ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.458 by root, Sun Oct 27 16:26:07 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
135#endif 197#endif
136 198
137#ifndef _WIN32 199#ifndef _WIN32
138# include <sys/time.h> 200# include <sys/time.h>
139# include <sys/wait.h> 201# include <sys/wait.h>
140# include <unistd.h> 202# include <unistd.h>
141#else 203#else
204# include <io.h>
142# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
143# include <windows.h> 207# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
146# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
147#endif 261# endif
148 262#endif
149/**/
150 263
151#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
152# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
153#endif 270#endif
154 271
155#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 274#endif
158 275
159#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
160# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
161#endif 282#endif
162 283
163#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 286#endif
166 287
167#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
168# ifdef _WIN32 289# ifdef _WIN32
169# define EV_USE_POLL 0 290# define EV_USE_POLL 0
170# else 291# else
171# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 293# endif
173#endif 294#endif
174 295
175#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
176# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
177#endif 302#endif
178 303
179#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
181#endif 306#endif
183#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 309# define EV_USE_PORT 0
185#endif 310#endif
186 311
187#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
188# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
189#endif 318#endif
190 319
191#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 331# else
195# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
196# endif 333# endif
197#endif 334#endif
198 335
199#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 339# else
203# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
204# endif 341# endif
205#endif 342#endif
206 343
207/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 393
209#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
212#endif 397#endif
220# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
222#endif 407#endif
223 408
224#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
226# include <sys/select.h> 412# include <sys/select.h>
227# endif 413# endif
228#endif 414#endif
229 415
230#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
231# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
232#endif 423# endif
424#endif
233 425
234#if EV_SELECT_IS_WINSOCKET 426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
235# include <winsock.h> 428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
236#endif 462#endif
237 463
238/**/ 464/**/
239 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
240/* 472/*
241 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 475 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 478
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 529 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
257#else 545#else
258# define expect(expr,value) (expr) 546 #include <inttypes.h>
259# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
260# if __STDC_VERSION__ < 199901L 548 #define ECB_PTRSIZE 8
261# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
262# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if _ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
263#endif 560 #endif
561#endif
264 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699#endif
700
701#ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717#endif
718
719#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721#endif
722
723#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725#endif
726
727/*****************************************************************************/
728
729#if __cplusplus
730 #define ecb_inline static inline
731#elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733#elif ECB_C99
734 #define ecb_inline static inline
735#else
736 #define ecb_inline static
737#endif
738
739#if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741#elif ECB_C99
742 #define ecb_restrict restrict
743#else
744 #define ecb_restrict
745#endif
746
747typedef int ecb_bool;
748
749#define ECB_CONCAT_(a, b) a ## b
750#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751#define ECB_STRINGIFY_(a) # a
752#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754#define ecb_function_ ecb_inline
755
756#if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761#else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
764 #define ecb_expect(expr,value) (expr)
765 #define ecb_prefetch(addr,rw,locality)
766#endif
767
768/* no emulation for ecb_decltype */
769#if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771#elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773#endif
774
775#define ecb_noinline ecb_attribute ((__noinline__))
776#define ecb_unused ecb_attribute ((__unused__))
777#define ecb_const ecb_attribute ((__const__))
778#define ecb_pure ecb_attribute ((__pure__))
779
780#if ECB_C11
781 #define ecb_noreturn _Noreturn
782#else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784#endif
785
786#if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790#else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794#endif
795
796/* put around conditional expressions if you are very sure that the */
797/* expression is mostly true or mostly false. note that these return */
798/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 799#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 800#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801/* for compatibility to the rest of the world */
802#define ecb_likely(expr) ecb_expect_true (expr)
803#define ecb_unlikely(expr) ecb_expect_false (expr)
804
805/* count trailing zero bits and count # of one bits */
806#if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814#else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823#if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829#else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835#endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883#endif
884
885ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892{
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895}
896
897ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899{
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906}
907
908ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910{
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918}
919
920/* popcount64 is only available on 64 bit cpus as gcc builtin */
921/* so for this version we are lazy */
922ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923ecb_function_ int
924ecb_popcount64 (uint64_t x)
925{
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927}
928
929ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947#if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951#else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972#endif
973
974#if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976#else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980#endif
981
982/* try to tell the compiler that some condition is definitely true */
983#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986ecb_inline unsigned char
987ecb_byteorder_helper (void)
988{
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001#else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008#endif
1009}
1010
1011ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016#if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018#else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020#endif
1021
1022#if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033#else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036#endif
1037
1038#if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045#else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047#endif
1048
1049/*******************************************************************************/
1050/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052/* basically, everything uses "ieee pure-endian" floating point numbers */
1053/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054#if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070#else
1071 #define ECB_STDFP 0
1072#endif
1073
1074#ifndef ECB_NO_LIBM
1075
1076 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1077
1078 #ifdef NEN
1079 #define ECB_NAN NAN
1080 #else
1081 #define ECB_NAN INFINITY
1082 #endif
1083
1084 /* converts an ieee half/binary16 to a float */
1085 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1086 ecb_function_ float
1087 ecb_binary16_to_float (uint16_t x)
1088 {
1089 int e = (x >> 10) & 0x1f;
1090 int m = x & 0x3ff;
1091 float r;
1092
1093 if (!e ) r = ldexpf (m , -24);
1094 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1095 else if (m ) r = ECB_NAN;
1096 else r = INFINITY;
1097
1098 return x & 0x8000 ? -r : r;
1099 }
1100
1101 /* convert a float to ieee single/binary32 */
1102 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1103 ecb_function_ uint32_t
1104 ecb_float_to_binary32 (float x)
1105 {
1106 uint32_t r;
1107
1108 #if ECB_STDFP
1109 memcpy (&r, &x, 4);
1110 #else
1111 /* slow emulation, works for anything but -0 */
1112 uint32_t m;
1113 int e;
1114
1115 if (x == 0e0f ) return 0x00000000U;
1116 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1117 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1118 if (x != x ) return 0x7fbfffffU;
1119
1120 m = frexpf (x, &e) * 0x1000000U;
1121
1122 r = m & 0x80000000U;
1123
1124 if (r)
1125 m = -m;
1126
1127 if (e <= -126)
1128 {
1129 m &= 0xffffffU;
1130 m >>= (-125 - e);
1131 e = -126;
1132 }
1133
1134 r |= (e + 126) << 23;
1135 r |= m & 0x7fffffU;
1136 #endif
1137
1138 return r;
1139 }
1140
1141 /* converts an ieee single/binary32 to a float */
1142 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1143 ecb_function_ float
1144 ecb_binary32_to_float (uint32_t x)
1145 {
1146 float r;
1147
1148 #if ECB_STDFP
1149 memcpy (&r, &x, 4);
1150 #else
1151 /* emulation, only works for normals and subnormals and +0 */
1152 int neg = x >> 31;
1153 int e = (x >> 23) & 0xffU;
1154
1155 x &= 0x7fffffU;
1156
1157 if (e)
1158 x |= 0x800000U;
1159 else
1160 e = 1;
1161
1162 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1163 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1164
1165 r = neg ? -r : r;
1166 #endif
1167
1168 return r;
1169 }
1170
1171 /* convert a double to ieee double/binary64 */
1172 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1173 ecb_function_ uint64_t
1174 ecb_double_to_binary64 (double x)
1175 {
1176 uint64_t r;
1177
1178 #if ECB_STDFP
1179 memcpy (&r, &x, 8);
1180 #else
1181 /* slow emulation, works for anything but -0 */
1182 uint64_t m;
1183 int e;
1184
1185 if (x == 0e0 ) return 0x0000000000000000U;
1186 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1187 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1188 if (x != x ) return 0X7ff7ffffffffffffU;
1189
1190 m = frexp (x, &e) * 0x20000000000000U;
1191
1192 r = m & 0x8000000000000000;;
1193
1194 if (r)
1195 m = -m;
1196
1197 if (e <= -1022)
1198 {
1199 m &= 0x1fffffffffffffU;
1200 m >>= (-1021 - e);
1201 e = -1022;
1202 }
1203
1204 r |= ((uint64_t)(e + 1022)) << 52;
1205 r |= m & 0xfffffffffffffU;
1206 #endif
1207
1208 return r;
1209 }
1210
1211 /* converts an ieee double/binary64 to a double */
1212 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1213 ecb_function_ double
1214 ecb_binary64_to_double (uint64_t x)
1215 {
1216 double r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 8);
1220 #else
1221 /* emulation, only works for normals and subnormals and +0 */
1222 int neg = x >> 63;
1223 int e = (x >> 52) & 0x7ffU;
1224
1225 x &= 0xfffffffffffffU;
1226
1227 if (e)
1228 x |= 0x10000000000000U;
1229 else
1230 e = 1;
1231
1232 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1233 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1234
1235 r = neg ? -r : r;
1236 #endif
1237
1238 return r;
1239 }
1240
1241#endif
1242
1243#endif
1244
1245/* ECB.H END */
1246
1247#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1248/* if your architecture doesn't need memory fences, e.g. because it is
1249 * single-cpu/core, or if you use libev in a project that doesn't use libev
1250 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1251 * libev, in which cases the memory fences become nops.
1252 * alternatively, you can remove this #error and link against libpthread,
1253 * which will then provide the memory fences.
1254 */
1255# error "memory fences not defined for your architecture, please report"
1256#endif
1257
1258#ifndef ECB_MEMORY_FENCE
1259# define ECB_MEMORY_FENCE do { } while (0)
1260# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1261# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1262#endif
1263
1264#define expect_false(cond) ecb_expect_false (cond)
1265#define expect_true(cond) ecb_expect_true (cond)
1266#define noinline ecb_noinline
1267
267#define inline_size static inline 1268#define inline_size ecb_inline
268 1269
269#if EV_MINIMAL 1270#if EV_FEATURE_CODE
1271# define inline_speed ecb_inline
1272#else
270# define inline_speed static noinline 1273# define inline_speed static noinline
1274#endif
1275
1276#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1277
1278#if EV_MINPRI == EV_MAXPRI
1279# define ABSPRI(w) (((W)w), 0)
271#else 1280#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1281# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1282#endif
277 1283
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1284#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 1285#define EMPTY2(a,b) /* used to suppress some warnings */
280 1286
281typedef ev_watcher *W; 1287typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 1288typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 1289typedef ev_watcher_time *WT;
284 1290
1291#define ev_active(w) ((W)(w))->active
1292#define ev_at(w) ((WT)(w))->at
1293
1294#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1295/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 1296/* giving it a reasonably high chance of working on typical architectures */
1297static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1298#endif
1299
1300#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1301static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1302#endif
1303
1304#ifndef EV_FD_TO_WIN32_HANDLE
1305# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1306#endif
1307#ifndef EV_WIN32_HANDLE_TO_FD
1308# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1309#endif
1310#ifndef EV_WIN32_CLOSE_FD
1311# define EV_WIN32_CLOSE_FD(fd) close (fd)
1312#endif
288 1313
289#ifdef _WIN32 1314#ifdef _WIN32
290# include "ev_win32.c" 1315# include "ev_win32.c"
291#endif 1316#endif
292 1317
293/*****************************************************************************/ 1318/*****************************************************************************/
294 1319
1320/* define a suitable floor function (only used by periodics atm) */
1321
1322#if EV_USE_FLOOR
1323# include <math.h>
1324# define ev_floor(v) floor (v)
1325#else
1326
1327#include <float.h>
1328
1329/* a floor() replacement function, should be independent of ev_tstamp type */
1330static ev_tstamp noinline
1331ev_floor (ev_tstamp v)
1332{
1333 /* the choice of shift factor is not terribly important */
1334#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1335 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1336#else
1337 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1338#endif
1339
1340 /* argument too large for an unsigned long? */
1341 if (expect_false (v >= shift))
1342 {
1343 ev_tstamp f;
1344
1345 if (v == v - 1.)
1346 return v; /* very large number */
1347
1348 f = shift * ev_floor (v * (1. / shift));
1349 return f + ev_floor (v - f);
1350 }
1351
1352 /* special treatment for negative args? */
1353 if (expect_false (v < 0.))
1354 {
1355 ev_tstamp f = -ev_floor (-v);
1356
1357 return f - (f == v ? 0 : 1);
1358 }
1359
1360 /* fits into an unsigned long */
1361 return (unsigned long)v;
1362}
1363
1364#endif
1365
1366/*****************************************************************************/
1367
1368#ifdef __linux
1369# include <sys/utsname.h>
1370#endif
1371
1372static unsigned int noinline ecb_cold
1373ev_linux_version (void)
1374{
1375#ifdef __linux
1376 unsigned int v = 0;
1377 struct utsname buf;
1378 int i;
1379 char *p = buf.release;
1380
1381 if (uname (&buf))
1382 return 0;
1383
1384 for (i = 3+1; --i; )
1385 {
1386 unsigned int c = 0;
1387
1388 for (;;)
1389 {
1390 if (*p >= '0' && *p <= '9')
1391 c = c * 10 + *p++ - '0';
1392 else
1393 {
1394 p += *p == '.';
1395 break;
1396 }
1397 }
1398
1399 v = (v << 8) | c;
1400 }
1401
1402 return v;
1403#else
1404 return 0;
1405#endif
1406}
1407
1408/*****************************************************************************/
1409
1410#if EV_AVOID_STDIO
1411static void noinline ecb_cold
1412ev_printerr (const char *msg)
1413{
1414 write (STDERR_FILENO, msg, strlen (msg));
1415}
1416#endif
1417
295static void (*syserr_cb)(const char *msg); 1418static void (*syserr_cb)(const char *msg) EV_THROW;
296 1419
297void 1420void ecb_cold
298ev_set_syserr_cb (void (*cb)(const char *msg)) 1421ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
299{ 1422{
300 syserr_cb = cb; 1423 syserr_cb = cb;
301} 1424}
302 1425
303static void noinline 1426static void noinline ecb_cold
304syserr (const char *msg) 1427ev_syserr (const char *msg)
305{ 1428{
306 if (!msg) 1429 if (!msg)
307 msg = "(libev) system error"; 1430 msg = "(libev) system error";
308 1431
309 if (syserr_cb) 1432 if (syserr_cb)
310 syserr_cb (msg); 1433 syserr_cb (msg);
311 else 1434 else
312 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr (msg);
1438 ev_printerr (": ");
1439 ev_printerr (strerror (errno));
1440 ev_printerr ("\n");
1441#else
313 perror (msg); 1442 perror (msg);
1443#endif
314 abort (); 1444 abort ();
315 } 1445 }
316} 1446}
317 1447
1448static void *
1449ev_realloc_emul (void *ptr, long size) EV_THROW
1450{
1451 /* some systems, notably openbsd and darwin, fail to properly
1452 * implement realloc (x, 0) (as required by both ansi c-89 and
1453 * the single unix specification, so work around them here.
1454 * recently, also (at least) fedora and debian started breaking it,
1455 * despite documenting it otherwise.
1456 */
1457
1458 if (size)
1459 return realloc (ptr, size);
1460
1461 free (ptr);
1462 return 0;
1463}
1464
318static void *(*alloc)(void *ptr, long size); 1465static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
319 1466
320void 1467void ecb_cold
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 1468ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
322{ 1469{
323 alloc = cb; 1470 alloc = cb;
324} 1471}
325 1472
326inline_speed void * 1473inline_speed void *
327ev_realloc (void *ptr, long size) 1474ev_realloc (void *ptr, long size)
328{ 1475{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1476 ptr = alloc (ptr, size);
330 1477
331 if (!ptr && size) 1478 if (!ptr && size)
332 { 1479 {
1480#if EV_AVOID_STDIO
1481 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1482#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1483 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1484#endif
334 abort (); 1485 abort ();
335 } 1486 }
336 1487
337 return ptr; 1488 return ptr;
338} 1489}
340#define ev_malloc(size) ev_realloc (0, (size)) 1491#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 1492#define ev_free(ptr) ev_realloc ((ptr), 0)
342 1493
343/*****************************************************************************/ 1494/*****************************************************************************/
344 1495
1496/* set in reify when reification needed */
1497#define EV_ANFD_REIFY 1
1498
1499/* file descriptor info structure */
345typedef struct 1500typedef struct
346{ 1501{
347 WL head; 1502 WL head;
348 unsigned char events; 1503 unsigned char events; /* the events watched for */
1504 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1505 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 1506 unsigned char unused;
1507#if EV_USE_EPOLL
1508 unsigned int egen; /* generation counter to counter epoll bugs */
1509#endif
350#if EV_SELECT_IS_WINSOCKET 1510#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
351 SOCKET handle; 1511 SOCKET handle;
352#endif 1512#endif
1513#if EV_USE_IOCP
1514 OVERLAPPED or, ow;
1515#endif
353} ANFD; 1516} ANFD;
354 1517
1518/* stores the pending event set for a given watcher */
355typedef struct 1519typedef struct
356{ 1520{
357 W w; 1521 W w;
358 int events; 1522 int events; /* the pending event set for the given watcher */
359} ANPENDING; 1523} ANPENDING;
360 1524
361#if EV_USE_INOTIFY 1525#if EV_USE_INOTIFY
1526/* hash table entry per inotify-id */
362typedef struct 1527typedef struct
363{ 1528{
364 WL head; 1529 WL head;
365} ANFS; 1530} ANFS;
1531#endif
1532
1533/* Heap Entry */
1534#if EV_HEAP_CACHE_AT
1535 /* a heap element */
1536 typedef struct {
1537 ev_tstamp at;
1538 WT w;
1539 } ANHE;
1540
1541 #define ANHE_w(he) (he).w /* access watcher, read-write */
1542 #define ANHE_at(he) (he).at /* access cached at, read-only */
1543 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1544#else
1545 /* a heap element */
1546 typedef WT ANHE;
1547
1548 #define ANHE_w(he) (he)
1549 #define ANHE_at(he) (he)->at
1550 #define ANHE_at_cache(he)
366#endif 1551#endif
367 1552
368#if EV_MULTIPLICITY 1553#if EV_MULTIPLICITY
369 1554
370 struct ev_loop 1555 struct ev_loop
376 #undef VAR 1561 #undef VAR
377 }; 1562 };
378 #include "ev_wrap.h" 1563 #include "ev_wrap.h"
379 1564
380 static struct ev_loop default_loop_struct; 1565 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr; 1566 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
382 1567
383#else 1568#else
384 1569
385 ev_tstamp ev_rt_now; 1570 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
386 #define VAR(name,decl) static decl; 1571 #define VAR(name,decl) static decl;
387 #include "ev_vars.h" 1572 #include "ev_vars.h"
388 #undef VAR 1573 #undef VAR
389 1574
390 static int ev_default_loop_ptr; 1575 static int ev_default_loop_ptr;
391 1576
392#endif 1577#endif
393 1578
1579#if EV_FEATURE_API
1580# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1581# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1582# define EV_INVOKE_PENDING invoke_cb (EV_A)
1583#else
1584# define EV_RELEASE_CB (void)0
1585# define EV_ACQUIRE_CB (void)0
1586# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1587#endif
1588
1589#define EVBREAK_RECURSE 0x80
1590
394/*****************************************************************************/ 1591/*****************************************************************************/
395 1592
1593#ifndef EV_HAVE_EV_TIME
396ev_tstamp 1594ev_tstamp
397ev_time (void) 1595ev_time (void) EV_THROW
398{ 1596{
399#if EV_USE_REALTIME 1597#if EV_USE_REALTIME
1598 if (expect_true (have_realtime))
1599 {
400 struct timespec ts; 1600 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 1601 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 1602 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 1603 }
1604#endif
1605
404 struct timeval tv; 1606 struct timeval tv;
405 gettimeofday (&tv, 0); 1607 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 1608 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 1609}
1610#endif
409 1611
410ev_tstamp inline_size 1612inline_size ev_tstamp
411get_clock (void) 1613get_clock (void)
412{ 1614{
413#if EV_USE_MONOTONIC 1615#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 1616 if (expect_true (have_monotonic))
415 { 1617 {
422 return ev_time (); 1624 return ev_time ();
423} 1625}
424 1626
425#if EV_MULTIPLICITY 1627#if EV_MULTIPLICITY
426ev_tstamp 1628ev_tstamp
427ev_now (EV_P) 1629ev_now (EV_P) EV_THROW
428{ 1630{
429 return ev_rt_now; 1631 return ev_rt_now;
430} 1632}
431#endif 1633#endif
432 1634
433void 1635void
434ev_sleep (ev_tstamp delay) 1636ev_sleep (ev_tstamp delay) EV_THROW
435{ 1637{
436 if (delay > 0.) 1638 if (delay > 0.)
437 { 1639 {
438#if EV_USE_NANOSLEEP 1640#if EV_USE_NANOSLEEP
439 struct timespec ts; 1641 struct timespec ts;
440 1642
441 ts.tv_sec = (time_t)delay; 1643 EV_TS_SET (ts, delay);
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0); 1644 nanosleep (&ts, 0);
445#elif defined(_WIN32) 1645#elif defined _WIN32
446 Sleep (delay * 1e3); 1646 Sleep ((unsigned long)(delay * 1e3));
447#else 1647#else
448 struct timeval tv; 1648 struct timeval tv;
449 1649
450 tv.tv_sec = (time_t)delay; 1650 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1651 /* something not guaranteed by newer posix versions, but guaranteed */
452 1652 /* by older ones */
1653 EV_TV_SET (tv, delay);
453 select (0, 0, 0, 0, &tv); 1654 select (0, 0, 0, 0, &tv);
454#endif 1655#endif
455 } 1656 }
456} 1657}
457 1658
458/*****************************************************************************/ 1659/*****************************************************************************/
459 1660
460int inline_size 1661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1662
1663/* find a suitable new size for the given array, */
1664/* hopefully by rounding to a nice-to-malloc size */
1665inline_size int
461array_nextsize (int elem, int cur, int cnt) 1666array_nextsize (int elem, int cur, int cnt)
462{ 1667{
463 int ncur = cur + 1; 1668 int ncur = cur + 1;
464 1669
465 do 1670 do
466 ncur <<= 1; 1671 ncur <<= 1;
467 while (cnt > ncur); 1672 while (cnt > ncur);
468 1673
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
470 if (elem * ncur > 4096) 1675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 1676 {
472 ncur *= elem; 1677 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 1679 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 1680 ncur /= elem;
476 } 1681 }
477 1682
478 return ncur; 1683 return ncur;
479} 1684}
480 1685
481static noinline void * 1686static void * noinline ecb_cold
482array_realloc (int elem, void *base, int *cur, int cnt) 1687array_realloc (int elem, void *base, int *cur, int cnt)
483{ 1688{
484 *cur = array_nextsize (elem, *cur, cnt); 1689 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 1690 return ev_realloc (base, elem * *cur);
486} 1691}
1692
1693#define array_init_zero(base,count) \
1694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 1695
488#define array_needsize(type,base,cur,cnt,init) \ 1696#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 1697 if (expect_false ((cnt) > (cur))) \
490 { \ 1698 { \
491 int ocur_ = (cur); \ 1699 int ecb_unused ocur_ = (cur); \
492 (base) = (type *)array_realloc \ 1700 (base) = (type *)array_realloc \
493 (sizeof (type), (base), &(cur), (cnt)); \ 1701 (sizeof (type), (base), &(cur), (cnt)); \
494 init ((base) + (ocur_), (cur) - ocur_); \ 1702 init ((base) + (ocur_), (cur) - ocur_); \
495 } 1703 }
496 1704
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 1712 }
505#endif 1713#endif
506 1714
507#define array_free(stem, idx) \ 1715#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 1717
510/*****************************************************************************/ 1718/*****************************************************************************/
511 1719
1720/* dummy callback for pending events */
1721static void noinline
1722pendingcb (EV_P_ ev_prepare *w, int revents)
1723{
1724}
1725
512void noinline 1726void noinline
513ev_feed_event (EV_P_ void *w, int revents) 1727ev_feed_event (EV_P_ void *w, int revents) EV_THROW
514{ 1728{
515 W w_ = (W)w; 1729 W w_ = (W)w;
516 int pri = ABSPRI (w_); 1730 int pri = ABSPRI (w_);
517 1731
518 if (expect_false (w_->pending)) 1732 if (expect_false (w_->pending))
522 w_->pending = ++pendingcnt [pri]; 1736 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_; 1738 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 1739 pendings [pri][w_->pending - 1].events = revents;
526 } 1740 }
527}
528 1741
529void inline_speed 1742 pendingpri = NUMPRI - 1;
1743}
1744
1745inline_speed void
1746feed_reverse (EV_P_ W w)
1747{
1748 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1749 rfeeds [rfeedcnt++] = w;
1750}
1751
1752inline_size void
1753feed_reverse_done (EV_P_ int revents)
1754{
1755 do
1756 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1757 while (rfeedcnt);
1758}
1759
1760inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 1761queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 1762{
532 int i; 1763 int i;
533 1764
534 for (i = 0; i < eventcnt; ++i) 1765 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 1766 ev_feed_event (EV_A_ events [i], type);
536} 1767}
537 1768
538/*****************************************************************************/ 1769/*****************************************************************************/
539 1770
540void inline_size 1771inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 1772fd_event_nocheck (EV_P_ int fd, int revents)
555{ 1773{
556 ANFD *anfd = anfds + fd; 1774 ANFD *anfd = anfds + fd;
557 ev_io *w; 1775 ev_io *w;
558 1776
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 1781 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 1782 ev_feed_event (EV_A_ (W)w, ev);
565 } 1783 }
566} 1784}
567 1785
1786/* do not submit kernel events for fds that have reify set */
1787/* because that means they changed while we were polling for new events */
1788inline_speed void
1789fd_event (EV_P_ int fd, int revents)
1790{
1791 ANFD *anfd = anfds + fd;
1792
1793 if (expect_true (!anfd->reify))
1794 fd_event_nocheck (EV_A_ fd, revents);
1795}
1796
568void 1797void
569ev_feed_fd_event (EV_P_ int fd, int revents) 1798ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
570{ 1799{
571 if (fd >= 0 && fd < anfdmax) 1800 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 1801 fd_event_nocheck (EV_A_ fd, revents);
573} 1802}
574 1803
575void inline_size 1804/* make sure the external fd watch events are in-sync */
1805/* with the kernel/libev internal state */
1806inline_size void
576fd_reify (EV_P) 1807fd_reify (EV_P)
577{ 1808{
578 int i; 1809 int i;
1810
1811#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1812 for (i = 0; i < fdchangecnt; ++i)
1813 {
1814 int fd = fdchanges [i];
1815 ANFD *anfd = anfds + fd;
1816
1817 if (anfd->reify & EV__IOFDSET && anfd->head)
1818 {
1819 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1820
1821 if (handle != anfd->handle)
1822 {
1823 unsigned long arg;
1824
1825 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1826
1827 /* handle changed, but fd didn't - we need to do it in two steps */
1828 backend_modify (EV_A_ fd, anfd->events, 0);
1829 anfd->events = 0;
1830 anfd->handle = handle;
1831 }
1832 }
1833 }
1834#endif
579 1835
580 for (i = 0; i < fdchangecnt; ++i) 1836 for (i = 0; i < fdchangecnt; ++i)
581 { 1837 {
582 int fd = fdchanges [i]; 1838 int fd = fdchanges [i];
583 ANFD *anfd = anfds + fd; 1839 ANFD *anfd = anfds + fd;
584 ev_io *w; 1840 ev_io *w;
585 1841
586 unsigned char events = 0; 1842 unsigned char o_events = anfd->events;
1843 unsigned char o_reify = anfd->reify;
587 1844
588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1845 anfd->reify = 0;
589 events |= (unsigned char)w->events;
590 1846
591#if EV_SELECT_IS_WINSOCKET 1847 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
592 if (events)
593 { 1848 {
594 unsigned long argp; 1849 anfd->events = 0;
595 anfd->handle = _get_osfhandle (fd); 1850
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1851 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1852 anfd->events |= (unsigned char)w->events;
1853
1854 if (o_events != anfd->events)
1855 o_reify = EV__IOFDSET; /* actually |= */
597 } 1856 }
598#endif
599 1857
600 { 1858 if (o_reify & EV__IOFDSET)
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
604 anfd->reify = 0;
605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 1859 backend_modify (EV_A_ fd, o_events, anfd->events);
609 }
610 } 1860 }
611 1861
612 fdchangecnt = 0; 1862 fdchangecnt = 0;
613} 1863}
614 1864
615void inline_size 1865/* something about the given fd changed */
1866inline_size void
616fd_change (EV_P_ int fd, int flags) 1867fd_change (EV_P_ int fd, int flags)
617{ 1868{
618 unsigned char reify = anfds [fd].reify; 1869 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 1870 anfds [fd].reify |= flags;
620 1871
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1875 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 1876 fdchanges [fdchangecnt - 1] = fd;
626 } 1877 }
627} 1878}
628 1879
629void inline_speed 1880/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1881inline_speed void ecb_cold
630fd_kill (EV_P_ int fd) 1882fd_kill (EV_P_ int fd)
631{ 1883{
632 ev_io *w; 1884 ev_io *w;
633 1885
634 while ((w = (ev_io *)anfds [fd].head)) 1886 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 1888 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1889 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 1890 }
639} 1891}
640 1892
641int inline_size 1893/* check whether the given fd is actually valid, for error recovery */
1894inline_size int ecb_cold
642fd_valid (int fd) 1895fd_valid (int fd)
643{ 1896{
644#ifdef _WIN32 1897#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1898 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1899#else
647 return fcntl (fd, F_GETFD) != -1; 1900 return fcntl (fd, F_GETFD) != -1;
648#endif 1901#endif
649} 1902}
650 1903
651/* called on EBADF to verify fds */ 1904/* called on EBADF to verify fds */
652static void noinline 1905static void noinline ecb_cold
653fd_ebadf (EV_P) 1906fd_ebadf (EV_P)
654{ 1907{
655 int fd; 1908 int fd;
656 1909
657 for (fd = 0; fd < anfdmax; ++fd) 1910 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 1911 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 1912 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 1913 fd_kill (EV_A_ fd);
661} 1914}
662 1915
663/* called on ENOMEM in select/poll to kill some fds and retry */ 1916/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 1917static void noinline ecb_cold
665fd_enomem (EV_P) 1918fd_enomem (EV_P)
666{ 1919{
667 int fd; 1920 int fd;
668 1921
669 for (fd = anfdmax; fd--; ) 1922 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1923 if (anfds [fd].events)
671 { 1924 {
672 fd_kill (EV_A_ fd); 1925 fd_kill (EV_A_ fd);
673 return; 1926 break;
674 } 1927 }
675} 1928}
676 1929
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1930/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1931static void noinline
682 1935
683 for (fd = 0; fd < anfdmax; ++fd) 1936 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1937 if (anfds [fd].events)
685 { 1938 {
686 anfds [fd].events = 0; 1939 anfds [fd].events = 0;
1940 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1941 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1942 }
689} 1943}
690 1944
691/*****************************************************************************/ 1945/* used to prepare libev internal fd's */
692 1946/* this is not fork-safe */
693void inline_speed 1947inline_speed void
694upheap (WT *heap, int k)
695{
696 WT w = heap [k];
697
698 while (k)
699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
705 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1;
707 k = p;
708 }
709
710 heap [k] = w;
711 ((W)heap [k])->active = k + 1;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
747}
748
749/*****************************************************************************/
750
751typedef struct
752{
753 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG;
756
757static ANSIG *signals;
758static int signalmax;
759
760static int sigpipe [2];
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763
764void inline_size
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1948fd_intern (int fd)
829{ 1949{
830#ifdef _WIN32 1950#ifdef _WIN32
831 int arg = 1; 1951 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1952 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1953#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1954 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1955 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1956#endif
837} 1957}
838 1958
839static void noinline
840siginit (EV_P)
841{
842 fd_intern (sigpipe [0]);
843 fd_intern (sigpipe [1]);
844
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */
848}
849
850/*****************************************************************************/ 1959/*****************************************************************************/
851 1960
1961/*
1962 * the heap functions want a real array index. array index 0 is guaranteed to not
1963 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1964 * the branching factor of the d-tree.
1965 */
1966
1967/*
1968 * at the moment we allow libev the luxury of two heaps,
1969 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1970 * which is more cache-efficient.
1971 * the difference is about 5% with 50000+ watchers.
1972 */
1973#if EV_USE_4HEAP
1974
1975#define DHEAP 4
1976#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1977#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1978#define UPHEAP_DONE(p,k) ((p) == (k))
1979
1980/* away from the root */
1981inline_speed void
1982downheap (ANHE *heap, int N, int k)
1983{
1984 ANHE he = heap [k];
1985 ANHE *E = heap + N + HEAP0;
1986
1987 for (;;)
1988 {
1989 ev_tstamp minat;
1990 ANHE *minpos;
1991 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1992
1993 /* find minimum child */
1994 if (expect_true (pos + DHEAP - 1 < E))
1995 {
1996 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1997 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1998 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1999 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2000 }
2001 else if (pos < E)
2002 {
2003 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2004 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2005 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2006 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2007 }
2008 else
2009 break;
2010
2011 if (ANHE_at (he) <= minat)
2012 break;
2013
2014 heap [k] = *minpos;
2015 ev_active (ANHE_w (*minpos)) = k;
2016
2017 k = minpos - heap;
2018 }
2019
2020 heap [k] = he;
2021 ev_active (ANHE_w (he)) = k;
2022}
2023
2024#else /* 4HEAP */
2025
2026#define HEAP0 1
2027#define HPARENT(k) ((k) >> 1)
2028#define UPHEAP_DONE(p,k) (!(p))
2029
2030/* away from the root */
2031inline_speed void
2032downheap (ANHE *heap, int N, int k)
2033{
2034 ANHE he = heap [k];
2035
2036 for (;;)
2037 {
2038 int c = k << 1;
2039
2040 if (c >= N + HEAP0)
2041 break;
2042
2043 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2044 ? 1 : 0;
2045
2046 if (ANHE_at (he) <= ANHE_at (heap [c]))
2047 break;
2048
2049 heap [k] = heap [c];
2050 ev_active (ANHE_w (heap [k])) = k;
2051
2052 k = c;
2053 }
2054
2055 heap [k] = he;
2056 ev_active (ANHE_w (he)) = k;
2057}
2058#endif
2059
2060/* towards the root */
2061inline_speed void
2062upheap (ANHE *heap, int k)
2063{
2064 ANHE he = heap [k];
2065
2066 for (;;)
2067 {
2068 int p = HPARENT (k);
2069
2070 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2071 break;
2072
2073 heap [k] = heap [p];
2074 ev_active (ANHE_w (heap [k])) = k;
2075 k = p;
2076 }
2077
2078 heap [k] = he;
2079 ev_active (ANHE_w (he)) = k;
2080}
2081
2082/* move an element suitably so it is in a correct place */
2083inline_size void
2084adjustheap (ANHE *heap, int N, int k)
2085{
2086 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2087 upheap (heap, k);
2088 else
2089 downheap (heap, N, k);
2090}
2091
2092/* rebuild the heap: this function is used only once and executed rarely */
2093inline_size void
2094reheap (ANHE *heap, int N)
2095{
2096 int i;
2097
2098 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2099 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2100 for (i = 0; i < N; ++i)
2101 upheap (heap, i + HEAP0);
2102}
2103
2104/*****************************************************************************/
2105
2106/* associate signal watchers to a signal signal */
2107typedef struct
2108{
2109 EV_ATOMIC_T pending;
2110#if EV_MULTIPLICITY
2111 EV_P;
2112#endif
2113 WL head;
2114} ANSIG;
2115
2116static ANSIG signals [EV_NSIG - 1];
2117
2118/*****************************************************************************/
2119
2120#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2121
2122static void noinline ecb_cold
2123evpipe_init (EV_P)
2124{
2125 if (!ev_is_active (&pipe_w))
2126 {
2127 int fds [2];
2128
2129# if EV_USE_EVENTFD
2130 fds [0] = -1;
2131 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2132 if (fds [1] < 0 && errno == EINVAL)
2133 fds [1] = eventfd (0, 0);
2134
2135 if (fds [1] < 0)
2136# endif
2137 {
2138 while (pipe (fds))
2139 ev_syserr ("(libev) error creating signal/async pipe");
2140
2141 fd_intern (fds [0]);
2142 }
2143
2144 evpipe [0] = fds [0];
2145
2146 if (evpipe [1] < 0)
2147 evpipe [1] = fds [1]; /* first call, set write fd */
2148 else
2149 {
2150 /* on subsequent calls, do not change evpipe [1] */
2151 /* so that evpipe_write can always rely on its value. */
2152 /* this branch does not do anything sensible on windows, */
2153 /* so must not be executed on windows */
2154
2155 dup2 (fds [1], evpipe [1]);
2156 close (fds [1]);
2157 }
2158
2159 fd_intern (evpipe [1]);
2160
2161 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2162 ev_io_start (EV_A_ &pipe_w);
2163 ev_unref (EV_A); /* watcher should not keep loop alive */
2164 }
2165}
2166
2167inline_speed void
2168evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2169{
2170 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2171
2172 if (expect_true (*flag))
2173 return;
2174
2175 *flag = 1;
2176 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2177
2178 pipe_write_skipped = 1;
2179
2180 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2181
2182 if (pipe_write_wanted)
2183 {
2184 int old_errno;
2185
2186 pipe_write_skipped = 0;
2187 ECB_MEMORY_FENCE_RELEASE;
2188
2189 old_errno = errno; /* save errno because write will clobber it */
2190
2191#if EV_USE_EVENTFD
2192 if (evpipe [0] < 0)
2193 {
2194 uint64_t counter = 1;
2195 write (evpipe [1], &counter, sizeof (uint64_t));
2196 }
2197 else
2198#endif
2199 {
2200#ifdef _WIN32
2201 WSABUF buf;
2202 DWORD sent;
2203 buf.buf = &buf;
2204 buf.len = 1;
2205 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2206#else
2207 write (evpipe [1], &(evpipe [1]), 1);
2208#endif
2209 }
2210
2211 errno = old_errno;
2212 }
2213}
2214
2215/* called whenever the libev signal pipe */
2216/* got some events (signal, async) */
2217static void
2218pipecb (EV_P_ ev_io *iow, int revents)
2219{
2220 int i;
2221
2222 if (revents & EV_READ)
2223 {
2224#if EV_USE_EVENTFD
2225 if (evpipe [0] < 0)
2226 {
2227 uint64_t counter;
2228 read (evpipe [1], &counter, sizeof (uint64_t));
2229 }
2230 else
2231#endif
2232 {
2233 char dummy[4];
2234#ifdef _WIN32
2235 WSABUF buf;
2236 DWORD recvd;
2237 DWORD flags = 0;
2238 buf.buf = dummy;
2239 buf.len = sizeof (dummy);
2240 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2241#else
2242 read (evpipe [0], &dummy, sizeof (dummy));
2243#endif
2244 }
2245 }
2246
2247 pipe_write_skipped = 0;
2248
2249 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2250
2251#if EV_SIGNAL_ENABLE
2252 if (sig_pending)
2253 {
2254 sig_pending = 0;
2255
2256 ECB_MEMORY_FENCE;
2257
2258 for (i = EV_NSIG - 1; i--; )
2259 if (expect_false (signals [i].pending))
2260 ev_feed_signal_event (EV_A_ i + 1);
2261 }
2262#endif
2263
2264#if EV_ASYNC_ENABLE
2265 if (async_pending)
2266 {
2267 async_pending = 0;
2268
2269 ECB_MEMORY_FENCE;
2270
2271 for (i = asynccnt; i--; )
2272 if (asyncs [i]->sent)
2273 {
2274 asyncs [i]->sent = 0;
2275 ECB_MEMORY_FENCE_RELEASE;
2276 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2277 }
2278 }
2279#endif
2280}
2281
2282/*****************************************************************************/
2283
2284void
2285ev_feed_signal (int signum) EV_THROW
2286{
2287#if EV_MULTIPLICITY
2288 EV_P;
2289 ECB_MEMORY_FENCE_ACQUIRE;
2290 EV_A = signals [signum - 1].loop;
2291
2292 if (!EV_A)
2293 return;
2294#endif
2295
2296 signals [signum - 1].pending = 1;
2297 evpipe_write (EV_A_ &sig_pending);
2298}
2299
2300static void
2301ev_sighandler (int signum)
2302{
2303#ifdef _WIN32
2304 signal (signum, ev_sighandler);
2305#endif
2306
2307 ev_feed_signal (signum);
2308}
2309
2310void noinline
2311ev_feed_signal_event (EV_P_ int signum) EV_THROW
2312{
2313 WL w;
2314
2315 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2316 return;
2317
2318 --signum;
2319
2320#if EV_MULTIPLICITY
2321 /* it is permissible to try to feed a signal to the wrong loop */
2322 /* or, likely more useful, feeding a signal nobody is waiting for */
2323
2324 if (expect_false (signals [signum].loop != EV_A))
2325 return;
2326#endif
2327
2328 signals [signum].pending = 0;
2329 ECB_MEMORY_FENCE_RELEASE;
2330
2331 for (w = signals [signum].head; w; w = w->next)
2332 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2333}
2334
2335#if EV_USE_SIGNALFD
2336static void
2337sigfdcb (EV_P_ ev_io *iow, int revents)
2338{
2339 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2340
2341 for (;;)
2342 {
2343 ssize_t res = read (sigfd, si, sizeof (si));
2344
2345 /* not ISO-C, as res might be -1, but works with SuS */
2346 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2347 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2348
2349 if (res < (ssize_t)sizeof (si))
2350 break;
2351 }
2352}
2353#endif
2354
2355#endif
2356
2357/*****************************************************************************/
2358
2359#if EV_CHILD_ENABLE
852static WL childs [EV_PID_HASHSIZE]; 2360static WL childs [EV_PID_HASHSIZE];
853 2361
854#ifndef _WIN32
855
856static ev_signal childev; 2362static ev_signal childev;
857 2363
858void inline_speed 2364#ifndef WIFCONTINUED
2365# define WIFCONTINUED(status) 0
2366#endif
2367
2368/* handle a single child status event */
2369inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2370child_reap (EV_P_ int chain, int pid, int status)
860{ 2371{
861 ev_child *w; 2372 ev_child *w;
2373 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 2374
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2375 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2376 {
864 if (w->pid == pid || !w->pid) 2377 if ((w->pid == pid || !w->pid)
2378 && (!traced || (w->flags & 1)))
865 { 2379 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2380 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 2381 w->rpid = pid;
868 w->rstatus = status; 2382 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2383 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 2384 }
2385 }
871} 2386}
872 2387
873#ifndef WCONTINUED 2388#ifndef WCONTINUED
874# define WCONTINUED 0 2389# define WCONTINUED 0
875#endif 2390#endif
876 2391
2392/* called on sigchld etc., calls waitpid */
877static void 2393static void
878childcb (EV_P_ ev_signal *sw, int revents) 2394childcb (EV_P_ ev_signal *sw, int revents)
879{ 2395{
880 int pid, status; 2396 int pid, status;
881 2397
884 if (!WCONTINUED 2400 if (!WCONTINUED
885 || errno != EINVAL 2401 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2402 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 2403 return;
888 2404
889 /* make sure we are called again until all childs have been reaped */ 2405 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 2406 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2407 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 2408
893 child_reap (EV_A_ sw, pid, pid, status); 2409 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 2410 if ((EV_PID_HASHSIZE) > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2411 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 2412}
897 2413
898#endif 2414#endif
899 2415
900/*****************************************************************************/ 2416/*****************************************************************************/
901 2417
2418#if EV_USE_IOCP
2419# include "ev_iocp.c"
2420#endif
902#if EV_USE_PORT 2421#if EV_USE_PORT
903# include "ev_port.c" 2422# include "ev_port.c"
904#endif 2423#endif
905#if EV_USE_KQUEUE 2424#if EV_USE_KQUEUE
906# include "ev_kqueue.c" 2425# include "ev_kqueue.c"
913#endif 2432#endif
914#if EV_USE_SELECT 2433#if EV_USE_SELECT
915# include "ev_select.c" 2434# include "ev_select.c"
916#endif 2435#endif
917 2436
918int 2437int ecb_cold
919ev_version_major (void) 2438ev_version_major (void) EV_THROW
920{ 2439{
921 return EV_VERSION_MAJOR; 2440 return EV_VERSION_MAJOR;
922} 2441}
923 2442
924int 2443int ecb_cold
925ev_version_minor (void) 2444ev_version_minor (void) EV_THROW
926{ 2445{
927 return EV_VERSION_MINOR; 2446 return EV_VERSION_MINOR;
928} 2447}
929 2448
930/* return true if we are running with elevated privileges and should ignore env variables */ 2449/* return true if we are running with elevated privileges and should ignore env variables */
931int inline_size 2450int inline_size ecb_cold
932enable_secure (void) 2451enable_secure (void)
933{ 2452{
934#ifdef _WIN32 2453#ifdef _WIN32
935 return 0; 2454 return 0;
936#else 2455#else
937 return getuid () != geteuid () 2456 return getuid () != geteuid ()
938 || getgid () != getegid (); 2457 || getgid () != getegid ();
939#endif 2458#endif
940} 2459}
941 2460
942unsigned int 2461unsigned int ecb_cold
943ev_supported_backends (void) 2462ev_supported_backends (void) EV_THROW
944{ 2463{
945 unsigned int flags = 0; 2464 unsigned int flags = 0;
946 2465
947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2466 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2467 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2470 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952 2471
953 return flags; 2472 return flags;
954} 2473}
955 2474
956unsigned int 2475unsigned int ecb_cold
957ev_recommended_backends (void) 2476ev_recommended_backends (void) EV_THROW
958{ 2477{
959 unsigned int flags = ev_supported_backends (); 2478 unsigned int flags = ev_supported_backends ();
960 2479
961#ifndef __NetBSD__ 2480#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */ 2481 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 2482 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 2483 flags &= ~EVBACKEND_KQUEUE;
965#endif 2484#endif
966#ifdef __APPLE__ 2485#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 2486 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 2487 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2488 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2489#endif
2490#ifdef __FreeBSD__
2491 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
969#endif 2492#endif
970 2493
971 return flags; 2494 return flags;
972} 2495}
973 2496
2497unsigned int ecb_cold
2498ev_embeddable_backends (void) EV_THROW
2499{
2500 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2501
2502 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2503 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2504 flags &= ~EVBACKEND_EPOLL;
2505
2506 return flags;
2507}
2508
974unsigned int 2509unsigned int
975ev_embeddable_backends (void) 2510ev_backend (EV_P) EV_THROW
976{ 2511{
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2512 return backend;
978 return EVBACKEND_KQUEUE
979 | EVBACKEND_PORT;
980} 2513}
981 2514
2515#if EV_FEATURE_API
982unsigned int 2516unsigned int
983ev_backend (EV_P) 2517ev_iteration (EV_P) EV_THROW
984{ 2518{
985 return backend; 2519 return loop_count;
986} 2520}
987 2521
988unsigned int 2522unsigned int
989ev_loop_count (EV_P) 2523ev_depth (EV_P) EV_THROW
990{ 2524{
991 return loop_count; 2525 return loop_depth;
992} 2526}
993 2527
994void 2528void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2529ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
996{ 2530{
997 io_blocktime = interval; 2531 io_blocktime = interval;
998} 2532}
999 2533
1000void 2534void
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2535ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1002{ 2536{
1003 timeout_blocktime = interval; 2537 timeout_blocktime = interval;
1004} 2538}
1005 2539
2540void
2541ev_set_userdata (EV_P_ void *data) EV_THROW
2542{
2543 userdata = data;
2544}
2545
2546void *
2547ev_userdata (EV_P) EV_THROW
2548{
2549 return userdata;
2550}
2551
2552void
2553ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2554{
2555 invoke_cb = invoke_pending_cb;
2556}
2557
2558void
2559ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2560{
2561 release_cb = release;
2562 acquire_cb = acquire;
2563}
2564#endif
2565
2566/* initialise a loop structure, must be zero-initialised */
1006static void noinline 2567static void noinline ecb_cold
1007loop_init (EV_P_ unsigned int flags) 2568loop_init (EV_P_ unsigned int flags) EV_THROW
1008{ 2569{
1009 if (!backend) 2570 if (!backend)
1010 { 2571 {
2572 origflags = flags;
2573
2574#if EV_USE_REALTIME
2575 if (!have_realtime)
2576 {
2577 struct timespec ts;
2578
2579 if (!clock_gettime (CLOCK_REALTIME, &ts))
2580 have_realtime = 1;
2581 }
2582#endif
2583
1011#if EV_USE_MONOTONIC 2584#if EV_USE_MONOTONIC
2585 if (!have_monotonic)
1012 { 2586 {
1013 struct timespec ts; 2587 struct timespec ts;
2588
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2589 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 2590 have_monotonic = 1;
1016 } 2591 }
1017#endif 2592#endif
1018
1019 ev_rt_now = ev_time ();
1020 mn_now = get_clock ();
1021 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now;
1023
1024 io_blocktime = 0.;
1025 timeout_blocktime = 0.;
1026 2593
1027 /* pid check not overridable via env */ 2594 /* pid check not overridable via env */
1028#ifndef _WIN32 2595#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 2596 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 2597 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 2600 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 2601 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 2602 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 2603 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 2604
1038 if (!(flags & 0x0000ffffUL)) 2605 ev_rt_now = ev_time ();
2606 mn_now = get_clock ();
2607 now_floor = mn_now;
2608 rtmn_diff = ev_rt_now - mn_now;
2609#if EV_FEATURE_API
2610 invoke_cb = ev_invoke_pending;
2611#endif
2612
2613 io_blocktime = 0.;
2614 timeout_blocktime = 0.;
2615 backend = 0;
2616 backend_fd = -1;
2617 sig_pending = 0;
2618#if EV_ASYNC_ENABLE
2619 async_pending = 0;
2620#endif
2621 pipe_write_skipped = 0;
2622 pipe_write_wanted = 0;
2623 evpipe [0] = -1;
2624 evpipe [1] = -1;
2625#if EV_USE_INOTIFY
2626 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2627#endif
2628#if EV_USE_SIGNALFD
2629 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2630#endif
2631
2632 if (!(flags & EVBACKEND_MASK))
1039 flags |= ev_recommended_backends (); 2633 flags |= ev_recommended_backends ();
1040 2634
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY 2635#if EV_USE_IOCP
1044 fs_fd = -2; 2636 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1045#endif 2637#endif
1046
1047#if EV_USE_PORT 2638#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2639 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 2640#endif
1050#if EV_USE_KQUEUE 2641#if EV_USE_KQUEUE
1051 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2642 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1058#endif 2649#endif
1059#if EV_USE_SELECT 2650#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2651 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 2652#endif
1062 2653
2654 ev_prepare_init (&pending_w, pendingcb);
2655
2656#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1063 ev_init (&sigev, sigcb); 2657 ev_init (&pipe_w, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 2658 ev_set_priority (&pipe_w, EV_MAXPRI);
2659#endif
1065 } 2660 }
1066} 2661}
1067 2662
1068static void noinline 2663/* free up a loop structure */
2664void ecb_cold
1069loop_destroy (EV_P) 2665ev_loop_destroy (EV_P)
1070{ 2666{
1071 int i; 2667 int i;
2668
2669#if EV_MULTIPLICITY
2670 /* mimic free (0) */
2671 if (!EV_A)
2672 return;
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 /* queue cleanup watchers (and execute them) */
2677 if (expect_false (cleanupcnt))
2678 {
2679 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2680 EV_INVOKE_PENDING;
2681 }
2682#endif
2683
2684#if EV_CHILD_ENABLE
2685 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2686 {
2687 ev_ref (EV_A); /* child watcher */
2688 ev_signal_stop (EV_A_ &childev);
2689 }
2690#endif
2691
2692 if (ev_is_active (&pipe_w))
2693 {
2694 /*ev_ref (EV_A);*/
2695 /*ev_io_stop (EV_A_ &pipe_w);*/
2696
2697 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2698 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2699 }
2700
2701#if EV_USE_SIGNALFD
2702 if (ev_is_active (&sigfd_w))
2703 close (sigfd);
2704#endif
1072 2705
1073#if EV_USE_INOTIFY 2706#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 2707 if (fs_fd >= 0)
1075 close (fs_fd); 2708 close (fs_fd);
1076#endif 2709#endif
1077 2710
1078 if (backend_fd >= 0) 2711 if (backend_fd >= 0)
1079 close (backend_fd); 2712 close (backend_fd);
1080 2713
2714#if EV_USE_IOCP
2715 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2716#endif
1081#if EV_USE_PORT 2717#if EV_USE_PORT
1082 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2718 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1083#endif 2719#endif
1084#if EV_USE_KQUEUE 2720#if EV_USE_KQUEUE
1085 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2721 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1100#if EV_IDLE_ENABLE 2736#if EV_IDLE_ENABLE
1101 array_free (idle, [i]); 2737 array_free (idle, [i]);
1102#endif 2738#endif
1103 } 2739 }
1104 2740
1105 ev_free (anfds); anfdmax = 0; 2741 ev_free (anfds); anfds = 0; anfdmax = 0;
1106 2742
1107 /* have to use the microsoft-never-gets-it-right macro */ 2743 /* have to use the microsoft-never-gets-it-right macro */
2744 array_free (rfeed, EMPTY);
1108 array_free (fdchange, EMPTY); 2745 array_free (fdchange, EMPTY);
1109 array_free (timer, EMPTY); 2746 array_free (timer, EMPTY);
1110#if EV_PERIODIC_ENABLE 2747#if EV_PERIODIC_ENABLE
1111 array_free (periodic, EMPTY); 2748 array_free (periodic, EMPTY);
1112#endif 2749#endif
1113#if EV_FORK_ENABLE 2750#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 2751 array_free (fork, EMPTY);
1115#endif 2752#endif
2753#if EV_CLEANUP_ENABLE
2754 array_free (cleanup, EMPTY);
2755#endif
1116 array_free (prepare, EMPTY); 2756 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 2757 array_free (check, EMPTY);
2758#if EV_ASYNC_ENABLE
2759 array_free (async, EMPTY);
2760#endif
1118 2761
1119 backend = 0; 2762 backend = 0;
1120}
1121 2763
2764#if EV_MULTIPLICITY
2765 if (ev_is_default_loop (EV_A))
2766#endif
2767 ev_default_loop_ptr = 0;
2768#if EV_MULTIPLICITY
2769 else
2770 ev_free (EV_A);
2771#endif
2772}
2773
2774#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 2775inline_size void infy_fork (EV_P);
2776#endif
1123 2777
1124void inline_size 2778inline_size void
1125loop_fork (EV_P) 2779loop_fork (EV_P)
1126{ 2780{
1127#if EV_USE_PORT 2781#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2782 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif 2783#endif
1135#endif 2789#endif
1136#if EV_USE_INOTIFY 2790#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 2791 infy_fork (EV_A);
1138#endif 2792#endif
1139 2793
2794#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1140 if (ev_is_active (&sigev)) 2795 if (ev_is_active (&pipe_w))
1141 { 2796 {
1142 /* default loop */ 2797 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1143 2798
1144 ev_ref (EV_A); 2799 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 2800 ev_io_stop (EV_A_ &pipe_w);
1146 close (sigpipe [0]);
1147 close (sigpipe [1]);
1148 2801
1149 while (pipe (sigpipe)) 2802 if (evpipe [0] >= 0)
1150 syserr ("(libev) error creating pipe"); 2803 EV_WIN32_CLOSE_FD (evpipe [0]);
1151 2804
1152 siginit (EV_A); 2805 evpipe_init (EV_A);
2806 /* iterate over everything, in case we missed something before */
2807 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1153 } 2808 }
2809#endif
1154 2810
1155 postfork = 0; 2811 postfork = 0;
1156} 2812}
1157 2813
1158#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
2815
1159struct ev_loop * 2816struct ev_loop * ecb_cold
1160ev_loop_new (unsigned int flags) 2817ev_loop_new (unsigned int flags) EV_THROW
1161{ 2818{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2819 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 2820
1164 memset (loop, 0, sizeof (struct ev_loop)); 2821 memset (EV_A, 0, sizeof (struct ev_loop));
1165
1166 loop_init (EV_A_ flags); 2822 loop_init (EV_A_ flags);
1167 2823
1168 if (ev_backend (EV_A)) 2824 if (ev_backend (EV_A))
1169 return loop; 2825 return EV_A;
1170 2826
2827 ev_free (EV_A);
1171 return 0; 2828 return 0;
1172} 2829}
1173 2830
1174void 2831#endif /* multiplicity */
1175ev_loop_destroy (EV_P)
1176{
1177 loop_destroy (EV_A);
1178 ev_free (loop);
1179}
1180 2832
1181void 2833#if EV_VERIFY
1182ev_loop_fork (EV_P) 2834static void noinline ecb_cold
2835verify_watcher (EV_P_ W w)
1183{ 2836{
1184 postfork = 1; 2837 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1185}
1186 2838
2839 if (w->pending)
2840 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2841}
2842
2843static void noinline ecb_cold
2844verify_heap (EV_P_ ANHE *heap, int N)
2845{
2846 int i;
2847
2848 for (i = HEAP0; i < N + HEAP0; ++i)
2849 {
2850 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2851 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2852 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2853
2854 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2855 }
2856}
2857
2858static void noinline ecb_cold
2859array_verify (EV_P_ W *ws, int cnt)
2860{
2861 while (cnt--)
2862 {
2863 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2864 verify_watcher (EV_A_ ws [cnt]);
2865 }
2866}
2867#endif
2868
2869#if EV_FEATURE_API
2870void ecb_cold
2871ev_verify (EV_P) EV_THROW
2872{
2873#if EV_VERIFY
2874 int i;
2875 WL w, w2;
2876
2877 assert (activecnt >= -1);
2878
2879 assert (fdchangemax >= fdchangecnt);
2880 for (i = 0; i < fdchangecnt; ++i)
2881 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2882
2883 assert (anfdmax >= 0);
2884 for (i = 0; i < anfdmax; ++i)
2885 {
2886 int j = 0;
2887
2888 for (w = w2 = anfds [i].head; w; w = w->next)
2889 {
2890 verify_watcher (EV_A_ (W)w);
2891
2892 if (j++ & 1)
2893 {
2894 assert (("libev: io watcher list contains a loop", w != w2));
2895 w2 = w2->next;
2896 }
2897
2898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2900 }
2901 }
2902
2903 assert (timermax >= timercnt);
2904 verify_heap (EV_A_ timers, timercnt);
2905
2906#if EV_PERIODIC_ENABLE
2907 assert (periodicmax >= periodiccnt);
2908 verify_heap (EV_A_ periodics, periodiccnt);
2909#endif
2910
2911 for (i = NUMPRI; i--; )
2912 {
2913 assert (pendingmax [i] >= pendingcnt [i]);
2914#if EV_IDLE_ENABLE
2915 assert (idleall >= 0);
2916 assert (idlemax [i] >= idlecnt [i]);
2917 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2918#endif
2919 }
2920
2921#if EV_FORK_ENABLE
2922 assert (forkmax >= forkcnt);
2923 array_verify (EV_A_ (W *)forks, forkcnt);
2924#endif
2925
2926#if EV_CLEANUP_ENABLE
2927 assert (cleanupmax >= cleanupcnt);
2928 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2929#endif
2930
2931#if EV_ASYNC_ENABLE
2932 assert (asyncmax >= asynccnt);
2933 array_verify (EV_A_ (W *)asyncs, asynccnt);
2934#endif
2935
2936#if EV_PREPARE_ENABLE
2937 assert (preparemax >= preparecnt);
2938 array_verify (EV_A_ (W *)prepares, preparecnt);
2939#endif
2940
2941#if EV_CHECK_ENABLE
2942 assert (checkmax >= checkcnt);
2943 array_verify (EV_A_ (W *)checks, checkcnt);
2944#endif
2945
2946# if 0
2947#if EV_CHILD_ENABLE
2948 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2949 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2950#endif
2951# endif
2952#endif
2953}
1187#endif 2954#endif
1188 2955
1189#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
1190struct ev_loop * 2957struct ev_loop * ecb_cold
1191ev_default_loop_init (unsigned int flags)
1192#else 2958#else
1193int 2959int
2960#endif
1194ev_default_loop (unsigned int flags) 2961ev_default_loop (unsigned int flags) EV_THROW
1195#endif
1196{ 2962{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 2963 if (!ev_default_loop_ptr)
1202 { 2964 {
1203#if EV_MULTIPLICITY 2965#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2966 EV_P = ev_default_loop_ptr = &default_loop_struct;
1205#else 2967#else
1206 ev_default_loop_ptr = 1; 2968 ev_default_loop_ptr = 1;
1207#endif 2969#endif
1208 2970
1209 loop_init (EV_A_ flags); 2971 loop_init (EV_A_ flags);
1210 2972
1211 if (ev_backend (EV_A)) 2973 if (ev_backend (EV_A))
1212 { 2974 {
1213 siginit (EV_A); 2975#if EV_CHILD_ENABLE
1214
1215#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 2976 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 2977 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 2978 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2979 ev_unref (EV_A); /* child watcher should not keep loop alive */
1220#endif 2980#endif
1225 2985
1226 return ev_default_loop_ptr; 2986 return ev_default_loop_ptr;
1227} 2987}
1228 2988
1229void 2989void
1230ev_default_destroy (void) 2990ev_loop_fork (EV_P) EV_THROW
1231{ 2991{
1232#if EV_MULTIPLICITY
1233 struct ev_loop *loop = ev_default_loop_ptr;
1234#endif
1235
1236#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev);
1239#endif
1240
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A);
1248}
1249
1250void
1251ev_default_fork (void)
1252{
1253#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif
1256
1257 if (backend)
1258 postfork = 1; 2992 postfork = 1;
1259} 2993}
1260 2994
1261/*****************************************************************************/ 2995/*****************************************************************************/
1262 2996
1263void 2997void
1264ev_invoke (EV_P_ void *w, int revents) 2998ev_invoke (EV_P_ void *w, int revents)
1265{ 2999{
1266 EV_CB_INVOKE ((W)w, revents); 3000 EV_CB_INVOKE ((W)w, revents);
1267} 3001}
1268 3002
1269void inline_speed 3003unsigned int
1270call_pending (EV_P) 3004ev_pending_count (EV_P) EV_THROW
1271{ 3005{
1272 int pri; 3006 int pri;
3007 unsigned int count = 0;
1273 3008
1274 for (pri = NUMPRI; pri--; ) 3009 for (pri = NUMPRI; pri--; )
3010 count += pendingcnt [pri];
3011
3012 return count;
3013}
3014
3015void noinline
3016ev_invoke_pending (EV_P)
3017{
3018 pendingpri = NUMPRI;
3019
3020 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3021 {
3022 --pendingpri;
3023
1275 while (pendingcnt [pri]) 3024 while (pendingcnt [pendingpri])
1276 {
1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1278
1279 if (expect_true (p->w))
1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282
1283 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events);
1285 }
1286 }
1287}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 { 3025 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3026 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1302 3027
1303 ((WT)w)->at += w->repeat; 3028 p->w->pending = 0;
1304 if (((WT)w)->at < mn_now) 3029 EV_CB_INVOKE (p->w, p->events);
1305 ((WT)w)->at = mn_now; 3030 EV_FREQUENT_CHECK;
1306
1307 downheap (timers, timercnt, 0);
1308 } 3031 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 { 3032 }
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345} 3033}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 3034
1369#if EV_IDLE_ENABLE 3035#if EV_IDLE_ENABLE
1370void inline_size 3036/* make idle watchers pending. this handles the "call-idle */
3037/* only when higher priorities are idle" logic */
3038inline_size void
1371idle_reify (EV_P) 3039idle_reify (EV_P)
1372{ 3040{
1373 if (expect_false (idleall)) 3041 if (expect_false (idleall))
1374 { 3042 {
1375 int pri; 3043 int pri;
1387 } 3055 }
1388 } 3056 }
1389} 3057}
1390#endif 3058#endif
1391 3059
1392void inline_speed 3060/* make timers pending */
3061inline_size void
3062timers_reify (EV_P)
3063{
3064 EV_FREQUENT_CHECK;
3065
3066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3067 {
3068 do
3069 {
3070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3071
3072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3073
3074 /* first reschedule or stop timer */
3075 if (w->repeat)
3076 {
3077 ev_at (w) += w->repeat;
3078 if (ev_at (w) < mn_now)
3079 ev_at (w) = mn_now;
3080
3081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3082
3083 ANHE_at_cache (timers [HEAP0]);
3084 downheap (timers, timercnt, HEAP0);
3085 }
3086 else
3087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3088
3089 EV_FREQUENT_CHECK;
3090 feed_reverse (EV_A_ (W)w);
3091 }
3092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3093
3094 feed_reverse_done (EV_A_ EV_TIMER);
3095 }
3096}
3097
3098#if EV_PERIODIC_ENABLE
3099
3100static void noinline
3101periodic_recalc (EV_P_ ev_periodic *w)
3102{
3103 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3104 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3105
3106 /* the above almost always errs on the low side */
3107 while (at <= ev_rt_now)
3108 {
3109 ev_tstamp nat = at + w->interval;
3110
3111 /* when resolution fails us, we use ev_rt_now */
3112 if (expect_false (nat == at))
3113 {
3114 at = ev_rt_now;
3115 break;
3116 }
3117
3118 at = nat;
3119 }
3120
3121 ev_at (w) = at;
3122}
3123
3124/* make periodics pending */
3125inline_size void
3126periodics_reify (EV_P)
3127{
3128 EV_FREQUENT_CHECK;
3129
3130 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3131 {
3132 do
3133 {
3134 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3135
3136 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3137
3138 /* first reschedule or stop timer */
3139 if (w->reschedule_cb)
3140 {
3141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3142
3143 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3144
3145 ANHE_at_cache (periodics [HEAP0]);
3146 downheap (periodics, periodiccnt, HEAP0);
3147 }
3148 else if (w->interval)
3149 {
3150 periodic_recalc (EV_A_ w);
3151 ANHE_at_cache (periodics [HEAP0]);
3152 downheap (periodics, periodiccnt, HEAP0);
3153 }
3154 else
3155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3156
3157 EV_FREQUENT_CHECK;
3158 feed_reverse (EV_A_ (W)w);
3159 }
3160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3161
3162 feed_reverse_done (EV_A_ EV_PERIODIC);
3163 }
3164}
3165
3166/* simply recalculate all periodics */
3167/* TODO: maybe ensure that at least one event happens when jumping forward? */
3168static void noinline ecb_cold
3169periodics_reschedule (EV_P)
3170{
3171 int i;
3172
3173 /* adjust periodics after time jump */
3174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3175 {
3176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3177
3178 if (w->reschedule_cb)
3179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3180 else if (w->interval)
3181 periodic_recalc (EV_A_ w);
3182
3183 ANHE_at_cache (periodics [i]);
3184 }
3185
3186 reheap (periodics, periodiccnt);
3187}
3188#endif
3189
3190/* adjust all timers by a given offset */
3191static void noinline ecb_cold
3192timers_reschedule (EV_P_ ev_tstamp adjust)
3193{
3194 int i;
3195
3196 for (i = 0; i < timercnt; ++i)
3197 {
3198 ANHE *he = timers + i + HEAP0;
3199 ANHE_w (*he)->at += adjust;
3200 ANHE_at_cache (*he);
3201 }
3202}
3203
3204/* fetch new monotonic and realtime times from the kernel */
3205/* also detect if there was a timejump, and act accordingly */
3206inline_speed void
1393time_update (EV_P_ ev_tstamp max_block) 3207time_update (EV_P_ ev_tstamp max_block)
1394{ 3208{
1395 int i;
1396
1397#if EV_USE_MONOTONIC 3209#if EV_USE_MONOTONIC
1398 if (expect_true (have_monotonic)) 3210 if (expect_true (have_monotonic))
1399 { 3211 {
3212 int i;
1400 ev_tstamp odiff = rtmn_diff; 3213 ev_tstamp odiff = rtmn_diff;
1401 3214
1402 mn_now = get_clock (); 3215 mn_now = get_clock ();
1403 3216
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1420 * doesn't hurt either as we only do this on time-jumps or 3233 * doesn't hurt either as we only do this on time-jumps or
1421 * in the unlikely event of having been preempted here. 3234 * in the unlikely event of having been preempted here.
1422 */ 3235 */
1423 for (i = 4; --i; ) 3236 for (i = 4; --i; )
1424 { 3237 {
3238 ev_tstamp diff;
1425 rtmn_diff = ev_rt_now - mn_now; 3239 rtmn_diff = ev_rt_now - mn_now;
1426 3240
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3241 diff = odiff - rtmn_diff;
3242
3243 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 3244 return; /* all is well */
1429 3245
1430 ev_rt_now = ev_time (); 3246 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 3247 mn_now = get_clock ();
1432 now_floor = mn_now; 3248 now_floor = mn_now;
1433 } 3249 }
1434 3250
3251 /* no timer adjustment, as the monotonic clock doesn't jump */
3252 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1435# if EV_PERIODIC_ENABLE 3253# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A); 3254 periodics_reschedule (EV_A);
1437# endif 3255# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 } 3256 }
1441 else 3257 else
1442#endif 3258#endif
1443 { 3259 {
1444 ev_rt_now = ev_time (); 3260 ev_rt_now = ev_time ();
1445 3261
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3262 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 { 3263 {
3264 /* adjust timers. this is easy, as the offset is the same for all of them */
3265 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1448#if EV_PERIODIC_ENABLE 3266#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 3267 periodics_reschedule (EV_A);
1450#endif 3268#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1454 } 3269 }
1455 3270
1456 mn_now = ev_rt_now; 3271 mn_now = ev_rt_now;
1457 } 3272 }
1458} 3273}
1459 3274
1460void 3275int
1461ev_ref (EV_P)
1462{
1463 ++activecnt;
1464}
1465
1466void
1467ev_unref (EV_P)
1468{
1469 --activecnt;
1470}
1471
1472static int loop_done;
1473
1474void
1475ev_loop (EV_P_ int flags) 3276ev_run (EV_P_ int flags)
1476{ 3277{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3278#if EV_FEATURE_API
1478 ? EVUNLOOP_ONE 3279 ++loop_depth;
1479 : EVUNLOOP_CANCEL; 3280#endif
1480 3281
3282 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3283
3284 loop_done = EVBREAK_CANCEL;
3285
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3286 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1482 3287
1483 do 3288 do
1484 { 3289 {
3290#if EV_VERIFY >= 2
3291 ev_verify (EV_A);
3292#endif
3293
1485#ifndef _WIN32 3294#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 3295 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 3296 if (expect_false (getpid () != curpid))
1488 { 3297 {
1489 curpid = getpid (); 3298 curpid = getpid ();
1495 /* we might have forked, so queue fork handlers */ 3304 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork)) 3305 if (expect_false (postfork))
1497 if (forkcnt) 3306 if (forkcnt)
1498 { 3307 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3308 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A); 3309 EV_INVOKE_PENDING;
1501 } 3310 }
1502#endif 3311#endif
1503 3312
3313#if EV_PREPARE_ENABLE
1504 /* queue prepare watchers (and execute them) */ 3314 /* queue prepare watchers (and execute them) */
1505 if (expect_false (preparecnt)) 3315 if (expect_false (preparecnt))
1506 { 3316 {
1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3317 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1508 call_pending (EV_A); 3318 EV_INVOKE_PENDING;
1509 } 3319 }
3320#endif
1510 3321
1511 if (expect_false (!activecnt)) 3322 if (expect_false (loop_done))
1512 break; 3323 break;
1513 3324
1514 /* we might have forked, so reify kernel state if necessary */ 3325 /* we might have forked, so reify kernel state if necessary */
1515 if (expect_false (postfork)) 3326 if (expect_false (postfork))
1516 loop_fork (EV_A); 3327 loop_fork (EV_A);
1521 /* calculate blocking time */ 3332 /* calculate blocking time */
1522 { 3333 {
1523 ev_tstamp waittime = 0.; 3334 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.; 3335 ev_tstamp sleeptime = 0.;
1525 3336
3337 /* remember old timestamp for io_blocktime calculation */
3338 ev_tstamp prev_mn_now = mn_now;
3339
3340 /* update time to cancel out callback processing overhead */
3341 time_update (EV_A_ 1e100);
3342
3343 /* from now on, we want a pipe-wake-up */
3344 pipe_write_wanted = 1;
3345
3346 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3347
1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3348 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1527 { 3349 {
1528 /* update time to cancel out callback processing overhead */
1529 time_update (EV_A_ 1e100);
1530
1531 waittime = MAX_BLOCKTIME; 3350 waittime = MAX_BLOCKTIME;
1532 3351
1533 if (timercnt) 3352 if (timercnt)
1534 { 3353 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3354 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1536 if (waittime > to) waittime = to; 3355 if (waittime > to) waittime = to;
1537 } 3356 }
1538 3357
1539#if EV_PERIODIC_ENABLE 3358#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 3359 if (periodiccnt)
1541 { 3360 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3361 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1543 if (waittime > to) waittime = to; 3362 if (waittime > to) waittime = to;
1544 } 3363 }
1545#endif 3364#endif
1546 3365
3366 /* don't let timeouts decrease the waittime below timeout_blocktime */
1547 if (expect_false (waittime < timeout_blocktime)) 3367 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime; 3368 waittime = timeout_blocktime;
1549 3369
1550 sleeptime = waittime - backend_fudge; 3370 /* at this point, we NEED to wait, so we have to ensure */
3371 /* to pass a minimum nonzero value to the backend */
3372 if (expect_false (waittime < backend_mintime))
3373 waittime = backend_mintime;
1551 3374
3375 /* extra check because io_blocktime is commonly 0 */
1552 if (expect_true (sleeptime > io_blocktime)) 3376 if (expect_false (io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 { 3377 {
3378 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3379
3380 if (sleeptime > waittime - backend_mintime)
3381 sleeptime = waittime - backend_mintime;
3382
3383 if (expect_true (sleeptime > 0.))
3384 {
1557 ev_sleep (sleeptime); 3385 ev_sleep (sleeptime);
1558 waittime -= sleeptime; 3386 waittime -= sleeptime;
3387 }
1559 } 3388 }
1560 } 3389 }
1561 3390
3391#if EV_FEATURE_API
1562 ++loop_count; 3392 ++loop_count;
3393#endif
3394 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1563 backend_poll (EV_A_ waittime); 3395 backend_poll (EV_A_ waittime);
3396 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3397
3398 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3399
3400 ECB_MEMORY_FENCE_ACQUIRE;
3401 if (pipe_write_skipped)
3402 {
3403 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3404 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3405 }
3406
1564 3407
1565 /* update ev_rt_now, do magic */ 3408 /* update ev_rt_now, do magic */
1566 time_update (EV_A_ waittime + sleeptime); 3409 time_update (EV_A_ waittime + sleeptime);
1567 } 3410 }
1568 3411
1575#if EV_IDLE_ENABLE 3418#if EV_IDLE_ENABLE
1576 /* queue idle watchers unless other events are pending */ 3419 /* queue idle watchers unless other events are pending */
1577 idle_reify (EV_A); 3420 idle_reify (EV_A);
1578#endif 3421#endif
1579 3422
3423#if EV_CHECK_ENABLE
1580 /* queue check watchers, to be executed first */ 3424 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 3425 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3427#endif
1583 3428
1584 call_pending (EV_A); 3429 EV_INVOKE_PENDING;
1585
1586 } 3430 }
1587 while (expect_true (activecnt && !loop_done)); 3431 while (expect_true (
3432 activecnt
3433 && !loop_done
3434 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3435 ));
1588 3436
1589 if (loop_done == EVUNLOOP_ONE) 3437 if (loop_done == EVBREAK_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 3438 loop_done = EVBREAK_CANCEL;
3439
3440#if EV_FEATURE_API
3441 --loop_depth;
3442#endif
3443
3444 return activecnt;
1591} 3445}
1592 3446
1593void 3447void
1594ev_unloop (EV_P_ int how) 3448ev_break (EV_P_ int how) EV_THROW
1595{ 3449{
1596 loop_done = how; 3450 loop_done = how;
1597} 3451}
1598 3452
3453void
3454ev_ref (EV_P) EV_THROW
3455{
3456 ++activecnt;
3457}
3458
3459void
3460ev_unref (EV_P) EV_THROW
3461{
3462 --activecnt;
3463}
3464
3465void
3466ev_now_update (EV_P) EV_THROW
3467{
3468 time_update (EV_A_ 1e100);
3469}
3470
3471void
3472ev_suspend (EV_P) EV_THROW
3473{
3474 ev_now_update (EV_A);
3475}
3476
3477void
3478ev_resume (EV_P) EV_THROW
3479{
3480 ev_tstamp mn_prev = mn_now;
3481
3482 ev_now_update (EV_A);
3483 timers_reschedule (EV_A_ mn_now - mn_prev);
3484#if EV_PERIODIC_ENABLE
3485 /* TODO: really do this? */
3486 periodics_reschedule (EV_A);
3487#endif
3488}
3489
1599/*****************************************************************************/ 3490/*****************************************************************************/
3491/* singly-linked list management, used when the expected list length is short */
1600 3492
1601void inline_size 3493inline_size void
1602wlist_add (WL *head, WL elem) 3494wlist_add (WL *head, WL elem)
1603{ 3495{
1604 elem->next = *head; 3496 elem->next = *head;
1605 *head = elem; 3497 *head = elem;
1606} 3498}
1607 3499
1608void inline_size 3500inline_size void
1609wlist_del (WL *head, WL elem) 3501wlist_del (WL *head, WL elem)
1610{ 3502{
1611 while (*head) 3503 while (*head)
1612 { 3504 {
1613 if (*head == elem) 3505 if (expect_true (*head == elem))
1614 { 3506 {
1615 *head = elem->next; 3507 *head = elem->next;
1616 return; 3508 break;
1617 } 3509 }
1618 3510
1619 head = &(*head)->next; 3511 head = &(*head)->next;
1620 } 3512 }
1621} 3513}
1622 3514
1623void inline_speed 3515/* internal, faster, version of ev_clear_pending */
3516inline_speed void
1624clear_pending (EV_P_ W w) 3517clear_pending (EV_P_ W w)
1625{ 3518{
1626 if (w->pending) 3519 if (w->pending)
1627 { 3520 {
1628 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3521 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1629 w->pending = 0; 3522 w->pending = 0;
1630 } 3523 }
1631} 3524}
1632 3525
1633int 3526int
1634ev_clear_pending (EV_P_ void *w) 3527ev_clear_pending (EV_P_ void *w) EV_THROW
1635{ 3528{
1636 W w_ = (W)w; 3529 W w_ = (W)w;
1637 int pending = w_->pending; 3530 int pending = w_->pending;
1638 3531
1639 if (expect_true (pending)) 3532 if (expect_true (pending))
1640 { 3533 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3534 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3535 p->w = (W)&pending_w;
1642 w_->pending = 0; 3536 w_->pending = 0;
1643 p->w = 0;
1644 return p->events; 3537 return p->events;
1645 } 3538 }
1646 else 3539 else
1647 return 0; 3540 return 0;
1648} 3541}
1649 3542
1650void inline_size 3543inline_size void
1651pri_adjust (EV_P_ W w) 3544pri_adjust (EV_P_ W w)
1652{ 3545{
1653 int pri = w->priority; 3546 int pri = ev_priority (w);
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3547 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3548 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri; 3549 ev_set_priority (w, pri);
1657} 3550}
1658 3551
1659void inline_speed 3552inline_speed void
1660ev_start (EV_P_ W w, int active) 3553ev_start (EV_P_ W w, int active)
1661{ 3554{
1662 pri_adjust (EV_A_ w); 3555 pri_adjust (EV_A_ w);
1663 w->active = active; 3556 w->active = active;
1664 ev_ref (EV_A); 3557 ev_ref (EV_A);
1665} 3558}
1666 3559
1667void inline_size 3560inline_size void
1668ev_stop (EV_P_ W w) 3561ev_stop (EV_P_ W w)
1669{ 3562{
1670 ev_unref (EV_A); 3563 ev_unref (EV_A);
1671 w->active = 0; 3564 w->active = 0;
1672} 3565}
1673 3566
1674/*****************************************************************************/ 3567/*****************************************************************************/
1675 3568
1676void noinline 3569void noinline
1677ev_io_start (EV_P_ ev_io *w) 3570ev_io_start (EV_P_ ev_io *w) EV_THROW
1678{ 3571{
1679 int fd = w->fd; 3572 int fd = w->fd;
1680 3573
1681 if (expect_false (ev_is_active (w))) 3574 if (expect_false (ev_is_active (w)))
1682 return; 3575 return;
1683 3576
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 3577 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3578 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3579
3580 EV_FREQUENT_CHECK;
1685 3581
1686 ev_start (EV_A_ (W)w, 1); 3582 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3583 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1688 wlist_add (&anfds[fd].head, (WL)w); 3584 wlist_add (&anfds[fd].head, (WL)w);
1689 3585
3586 /* common bug, apparently */
3587 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3588
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3589 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1691 w->events &= ~EV_IOFDSET; 3590 w->events &= ~EV__IOFDSET;
3591
3592 EV_FREQUENT_CHECK;
1692} 3593}
1693 3594
1694void noinline 3595void noinline
1695ev_io_stop (EV_P_ ev_io *w) 3596ev_io_stop (EV_P_ ev_io *w) EV_THROW
1696{ 3597{
1697 clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 3599 if (expect_false (!ev_is_active (w)))
1699 return; 3600 return;
1700 3601
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3602 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3603
3604 EV_FREQUENT_CHECK;
1702 3605
1703 wlist_del (&anfds[w->fd].head, (WL)w); 3606 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 3607 ev_stop (EV_A_ (W)w);
1705 3608
1706 fd_change (EV_A_ w->fd, 1); 3609 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3610
3611 EV_FREQUENT_CHECK;
1707} 3612}
1708 3613
1709void noinline 3614void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 3615ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1711{ 3616{
1712 if (expect_false (ev_is_active (w))) 3617 if (expect_false (ev_is_active (w)))
1713 return; 3618 return;
1714 3619
1715 ((WT)w)->at += mn_now; 3620 ev_at (w) += mn_now;
1716 3621
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3622 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 3623
3624 EV_FREQUENT_CHECK;
3625
3626 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 3627 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3628 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 3629 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 3630 ANHE_at_cache (timers [ev_active (w)]);
3631 upheap (timers, ev_active (w));
1723 3632
3633 EV_FREQUENT_CHECK;
3634
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3635 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 3636}
1726 3637
1727void noinline 3638void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 3639ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1729{ 3640{
1730 clear_pending (EV_A_ (W)w); 3641 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 3642 if (expect_false (!ev_is_active (w)))
1732 return; 3643 return;
1733 3644
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3645 EV_FREQUENT_CHECK;
1735 3646
1736 { 3647 {
1737 int active = ((W)w)->active; 3648 int active = ev_active (w);
1738 3649
3650 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3651
3652 --timercnt;
3653
1739 if (expect_true (--active < --timercnt)) 3654 if (expect_true (active < timercnt + HEAP0))
1740 { 3655 {
1741 timers [active] = timers [timercnt]; 3656 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 3657 adjustheap (timers, timercnt, active);
1743 } 3658 }
1744 } 3659 }
1745 3660
1746 ((WT)w)->at -= mn_now; 3661 ev_at (w) -= mn_now;
1747 3662
1748 ev_stop (EV_A_ (W)w); 3663 ev_stop (EV_A_ (W)w);
3664
3665 EV_FREQUENT_CHECK;
1749} 3666}
1750 3667
1751void noinline 3668void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 3669ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1753{ 3670{
3671 EV_FREQUENT_CHECK;
3672
3673 clear_pending (EV_A_ (W)w);
3674
1754 if (ev_is_active (w)) 3675 if (ev_is_active (w))
1755 { 3676 {
1756 if (w->repeat) 3677 if (w->repeat)
1757 { 3678 {
1758 ((WT)w)->at = mn_now + w->repeat; 3679 ev_at (w) = mn_now + w->repeat;
3680 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 3681 adjustheap (timers, timercnt, ev_active (w));
1760 } 3682 }
1761 else 3683 else
1762 ev_timer_stop (EV_A_ w); 3684 ev_timer_stop (EV_A_ w);
1763 } 3685 }
1764 else if (w->repeat) 3686 else if (w->repeat)
1765 { 3687 {
1766 w->at = w->repeat; 3688 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 3689 ev_timer_start (EV_A_ w);
1768 } 3690 }
3691
3692 EV_FREQUENT_CHECK;
3693}
3694
3695ev_tstamp
3696ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3697{
3698 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1769} 3699}
1770 3700
1771#if EV_PERIODIC_ENABLE 3701#if EV_PERIODIC_ENABLE
1772void noinline 3702void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 3703ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1774{ 3704{
1775 if (expect_false (ev_is_active (w))) 3705 if (expect_false (ev_is_active (w)))
1776 return; 3706 return;
1777 3707
1778 if (w->reschedule_cb) 3708 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3709 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 3710 else if (w->interval)
1781 { 3711 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3712 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 3713 periodic_recalc (EV_A_ w);
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 3714 }
1786 else 3715 else
1787 ((WT)w)->at = w->offset; 3716 ev_at (w) = w->offset;
1788 3717
3718 EV_FREQUENT_CHECK;
3719
3720 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 3721 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3722 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 3723 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 3724 ANHE_at_cache (periodics [ev_active (w)]);
3725 upheap (periodics, ev_active (w));
1793 3726
3727 EV_FREQUENT_CHECK;
3728
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3729 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 3730}
1796 3731
1797void noinline 3732void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 3733ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1799{ 3734{
1800 clear_pending (EV_A_ (W)w); 3735 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 3736 if (expect_false (!ev_is_active (w)))
1802 return; 3737 return;
1803 3738
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3739 EV_FREQUENT_CHECK;
1805 3740
1806 { 3741 {
1807 int active = ((W)w)->active; 3742 int active = ev_active (w);
1808 3743
3744 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3745
3746 --periodiccnt;
3747
1809 if (expect_true (--active < --periodiccnt)) 3748 if (expect_true (active < periodiccnt + HEAP0))
1810 { 3749 {
1811 periodics [active] = periodics [periodiccnt]; 3750 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 3751 adjustheap (periodics, periodiccnt, active);
1813 } 3752 }
1814 } 3753 }
1815 3754
1816 ev_stop (EV_A_ (W)w); 3755 ev_stop (EV_A_ (W)w);
3756
3757 EV_FREQUENT_CHECK;
1817} 3758}
1818 3759
1819void noinline 3760void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 3761ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1821{ 3762{
1822 /* TODO: use adjustheap and recalculation */ 3763 /* TODO: use adjustheap and recalculation */
1823 ev_periodic_stop (EV_A_ w); 3764 ev_periodic_stop (EV_A_ w);
1824 ev_periodic_start (EV_A_ w); 3765 ev_periodic_start (EV_A_ w);
1825} 3766}
1827 3768
1828#ifndef SA_RESTART 3769#ifndef SA_RESTART
1829# define SA_RESTART 0 3770# define SA_RESTART 0
1830#endif 3771#endif
1831 3772
3773#if EV_SIGNAL_ENABLE
3774
1832void noinline 3775void noinline
1833ev_signal_start (EV_P_ ev_signal *w) 3776ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1834{ 3777{
1835#if EV_MULTIPLICITY
1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1837#endif
1838 if (expect_false (ev_is_active (w))) 3778 if (expect_false (ev_is_active (w)))
1839 return; 3779 return;
1840 3780
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3781 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1842 3782
3783#if EV_MULTIPLICITY
3784 assert (("libev: a signal must not be attached to two different loops",
3785 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3786
3787 signals [w->signum - 1].loop = EV_A;
3788 ECB_MEMORY_FENCE_RELEASE;
3789#endif
3790
3791 EV_FREQUENT_CHECK;
3792
3793#if EV_USE_SIGNALFD
3794 if (sigfd == -2)
1843 { 3795 {
1844#ifndef _WIN32 3796 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1845 sigset_t full, prev; 3797 if (sigfd < 0 && errno == EINVAL)
1846 sigfillset (&full); 3798 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849 3799
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3800 if (sigfd >= 0)
3801 {
3802 fd_intern (sigfd); /* doing it twice will not hurt */
1851 3803
1852#ifndef _WIN32 3804 sigemptyset (&sigfd_set);
1853 sigprocmask (SIG_SETMASK, &prev, 0); 3805
1854#endif 3806 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3807 ev_set_priority (&sigfd_w, EV_MAXPRI);
3808 ev_io_start (EV_A_ &sigfd_w);
3809 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3810 }
1855 } 3811 }
3812
3813 if (sigfd >= 0)
3814 {
3815 /* TODO: check .head */
3816 sigaddset (&sigfd_set, w->signum);
3817 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3818
3819 signalfd (sigfd, &sigfd_set, 0);
3820 }
3821#endif
1856 3822
1857 ev_start (EV_A_ (W)w, 1); 3823 ev_start (EV_A_ (W)w, 1);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 3824 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 3825
1860 if (!((WL)w)->next) 3826 if (!((WL)w)->next)
3827# if EV_USE_SIGNALFD
3828 if (sigfd < 0) /*TODO*/
3829# endif
1861 { 3830 {
1862#if _WIN32 3831# ifdef _WIN32
3832 evpipe_init (EV_A);
3833
1863 signal (w->signum, sighandler); 3834 signal (w->signum, ev_sighandler);
1864#else 3835# else
1865 struct sigaction sa; 3836 struct sigaction sa;
3837
3838 evpipe_init (EV_A);
3839
1866 sa.sa_handler = sighandler; 3840 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 3841 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3842 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 3843 sigaction (w->signum, &sa, 0);
3844
3845 if (origflags & EVFLAG_NOSIGMASK)
3846 {
3847 sigemptyset (&sa.sa_mask);
3848 sigaddset (&sa.sa_mask, w->signum);
3849 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3850 }
1870#endif 3851#endif
1871 } 3852 }
3853
3854 EV_FREQUENT_CHECK;
1872} 3855}
1873 3856
1874void noinline 3857void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 3858ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1876{ 3859{
1877 clear_pending (EV_A_ (W)w); 3860 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 3861 if (expect_false (!ev_is_active (w)))
1879 return; 3862 return;
1880 3863
3864 EV_FREQUENT_CHECK;
3865
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 3866 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 3867 ev_stop (EV_A_ (W)w);
1883 3868
1884 if (!signals [w->signum - 1].head) 3869 if (!signals [w->signum - 1].head)
3870 {
3871#if EV_MULTIPLICITY
3872 signals [w->signum - 1].loop = 0; /* unattach from signal */
3873#endif
3874#if EV_USE_SIGNALFD
3875 if (sigfd >= 0)
3876 {
3877 sigset_t ss;
3878
3879 sigemptyset (&ss);
3880 sigaddset (&ss, w->signum);
3881 sigdelset (&sigfd_set, w->signum);
3882
3883 signalfd (sigfd, &sigfd_set, 0);
3884 sigprocmask (SIG_UNBLOCK, &ss, 0);
3885 }
3886 else
3887#endif
1885 signal (w->signum, SIG_DFL); 3888 signal (w->signum, SIG_DFL);
3889 }
3890
3891 EV_FREQUENT_CHECK;
1886} 3892}
3893
3894#endif
3895
3896#if EV_CHILD_ENABLE
1887 3897
1888void 3898void
1889ev_child_start (EV_P_ ev_child *w) 3899ev_child_start (EV_P_ ev_child *w) EV_THROW
1890{ 3900{
1891#if EV_MULTIPLICITY 3901#if EV_MULTIPLICITY
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3902 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 3903#endif
1894 if (expect_false (ev_is_active (w))) 3904 if (expect_false (ev_is_active (w)))
1895 return; 3905 return;
1896 3906
3907 EV_FREQUENT_CHECK;
3908
1897 ev_start (EV_A_ (W)w, 1); 3909 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3910 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3911
3912 EV_FREQUENT_CHECK;
1899} 3913}
1900 3914
1901void 3915void
1902ev_child_stop (EV_P_ ev_child *w) 3916ev_child_stop (EV_P_ ev_child *w) EV_THROW
1903{ 3917{
1904 clear_pending (EV_A_ (W)w); 3918 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 3919 if (expect_false (!ev_is_active (w)))
1906 return; 3920 return;
1907 3921
3922 EV_FREQUENT_CHECK;
3923
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3924 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
3926
3927 EV_FREQUENT_CHECK;
1910} 3928}
3929
3930#endif
1911 3931
1912#if EV_STAT_ENABLE 3932#if EV_STAT_ENABLE
1913 3933
1914# ifdef _WIN32 3934# ifdef _WIN32
1915# undef lstat 3935# undef lstat
1916# define lstat(a,b) _stati64 (a,b) 3936# define lstat(a,b) _stati64 (a,b)
1917# endif 3937# endif
1918 3938
1919#define DEF_STAT_INTERVAL 5.0074891 3939#define DEF_STAT_INTERVAL 5.0074891
3940#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1920#define MIN_STAT_INTERVAL 0.1074891 3941#define MIN_STAT_INTERVAL 0.1074891
1921 3942
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3943static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923 3944
1924#if EV_USE_INOTIFY 3945#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192 3946
3947/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3948# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1926 3949
1927static void noinline 3950static void noinline
1928infy_add (EV_P_ ev_stat *w) 3951infy_add (EV_P_ ev_stat *w)
1929{ 3952{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3953 w->wd = inotify_add_watch (fs_fd, w->path,
3954 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3955 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3956 | IN_DONT_FOLLOW | IN_MASK_ADD);
1931 3957
1932 if (w->wd < 0) 3958 if (w->wd >= 0)
3959 {
3960 struct statfs sfs;
3961
3962 /* now local changes will be tracked by inotify, but remote changes won't */
3963 /* unless the filesystem is known to be local, we therefore still poll */
3964 /* also do poll on <2.6.25, but with normal frequency */
3965
3966 if (!fs_2625)
3967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3968 else if (!statfs (w->path, &sfs)
3969 && (sfs.f_type == 0x1373 /* devfs */
3970 || sfs.f_type == 0x4006 /* fat */
3971 || sfs.f_type == 0x4d44 /* msdos */
3972 || sfs.f_type == 0xEF53 /* ext2/3 */
3973 || sfs.f_type == 0x72b6 /* jffs2 */
3974 || sfs.f_type == 0x858458f6 /* ramfs */
3975 || sfs.f_type == 0x5346544e /* ntfs */
3976 || sfs.f_type == 0x3153464a /* jfs */
3977 || sfs.f_type == 0x9123683e /* btrfs */
3978 || sfs.f_type == 0x52654973 /* reiser3 */
3979 || sfs.f_type == 0x01021994 /* tmpfs */
3980 || sfs.f_type == 0x58465342 /* xfs */))
3981 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3982 else
3983 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1933 { 3984 }
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3985 else
3986 {
3987 /* can't use inotify, continue to stat */
3988 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1935 3989
1936 /* monitor some parent directory for speedup hints */ 3990 /* if path is not there, monitor some parent directory for speedup hints */
3991 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3992 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3993 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 3994 {
1939 char path [4096]; 3995 char path [4096];
1940 strcpy (path, w->path); 3996 strcpy (path, w->path);
1941 3997
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4000 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4001 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946 4002
1947 char *pend = strrchr (path, '/'); 4003 char *pend = strrchr (path, '/');
1948 4004
1949 if (!pend) 4005 if (!pend || pend == path)
1950 break; /* whoops, no '/', complain to your admin */ 4006 break;
1951 4007
1952 *pend = 0; 4008 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask); 4009 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 } 4010 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4011 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 } 4012 }
1957 } 4013 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960 4014
1961 if (w->wd >= 0) 4015 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4016 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017
4018 /* now re-arm timer, if required */
4019 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4020 ev_timer_again (EV_A_ &w->timer);
4021 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1963} 4022}
1964 4023
1965static void noinline 4024static void noinline
1966infy_del (EV_P_ ev_stat *w) 4025infy_del (EV_P_ ev_stat *w)
1967{ 4026{
1970 4029
1971 if (wd < 0) 4030 if (wd < 0)
1972 return; 4031 return;
1973 4032
1974 w->wd = -2; 4033 w->wd = -2;
1975 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4034 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1976 wlist_del (&fs_hash [slot].head, (WL)w); 4035 wlist_del (&fs_hash [slot].head, (WL)w);
1977 4036
1978 /* remove this watcher, if others are watching it, they will rearm */ 4037 /* remove this watcher, if others are watching it, they will rearm */
1979 inotify_rm_watch (fs_fd, wd); 4038 inotify_rm_watch (fs_fd, wd);
1980} 4039}
1981 4040
1982static void noinline 4041static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4042infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{ 4043{
1985 if (slot < 0) 4044 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */ 4045 /* overflow, need to check for all hash slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4046 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1988 infy_wd (EV_A_ slot, wd, ev); 4047 infy_wd (EV_A_ slot, wd, ev);
1989 else 4048 else
1990 { 4049 {
1991 WL w_; 4050 WL w_;
1992 4051
1993 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4052 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1994 { 4053 {
1995 ev_stat *w = (ev_stat *)w_; 4054 ev_stat *w = (ev_stat *)w_;
1996 w_ = w_->next; /* lets us remove this watcher and all before it */ 4055 w_ = w_->next; /* lets us remove this watcher and all before it */
1997 4056
1998 if (w->wd == wd || wd == -1) 4057 if (w->wd == wd || wd == -1)
1999 { 4058 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4059 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 { 4060 {
4061 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2002 w->wd = -1; 4062 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */ 4063 infy_add (EV_A_ w); /* re-add, no matter what */
2004 } 4064 }
2005 4065
2006 stat_timer_cb (EV_A_ &w->timer, 0); 4066 stat_timer_cb (EV_A_ &w->timer, 0);
2011 4071
2012static void 4072static void
2013infy_cb (EV_P_ ev_io *w, int revents) 4073infy_cb (EV_P_ ev_io *w, int revents)
2014{ 4074{
2015 char buf [EV_INOTIFY_BUFSIZE]; 4075 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs; 4076 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf)); 4077 int len = read (fs_fd, buf, sizeof (buf));
2019 4078
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4079 for (ofs = 0; ofs < len; )
4080 {
4081 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4082 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4083 ofs += sizeof (struct inotify_event) + ev->len;
4084 }
2022} 4085}
2023 4086
2024void inline_size 4087inline_size void ecb_cold
4088ev_check_2625 (EV_P)
4089{
4090 /* kernels < 2.6.25 are borked
4091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4092 */
4093 if (ev_linux_version () < 0x020619)
4094 return;
4095
4096 fs_2625 = 1;
4097}
4098
4099inline_size int
4100infy_newfd (void)
4101{
4102#if defined IN_CLOEXEC && defined IN_NONBLOCK
4103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4104 if (fd >= 0)
4105 return fd;
4106#endif
4107 return inotify_init ();
4108}
4109
4110inline_size void
2025infy_init (EV_P) 4111infy_init (EV_P)
2026{ 4112{
2027 if (fs_fd != -2) 4113 if (fs_fd != -2)
2028 return; 4114 return;
2029 4115
4116 fs_fd = -1;
4117
4118 ev_check_2625 (EV_A);
4119
2030 fs_fd = inotify_init (); 4120 fs_fd = infy_newfd ();
2031 4121
2032 if (fs_fd >= 0) 4122 if (fs_fd >= 0)
2033 { 4123 {
4124 fd_intern (fs_fd);
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI); 4126 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w); 4127 ev_io_start (EV_A_ &fs_w);
4128 ev_unref (EV_A);
2037 } 4129 }
2038} 4130}
2039 4131
2040void inline_size 4132inline_size void
2041infy_fork (EV_P) 4133infy_fork (EV_P)
2042{ 4134{
2043 int slot; 4135 int slot;
2044 4136
2045 if (fs_fd < 0) 4137 if (fs_fd < 0)
2046 return; 4138 return;
2047 4139
4140 ev_ref (EV_A);
4141 ev_io_stop (EV_A_ &fs_w);
2048 close (fs_fd); 4142 close (fs_fd);
2049 fs_fd = inotify_init (); 4143 fs_fd = infy_newfd ();
2050 4144
4145 if (fs_fd >= 0)
4146 {
4147 fd_intern (fs_fd);
4148 ev_io_set (&fs_w, fs_fd, EV_READ);
4149 ev_io_start (EV_A_ &fs_w);
4150 ev_unref (EV_A);
4151 }
4152
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2052 { 4154 {
2053 WL w_ = fs_hash [slot].head; 4155 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0; 4156 fs_hash [slot].head = 0;
2055 4157
2056 while (w_) 4158 while (w_)
2061 w->wd = -1; 4163 w->wd = -1;
2062 4164
2063 if (fs_fd >= 0) 4165 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */ 4166 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else 4167 else
4168 {
4169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2066 ev_timer_start (EV_A_ &w->timer); 4171 ev_timer_again (EV_A_ &w->timer);
4172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4173 }
2067 } 4174 }
2068
2069 } 4175 }
2070} 4176}
2071 4177
4178#endif
4179
4180#ifdef _WIN32
4181# define EV_LSTAT(p,b) _stati64 (p, b)
4182#else
4183# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 4184#endif
2073 4185
2074void 4186void
2075ev_stat_stat (EV_P_ ev_stat *w) 4187ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2076{ 4188{
2077 if (lstat (w->path, &w->attr) < 0) 4189 if (lstat (w->path, &w->attr) < 0)
2078 w->attr.st_nlink = 0; 4190 w->attr.st_nlink = 0;
2079 else if (!w->attr.st_nlink) 4191 else if (!w->attr.st_nlink)
2080 w->attr.st_nlink = 1; 4192 w->attr.st_nlink = 1;
2083static void noinline 4195static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4196stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{ 4197{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087 4199
2088 /* we copy this here each the time so that */ 4200 ev_statdata prev = w->attr;
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w); 4201 ev_stat_stat (EV_A_ w);
2092 4202
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if ( 4204 if (
2095 w->prev.st_dev != w->attr.st_dev 4205 prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino 4206 || prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode 4207 || prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink 4208 || prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid 4209 || prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid 4210 || prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev 4211 || prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size 4212 || prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime 4213 || prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime 4214 || prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime 4215 || prev.st_ctime != w->attr.st_ctime
2106 ) { 4216 ) {
4217 /* we only update w->prev on actual differences */
4218 /* in case we test more often than invoke the callback, */
4219 /* to ensure that prev is always different to attr */
4220 w->prev = prev;
4221
2107 #if EV_USE_INOTIFY 4222 #if EV_USE_INOTIFY
4223 if (fs_fd >= 0)
4224 {
2108 infy_del (EV_A_ w); 4225 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w); 4226 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */ 4227 ev_stat_stat (EV_A_ w); /* avoid race... */
4228 }
2111 #endif 4229 #endif
2112 4230
2113 ev_feed_event (EV_A_ w, EV_STAT); 4231 ev_feed_event (EV_A_ w, EV_STAT);
2114 } 4232 }
2115} 4233}
2116 4234
2117void 4235void
2118ev_stat_start (EV_P_ ev_stat *w) 4236ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2119{ 4237{
2120 if (expect_false (ev_is_active (w))) 4238 if (expect_false (ev_is_active (w)))
2121 return; 4239 return;
2122 4240
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w); 4241 ev_stat_stat (EV_A_ w);
2128 4242
4243 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2129 if (w->interval < MIN_STAT_INTERVAL) 4244 w->interval = MIN_STAT_INTERVAL;
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131 4245
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4246 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2133 ev_set_priority (&w->timer, ev_priority (w)); 4247 ev_set_priority (&w->timer, ev_priority (w));
2134 4248
2135#if EV_USE_INOTIFY 4249#if EV_USE_INOTIFY
2136 infy_init (EV_A); 4250 infy_init (EV_A);
2137 4251
2138 if (fs_fd >= 0) 4252 if (fs_fd >= 0)
2139 infy_add (EV_A_ w); 4253 infy_add (EV_A_ w);
2140 else 4254 else
2141#endif 4255#endif
4256 {
2142 ev_timer_start (EV_A_ &w->timer); 4257 ev_timer_again (EV_A_ &w->timer);
4258 ev_unref (EV_A);
4259 }
2143 4260
2144 ev_start (EV_A_ (W)w, 1); 4261 ev_start (EV_A_ (W)w, 1);
4262
4263 EV_FREQUENT_CHECK;
2145} 4264}
2146 4265
2147void 4266void
2148ev_stat_stop (EV_P_ ev_stat *w) 4267ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2149{ 4268{
2150 clear_pending (EV_A_ (W)w); 4269 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 4270 if (expect_false (!ev_is_active (w)))
2152 return; 4271 return;
2153 4272
4273 EV_FREQUENT_CHECK;
4274
2154#if EV_USE_INOTIFY 4275#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 4276 infy_del (EV_A_ w);
2156#endif 4277#endif
4278
4279 if (ev_is_active (&w->timer))
4280 {
4281 ev_ref (EV_A);
2157 ev_timer_stop (EV_A_ &w->timer); 4282 ev_timer_stop (EV_A_ &w->timer);
4283 }
2158 4284
2159 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
4286
4287 EV_FREQUENT_CHECK;
2160} 4288}
2161#endif 4289#endif
2162 4290
2163#if EV_IDLE_ENABLE 4291#if EV_IDLE_ENABLE
2164void 4292void
2165ev_idle_start (EV_P_ ev_idle *w) 4293ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2166{ 4294{
2167 if (expect_false (ev_is_active (w))) 4295 if (expect_false (ev_is_active (w)))
2168 return; 4296 return;
2169 4297
2170 pri_adjust (EV_A_ (W)w); 4298 pri_adjust (EV_A_ (W)w);
4299
4300 EV_FREQUENT_CHECK;
2171 4301
2172 { 4302 {
2173 int active = ++idlecnt [ABSPRI (w)]; 4303 int active = ++idlecnt [ABSPRI (w)];
2174 4304
2175 ++idleall; 4305 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 4306 ev_start (EV_A_ (W)w, active);
2177 4307
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4308 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 4309 idles [ABSPRI (w)][active - 1] = w;
2180 } 4310 }
4311
4312 EV_FREQUENT_CHECK;
2181} 4313}
2182 4314
2183void 4315void
2184ev_idle_stop (EV_P_ ev_idle *w) 4316ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2185{ 4317{
2186 clear_pending (EV_A_ (W)w); 4318 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 4319 if (expect_false (!ev_is_active (w)))
2188 return; 4320 return;
2189 4321
4322 EV_FREQUENT_CHECK;
4323
2190 { 4324 {
2191 int active = ((W)w)->active; 4325 int active = ev_active (w);
2192 4326
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4327 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4328 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 4329
2196 ev_stop (EV_A_ (W)w); 4330 ev_stop (EV_A_ (W)w);
2197 --idleall; 4331 --idleall;
2198 } 4332 }
2199}
2200#endif
2201 4333
4334 EV_FREQUENT_CHECK;
4335}
4336#endif
4337
4338#if EV_PREPARE_ENABLE
2202void 4339void
2203ev_prepare_start (EV_P_ ev_prepare *w) 4340ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2204{ 4341{
2205 if (expect_false (ev_is_active (w))) 4342 if (expect_false (ev_is_active (w)))
2206 return; 4343 return;
4344
4345 EV_FREQUENT_CHECK;
2207 4346
2208 ev_start (EV_A_ (W)w, ++preparecnt); 4347 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4348 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 4349 prepares [preparecnt - 1] = w;
4350
4351 EV_FREQUENT_CHECK;
2211} 4352}
2212 4353
2213void 4354void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 4355ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2215{ 4356{
2216 clear_pending (EV_A_ (W)w); 4357 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 4358 if (expect_false (!ev_is_active (w)))
2218 return; 4359 return;
2219 4360
4361 EV_FREQUENT_CHECK;
4362
2220 { 4363 {
2221 int active = ((W)w)->active; 4364 int active = ev_active (w);
4365
2222 prepares [active - 1] = prepares [--preparecnt]; 4366 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 4367 ev_active (prepares [active - 1]) = active;
2224 } 4368 }
2225 4369
2226 ev_stop (EV_A_ (W)w); 4370 ev_stop (EV_A_ (W)w);
2227}
2228 4371
4372 EV_FREQUENT_CHECK;
4373}
4374#endif
4375
4376#if EV_CHECK_ENABLE
2229void 4377void
2230ev_check_start (EV_P_ ev_check *w) 4378ev_check_start (EV_P_ ev_check *w) EV_THROW
2231{ 4379{
2232 if (expect_false (ev_is_active (w))) 4380 if (expect_false (ev_is_active (w)))
2233 return; 4381 return;
4382
4383 EV_FREQUENT_CHECK;
2234 4384
2235 ev_start (EV_A_ (W)w, ++checkcnt); 4385 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4386 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 4387 checks [checkcnt - 1] = w;
4388
4389 EV_FREQUENT_CHECK;
2238} 4390}
2239 4391
2240void 4392void
2241ev_check_stop (EV_P_ ev_check *w) 4393ev_check_stop (EV_P_ ev_check *w) EV_THROW
2242{ 4394{
2243 clear_pending (EV_A_ (W)w); 4395 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 4396 if (expect_false (!ev_is_active (w)))
2245 return; 4397 return;
2246 4398
4399 EV_FREQUENT_CHECK;
4400
2247 { 4401 {
2248 int active = ((W)w)->active; 4402 int active = ev_active (w);
4403
2249 checks [active - 1] = checks [--checkcnt]; 4404 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 4405 ev_active (checks [active - 1]) = active;
2251 } 4406 }
2252 4407
2253 ev_stop (EV_A_ (W)w); 4408 ev_stop (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
2254} 4411}
4412#endif
2255 4413
2256#if EV_EMBED_ENABLE 4414#if EV_EMBED_ENABLE
2257void noinline 4415void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 4416ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2259{ 4417{
2260 ev_loop (w->other, EVLOOP_NONBLOCK); 4418 ev_run (w->other, EVRUN_NOWAIT);
2261} 4419}
2262 4420
2263static void 4421static void
2264embed_io_cb (EV_P_ ev_io *io, int revents) 4422embed_io_cb (EV_P_ ev_io *io, int revents)
2265{ 4423{
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267 4425
2268 if (ev_cb (w)) 4426 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else 4428 else
2271 ev_loop (w->other, EVLOOP_NONBLOCK); 4429 ev_run (w->other, EVRUN_NOWAIT);
2272} 4430}
2273 4431
2274static void 4432static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4433embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 4434{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 4436
2279 { 4437 {
2280 struct ev_loop *loop = w->other; 4438 EV_P = w->other;
2281 4439
2282 while (fdchangecnt) 4440 while (fdchangecnt)
2283 { 4441 {
2284 fd_reify (EV_A); 4442 fd_reify (EV_A);
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4443 ev_run (EV_A_ EVRUN_NOWAIT);
2286 } 4444 }
2287 } 4445 }
4446}
4447
4448static void
4449embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4450{
4451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4452
4453 ev_embed_stop (EV_A_ w);
4454
4455 {
4456 EV_P = w->other;
4457
4458 ev_loop_fork (EV_A);
4459 ev_run (EV_A_ EVRUN_NOWAIT);
4460 }
4461
4462 ev_embed_start (EV_A_ w);
2288} 4463}
2289 4464
2290#if 0 4465#if 0
2291static void 4466static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4467embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2294 ev_idle_stop (EV_A_ idle); 4469 ev_idle_stop (EV_A_ idle);
2295} 4470}
2296#endif 4471#endif
2297 4472
2298void 4473void
2299ev_embed_start (EV_P_ ev_embed *w) 4474ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2300{ 4475{
2301 if (expect_false (ev_is_active (w))) 4476 if (expect_false (ev_is_active (w)))
2302 return; 4477 return;
2303 4478
2304 { 4479 {
2305 struct ev_loop *loop = w->other; 4480 EV_P = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 4483 }
4484
4485 EV_FREQUENT_CHECK;
2309 4486
2310 ev_set_priority (&w->io, ev_priority (w)); 4487 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 4488 ev_io_start (EV_A_ &w->io);
2312 4489
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 4490 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 4491 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 4492 ev_prepare_start (EV_A_ &w->prepare);
2316 4493
4494 ev_fork_init (&w->fork, embed_fork_cb);
4495 ev_fork_start (EV_A_ &w->fork);
4496
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4497 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 4498
2319 ev_start (EV_A_ (W)w, 1); 4499 ev_start (EV_A_ (W)w, 1);
4500
4501 EV_FREQUENT_CHECK;
2320} 4502}
2321 4503
2322void 4504void
2323ev_embed_stop (EV_P_ ev_embed *w) 4505ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2324{ 4506{
2325 clear_pending (EV_A_ (W)w); 4507 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 4508 if (expect_false (!ev_is_active (w)))
2327 return; 4509 return;
2328 4510
4511 EV_FREQUENT_CHECK;
4512
2329 ev_io_stop (EV_A_ &w->io); 4513 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 4514 ev_prepare_stop (EV_A_ &w->prepare);
4515 ev_fork_stop (EV_A_ &w->fork);
2331 4516
2332 ev_stop (EV_A_ (W)w); 4517 ev_stop (EV_A_ (W)w);
4518
4519 EV_FREQUENT_CHECK;
2333} 4520}
2334#endif 4521#endif
2335 4522
2336#if EV_FORK_ENABLE 4523#if EV_FORK_ENABLE
2337void 4524void
2338ev_fork_start (EV_P_ ev_fork *w) 4525ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2339{ 4526{
2340 if (expect_false (ev_is_active (w))) 4527 if (expect_false (ev_is_active (w)))
2341 return; 4528 return;
4529
4530 EV_FREQUENT_CHECK;
2342 4531
2343 ev_start (EV_A_ (W)w, ++forkcnt); 4532 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4533 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 4534 forks [forkcnt - 1] = w;
4535
4536 EV_FREQUENT_CHECK;
2346} 4537}
2347 4538
2348void 4539void
2349ev_fork_stop (EV_P_ ev_fork *w) 4540ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2350{ 4541{
2351 clear_pending (EV_A_ (W)w); 4542 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 4543 if (expect_false (!ev_is_active (w)))
2353 return; 4544 return;
2354 4545
4546 EV_FREQUENT_CHECK;
4547
2355 { 4548 {
2356 int active = ((W)w)->active; 4549 int active = ev_active (w);
4550
2357 forks [active - 1] = forks [--forkcnt]; 4551 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 4552 ev_active (forks [active - 1]) = active;
2359 } 4553 }
2360 4554
2361 ev_stop (EV_A_ (W)w); 4555 ev_stop (EV_A_ (W)w);
4556
4557 EV_FREQUENT_CHECK;
4558}
4559#endif
4560
4561#if EV_CLEANUP_ENABLE
4562void
4563ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4564{
4565 if (expect_false (ev_is_active (w)))
4566 return;
4567
4568 EV_FREQUENT_CHECK;
4569
4570 ev_start (EV_A_ (W)w, ++cleanupcnt);
4571 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4572 cleanups [cleanupcnt - 1] = w;
4573
4574 /* cleanup watchers should never keep a refcount on the loop */
4575 ev_unref (EV_A);
4576 EV_FREQUENT_CHECK;
4577}
4578
4579void
4580ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4581{
4582 clear_pending (EV_A_ (W)w);
4583 if (expect_false (!ev_is_active (w)))
4584 return;
4585
4586 EV_FREQUENT_CHECK;
4587 ev_ref (EV_A);
4588
4589 {
4590 int active = ev_active (w);
4591
4592 cleanups [active - 1] = cleanups [--cleanupcnt];
4593 ev_active (cleanups [active - 1]) = active;
4594 }
4595
4596 ev_stop (EV_A_ (W)w);
4597
4598 EV_FREQUENT_CHECK;
4599}
4600#endif
4601
4602#if EV_ASYNC_ENABLE
4603void
4604ev_async_start (EV_P_ ev_async *w) EV_THROW
4605{
4606 if (expect_false (ev_is_active (w)))
4607 return;
4608
4609 w->sent = 0;
4610
4611 evpipe_init (EV_A);
4612
4613 EV_FREQUENT_CHECK;
4614
4615 ev_start (EV_A_ (W)w, ++asynccnt);
4616 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4617 asyncs [asynccnt - 1] = w;
4618
4619 EV_FREQUENT_CHECK;
4620}
4621
4622void
4623ev_async_stop (EV_P_ ev_async *w) EV_THROW
4624{
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630
4631 {
4632 int active = ev_active (w);
4633
4634 asyncs [active - 1] = asyncs [--asynccnt];
4635 ev_active (asyncs [active - 1]) = active;
4636 }
4637
4638 ev_stop (EV_A_ (W)w);
4639
4640 EV_FREQUENT_CHECK;
4641}
4642
4643void
4644ev_async_send (EV_P_ ev_async *w) EV_THROW
4645{
4646 w->sent = 1;
4647 evpipe_write (EV_A_ &async_pending);
2362} 4648}
2363#endif 4649#endif
2364 4650
2365/*****************************************************************************/ 4651/*****************************************************************************/
2366 4652
2376once_cb (EV_P_ struct ev_once *once, int revents) 4662once_cb (EV_P_ struct ev_once *once, int revents)
2377{ 4663{
2378 void (*cb)(int revents, void *arg) = once->cb; 4664 void (*cb)(int revents, void *arg) = once->cb;
2379 void *arg = once->arg; 4665 void *arg = once->arg;
2380 4666
2381 ev_io_stop (EV_A_ &once->io); 4667 ev_io_stop (EV_A_ &once->io);
2382 ev_timer_stop (EV_A_ &once->to); 4668 ev_timer_stop (EV_A_ &once->to);
2383 ev_free (once); 4669 ev_free (once);
2384 4670
2385 cb (revents, arg); 4671 cb (revents, arg);
2386} 4672}
2387 4673
2388static void 4674static void
2389once_cb_io (EV_P_ ev_io *w, int revents) 4675once_cb_io (EV_P_ ev_io *w, int revents)
2390{ 4676{
2391 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4677 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4678
4679 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2392} 4680}
2393 4681
2394static void 4682static void
2395once_cb_to (EV_P_ ev_timer *w, int revents) 4683once_cb_to (EV_P_ ev_timer *w, int revents)
2396{ 4684{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4685 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4686
4687 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2398} 4688}
2399 4689
2400void 4690void
2401ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4691ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2402{ 4692{
2403 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4693 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2404 4694
2405 if (expect_false (!once)) 4695 if (expect_false (!once))
2406 { 4696 {
2407 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4697 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2408 return; 4698 return;
2409 } 4699 }
2410 4700
2411 once->cb = cb; 4701 once->cb = cb;
2412 once->arg = arg; 4702 once->arg = arg;
2424 ev_timer_set (&once->to, timeout, 0.); 4714 ev_timer_set (&once->to, timeout, 0.);
2425 ev_timer_start (EV_A_ &once->to); 4715 ev_timer_start (EV_A_ &once->to);
2426 } 4716 }
2427} 4717}
2428 4718
4719/*****************************************************************************/
4720
4721#if EV_WALK_ENABLE
4722void ecb_cold
4723ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4724{
4725 int i, j;
4726 ev_watcher_list *wl, *wn;
4727
4728 if (types & (EV_IO | EV_EMBED))
4729 for (i = 0; i < anfdmax; ++i)
4730 for (wl = anfds [i].head; wl; )
4731 {
4732 wn = wl->next;
4733
4734#if EV_EMBED_ENABLE
4735 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4736 {
4737 if (types & EV_EMBED)
4738 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4739 }
4740 else
4741#endif
4742#if EV_USE_INOTIFY
4743 if (ev_cb ((ev_io *)wl) == infy_cb)
4744 ;
4745 else
4746#endif
4747 if ((ev_io *)wl != &pipe_w)
4748 if (types & EV_IO)
4749 cb (EV_A_ EV_IO, wl);
4750
4751 wl = wn;
4752 }
4753
4754 if (types & (EV_TIMER | EV_STAT))
4755 for (i = timercnt + HEAP0; i-- > HEAP0; )
4756#if EV_STAT_ENABLE
4757 /*TODO: timer is not always active*/
4758 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4759 {
4760 if (types & EV_STAT)
4761 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4762 }
4763 else
4764#endif
4765 if (types & EV_TIMER)
4766 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4767
4768#if EV_PERIODIC_ENABLE
4769 if (types & EV_PERIODIC)
4770 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4771 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4772#endif
4773
4774#if EV_IDLE_ENABLE
4775 if (types & EV_IDLE)
4776 for (j = NUMPRI; j--; )
4777 for (i = idlecnt [j]; i--; )
4778 cb (EV_A_ EV_IDLE, idles [j][i]);
4779#endif
4780
4781#if EV_FORK_ENABLE
4782 if (types & EV_FORK)
4783 for (i = forkcnt; i--; )
4784 if (ev_cb (forks [i]) != embed_fork_cb)
4785 cb (EV_A_ EV_FORK, forks [i]);
4786#endif
4787
4788#if EV_ASYNC_ENABLE
4789 if (types & EV_ASYNC)
4790 for (i = asynccnt; i--; )
4791 cb (EV_A_ EV_ASYNC, asyncs [i]);
4792#endif
4793
4794#if EV_PREPARE_ENABLE
4795 if (types & EV_PREPARE)
4796 for (i = preparecnt; i--; )
4797# if EV_EMBED_ENABLE
4798 if (ev_cb (prepares [i]) != embed_prepare_cb)
4799# endif
4800 cb (EV_A_ EV_PREPARE, prepares [i]);
4801#endif
4802
4803#if EV_CHECK_ENABLE
4804 if (types & EV_CHECK)
4805 for (i = checkcnt; i--; )
4806 cb (EV_A_ EV_CHECK, checks [i]);
4807#endif
4808
4809#if EV_SIGNAL_ENABLE
4810 if (types & EV_SIGNAL)
4811 for (i = 0; i < EV_NSIG - 1; ++i)
4812 for (wl = signals [i].head; wl; )
4813 {
4814 wn = wl->next;
4815 cb (EV_A_ EV_SIGNAL, wl);
4816 wl = wn;
4817 }
4818#endif
4819
4820#if EV_CHILD_ENABLE
4821 if (types & EV_CHILD)
4822 for (i = (EV_PID_HASHSIZE); i--; )
4823 for (wl = childs [i]; wl; )
4824 {
4825 wn = wl->next;
4826 cb (EV_A_ EV_CHILD, wl);
4827 wl = wn;
4828 }
4829#endif
4830/* EV_STAT 0x00001000 /* stat data changed */
4831/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4832}
4833#endif
4834
2429#if EV_MULTIPLICITY 4835#if EV_MULTIPLICITY
2430 #include "ev_wrap.h" 4836 #include "ev_wrap.h"
2431#endif 4837#endif
2432 4838
2433#ifdef __cplusplus
2434}
2435#endif
2436

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines