ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.79 by root, Fri Nov 9 15:15:20 2007 UTC vs.
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
41# endif 65# endif
42 66
43# if HAVE_POLL && HAVE_POLL_H 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
45# endif 73# endif
46 74
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
53# endif 113# endif
54 114
55#endif 115#endif
56 116
57#include <math.h> 117#include <math.h>
66#include <sys/types.h> 126#include <sys/types.h>
67#include <time.h> 127#include <time.h>
68 128
69#include <signal.h> 129#include <signal.h>
70 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
71#ifndef WIN32 137#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 138# include <sys/time.h>
74# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
141#else
142# define WIN32_LEAN_AND_MEAN
143# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1
75#endif 146# endif
147#endif
148
76/**/ 149/**/
77 150
78#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
80#endif 161#endif
81 162
82#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
84#endif 165#endif
85 166
86#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 168# ifdef _WIN32
169# define EV_USE_POLL 0
170# else
171# define EV_USE_POLL 1
172# endif
88#endif 173#endif
89 174
90#ifndef EV_USE_EPOLL 175#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 176# define EV_USE_EPOLL 0
92#endif 177#endif
93 178
94#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
96#endif 181#endif
97 182
183#ifndef EV_USE_PORT
184# define EV_USE_PORT 0
185#endif
186
98#ifndef EV_USE_WIN32 187#ifndef EV_USE_INOTIFY
99# ifdef WIN32 188# define EV_USE_INOTIFY 0
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 189#endif
101# undef EV_USE_SELECT 190
102# define EV_USE_SELECT 1 191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
103# else 194# else
104# define EV_USE_WIN32 0 195# define EV_PID_HASHSIZE 16
105# endif 196# endif
106#endif 197#endif
107 198
108#ifndef EV_USE_REALTIME 199#ifndef EV_INOTIFY_HASHSIZE
109# define EV_USE_REALTIME 1 200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
110#endif 205#endif
111 206
112/**/ 207/**/
113 208
114#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
122#endif 217#endif
123 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
234#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h>
236#endif
237
124/**/ 238/**/
125 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 253
131#include "ev.h"
132
133#if __GNUC__ >= 3 254#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 256# define noinline __attribute__ ((noinline))
136#else 257#else
137# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
138# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
139#endif 263#endif
140 264
141#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
143 274
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 277
278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
280
147typedef struct ev_watcher *W; 281typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
150 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 288
289#ifdef _WIN32
153#include "ev_win32.c" 290# include "ev_win32.c"
291#endif
154 292
155/*****************************************************************************/ 293/*****************************************************************************/
156 294
157static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
158 296
297void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 299{
161 syserr_cb = cb; 300 syserr_cb = cb;
162} 301}
163 302
164static void 303static void noinline
165syserr (const char *msg) 304syserr (const char *msg)
166{ 305{
167 if (!msg) 306 if (!msg)
168 msg = "(libev) system error"; 307 msg = "(libev) system error";
169 308
176 } 315 }
177} 316}
178 317
179static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
180 319
320void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 322{
183 alloc = cb; 323 alloc = cb;
184} 324}
185 325
186static void * 326inline_speed void *
187ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
188{ 328{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190 330
191 if (!ptr && size) 331 if (!ptr && size)
205typedef struct 345typedef struct
206{ 346{
207 WL head; 347 WL head;
208 unsigned char events; 348 unsigned char events;
209 unsigned char reify; 349 unsigned char reify;
350#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle;
352#endif
210} ANFD; 353} ANFD;
211 354
212typedef struct 355typedef struct
213{ 356{
214 W w; 357 W w;
215 int events; 358 int events;
216} ANPENDING; 359} ANPENDING;
217 360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
367
218#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
219 369
220struct ev_loop 370 struct ev_loop
221{ 371 {
372 ev_tstamp ev_rt_now;
373 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 374 #define VAR(name,decl) decl;
223# include "ev_vars.h" 375 #include "ev_vars.h"
224};
225# undef VAR 376 #undef VAR
377 };
226# include "ev_wrap.h" 378 #include "ev_wrap.h"
379
380 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr;
227 382
228#else 383#else
229 384
385 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 386 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 387 #include "ev_vars.h"
232# undef VAR 388 #undef VAR
389
390 static int ev_default_loop_ptr;
233 391
234#endif 392#endif
235 393
236/*****************************************************************************/ 394/*****************************************************************************/
237 395
238inline ev_tstamp 396ev_tstamp
239ev_time (void) 397ev_time (void)
240{ 398{
241#if EV_USE_REALTIME 399#if EV_USE_REALTIME
242 struct timespec ts; 400 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 401 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 407#endif
250} 408}
251 409
252inline ev_tstamp 410ev_tstamp inline_size
253get_clock (void) 411get_clock (void)
254{ 412{
255#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
257 { 415 {
262#endif 420#endif
263 421
264 return ev_time (); 422 return ev_time ();
265} 423}
266 424
425#if EV_MULTIPLICITY
267ev_tstamp 426ev_tstamp
268ev_now (EV_P) 427ev_now (EV_P)
269{ 428{
270 return rt_now; 429 return ev_rt_now;
271} 430}
431#endif
272 432
273#define array_roundsize(type,n) ((n) | 4 & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
274 487
275#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
277 { \ 490 { \
278 int newcnt = cur; \ 491 int ocur_ = (cur); \
279 do \ 492 (base) = (type *)array_realloc \
280 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 495 }
289 496
497#if 0
290#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 500 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 504 }
297 505#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 506
303#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 509
306/*****************************************************************************/ 510/*****************************************************************************/
307 511
308static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
309anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
310{ 542{
311 while (count--) 543 while (count--)
312 { 544 {
313 base->head = 0; 545 base->head = 0;
316 548
317 ++base; 549 ++base;
318 } 550 }
319} 551}
320 552
321void 553void inline_speed
322ev_feed_event (EV_P_ void *w, int revents)
323{
324 W w_ = (W)w;
325
326 if (w_->pending)
327 {
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 return;
330 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336}
337
338static void
339queue_events (EV_P_ W *events, int eventcnt, int type)
340{
341 int i;
342
343 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type);
345}
346
347inline void
348fd_event (EV_P_ int fd, int revents) 554fd_event (EV_P_ int fd, int revents)
349{ 555{
350 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
351 struct ev_io *w; 557 ev_io *w;
352 558
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
354 { 560 {
355 int ev = w->events & revents; 561 int ev = w->events & revents;
356 562
357 if (ev) 563 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
360} 566}
361 567
362void 568void
363ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
364{ 570{
571 if (fd >= 0 && fd < anfdmax)
365 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
366} 573}
367 574
368/*****************************************************************************/ 575void inline_size
369
370static void
371fd_reify (EV_P) 576fd_reify (EV_P)
372{ 577{
373 int i; 578 int i;
374 579
375 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
376 { 581 {
377 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
378 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
379 struct ev_io *w; 584 ev_io *w;
380 585
381 int events = 0; 586 unsigned char events = 0;
382 587
383 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
384 events |= w->events; 589 events |= (unsigned char)w->events;
385 590
591#if EV_SELECT_IS_WINSOCKET
592 if (events)
593 {
594 unsigned long argp;
595 anfd->handle = _get_osfhandle (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 }
598#endif
599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
386 anfd->reify = 0; 604 anfd->reify = 0;
387
388 method_modify (EV_A_ fd, anfd->events, events);
389 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
390 } 610 }
391 611
392 fdchangecnt = 0; 612 fdchangecnt = 0;
393} 613}
394 614
395static void 615void inline_size
396fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
397{ 617{
398 if (anfds [fd].reify) 618 unsigned char reify = anfds [fd].reify;
399 return;
400
401 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
402 620
621 if (expect_true (!reify))
622 {
403 ++fdchangecnt; 623 ++fdchangecnt;
404 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
405 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
406} 627}
407 628
408static void 629void inline_speed
409fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
410{ 631{
411 struct ev_io *w; 632 ev_io *w;
412 633
413 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
414 { 635 {
415 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
416 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
417 } 638 }
418} 639}
419 640
420static int 641int inline_size
421fd_valid (int fd) 642fd_valid (int fd)
422{ 643{
423#ifdef WIN32 644#ifdef _WIN32
424 return !!win32_get_osfhandle (fd); 645 return _get_osfhandle (fd) != -1;
425#else 646#else
426 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
427#endif 648#endif
428} 649}
429 650
430/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
431static void 652static void noinline
432fd_ebadf (EV_P) 653fd_ebadf (EV_P)
433{ 654{
434 int fd; 655 int fd;
435 656
436 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
438 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
439 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
440} 661}
441 662
442/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
443static void 664static void noinline
444fd_enomem (EV_P) 665fd_enomem (EV_P)
445{ 666{
446 int fd; 667 int fd;
447 668
448 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
451 fd_kill (EV_A_ fd); 672 fd_kill (EV_A_ fd);
452 return; 673 return;
453 } 674 }
454} 675}
455 676
456/* usually called after fork if method needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
457static void 678static void noinline
458fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
459{ 680{
460 int fd; 681 int fd;
461 682
462 /* this should be highly optimised to not do anything but set a flag */
463 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
464 if (anfds [fd].events) 684 if (anfds [fd].events)
465 { 685 {
466 anfds [fd].events = 0; 686 anfds [fd].events = 0;
467 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
468 } 688 }
469} 689}
470 690
471/*****************************************************************************/ 691/*****************************************************************************/
472 692
473static void 693void inline_speed
474upheap (WT *heap, int k) 694upheap (WT *heap, int k)
475{ 695{
476 WT w = heap [k]; 696 WT w = heap [k];
477 697
478 while (k && heap [k >> 1]->at > w->at) 698 while (k)
479 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
480 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
481 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
482 k >>= 1; 707 k = p;
483 } 708 }
484 709
485 heap [k] = w; 710 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
487
488} 712}
489 713
490static void 714void inline_speed
491downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
492{ 716{
493 WT w = heap [k]; 717 WT w = heap [k];
494 718
495 while (k < (N >> 1)) 719 for (;;)
496 { 720 {
497 int j = k << 1; 721 int c = (k << 1) + 1;
498 722
499 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
500 ++j;
501
502 if (w->at <= heap [j]->at)
503 break; 724 break;
504 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
505 heap [k] = heap [j]; 732 heap [k] = heap [c];
506 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
507 k = j; 735 k = c;
508 } 736 }
509 737
510 heap [k] = w; 738 heap [k] = w;
511 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
512} 747}
513 748
514/*****************************************************************************/ 749/*****************************************************************************/
515 750
516typedef struct 751typedef struct
522static ANSIG *signals; 757static ANSIG *signals;
523static int signalmax; 758static int signalmax;
524 759
525static int sigpipe [2]; 760static int sigpipe [2];
526static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
527static struct ev_io sigev; 762static ev_io sigev;
528 763
529static void 764void inline_size
530signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
531{ 766{
532 while (count--) 767 while (count--)
533 { 768 {
534 base->head = 0; 769 base->head = 0;
539} 774}
540 775
541static void 776static void
542sighandler (int signum) 777sighandler (int signum)
543{ 778{
544#if WIN32 779#if _WIN32
545 signal (signum, sighandler); 780 signal (signum, sighandler);
546#endif 781#endif
547 782
548 signals [signum - 1].gotsig = 1; 783 signals [signum - 1].gotsig = 1;
549 784
550 if (!gotsig) 785 if (!gotsig)
551 { 786 {
552 int old_errno = errno; 787 int old_errno = errno;
553 gotsig = 1; 788 gotsig = 1;
554#ifdef WIN32
555 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
556#else
557 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
558#endif
559 errno = old_errno; 790 errno = old_errno;
560 } 791 }
561} 792}
562 793
563void 794void noinline
564ev_feed_signal_event (EV_P_ int signum) 795ev_feed_signal_event (EV_P_ int signum)
565{ 796{
797 WL w;
798
566#if EV_MULTIPLICITY 799#if EV_MULTIPLICITY
567 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
568#endif 801#endif
569 802
570 --signum; 803 --signum;
571 804
572 if (signum < 0 || signum >= signalmax) 805 if (signum < 0 || signum >= signalmax)
577 for (w = signals [signum].head; w; w = w->next) 810 for (w = signals [signum].head; w; w = w->next)
578 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
579} 812}
580 813
581static void 814static void
582sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
583{ 816{
584 WL w;
585 int signum; 817 int signum;
586 818
587#ifdef WIN32
588 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589#else
590 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
591#endif
592 gotsig = 0; 820 gotsig = 0;
593 821
594 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
595 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
596 sigevent (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
597} 825}
598 826
599static void 827void inline_speed
828fd_intern (int fd)
829{
830#ifdef _WIN32
831 int arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif
837}
838
839static void noinline
600siginit (EV_P) 840siginit (EV_P)
601{ 841{
602#ifndef WIN32 842 fd_intern (sigpipe [0]);
603 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 843 fd_intern (sigpipe [1]);
604 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
605
606 /* rather than sort out wether we really need nb, set it */
607 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
608 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
609#endif
610 844
611 ev_io_set (&sigev, sigpipe [0], EV_READ); 845 ev_io_set (&sigev, sigpipe [0], EV_READ);
612 ev_io_start (EV_A_ &sigev); 846 ev_io_start (EV_A_ &sigev);
613 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
614} 848}
615 849
616/*****************************************************************************/ 850/*****************************************************************************/
617 851
618static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
619 853
620#ifndef WIN32 854#ifndef _WIN32
621 855
622static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
623 872
624#ifndef WCONTINUED 873#ifndef WCONTINUED
625# define WCONTINUED 0 874# define WCONTINUED 0
626#endif 875#endif
627 876
628static void 877static void
629child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
630{
631 struct ev_child *w;
632
633 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
634 if (w->pid == pid || !w->pid)
635 {
636 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
637 w->rpid = pid;
638 w->rstatus = status;
639 ev_feed_event (EV_A_ (W)w, EV_CHILD);
640 }
641}
642
643static void
644childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
645{ 879{
646 int pid, status; 880 int pid, status;
647 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
648 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
649 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
650 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
651 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
652 892
653 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
654 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
655 }
656} 896}
657 897
658#endif 898#endif
659 899
660/*****************************************************************************/ 900/*****************************************************************************/
661 901
902#if EV_USE_PORT
903# include "ev_port.c"
904#endif
662#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
663# include "ev_kqueue.c" 906# include "ev_kqueue.c"
664#endif 907#endif
665#if EV_USE_EPOLL 908#if EV_USE_EPOLL
666# include "ev_epoll.c" 909# include "ev_epoll.c"
683{ 926{
684 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
685} 928}
686 929
687/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
688static int 931int inline_size
689enable_secure (void) 932enable_secure (void)
690{ 933{
691#ifdef WIN32 934#ifdef _WIN32
692 return 0; 935 return 0;
693#else 936#else
694 return getuid () != geteuid () 937 return getuid () != geteuid ()
695 || getgid () != getegid (); 938 || getgid () != getegid ();
696#endif 939#endif
697} 940}
698 941
699int 942unsigned int
700ev_method (EV_P) 943ev_supported_backends (void)
701{ 944{
702 return method; 945 unsigned int flags = 0;
703}
704 946
705static void 947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
706loop_init (EV_P_ int methods) 948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
950 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952
953 return flags;
954}
955
956unsigned int
957ev_recommended_backends (void)
707{ 958{
708 if (!method) 959 unsigned int flags = ev_supported_backends ();
960
961#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE;
965#endif
966#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation
968 flags &= ~EVBACKEND_POLL;
969#endif
970
971 return flags;
972}
973
974unsigned int
975ev_embeddable_backends (void)
976{
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE
979 | EVBACKEND_PORT;
980}
981
982unsigned int
983ev_backend (EV_P)
984{
985 return backend;
986}
987
988unsigned int
989ev_loop_count (EV_P)
990{
991 return loop_count;
992}
993
994void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
996{
997 io_blocktime = interval;
998}
999
1000void
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 timeout_blocktime = interval;
1004}
1005
1006static void noinline
1007loop_init (EV_P_ unsigned int flags)
1008{
1009 if (!backend)
709 { 1010 {
710#if EV_USE_MONOTONIC 1011#if EV_USE_MONOTONIC
711 { 1012 {
712 struct timespec ts; 1013 struct timespec ts;
713 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
714 have_monotonic = 1; 1015 have_monotonic = 1;
715 } 1016 }
716#endif 1017#endif
717 1018
718 rt_now = ev_time (); 1019 ev_rt_now = ev_time ();
719 mn_now = get_clock (); 1020 mn_now = get_clock ();
720 now_floor = mn_now; 1021 now_floor = mn_now;
721 rtmn_diff = rt_now - mn_now; 1022 rtmn_diff = ev_rt_now - mn_now;
722 1023
723 if (methods == EVMETHOD_AUTO) 1024 io_blocktime = 0.;
724 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1025 timeout_blocktime = 0.;
1026
1027 /* pid check not overridable via env */
1028#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid ();
1031#endif
1032
1033 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS"))
725 methods = atoi (getenv ("LIBEV_METHODS")); 1036 flags = atoi (getenv ("LIBEV_FLAGS"));
726 else
727 methods = EVMETHOD_ANY;
728 1037
729 method = 0; 1038 if (!(flags & 0x0000ffffUL))
1039 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
730#if EV_USE_WIN32 1043#if EV_USE_INOTIFY
731 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1044 fs_fd = -2;
1045#endif
1046
1047#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
732#endif 1049#endif
733#if EV_USE_KQUEUE 1050#if EV_USE_KQUEUE
734 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1051 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
735#endif 1052#endif
736#if EV_USE_EPOLL 1053#if EV_USE_EPOLL
737 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1054 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
738#endif 1055#endif
739#if EV_USE_POLL 1056#if EV_USE_POLL
740 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1057 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
741#endif 1058#endif
742#if EV_USE_SELECT 1059#if EV_USE_SELECT
743 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
744#endif 1061#endif
745 1062
746 ev_watcher_init (&sigev, sigcb); 1063 ev_init (&sigev, sigcb);
747 ev_set_priority (&sigev, EV_MAXPRI); 1064 ev_set_priority (&sigev, EV_MAXPRI);
748 } 1065 }
749} 1066}
750 1067
751void 1068static void noinline
752loop_destroy (EV_P) 1069loop_destroy (EV_P)
753{ 1070{
754 int i; 1071 int i;
755 1072
756#if EV_USE_WIN32 1073#if EV_USE_INOTIFY
757 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1074 if (fs_fd >= 0)
1075 close (fs_fd);
1076#endif
1077
1078 if (backend_fd >= 0)
1079 close (backend_fd);
1080
1081#if EV_USE_PORT
1082 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
758#endif 1083#endif
759#if EV_USE_KQUEUE 1084#if EV_USE_KQUEUE
760 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1085 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
761#endif 1086#endif
762#if EV_USE_EPOLL 1087#if EV_USE_EPOLL
763 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1088 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
764#endif 1089#endif
765#if EV_USE_POLL 1090#if EV_USE_POLL
766 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1091 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
767#endif 1092#endif
768#if EV_USE_SELECT 1093#if EV_USE_SELECT
769 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1094 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
770#endif 1095#endif
771 1096
772 for (i = NUMPRI; i--; ) 1097 for (i = NUMPRI; i--; )
1098 {
773 array_free (pending, [i]); 1099 array_free (pending, [i]);
1100#if EV_IDLE_ENABLE
1101 array_free (idle, [i]);
1102#endif
1103 }
1104
1105 ev_free (anfds); anfdmax = 0;
774 1106
775 /* have to use the microsoft-never-gets-it-right macro */ 1107 /* have to use the microsoft-never-gets-it-right macro */
776 array_free_microshit (fdchange); 1108 array_free (fdchange, EMPTY);
777 array_free_microshit (timer); 1109 array_free (timer, EMPTY);
778 array_free_microshit (periodic); 1110#if EV_PERIODIC_ENABLE
779 array_free_microshit (idle); 1111 array_free (periodic, EMPTY);
780 array_free_microshit (prepare); 1112#endif
781 array_free_microshit (check); 1113#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY);
1115#endif
1116 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY);
782 1118
783 method = 0; 1119 backend = 0;
784} 1120}
785 1121
786static void 1122void inline_size infy_fork (EV_P);
1123
1124void inline_size
787loop_fork (EV_P) 1125loop_fork (EV_P)
788{ 1126{
1127#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif
1130#if EV_USE_KQUEUE
1131 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1132#endif
789#if EV_USE_EPOLL 1133#if EV_USE_EPOLL
790 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1134 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
791#endif 1135#endif
792#if EV_USE_KQUEUE 1136#if EV_USE_INOTIFY
793 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1137 infy_fork (EV_A);
794#endif 1138#endif
795 1139
796 if (ev_is_active (&sigev)) 1140 if (ev_is_active (&sigev))
797 { 1141 {
798 /* default loop */ 1142 /* default loop */
811 postfork = 0; 1155 postfork = 0;
812} 1156}
813 1157
814#if EV_MULTIPLICITY 1158#if EV_MULTIPLICITY
815struct ev_loop * 1159struct ev_loop *
816ev_loop_new (int methods) 1160ev_loop_new (unsigned int flags)
817{ 1161{
818 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
819 1163
820 memset (loop, 0, sizeof (struct ev_loop)); 1164 memset (loop, 0, sizeof (struct ev_loop));
821 1165
822 loop_init (EV_A_ methods); 1166 loop_init (EV_A_ flags);
823 1167
824 if (ev_method (EV_A)) 1168 if (ev_backend (EV_A))
825 return loop; 1169 return loop;
826 1170
827 return 0; 1171 return 0;
828} 1172}
829 1173
841} 1185}
842 1186
843#endif 1187#endif
844 1188
845#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
846struct ev_loop default_loop_struct;
847static struct ev_loop *default_loop;
848
849struct ev_loop * 1190struct ev_loop *
1191ev_default_loop_init (unsigned int flags)
850#else 1192#else
851static int default_loop;
852
853int 1193int
1194ev_default_loop (unsigned int flags)
854#endif 1195#endif
855ev_default_loop (int methods)
856{ 1196{
857 if (sigpipe [0] == sigpipe [1]) 1197 if (sigpipe [0] == sigpipe [1])
858 if (pipe (sigpipe)) 1198 if (pipe (sigpipe))
859 return 0; 1199 return 0;
860 1200
861 if (!default_loop) 1201 if (!ev_default_loop_ptr)
862 { 1202 {
863#if EV_MULTIPLICITY 1203#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop = &default_loop_struct; 1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
865#else 1205#else
866 default_loop = 1; 1206 ev_default_loop_ptr = 1;
867#endif 1207#endif
868 1208
869 loop_init (EV_A_ methods); 1209 loop_init (EV_A_ flags);
870 1210
871 if (ev_method (EV_A)) 1211 if (ev_backend (EV_A))
872 { 1212 {
873 siginit (EV_A); 1213 siginit (EV_A);
874 1214
875#ifndef WIN32 1215#ifndef _WIN32
876 ev_signal_init (&childev, childcb, SIGCHLD); 1216 ev_signal_init (&childev, childcb, SIGCHLD);
877 ev_set_priority (&childev, EV_MAXPRI); 1217 ev_set_priority (&childev, EV_MAXPRI);
878 ev_signal_start (EV_A_ &childev); 1218 ev_signal_start (EV_A_ &childev);
879 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* child watcher should not keep loop alive */
880#endif 1220#endif
881 } 1221 }
882 else 1222 else
883 default_loop = 0; 1223 ev_default_loop_ptr = 0;
884 } 1224 }
885 1225
886 return default_loop; 1226 return ev_default_loop_ptr;
887} 1227}
888 1228
889void 1229void
890ev_default_destroy (void) 1230ev_default_destroy (void)
891{ 1231{
892#if EV_MULTIPLICITY 1232#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1233 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1234#endif
895 1235
896#ifndef WIN32 1236#ifndef _WIN32
897 ev_ref (EV_A); /* child watcher */ 1237 ev_ref (EV_A); /* child watcher */
898 ev_signal_stop (EV_A_ &childev); 1238 ev_signal_stop (EV_A_ &childev);
899#endif 1239#endif
900 1240
901 ev_ref (EV_A); /* signal watcher */ 1241 ev_ref (EV_A); /* signal watcher */
909 1249
910void 1250void
911ev_default_fork (void) 1251ev_default_fork (void)
912{ 1252{
913#if EV_MULTIPLICITY 1253#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop; 1254 struct ev_loop *loop = ev_default_loop_ptr;
915#endif 1255#endif
916 1256
917 if (method) 1257 if (backend)
918 postfork = 1; 1258 postfork = 1;
919} 1259}
920 1260
921/*****************************************************************************/ 1261/*****************************************************************************/
922 1262
923static int 1263void
924any_pending (EV_P) 1264ev_invoke (EV_P_ void *w, int revents)
925{ 1265{
926 int pri; 1266 EV_CB_INVOKE ((W)w, revents);
927
928 for (pri = NUMPRI; pri--; )
929 if (pendingcnt [pri])
930 return 1;
931
932 return 0;
933} 1267}
934 1268
935static void 1269void inline_speed
936call_pending (EV_P) 1270call_pending (EV_P)
937{ 1271{
938 int pri; 1272 int pri;
939 1273
940 for (pri = NUMPRI; pri--; ) 1274 for (pri = NUMPRI; pri--; )
941 while (pendingcnt [pri]) 1275 while (pendingcnt [pri])
942 { 1276 {
943 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
944 1278
945 if (p->w) 1279 if (expect_true (p->w))
946 { 1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282
947 p->w->pending = 0; 1283 p->w->pending = 0;
948 p->w->cb (EV_A_ p->w, p->events); 1284 EV_CB_INVOKE (p->w, p->events);
949 } 1285 }
950 } 1286 }
951} 1287}
952 1288
953static void 1289void inline_size
954timers_reify (EV_P) 1290timers_reify (EV_P)
955{ 1291{
956 while (timercnt && ((WT)timers [0])->at <= mn_now) 1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
957 { 1293 {
958 struct ev_timer *w = timers [0]; 1294 ev_timer *w = (ev_timer *)timers [0];
959 1295
960 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
961 1297
962 /* first reschedule or stop timer */ 1298 /* first reschedule or stop timer */
963 if (w->repeat) 1299 if (w->repeat)
964 { 1300 {
965 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
966 ((WT)w)->at = mn_now + w->repeat; 1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
967 downheap ((WT *)timers, timercnt, 0); 1307 downheap (timers, timercnt, 0);
968 } 1308 }
969 else 1309 else
970 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
971 1311
972 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
973 } 1313 }
974} 1314}
975 1315
976static void 1316#if EV_PERIODIC_ENABLE
1317void inline_size
977periodics_reify (EV_P) 1318periodics_reify (EV_P)
978{ 1319{
979 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
980 { 1321 {
981 struct ev_periodic *w = periodics [0]; 1322 ev_periodic *w = (ev_periodic *)periodics [0];
982 1323
983 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
984 1325
985 /* first reschedule or stop timer */ 1326 /* first reschedule or stop timer */
986 if (w->reschedule_cb) 1327 if (w->reschedule_cb)
987 { 1328 {
988 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
989
990 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
991 downheap ((WT *)periodics, periodiccnt, 0); 1331 downheap (periodics, periodiccnt, 0);
992 } 1332 }
993 else if (w->interval) 1333 else if (w->interval)
994 { 1334 {
995 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
996 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
997 downheap ((WT *)periodics, periodiccnt, 0); 1338 downheap (periodics, periodiccnt, 0);
998 } 1339 }
999 else 1340 else
1000 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 1342
1002 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1003 } 1344 }
1004} 1345}
1005 1346
1006static void 1347static void noinline
1007periodics_reschedule (EV_P) 1348periodics_reschedule (EV_P)
1008{ 1349{
1009 int i; 1350 int i;
1010 1351
1011 /* adjust periodics after time jump */ 1352 /* adjust periodics after time jump */
1012 for (i = 0; i < periodiccnt; ++i) 1353 for (i = 0; i < periodiccnt; ++i)
1013 { 1354 {
1014 struct ev_periodic *w = periodics [i]; 1355 ev_periodic *w = (ev_periodic *)periodics [i];
1015 1356
1016 if (w->reschedule_cb) 1357 if (w->reschedule_cb)
1017 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1018 else if (w->interval) 1359 else if (w->interval)
1019 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1020 } 1361 }
1021 1362
1022 /* now rebuild the heap */ 1363 /* now rebuild the heap */
1023 for (i = periodiccnt >> 1; i--; ) 1364 for (i = periodiccnt >> 1; i--; )
1024 downheap ((WT *)periodics, periodiccnt, i); 1365 downheap (periodics, periodiccnt, i);
1025} 1366}
1367#endif
1026 1368
1027inline int 1369#if EV_IDLE_ENABLE
1028time_update_monotonic (EV_P) 1370void inline_size
1371idle_reify (EV_P)
1029{ 1372{
1030 mn_now = get_clock (); 1373 if (expect_false (idleall))
1031
1032 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 {
1034 rt_now = rtmn_diff + mn_now;
1035 return 0;
1036 } 1374 {
1037 else 1375 int pri;
1376
1377 for (pri = NUMPRI; pri--; )
1378 {
1379 if (pendingcnt [pri])
1380 break;
1381
1382 if (idlecnt [pri])
1383 {
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break;
1386 }
1387 }
1038 { 1388 }
1039 now_floor = mn_now;
1040 rt_now = ev_time ();
1041 return 1;
1042 }
1043} 1389}
1390#endif
1044 1391
1045static void 1392void inline_speed
1046time_update (EV_P) 1393time_update (EV_P_ ev_tstamp max_block)
1047{ 1394{
1048 int i; 1395 int i;
1049 1396
1050#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1051 if (expect_true (have_monotonic)) 1398 if (expect_true (have_monotonic))
1052 { 1399 {
1053 if (time_update_monotonic (EV_A)) 1400 ev_tstamp odiff = rtmn_diff;
1401
1402 mn_now = get_clock ();
1403
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1405 /* interpolate in the meantime */
1406 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1054 { 1407 {
1055 ev_tstamp odiff = rtmn_diff; 1408 ev_rt_now = rtmn_diff + mn_now;
1409 return;
1410 }
1056 1411
1412 now_floor = mn_now;
1413 ev_rt_now = ev_time ();
1414
1057 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1415 /* loop a few times, before making important decisions.
1416 * on the choice of "4": one iteration isn't enough,
1417 * in case we get preempted during the calls to
1418 * ev_time and get_clock. a second call is almost guaranteed
1419 * to succeed in that case, though. and looping a few more times
1420 * doesn't hurt either as we only do this on time-jumps or
1421 * in the unlikely event of having been preempted here.
1422 */
1423 for (i = 4; --i; )
1058 { 1424 {
1059 rtmn_diff = rt_now - mn_now; 1425 rtmn_diff = ev_rt_now - mn_now;
1060 1426
1061 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1062 return; /* all is well */ 1428 return; /* all is well */
1063 1429
1064 rt_now = ev_time (); 1430 ev_rt_now = ev_time ();
1065 mn_now = get_clock (); 1431 mn_now = get_clock ();
1066 now_floor = mn_now; 1432 now_floor = mn_now;
1067 } 1433 }
1068 1434
1435# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A);
1437# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 }
1441 else
1442#endif
1443 {
1444 ev_rt_now = ev_time ();
1445
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 {
1448#if EV_PERIODIC_ENABLE
1069 periodics_reschedule (EV_A); 1449 periodics_reschedule (EV_A);
1070 /* no timer adjustment, as the monotonic clock doesn't jump */ 1450#endif
1071 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1072 } 1454 }
1073 }
1074 else
1075#endif
1076 {
1077 rt_now = ev_time ();
1078 1455
1079 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1080 {
1081 periodics_reschedule (EV_A);
1082
1083 /* adjust timers. this is easy, as the offset is the same for all */
1084 for (i = 0; i < timercnt; ++i)
1085 ((WT)timers [i])->at += rt_now - mn_now;
1086 }
1087
1088 mn_now = rt_now; 1456 mn_now = ev_rt_now;
1089 } 1457 }
1090} 1458}
1091 1459
1092void 1460void
1093ev_ref (EV_P) 1461ev_ref (EV_P)
1104static int loop_done; 1472static int loop_done;
1105 1473
1106void 1474void
1107ev_loop (EV_P_ int flags) 1475ev_loop (EV_P_ int flags)
1108{ 1476{
1109 double block;
1110 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1111 1482
1112 do 1483 do
1113 { 1484 {
1485#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid))
1488 {
1489 curpid = getpid ();
1490 postfork = 1;
1491 }
1492#endif
1493
1494#if EV_FORK_ENABLE
1495 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork))
1497 if (forkcnt)
1498 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A);
1501 }
1502#endif
1503
1114 /* queue check watchers (and execute them) */ 1504 /* queue prepare watchers (and execute them) */
1115 if (expect_false (preparecnt)) 1505 if (expect_false (preparecnt))
1116 { 1506 {
1117 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1118 call_pending (EV_A); 1508 call_pending (EV_A);
1119 } 1509 }
1120 1510
1511 if (expect_false (!activecnt))
1512 break;
1513
1121 /* we might have forked, so reify kernel state if necessary */ 1514 /* we might have forked, so reify kernel state if necessary */
1122 if (expect_false (postfork)) 1515 if (expect_false (postfork))
1123 loop_fork (EV_A); 1516 loop_fork (EV_A);
1124 1517
1125 /* update fd-related kernel structures */ 1518 /* update fd-related kernel structures */
1126 fd_reify (EV_A); 1519 fd_reify (EV_A);
1127 1520
1128 /* calculate blocking time */ 1521 /* calculate blocking time */
1522 {
1523 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.;
1129 1525
1130 /* we only need this for !monotonic clock or timers, but as we basically 1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1131 always have timers, we just calculate it always */
1132#if EV_USE_MONOTONIC
1133 if (expect_true (have_monotonic))
1134 time_update_monotonic (EV_A);
1135 else
1136#endif
1137 { 1527 {
1138 rt_now = ev_time (); 1528 /* update time to cancel out callback processing overhead */
1139 mn_now = rt_now; 1529 time_update (EV_A_ 1e100);
1140 }
1141 1530
1142 if (flags & EVLOOP_NONBLOCK || idlecnt)
1143 block = 0.;
1144 else
1145 {
1146 block = MAX_BLOCKTIME; 1531 waittime = MAX_BLOCKTIME;
1147 1532
1148 if (timercnt) 1533 if (timercnt)
1149 { 1534 {
1150 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1151 if (block > to) block = to; 1536 if (waittime > to) waittime = to;
1152 } 1537 }
1153 1538
1539#if EV_PERIODIC_ENABLE
1154 if (periodiccnt) 1540 if (periodiccnt)
1155 { 1541 {
1156 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1157 if (block > to) block = to; 1543 if (waittime > to) waittime = to;
1158 } 1544 }
1545#endif
1159 1546
1160 if (block < 0.) block = 0.; 1547 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime;
1549
1550 sleeptime = waittime - backend_fudge;
1551
1552 if (expect_true (sleeptime > io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 {
1557 ev_sleep (sleeptime);
1558 waittime -= sleeptime;
1559 }
1161 } 1560 }
1162 1561
1163 method_poll (EV_A_ block); 1562 ++loop_count;
1563 backend_poll (EV_A_ waittime);
1164 1564
1165 /* update rt_now, do magic */ 1565 /* update ev_rt_now, do magic */
1166 time_update (EV_A); 1566 time_update (EV_A_ waittime + sleeptime);
1567 }
1167 1568
1168 /* queue pending timers and reschedule them */ 1569 /* queue pending timers and reschedule them */
1169 timers_reify (EV_A); /* relative timers called last */ 1570 timers_reify (EV_A); /* relative timers called last */
1571#if EV_PERIODIC_ENABLE
1170 periodics_reify (EV_A); /* absolute timers called first */ 1572 periodics_reify (EV_A); /* absolute timers called first */
1573#endif
1171 1574
1575#if EV_IDLE_ENABLE
1172 /* queue idle watchers unless io or timers are pending */ 1576 /* queue idle watchers unless other events are pending */
1173 if (idlecnt && !any_pending (EV_A)) 1577 idle_reify (EV_A);
1174 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1578#endif
1175 1579
1176 /* queue check watchers, to be executed first */ 1580 /* queue check watchers, to be executed first */
1177 if (checkcnt) 1581 if (expect_false (checkcnt))
1178 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1179 1583
1180 call_pending (EV_A); 1584 call_pending (EV_A);
1585
1181 } 1586 }
1182 while (activecnt && !loop_done); 1587 while (expect_true (activecnt && !loop_done));
1183 1588
1184 if (loop_done != 2) 1589 if (loop_done == EVUNLOOP_ONE)
1185 loop_done = 0; 1590 loop_done = EVUNLOOP_CANCEL;
1186} 1591}
1187 1592
1188void 1593void
1189ev_unloop (EV_P_ int how) 1594ev_unloop (EV_P_ int how)
1190{ 1595{
1191 loop_done = how; 1596 loop_done = how;
1192} 1597}
1193 1598
1194/*****************************************************************************/ 1599/*****************************************************************************/
1195 1600
1196inline void 1601void inline_size
1197wlist_add (WL *head, WL elem) 1602wlist_add (WL *head, WL elem)
1198{ 1603{
1199 elem->next = *head; 1604 elem->next = *head;
1200 *head = elem; 1605 *head = elem;
1201} 1606}
1202 1607
1203inline void 1608void inline_size
1204wlist_del (WL *head, WL elem) 1609wlist_del (WL *head, WL elem)
1205{ 1610{
1206 while (*head) 1611 while (*head)
1207 { 1612 {
1208 if (*head == elem) 1613 if (*head == elem)
1213 1618
1214 head = &(*head)->next; 1619 head = &(*head)->next;
1215 } 1620 }
1216} 1621}
1217 1622
1218inline void 1623void inline_speed
1219ev_clear_pending (EV_P_ W w) 1624clear_pending (EV_P_ W w)
1220{ 1625{
1221 if (w->pending) 1626 if (w->pending)
1222 { 1627 {
1223 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1628 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1224 w->pending = 0; 1629 w->pending = 0;
1225 } 1630 }
1226} 1631}
1227 1632
1228inline void 1633int
1634ev_clear_pending (EV_P_ void *w)
1635{
1636 W w_ = (W)w;
1637 int pending = w_->pending;
1638
1639 if (expect_true (pending))
1640 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1642 w_->pending = 0;
1643 p->w = 0;
1644 return p->events;
1645 }
1646 else
1647 return 0;
1648}
1649
1650void inline_size
1651pri_adjust (EV_P_ W w)
1652{
1653 int pri = w->priority;
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri;
1657}
1658
1659void inline_speed
1229ev_start (EV_P_ W w, int active) 1660ev_start (EV_P_ W w, int active)
1230{ 1661{
1231 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1662 pri_adjust (EV_A_ w);
1232 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1233
1234 w->active = active; 1663 w->active = active;
1235 ev_ref (EV_A); 1664 ev_ref (EV_A);
1236} 1665}
1237 1666
1238inline void 1667void inline_size
1239ev_stop (EV_P_ W w) 1668ev_stop (EV_P_ W w)
1240{ 1669{
1241 ev_unref (EV_A); 1670 ev_unref (EV_A);
1242 w->active = 0; 1671 w->active = 0;
1243} 1672}
1244 1673
1245/*****************************************************************************/ 1674/*****************************************************************************/
1246 1675
1247void 1676void noinline
1248ev_io_start (EV_P_ struct ev_io *w) 1677ev_io_start (EV_P_ ev_io *w)
1249{ 1678{
1250 int fd = w->fd; 1679 int fd = w->fd;
1251 1680
1252 if (ev_is_active (w)) 1681 if (expect_false (ev_is_active (w)))
1253 return; 1682 return;
1254 1683
1255 assert (("ev_io_start called with negative fd", fd >= 0)); 1684 assert (("ev_io_start called with negative fd", fd >= 0));
1256 1685
1257 ev_start (EV_A_ (W)w, 1); 1686 ev_start (EV_A_ (W)w, 1);
1258 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1259 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1688 wlist_add (&anfds[fd].head, (WL)w);
1260 1689
1261 fd_change (EV_A_ fd); 1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET;
1262} 1692}
1263 1693
1264void 1694void noinline
1265ev_io_stop (EV_P_ struct ev_io *w) 1695ev_io_stop (EV_P_ ev_io *w)
1266{ 1696{
1267 ev_clear_pending (EV_A_ (W)w); 1697 clear_pending (EV_A_ (W)w);
1268 if (!ev_is_active (w)) 1698 if (expect_false (!ev_is_active (w)))
1269 return; 1699 return;
1270 1700
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1702
1271 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1703 wlist_del (&anfds[w->fd].head, (WL)w);
1272 ev_stop (EV_A_ (W)w); 1704 ev_stop (EV_A_ (W)w);
1273 1705
1274 fd_change (EV_A_ w->fd); 1706 fd_change (EV_A_ w->fd, 1);
1275} 1707}
1276 1708
1277void 1709void noinline
1278ev_timer_start (EV_P_ struct ev_timer *w) 1710ev_timer_start (EV_P_ ev_timer *w)
1279{ 1711{
1280 if (ev_is_active (w)) 1712 if (expect_false (ev_is_active (w)))
1281 return; 1713 return;
1282 1714
1283 ((WT)w)->at += mn_now; 1715 ((WT)w)->at += mn_now;
1284 1716
1285 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1286 1718
1287 ev_start (EV_A_ (W)w, ++timercnt); 1719 ev_start (EV_A_ (W)w, ++timercnt);
1288 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1289 timers [timercnt - 1] = w; 1721 timers [timercnt - 1] = (WT)w;
1290 upheap ((WT *)timers, timercnt - 1); 1722 upheap (timers, timercnt - 1);
1291 1723
1292 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1293} 1725}
1294 1726
1295void 1727void noinline
1296ev_timer_stop (EV_P_ struct ev_timer *w) 1728ev_timer_stop (EV_P_ ev_timer *w)
1297{ 1729{
1298 ev_clear_pending (EV_A_ (W)w); 1730 clear_pending (EV_A_ (W)w);
1299 if (!ev_is_active (w)) 1731 if (expect_false (!ev_is_active (w)))
1300 return; 1732 return;
1301 1733
1302 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1303 1735
1304 if (((W)w)->active < timercnt--) 1736 {
1737 int active = ((W)w)->active;
1738
1739 if (expect_true (--active < --timercnt))
1305 { 1740 {
1306 timers [((W)w)->active - 1] = timers [timercnt]; 1741 timers [active] = timers [timercnt];
1307 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1742 adjustheap (timers, timercnt, active);
1308 } 1743 }
1744 }
1309 1745
1310 ((WT)w)->at = w->repeat; 1746 ((WT)w)->at -= mn_now;
1311 1747
1312 ev_stop (EV_A_ (W)w); 1748 ev_stop (EV_A_ (W)w);
1313} 1749}
1314 1750
1315void 1751void noinline
1316ev_timer_again (EV_P_ struct ev_timer *w) 1752ev_timer_again (EV_P_ ev_timer *w)
1317{ 1753{
1318 if (ev_is_active (w)) 1754 if (ev_is_active (w))
1319 { 1755 {
1320 if (w->repeat) 1756 if (w->repeat)
1321 { 1757 {
1322 ((WT)w)->at = mn_now + w->repeat; 1758 ((WT)w)->at = mn_now + w->repeat;
1323 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1759 adjustheap (timers, timercnt, ((W)w)->active - 1);
1324 } 1760 }
1325 else 1761 else
1326 ev_timer_stop (EV_A_ w); 1762 ev_timer_stop (EV_A_ w);
1327 } 1763 }
1328 else if (w->repeat) 1764 else if (w->repeat)
1765 {
1766 w->at = w->repeat;
1329 ev_timer_start (EV_A_ w); 1767 ev_timer_start (EV_A_ w);
1768 }
1330} 1769}
1331 1770
1332void 1771#if EV_PERIODIC_ENABLE
1772void noinline
1333ev_periodic_start (EV_P_ struct ev_periodic *w) 1773ev_periodic_start (EV_P_ ev_periodic *w)
1334{ 1774{
1335 if (ev_is_active (w)) 1775 if (expect_false (ev_is_active (w)))
1336 return; 1776 return;
1337 1777
1338 if (w->reschedule_cb) 1778 if (w->reschedule_cb)
1339 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1340 else if (w->interval) 1780 else if (w->interval)
1341 { 1781 {
1342 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1343 /* this formula differs from the one in periodic_reify because we do not always round up */ 1783 /* this formula differs from the one in periodic_reify because we do not always round up */
1344 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 } 1785 }
1786 else
1787 ((WT)w)->at = w->offset;
1346 1788
1347 ev_start (EV_A_ (W)w, ++periodiccnt); 1789 ev_start (EV_A_ (W)w, ++periodiccnt);
1348 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1349 periodics [periodiccnt - 1] = w; 1791 periodics [periodiccnt - 1] = (WT)w;
1350 upheap ((WT *)periodics, periodiccnt - 1); 1792 upheap (periodics, periodiccnt - 1);
1351 1793
1352 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1353} 1795}
1354 1796
1355void 1797void noinline
1356ev_periodic_stop (EV_P_ struct ev_periodic *w) 1798ev_periodic_stop (EV_P_ ev_periodic *w)
1357{ 1799{
1358 ev_clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1359 if (!ev_is_active (w)) 1801 if (expect_false (!ev_is_active (w)))
1360 return; 1802 return;
1361 1803
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1363 1805
1364 if (((W)w)->active < periodiccnt--) 1806 {
1807 int active = ((W)w)->active;
1808
1809 if (expect_true (--active < --periodiccnt))
1365 { 1810 {
1366 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1811 periodics [active] = periodics [periodiccnt];
1367 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1812 adjustheap (periodics, periodiccnt, active);
1368 } 1813 }
1814 }
1369 1815
1370 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1371} 1817}
1372 1818
1373void 1819void noinline
1374ev_periodic_again (EV_P_ struct ev_periodic *w) 1820ev_periodic_again (EV_P_ ev_periodic *w)
1375{ 1821{
1822 /* TODO: use adjustheap and recalculation */
1376 ev_periodic_stop (EV_A_ w); 1823 ev_periodic_stop (EV_A_ w);
1377 ev_periodic_start (EV_A_ w); 1824 ev_periodic_start (EV_A_ w);
1378} 1825}
1379 1826#endif
1380void
1381ev_idle_start (EV_P_ struct ev_idle *w)
1382{
1383 if (ev_is_active (w))
1384 return;
1385
1386 ev_start (EV_A_ (W)w, ++idlecnt);
1387 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1388 idles [idlecnt - 1] = w;
1389}
1390
1391void
1392ev_idle_stop (EV_P_ struct ev_idle *w)
1393{
1394 ev_clear_pending (EV_A_ (W)w);
1395 if (ev_is_active (w))
1396 return;
1397
1398 idles [((W)w)->active - 1] = idles [--idlecnt];
1399 ev_stop (EV_A_ (W)w);
1400}
1401
1402void
1403ev_prepare_start (EV_P_ struct ev_prepare *w)
1404{
1405 if (ev_is_active (w))
1406 return;
1407
1408 ev_start (EV_A_ (W)w, ++preparecnt);
1409 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1410 prepares [preparecnt - 1] = w;
1411}
1412
1413void
1414ev_prepare_stop (EV_P_ struct ev_prepare *w)
1415{
1416 ev_clear_pending (EV_A_ (W)w);
1417 if (ev_is_active (w))
1418 return;
1419
1420 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1421 ev_stop (EV_A_ (W)w);
1422}
1423
1424void
1425ev_check_start (EV_P_ struct ev_check *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++checkcnt);
1431 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1432 checks [checkcnt - 1] = w;
1433}
1434
1435void
1436ev_check_stop (EV_P_ struct ev_check *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445 1827
1446#ifndef SA_RESTART 1828#ifndef SA_RESTART
1447# define SA_RESTART 0 1829# define SA_RESTART 0
1448#endif 1830#endif
1449 1831
1450void 1832void noinline
1451ev_signal_start (EV_P_ struct ev_signal *w) 1833ev_signal_start (EV_P_ ev_signal *w)
1452{ 1834{
1453#if EV_MULTIPLICITY 1835#if EV_MULTIPLICITY
1454 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1455#endif 1837#endif
1456 if (ev_is_active (w)) 1838 if (expect_false (ev_is_active (w)))
1457 return; 1839 return;
1458 1840
1459 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1460 1842
1843 {
1844#ifndef _WIN32
1845 sigset_t full, prev;
1846 sigfillset (&full);
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1851
1852#ifndef _WIN32
1853 sigprocmask (SIG_SETMASK, &prev, 0);
1854#endif
1855 }
1856
1461 ev_start (EV_A_ (W)w, 1); 1857 ev_start (EV_A_ (W)w, 1);
1462 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1463 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1858 wlist_add (&signals [w->signum - 1].head, (WL)w);
1464 1859
1465 if (!((WL)w)->next) 1860 if (!((WL)w)->next)
1466 { 1861 {
1467#if WIN32 1862#if _WIN32
1468 signal (w->signum, sighandler); 1863 signal (w->signum, sighandler);
1469#else 1864#else
1470 struct sigaction sa; 1865 struct sigaction sa;
1471 sa.sa_handler = sighandler; 1866 sa.sa_handler = sighandler;
1472 sigfillset (&sa.sa_mask); 1867 sigfillset (&sa.sa_mask);
1474 sigaction (w->signum, &sa, 0); 1869 sigaction (w->signum, &sa, 0);
1475#endif 1870#endif
1476 } 1871 }
1477} 1872}
1478 1873
1479void 1874void noinline
1480ev_signal_stop (EV_P_ struct ev_signal *w) 1875ev_signal_stop (EV_P_ ev_signal *w)
1481{ 1876{
1482 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w)) 1878 if (expect_false (!ev_is_active (w)))
1484 return; 1879 return;
1485 1880
1486 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1487 ev_stop (EV_A_ (W)w); 1882 ev_stop (EV_A_ (W)w);
1488 1883
1489 if (!signals [w->signum - 1].head) 1884 if (!signals [w->signum - 1].head)
1490 signal (w->signum, SIG_DFL); 1885 signal (w->signum, SIG_DFL);
1491} 1886}
1492 1887
1493void 1888void
1494ev_child_start (EV_P_ struct ev_child *w) 1889ev_child_start (EV_P_ ev_child *w)
1495{ 1890{
1496#if EV_MULTIPLICITY 1891#if EV_MULTIPLICITY
1497 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1498#endif 1893#endif
1499 if (ev_is_active (w)) 1894 if (expect_false (ev_is_active (w)))
1500 return; 1895 return;
1501 1896
1502 ev_start (EV_A_ (W)w, 1); 1897 ev_start (EV_A_ (W)w, 1);
1503 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1504} 1899}
1505 1900
1506void 1901void
1507ev_child_stop (EV_P_ struct ev_child *w) 1902ev_child_stop (EV_P_ ev_child *w)
1508{ 1903{
1509 ev_clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1510 if (ev_is_active (w)) 1905 if (expect_false (!ev_is_active (w)))
1511 return; 1906 return;
1512 1907
1513 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1514 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1515} 1910}
1516 1911
1912#if EV_STAT_ENABLE
1913
1914# ifdef _WIN32
1915# undef lstat
1916# define lstat(a,b) _stati64 (a,b)
1917# endif
1918
1919#define DEF_STAT_INTERVAL 5.0074891
1920#define MIN_STAT_INTERVAL 0.1074891
1921
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923
1924#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192
1926
1927static void noinline
1928infy_add (EV_P_ ev_stat *w)
1929{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1931
1932 if (w->wd < 0)
1933 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935
1936 /* monitor some parent directory for speedup hints */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 {
1939 char path [4096];
1940 strcpy (path, w->path);
1941
1942 do
1943 {
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946
1947 char *pend = strrchr (path, '/');
1948
1949 if (!pend)
1950 break; /* whoops, no '/', complain to your admin */
1951
1952 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 }
1957 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960
1961 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1963}
1964
1965static void noinline
1966infy_del (EV_P_ ev_stat *w)
1967{
1968 int slot;
1969 int wd = w->wd;
1970
1971 if (wd < 0)
1972 return;
1973
1974 w->wd = -2;
1975 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1976 wlist_del (&fs_hash [slot].head, (WL)w);
1977
1978 /* remove this watcher, if others are watching it, they will rearm */
1979 inotify_rm_watch (fs_fd, wd);
1980}
1981
1982static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{
1985 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1988 infy_wd (EV_A_ slot, wd, ev);
1989 else
1990 {
1991 WL w_;
1992
1993 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1994 {
1995 ev_stat *w = (ev_stat *)w_;
1996 w_ = w_->next; /* lets us remove this watcher and all before it */
1997
1998 if (w->wd == wd || wd == -1)
1999 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 {
2002 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */
2004 }
2005
2006 stat_timer_cb (EV_A_ &w->timer, 0);
2007 }
2008 }
2009 }
2010}
2011
2012static void
2013infy_cb (EV_P_ ev_io *w, int revents)
2014{
2015 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf));
2019
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2022}
2023
2024void inline_size
2025infy_init (EV_P)
2026{
2027 if (fs_fd != -2)
2028 return;
2029
2030 fs_fd = inotify_init ();
2031
2032 if (fs_fd >= 0)
2033 {
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w);
2037 }
2038}
2039
2040void inline_size
2041infy_fork (EV_P)
2042{
2043 int slot;
2044
2045 if (fs_fd < 0)
2046 return;
2047
2048 close (fs_fd);
2049 fs_fd = inotify_init ();
2050
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2052 {
2053 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0;
2055
2056 while (w_)
2057 {
2058 ev_stat *w = (ev_stat *)w_;
2059 w_ = w_->next; /* lets us add this watcher */
2060
2061 w->wd = -1;
2062
2063 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else
2066 ev_timer_start (EV_A_ &w->timer);
2067 }
2068
2069 }
2070}
2071
2072#endif
2073
2074void
2075ev_stat_stat (EV_P_ ev_stat *w)
2076{
2077 if (lstat (w->path, &w->attr) < 0)
2078 w->attr.st_nlink = 0;
2079 else if (!w->attr.st_nlink)
2080 w->attr.st_nlink = 1;
2081}
2082
2083static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087
2088 /* we copy this here each the time so that */
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w);
2092
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if (
2095 w->prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime
2106 ) {
2107 #if EV_USE_INOTIFY
2108 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */
2111 #endif
2112
2113 ev_feed_event (EV_A_ w, EV_STAT);
2114 }
2115}
2116
2117void
2118ev_stat_start (EV_P_ ev_stat *w)
2119{
2120 if (expect_false (ev_is_active (w)))
2121 return;
2122
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w);
2128
2129 if (w->interval < MIN_STAT_INTERVAL)
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2133 ev_set_priority (&w->timer, ev_priority (w));
2134
2135#if EV_USE_INOTIFY
2136 infy_init (EV_A);
2137
2138 if (fs_fd >= 0)
2139 infy_add (EV_A_ w);
2140 else
2141#endif
2142 ev_timer_start (EV_A_ &w->timer);
2143
2144 ev_start (EV_A_ (W)w, 1);
2145}
2146
2147void
2148ev_stat_stop (EV_P_ ev_stat *w)
2149{
2150 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w)))
2152 return;
2153
2154#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w);
2156#endif
2157 ev_timer_stop (EV_A_ &w->timer);
2158
2159 ev_stop (EV_A_ (W)w);
2160}
2161#endif
2162
2163#if EV_IDLE_ENABLE
2164void
2165ev_idle_start (EV_P_ ev_idle *w)
2166{
2167 if (expect_false (ev_is_active (w)))
2168 return;
2169
2170 pri_adjust (EV_A_ (W)w);
2171
2172 {
2173 int active = ++idlecnt [ABSPRI (w)];
2174
2175 ++idleall;
2176 ev_start (EV_A_ (W)w, active);
2177
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w;
2180 }
2181}
2182
2183void
2184ev_idle_stop (EV_P_ ev_idle *w)
2185{
2186 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w)))
2188 return;
2189
2190 {
2191 int active = ((W)w)->active;
2192
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2195
2196 ev_stop (EV_A_ (W)w);
2197 --idleall;
2198 }
2199}
2200#endif
2201
2202void
2203ev_prepare_start (EV_P_ ev_prepare *w)
2204{
2205 if (expect_false (ev_is_active (w)))
2206 return;
2207
2208 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w;
2211}
2212
2213void
2214ev_prepare_stop (EV_P_ ev_prepare *w)
2215{
2216 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w)))
2218 return;
2219
2220 {
2221 int active = ((W)w)->active;
2222 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active;
2224 }
2225
2226 ev_stop (EV_A_ (W)w);
2227}
2228
2229void
2230ev_check_start (EV_P_ ev_check *w)
2231{
2232 if (expect_false (ev_is_active (w)))
2233 return;
2234
2235 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w;
2238}
2239
2240void
2241ev_check_stop (EV_P_ ev_check *w)
2242{
2243 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w)))
2245 return;
2246
2247 {
2248 int active = ((W)w)->active;
2249 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active;
2251 }
2252
2253 ev_stop (EV_A_ (W)w);
2254}
2255
2256#if EV_EMBED_ENABLE
2257void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w)
2259{
2260 ev_loop (w->other, EVLOOP_NONBLOCK);
2261}
2262
2263static void
2264embed_io_cb (EV_P_ ev_io *io, int revents)
2265{
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267
2268 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else
2271 ev_loop (w->other, EVLOOP_NONBLOCK);
2272}
2273
2274static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278
2279 {
2280 struct ev_loop *loop = w->other;
2281
2282 while (fdchangecnt)
2283 {
2284 fd_reify (EV_A);
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2286 }
2287 }
2288}
2289
2290#if 0
2291static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2293{
2294 ev_idle_stop (EV_A_ idle);
2295}
2296#endif
2297
2298void
2299ev_embed_start (EV_P_ ev_embed *w)
2300{
2301 if (expect_false (ev_is_active (w)))
2302 return;
2303
2304 {
2305 struct ev_loop *loop = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 }
2309
2310 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io);
2312
2313 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare);
2316
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318
2319 ev_start (EV_A_ (W)w, 1);
2320}
2321
2322void
2323ev_embed_stop (EV_P_ ev_embed *w)
2324{
2325 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w)))
2327 return;
2328
2329 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare);
2331
2332 ev_stop (EV_A_ (W)w);
2333}
2334#endif
2335
2336#if EV_FORK_ENABLE
2337void
2338ev_fork_start (EV_P_ ev_fork *w)
2339{
2340 if (expect_false (ev_is_active (w)))
2341 return;
2342
2343 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w;
2346}
2347
2348void
2349ev_fork_stop (EV_P_ ev_fork *w)
2350{
2351 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w)))
2353 return;
2354
2355 {
2356 int active = ((W)w)->active;
2357 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active;
2359 }
2360
2361 ev_stop (EV_A_ (W)w);
2362}
2363#endif
2364
1517/*****************************************************************************/ 2365/*****************************************************************************/
1518 2366
1519struct ev_once 2367struct ev_once
1520{ 2368{
1521 struct ev_io io; 2369 ev_io io;
1522 struct ev_timer to; 2370 ev_timer to;
1523 void (*cb)(int revents, void *arg); 2371 void (*cb)(int revents, void *arg);
1524 void *arg; 2372 void *arg;
1525}; 2373};
1526 2374
1527static void 2375static void
1536 2384
1537 cb (revents, arg); 2385 cb (revents, arg);
1538} 2386}
1539 2387
1540static void 2388static void
1541once_cb_io (EV_P_ struct ev_io *w, int revents) 2389once_cb_io (EV_P_ ev_io *w, int revents)
1542{ 2390{
1543 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2391 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1544} 2392}
1545 2393
1546static void 2394static void
1547once_cb_to (EV_P_ struct ev_timer *w, int revents) 2395once_cb_to (EV_P_ ev_timer *w, int revents)
1548{ 2396{
1549 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1550} 2398}
1551 2399
1552void 2400void
1553ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2401ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1554{ 2402{
1555 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2403 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1556 2404
1557 if (!once) 2405 if (expect_false (!once))
2406 {
1558 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2407 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1559 else 2408 return;
1560 { 2409 }
2410
1561 once->cb = cb; 2411 once->cb = cb;
1562 once->arg = arg; 2412 once->arg = arg;
1563 2413
1564 ev_watcher_init (&once->io, once_cb_io); 2414 ev_init (&once->io, once_cb_io);
1565 if (fd >= 0) 2415 if (fd >= 0)
1566 { 2416 {
1567 ev_io_set (&once->io, fd, events); 2417 ev_io_set (&once->io, fd, events);
1568 ev_io_start (EV_A_ &once->io); 2418 ev_io_start (EV_A_ &once->io);
1569 } 2419 }
1570 2420
1571 ev_watcher_init (&once->to, once_cb_to); 2421 ev_init (&once->to, once_cb_to);
1572 if (timeout >= 0.) 2422 if (timeout >= 0.)
1573 { 2423 {
1574 ev_timer_set (&once->to, timeout, 0.); 2424 ev_timer_set (&once->to, timeout, 0.);
1575 ev_timer_start (EV_A_ &once->to); 2425 ev_timer_start (EV_A_ &once->to);
1576 }
1577 } 2426 }
1578} 2427}
1579 2428
2429#if EV_MULTIPLICITY
2430 #include "ev_wrap.h"
2431#endif
2432
2433#ifdef __cplusplus
2434}
2435#endif
2436

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines