer_start (EV_A_ &once->to); 3839 ev_timer_start (EV_A_ &once->to);
2426 } 3840 }
2427} 3841}
2428 3842
3843/*****************************************************************************/
3844
3845#if EV_WALK_ENABLE
3846void
3847ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3848{
3849 int i, j;
3850 ev_watcher_list *wl, *wn;
3851
3852 if (types & (EV_IO | EV_EMBED))
3853 for (i = 0; i < anfdmax; ++i)
3854 for (wl = anfds [i].head; wl; )
3855 {
3856 wn = wl->next;
3857
3858#if EV_EMBED_ENABLE
3859 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3860 {
3861 if (types & EV_EMBED)
3862 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3863 }
3864 else
3865#endif
3866#if EV_USE_INOTIFY
3867 if (ev_cb ((ev_io *)wl) == infy_cb)
3868 ;
3869 else
3870#endif
3871 if ((ev_io *)wl != &pipe_w)
3872 if (types & EV_IO)
3873 cb (EV_A_ EV_IO, wl);
3874
3875 wl = wn;
3876 }
3877
3878 if (types & (EV_TIMER | EV_STAT))
3879 for (i = timercnt + HEAP0; i-- > HEAP0; )
3880#if EV_STAT_ENABLE
3881 /*TODO: timer is not always active*/
3882 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3883 {
3884 if (types & EV_STAT)
3885 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3886 }
3887 else
3888#endif
3889 if (types & EV_TIMER)
3890 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3891
3892#if EV_PERIODIC_ENABLE
3893 if (types & EV_PERIODIC)
3894 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3895 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3896#endif
3897
3898#if EV_IDLE_ENABLE
3899 if (types & EV_IDLE)
3900 for (j = NUMPRI; i--; )
3901 for (i = idlecnt [j]; i--; )
3902 cb (EV_A_ EV_IDLE, idles [j][i]);
3903#endif
3904
3905#if EV_FORK_ENABLE
3906 if (types & EV_FORK)
3907 for (i = forkcnt; i--; )
3908 if (ev_cb (forks [i]) != embed_fork_cb)
3909 cb (EV_A_ EV_FORK, forks [i]);
3910#endif
3911
3912#if EV_ASYNC_ENABLE
3913 if (types & EV_ASYNC)
3914 for (i = asynccnt; i--; )
3915 cb (EV_A_ EV_ASYNC, asyncs [i]);
3916#endif
3917
3918#if EV_PREPARE_ENABLE
3919 if (types & EV_PREPARE)
3920 for (i = preparecnt; i--; )
3921# if EV_EMBED_ENABLE
3922 if (ev_cb (prepares [i]) != embed_prepare_cb)
3923# endif
3924 cb (EV_A_ EV_PREPARE, prepares [i]);
3925#endif
3926
3927#if EV_CHECK_ENABLE
3928 if (types & EV_CHECK)
3929 for (i = checkcnt; i--; )
3930 cb (EV_A_ EV_CHECK, checks [i]);
3931#endif
3932
3933#if EV_SIGNAL_ENABLE
3934 if (types & EV_SIGNAL)
3935 for (i = 0; i < EV_NSIG - 1; ++i)
3936 for (wl = signals [i].head; wl; )
3937 {
3938 wn = wl->next;
3939 cb (EV_A_ EV_SIGNAL, wl);
3940 wl = wn;
3941 }
3942#endif
3943
3944#if EV_CHILD_ENABLE
3945 if (types & EV_CHILD)
3946 for (i = (EV_PID_HASHSIZE); i--; )
3947 for (wl = childs [i]; wl; )
3948 {
3949 wn = wl->next;
3950 cb (EV_A_ EV_CHILD, wl);
3951 wl = wn;
3952 }
3953#endif
3954/* EV_STAT 0x00001000 /* stat data changed */
3955/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3956}
3957#endif
3958
2429#if EV_MULTIPLICITY 3959#if EV_MULTIPLICITY
2430 #include "ev_wrap.h" 3960 #include "ev_wrap.h"
2431#endif 3961#endif
2432 3962
2433#ifdef __cplusplus 3963EV_CPP(})
2434}
2435#endif
2436 3964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines