ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
47# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
49# endif 53# endif
50# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
52# endif 64# endif
53# endif 65# endif
54 66
55# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 102# else
91# define EV_USE_PORT 0 103# define EV_USE_PORT 0
92# endif 104# endif
93# endif 105# endif
94 106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
113# endif
114
95#endif 115#endif
96 116
97#include <math.h> 117#include <math.h>
98#include <stdlib.h> 118#include <stdlib.h>
99#include <fcntl.h> 119#include <fcntl.h>
106#include <sys/types.h> 126#include <sys/types.h>
107#include <time.h> 127#include <time.h>
108 128
109#include <signal.h> 129#include <signal.h>
110 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
111#ifndef _WIN32 137#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 138# include <sys/time.h>
114# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
115#else 141#else
116# define WIN32_LEAN_AND_MEAN 142# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 143# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 144# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 145# define EV_SELECT_IS_WINSOCKET 1
128 154
129#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
131#endif 157#endif
132 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
133#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
135#endif 165#endif
136 166
137#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
152 182
153#ifndef EV_USE_PORT 183#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 184# define EV_USE_PORT 0
155#endif 185#endif
156 186
187#ifndef EV_USE_INOTIFY
188# define EV_USE_INOTIFY 0
189#endif
190
191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
194# else
195# define EV_PID_HASHSIZE 16
196# endif
197#endif
198
199#ifndef EV_INOTIFY_HASHSIZE
200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
205#endif
206
157/**/ 207/**/
158 208
159#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 210# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 211# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
167#endif 217#endif
168 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
169#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 235# include <winsock.h>
171#endif 236#endif
172 237
173/**/ 238/**/
174 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 253
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 254#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 256# define noinline __attribute__ ((noinline))
189#else 257#else
190# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
191# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
192#endif 263#endif
193 264
194#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
196 274
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 277
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
202 280
203typedef struct ev_watcher *W; 281typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
206 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 288
209#ifdef _WIN32 289#ifdef _WIN32
210# include "ev_win32.c" 290# include "ev_win32.c"
211#endif 291#endif
212 292
213/*****************************************************************************/ 293/*****************************************************************************/
214 294
215static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
216 296
297void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 299{
219 syserr_cb = cb; 300 syserr_cb = cb;
220} 301}
221 302
222static void 303static void noinline
223syserr (const char *msg) 304syserr (const char *msg)
224{ 305{
225 if (!msg) 306 if (!msg)
226 msg = "(libev) system error"; 307 msg = "(libev) system error";
227 308
234 } 315 }
235} 316}
236 317
237static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
238 319
320void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 322{
241 alloc = cb; 323 alloc = cb;
242} 324}
243 325
244static void * 326inline_speed void *
245ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
246{ 328{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 330
249 if (!ptr && size) 331 if (!ptr && size)
273typedef struct 355typedef struct
274{ 356{
275 W w; 357 W w;
276 int events; 358 int events;
277} ANPENDING; 359} ANPENDING;
360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
278 367
279#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
280 369
281 struct ev_loop 370 struct ev_loop
282 { 371 {
316 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 407#endif
319} 408}
320 409
321inline ev_tstamp 410ev_tstamp inline_size
322get_clock (void) 411get_clock (void)
323{ 412{
324#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
326 { 415 {
339{ 428{
340 return ev_rt_now; 429 return ev_rt_now;
341} 430}
342#endif 431#endif
343 432
344#define array_roundsize(type,n) (((n) | 4) & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
345 487
346#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
348 { \ 490 { \
349 int newcnt = cur; \ 491 int ocur_ = (cur); \
350 do \ 492 (base) = (type *)array_realloc \
351 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 495 }
360 496
497#if 0
361#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 500 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 504 }
505#endif
368 506
369#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 509
372/*****************************************************************************/ 510/*****************************************************************************/
373 511
374static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
375anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
376{ 542{
377 while (count--) 543 while (count--)
378 { 544 {
379 base->head = 0; 545 base->head = 0;
382 548
383 ++base; 549 ++base;
384 } 550 }
385} 551}
386 552
387void 553void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 554fd_event (EV_P_ int fd, int revents)
415{ 555{
416 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 557 ev_io *w;
418 558
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 560 {
421 int ev = w->events & revents; 561 int ev = w->events & revents;
422 562
423 if (ev) 563 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
426} 566}
427 567
428void 568void
429ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 570{
571 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
432} 573}
433 574
434/*****************************************************************************/ 575void inline_size
435
436inline void
437fd_reify (EV_P) 576fd_reify (EV_P)
438{ 577{
439 int i; 578 int i;
440 579
441 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
442 { 581 {
443 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 584 ev_io *w;
446 585
447 int events = 0; 586 unsigned char events = 0;
448 587
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 589 events |= (unsigned char)w->events;
451 590
452#if EV_SELECT_IS_WINSOCKET 591#if EV_SELECT_IS_WINSOCKET
453 if (events) 592 if (events)
454 { 593 {
455 unsigned long argp; 594 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 595 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 597 }
459#endif 598#endif
460 599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
461 anfd->reify = 0; 604 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
465 } 610 }
466 611
467 fdchangecnt = 0; 612 fdchangecnt = 0;
468} 613}
469 614
470static void 615void inline_size
471fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
472{ 617{
473 if (expect_false (anfds [fd].reify)) 618 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
477 620
621 if (expect_true (!reify))
622 {
478 ++fdchangecnt; 623 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
481} 627}
482 628
483static void 629void inline_speed
484fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
485{ 631{
486 struct ev_io *w; 632 ev_io *w;
487 633
488 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
489 { 635 {
490 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 638 }
493} 639}
494 640
495inline int 641int inline_size
496fd_valid (int fd) 642fd_valid (int fd)
497{ 643{
498#ifdef _WIN32 644#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 645 return _get_osfhandle (fd) != -1;
500#else 646#else
501 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
502#endif 648#endif
503} 649}
504 650
505/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
506static void 652static void noinline
507fd_ebadf (EV_P) 653fd_ebadf (EV_P)
508{ 654{
509 int fd; 655 int fd;
510 656
511 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
515} 661}
516 662
517/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 664static void noinline
519fd_enomem (EV_P) 665fd_enomem (EV_P)
520{ 666{
521 int fd; 667 int fd;
522 668
523 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 672 fd_kill (EV_A_ fd);
527 return; 673 return;
528 } 674 }
529} 675}
530 676
531/* usually called after fork if method needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 678static void noinline
533fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
534{ 680{
535 int fd; 681 int fd;
536 682
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 684 if (anfds [fd].events)
540 { 685 {
541 anfds [fd].events = 0; 686 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 688 }
544} 689}
545 690
546/*****************************************************************************/ 691/*****************************************************************************/
547 692
548static void 693void inline_speed
549upheap (WT *heap, int k) 694upheap (WT *heap, int k)
550{ 695{
551 WT w = heap [k]; 696 WT w = heap [k];
552 697
553 while (k && heap [k >> 1]->at > w->at) 698 while (k)
554 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
555 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
557 k >>= 1; 707 k = p;
558 } 708 }
559 709
560 heap [k] = w; 710 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
562
563} 712}
564 713
565static void 714void inline_speed
566downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
567{ 716{
568 WT w = heap [k]; 717 WT w = heap [k];
569 718
570 while (k < (N >> 1)) 719 for (;;)
571 { 720 {
572 int j = k << 1; 721 int c = (k << 1) + 1;
573 722
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 724 break;
579 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
580 heap [k] = heap [j]; 732 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
582 k = j; 735 k = c;
583 } 736 }
584 737
585 heap [k] = w; 738 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
587} 740}
588 741
589inline void 742void inline_size
590adjustheap (WT *heap, int N, int k) 743adjustheap (WT *heap, int N, int k)
591{ 744{
592 upheap (heap, k); 745 upheap (heap, k);
593 downheap (heap, N, k); 746 downheap (heap, N, k);
594} 747}
604static ANSIG *signals; 757static ANSIG *signals;
605static int signalmax; 758static int signalmax;
606 759
607static int sigpipe [2]; 760static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 762static ev_io sigev;
610 763
611static void 764void inline_size
612signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
613{ 766{
614 while (count--) 767 while (count--)
615 { 768 {
616 base->head = 0; 769 base->head = 0;
636 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 790 errno = old_errno;
638 } 791 }
639} 792}
640 793
641void 794void noinline
642ev_feed_signal_event (EV_P_ int signum) 795ev_feed_signal_event (EV_P_ int signum)
643{ 796{
644 WL w; 797 WL w;
645 798
646#if EV_MULTIPLICITY 799#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 810 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 812}
660 813
661static void 814static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
663{ 816{
664 int signum; 817 int signum;
665 818
666 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 820 gotsig = 0;
669 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
672} 825}
673 826
674static void 827void inline_speed
675fd_intern (int fd) 828fd_intern (int fd)
676{ 829{
677#ifdef _WIN32 830#ifdef _WIN32
678 int arg = 1; 831 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 834 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 835 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 836#endif
684} 837}
685 838
686static void 839static void noinline
687siginit (EV_P) 840siginit (EV_P)
688{ 841{
689 fd_intern (sigpipe [0]); 842 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 843 fd_intern (sigpipe [1]);
691 844
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 848}
696 849
697/*****************************************************************************/ 850/*****************************************************************************/
698 851
699static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
700 853
701#ifndef _WIN32 854#ifndef _WIN32
702 855
703static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
704 872
705#ifndef WCONTINUED 873#ifndef WCONTINUED
706# define WCONTINUED 0 874# define WCONTINUED 0
707#endif 875#endif
708 876
709static void 877static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
726{ 879{
727 int pid, status; 880 int pid, status;
728 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
731 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 892
734 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 896}
738 897
739#endif 898#endif
740 899
741/*****************************************************************************/ 900/*****************************************************************************/
767{ 926{
768 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
769} 928}
770 929
771/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
772static int 931int inline_size
773enable_secure (void) 932enable_secure (void)
774{ 933{
775#ifdef _WIN32 934#ifdef _WIN32
776 return 0; 935 return 0;
777#else 936#else
781} 940}
782 941
783unsigned int 942unsigned int
784ev_supported_backends (void) 943ev_supported_backends (void)
785{ 944{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 945 unsigned int flags = 0;
792 946
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 949 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 950 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 952
799 return flags; 953 return flags;
800} 954}
801 955
802unsigned int 956unsigned int
803ev_backend (EV_P) 957ev_recommended_backends (void)
804{ 958{
805 unsigned int flags = ev_recommended_backends (); 959 unsigned int flags = ev_supported_backends ();
806 960
807#ifndef __NetBSD__ 961#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 962 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 963 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 964 flags &= ~EVBACKEND_KQUEUE;
815#endif 969#endif
816 970
817 return flags; 971 return flags;
818} 972}
819 973
820static void 974unsigned int
975ev_embeddable_backends (void)
976{
977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
978
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags;
989}
990
991unsigned int
992ev_backend (EV_P)
993{
994 return backend;
995}
996
997unsigned int
998ev_loop_count (EV_P)
999{
1000 return loop_count;
1001}
1002
1003void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1005{
1006 io_blocktime = interval;
1007}
1008
1009void
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{
1012 timeout_blocktime = interval;
1013}
1014
1015static void noinline
821loop_init (EV_P_ unsigned int flags) 1016loop_init (EV_P_ unsigned int flags)
822{ 1017{
823 if (!method) 1018 if (!backend)
824 { 1019 {
825#if EV_USE_MONOTONIC 1020#if EV_USE_MONOTONIC
826 { 1021 {
827 struct timespec ts; 1022 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
833 ev_rt_now = ev_time (); 1028 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 1029 mn_now = get_clock ();
835 now_floor = mn_now; 1030 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 1031 rtmn_diff = ev_rt_now - mn_now;
837 1032
1033 io_blocktime = 0.;
1034 timeout_blocktime = 0.;
1035
1036 /* pid check not overridable via env */
1037#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid ();
1040#endif
1041
838 if (!(flags & EVFLAG_NOENV) 1042 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1043 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1044 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1045 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1046
843 if (!(flags & 0x0000ffffUL)) 1047 if (!(flags & 0x0000ffffUL))
844 flags |= ev_recommended_backends (); 1048 flags |= ev_recommended_backends ();
845 1049
846 method = 0; 1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY
1053 fs_fd = -2;
1054#endif
1055
847#if EV_USE_PORT 1056#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1058#endif
850#if EV_USE_KQUEUE 1059#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1060 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1061#endif
853#if EV_USE_EPOLL 1062#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1063 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1064#endif
856#if EV_USE_POLL 1065#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1066 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1067#endif
859#if EV_USE_SELECT 1068#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1070#endif
862 1071
863 ev_init (&sigev, sigcb); 1072 ev_init (&sigev, sigcb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1073 ev_set_priority (&sigev, EV_MAXPRI);
865 } 1074 }
866} 1075}
867 1076
868static void 1077static void noinline
869loop_destroy (EV_P) 1078loop_destroy (EV_P)
870{ 1079{
871 int i; 1080 int i;
872 1081
1082#if EV_USE_INOTIFY
1083 if (fs_fd >= 0)
1084 close (fs_fd);
1085#endif
1086
1087 if (backend_fd >= 0)
1088 close (backend_fd);
1089
873#if EV_USE_PORT 1090#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1091 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1092#endif
876#if EV_USE_KQUEUE 1093#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1094 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1095#endif
879#if EV_USE_EPOLL 1096#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1097 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1098#endif
882#if EV_USE_POLL 1099#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1100 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1101#endif
885#if EV_USE_SELECT 1102#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1103 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1104#endif
888 1105
889 for (i = NUMPRI; i--; ) 1106 for (i = NUMPRI; i--; )
1107 {
890 array_free (pending, [i]); 1108 array_free (pending, [i]);
1109#if EV_IDLE_ENABLE
1110 array_free (idle, [i]);
1111#endif
1112 }
1113
1114 ev_free (anfds); anfdmax = 0;
891 1115
892 /* have to use the microsoft-never-gets-it-right macro */ 1116 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 1117 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1118 array_free (timer, EMPTY);
895#if EV_PERIODICS 1119#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1120 array_free (periodic, EMPTY);
897#endif 1121#endif
1122#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1123 array_free (fork, EMPTY);
1124#endif
899 array_free (prepare, EMPTY0); 1125 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1126 array_free (check, EMPTY);
901 1127
902 method = 0; 1128 backend = 0;
903} 1129}
904 1130
905static void 1131void inline_size infy_fork (EV_P);
1132
1133void inline_size
906loop_fork (EV_P) 1134loop_fork (EV_P)
907{ 1135{
908#if EV_USE_PORT 1136#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1138#endif
911#if EV_USE_KQUEUE 1139#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1140 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1141#endif
914#if EV_USE_EPOLL 1142#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1143 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1144#endif
1145#if EV_USE_INOTIFY
1146 infy_fork (EV_A);
916#endif 1147#endif
917 1148
918 if (ev_is_active (&sigev)) 1149 if (ev_is_active (&sigev))
919 { 1150 {
920 /* default loop */ 1151 /* default loop */
941 1172
942 memset (loop, 0, sizeof (struct ev_loop)); 1173 memset (loop, 0, sizeof (struct ev_loop));
943 1174
944 loop_init (EV_A_ flags); 1175 loop_init (EV_A_ flags);
945 1176
946 if (ev_method (EV_A)) 1177 if (ev_backend (EV_A))
947 return loop; 1178 return loop;
948 1179
949 return 0; 1180 return 0;
950} 1181}
951 1182
984 ev_default_loop_ptr = 1; 1215 ev_default_loop_ptr = 1;
985#endif 1216#endif
986 1217
987 loop_init (EV_A_ flags); 1218 loop_init (EV_A_ flags);
988 1219
989 if (ev_method (EV_A)) 1220 if (ev_backend (EV_A))
990 { 1221 {
991 siginit (EV_A); 1222 siginit (EV_A);
992 1223
993#ifndef _WIN32 1224#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1225 ev_signal_init (&childev, childcb, SIGCHLD);
1030{ 1261{
1031#if EV_MULTIPLICITY 1262#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1263 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1264#endif
1034 1265
1035 if (method) 1266 if (backend)
1036 postfork = 1; 1267 postfork = 1;
1037} 1268}
1038 1269
1039/*****************************************************************************/ 1270/*****************************************************************************/
1040 1271
1041static int 1272void
1042any_pending (EV_P) 1273ev_invoke (EV_P_ void *w, int revents)
1043{ 1274{
1044 int pri; 1275 EV_CB_INVOKE ((W)w, revents);
1045
1046 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri])
1048 return 1;
1049
1050 return 0;
1051} 1276}
1052 1277
1053inline void 1278void inline_speed
1054call_pending (EV_P) 1279call_pending (EV_P)
1055{ 1280{
1056 int pri; 1281 int pri;
1057 1282
1058 for (pri = NUMPRI; pri--; ) 1283 for (pri = NUMPRI; pri--; )
1060 { 1285 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1287
1063 if (expect_true (p->w)) 1288 if (expect_true (p->w))
1064 { 1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1291
1065 p->w->pending = 0; 1292 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1293 EV_CB_INVOKE (p->w, p->events);
1067 } 1294 }
1068 } 1295 }
1069} 1296}
1070 1297
1071inline void 1298void inline_size
1072timers_reify (EV_P) 1299timers_reify (EV_P)
1073{ 1300{
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1075 { 1302 {
1076 struct ev_timer *w = timers [0]; 1303 ev_timer *w = (ev_timer *)timers [0];
1077 1304
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1079 1306
1080 /* first reschedule or stop timer */ 1307 /* first reschedule or stop timer */
1081 if (w->repeat) 1308 if (w->repeat)
1082 { 1309 {
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 1311
1085 ((WT)w)->at += w->repeat; 1312 ((WT)w)->at += w->repeat;
1086 if (((WT)w)->at < mn_now) 1313 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now; 1314 ((WT)w)->at = mn_now;
1088 1315
1089 downheap ((WT *)timers, timercnt, 0); 1316 downheap (timers, timercnt, 0);
1090 } 1317 }
1091 else 1318 else
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 1320
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1322 }
1096} 1323}
1097 1324
1098#if EV_PERIODICS 1325#if EV_PERIODIC_ENABLE
1099inline void 1326void inline_size
1100periodics_reify (EV_P) 1327periodics_reify (EV_P)
1101{ 1328{
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1103 { 1330 {
1104 struct ev_periodic *w = periodics [0]; 1331 ev_periodic *w = (ev_periodic *)periodics [0];
1105 1332
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1334
1108 /* first reschedule or stop timer */ 1335 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1336 if (w->reschedule_cb)
1110 { 1337 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1113 downheap ((WT *)periodics, periodiccnt, 0); 1340 downheap (periodics, periodiccnt, 0);
1114 } 1341 }
1115 else if (w->interval) 1342 else if (w->interval)
1116 { 1343 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0); 1347 downheap (periodics, periodiccnt, 0);
1120 } 1348 }
1121 else 1349 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 1351
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1353 }
1126} 1354}
1127 1355
1128static void 1356static void noinline
1129periodics_reschedule (EV_P) 1357periodics_reschedule (EV_P)
1130{ 1358{
1131 int i; 1359 int i;
1132 1360
1133 /* adjust periodics after time jump */ 1361 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1362 for (i = 0; i < periodiccnt; ++i)
1135 { 1363 {
1136 struct ev_periodic *w = periodics [i]; 1364 ev_periodic *w = (ev_periodic *)periodics [i];
1137 1365
1138 if (w->reschedule_cb) 1366 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1368 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1142 } 1370 }
1143 1371
1144 /* now rebuild the heap */ 1372 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; ) 1373 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i); 1374 downheap (periodics, periodiccnt, i);
1147} 1375}
1148#endif 1376#endif
1149 1377
1150inline int 1378#if EV_IDLE_ENABLE
1151time_update_monotonic (EV_P) 1379void inline_size
1380idle_reify (EV_P)
1152{ 1381{
1382 if (expect_false (idleall))
1383 {
1384 int pri;
1385
1386 for (pri = NUMPRI; pri--; )
1387 {
1388 if (pendingcnt [pri])
1389 break;
1390
1391 if (idlecnt [pri])
1392 {
1393 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1394 break;
1395 }
1396 }
1397 }
1398}
1399#endif
1400
1401void inline_speed
1402time_update (EV_P_ ev_tstamp max_block)
1403{
1404 int i;
1405
1406#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic))
1408 {
1409 ev_tstamp odiff = rtmn_diff;
1410
1153 mn_now = get_clock (); 1411 mn_now = get_clock ();
1154 1412
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1414 /* interpolate in the meantime */
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1415 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 { 1416 {
1157 ev_rt_now = rtmn_diff + mn_now; 1417 ev_rt_now = rtmn_diff + mn_now;
1158 return 0; 1418 return;
1159 } 1419 }
1160 else 1420
1161 {
1162 now_floor = mn_now; 1421 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 1422 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 1423
1168inline void 1424 /* loop a few times, before making important decisions.
1169time_update (EV_P) 1425 * on the choice of "4": one iteration isn't enough,
1170{ 1426 * in case we get preempted during the calls to
1171 int i; 1427 * ev_time and get_clock. a second call is almost guaranteed
1172 1428 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 1429 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 1430 * in the unlikely event of having been preempted here.
1175 { 1431 */
1176 if (time_update_monotonic (EV_A)) 1432 for (i = 4; --i; )
1177 { 1433 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 1434 rtmn_diff = ev_rt_now - mn_now;
1183 1435
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1185 return; /* all is well */ 1437 return; /* all is well */
1186 1438
1187 ev_rt_now = ev_time (); 1439 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 1440 mn_now = get_clock ();
1189 now_floor = mn_now; 1441 now_floor = mn_now;
1190 } 1442 }
1191 1443
1192# if EV_PERIODICS 1444# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A);
1446# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 }
1450 else
1451#endif
1452 {
1453 ev_rt_now = ev_time ();
1454
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 {
1457#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 1458 periodics_reschedule (EV_A);
1194# endif 1459#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */ 1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1211 for (i = 0; i < timercnt; ++i) 1461 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now; 1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 } 1463 }
1214 1464
1215 mn_now = ev_rt_now; 1465 mn_now = ev_rt_now;
1231static int loop_done; 1481static int loop_done;
1232 1482
1233void 1483void
1234ev_loop (EV_P_ int flags) 1484ev_loop (EV_P_ int flags)
1235{ 1485{
1236 double block;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1487 ? EVUNLOOP_ONE
1488 : EVUNLOOP_CANCEL;
1238 1489
1239 while (activecnt) 1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1491
1492 do
1240 { 1493 {
1494#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid))
1497 {
1498 curpid = getpid ();
1499 postfork = 1;
1500 }
1501#endif
1502
1503#if EV_FORK_ENABLE
1504 /* we might have forked, so queue fork handlers */
1505 if (expect_false (postfork))
1506 if (forkcnt)
1507 {
1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1509 call_pending (EV_A);
1510 }
1511#endif
1512
1241 /* queue check watchers (and execute them) */ 1513 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1514 if (expect_false (preparecnt))
1243 { 1515 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 1517 call_pending (EV_A);
1246 } 1518 }
1247 1519
1520 if (expect_false (!activecnt))
1521 break;
1522
1248 /* we might have forked, so reify kernel state if necessary */ 1523 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 1524 if (expect_false (postfork))
1250 loop_fork (EV_A); 1525 loop_fork (EV_A);
1251 1526
1252 /* update fd-related kernel structures */ 1527 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1528 fd_reify (EV_A);
1254 1529
1255 /* calculate blocking time */ 1530 /* calculate blocking time */
1531 {
1532 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.;
1256 1534
1257 /* we only need this for !monotonic clock or timers, but as we basically 1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 1536 {
1265 ev_rt_now = ev_time (); 1537 /* update time to cancel out callback processing overhead */
1266 mn_now = ev_rt_now; 1538 time_update (EV_A_ 1e100);
1267 }
1268 1539
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1540 waittime = MAX_BLOCKTIME;
1274 1541
1275 if (timercnt) 1542 if (timercnt)
1276 { 1543 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1278 if (block > to) block = to; 1545 if (waittime > to) waittime = to;
1279 } 1546 }
1280 1547
1281#if EV_PERIODICS 1548#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1549 if (periodiccnt)
1283 { 1550 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1552 if (waittime > to) waittime = to;
1286 } 1553 }
1287#endif 1554#endif
1288 1555
1289 if (expect_false (block < 0.)) block = 0.; 1556 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime;
1558
1559 sleeptime = waittime - backend_fudge;
1560
1561 if (expect_true (sleeptime > io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 {
1566 ev_sleep (sleeptime);
1567 waittime -= sleeptime;
1568 }
1290 } 1569 }
1291 1570
1292 method_poll (EV_A_ block); 1571 ++loop_count;
1572 backend_poll (EV_A_ waittime);
1293 1573
1294 /* update ev_rt_now, do magic */ 1574 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1575 time_update (EV_A_ waittime + sleeptime);
1576 }
1296 1577
1297 /* queue pending timers and reschedule them */ 1578 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1579 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1580#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1581 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1582#endif
1302 1583
1584#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 1585 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1586 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1587#endif
1306 1588
1307 /* queue check watchers, to be executed first */ 1589 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1590 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 1592
1311 call_pending (EV_A); 1593 call_pending (EV_A);
1312 1594
1313 if (expect_false (loop_done))
1314 break;
1315 } 1595 }
1596 while (expect_true (activecnt && !loop_done));
1316 1597
1317 if (loop_done != 2) 1598 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1599 loop_done = EVUNLOOP_CANCEL;
1319} 1600}
1320 1601
1321void 1602void
1322ev_unloop (EV_P_ int how) 1603ev_unloop (EV_P_ int how)
1323{ 1604{
1324 loop_done = how; 1605 loop_done = how;
1325} 1606}
1326 1607
1327/*****************************************************************************/ 1608/*****************************************************************************/
1328 1609
1329inline void 1610void inline_size
1330wlist_add (WL *head, WL elem) 1611wlist_add (WL *head, WL elem)
1331{ 1612{
1332 elem->next = *head; 1613 elem->next = *head;
1333 *head = elem; 1614 *head = elem;
1334} 1615}
1335 1616
1336inline void 1617void inline_size
1337wlist_del (WL *head, WL elem) 1618wlist_del (WL *head, WL elem)
1338{ 1619{
1339 while (*head) 1620 while (*head)
1340 { 1621 {
1341 if (*head == elem) 1622 if (*head == elem)
1346 1627
1347 head = &(*head)->next; 1628 head = &(*head)->next;
1348 } 1629 }
1349} 1630}
1350 1631
1351inline void 1632void inline_speed
1352ev_clear_pending (EV_P_ W w) 1633clear_pending (EV_P_ W w)
1353{ 1634{
1354 if (w->pending) 1635 if (w->pending)
1355 { 1636 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1637 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 1638 w->pending = 0;
1358 } 1639 }
1359} 1640}
1360 1641
1361inline void 1642int
1643ev_clear_pending (EV_P_ void *w)
1644{
1645 W w_ = (W)w;
1646 int pending = w_->pending;
1647
1648 if (expect_true (pending))
1649 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1651 w_->pending = 0;
1652 p->w = 0;
1653 return p->events;
1654 }
1655 else
1656 return 0;
1657}
1658
1659void inline_size
1660pri_adjust (EV_P_ W w)
1661{
1662 int pri = w->priority;
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri;
1666}
1667
1668void inline_speed
1362ev_start (EV_P_ W w, int active) 1669ev_start (EV_P_ W w, int active)
1363{ 1670{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1671 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 1672 w->active = active;
1368 ev_ref (EV_A); 1673 ev_ref (EV_A);
1369} 1674}
1370 1675
1371inline void 1676void inline_size
1372ev_stop (EV_P_ W w) 1677ev_stop (EV_P_ W w)
1373{ 1678{
1374 ev_unref (EV_A); 1679 ev_unref (EV_A);
1375 w->active = 0; 1680 w->active = 0;
1376} 1681}
1377 1682
1378/*****************************************************************************/ 1683/*****************************************************************************/
1379 1684
1380void 1685void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 1686ev_io_start (EV_P_ ev_io *w)
1382{ 1687{
1383 int fd = w->fd; 1688 int fd = w->fd;
1384 1689
1385 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1386 return; 1691 return;
1387 1692
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 1693 assert (("ev_io_start called with negative fd", fd >= 0));
1389 1694
1390 ev_start (EV_A_ (W)w, 1); 1695 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1697 wlist_add (&anfds[fd].head, (WL)w);
1393 1698
1394 fd_change (EV_A_ fd); 1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1700 w->events &= ~EV_IOFDSET;
1395} 1701}
1396 1702
1397void 1703void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 1704ev_io_stop (EV_P_ ev_io *w)
1399{ 1705{
1400 ev_clear_pending (EV_A_ (W)w); 1706 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 1707 if (expect_false (!ev_is_active (w)))
1402 return; 1708 return;
1403 1709
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 1711
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1712 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 1713 ev_stop (EV_A_ (W)w);
1408 1714
1409 fd_change (EV_A_ w->fd); 1715 fd_change (EV_A_ w->fd, 1);
1410} 1716}
1411 1717
1412void 1718void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 1719ev_timer_start (EV_P_ ev_timer *w)
1414{ 1720{
1415 if (expect_false (ev_is_active (w))) 1721 if (expect_false (ev_is_active (w)))
1416 return; 1722 return;
1417 1723
1418 ((WT)w)->at += mn_now; 1724 ((WT)w)->at += mn_now;
1419 1725
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 1727
1422 ev_start (EV_A_ (W)w, ++timercnt); 1728 ev_start (EV_A_ (W)w, ++timercnt);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1424 timers [timercnt - 1] = w; 1730 timers [timercnt - 1] = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 1731 upheap (timers, timercnt - 1);
1426 1732
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1428} 1734}
1429 1735
1430void 1736void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 1737ev_timer_stop (EV_P_ ev_timer *w)
1432{ 1738{
1433 ev_clear_pending (EV_A_ (W)w); 1739 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 1740 if (expect_false (!ev_is_active (w)))
1435 return; 1741 return;
1436 1742
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1438 1744
1745 {
1746 int active = ((W)w)->active;
1747
1439 if (expect_true (((W)w)->active < timercnt--)) 1748 if (expect_true (--active < --timercnt))
1440 { 1749 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 1750 timers [active] = timers [timercnt];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1751 adjustheap (timers, timercnt, active);
1443 } 1752 }
1753 }
1444 1754
1445 ((WT)w)->at -= mn_now; 1755 ((WT)w)->at -= mn_now;
1446 1756
1447 ev_stop (EV_A_ (W)w); 1757 ev_stop (EV_A_ (W)w);
1448} 1758}
1449 1759
1450void 1760void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 1761ev_timer_again (EV_P_ ev_timer *w)
1452{ 1762{
1453 if (ev_is_active (w)) 1763 if (ev_is_active (w))
1454 { 1764 {
1455 if (w->repeat) 1765 if (w->repeat)
1456 { 1766 {
1457 ((WT)w)->at = mn_now + w->repeat; 1767 ((WT)w)->at = mn_now + w->repeat;
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1768 adjustheap (timers, timercnt, ((W)w)->active - 1);
1459 } 1769 }
1460 else 1770 else
1461 ev_timer_stop (EV_A_ w); 1771 ev_timer_stop (EV_A_ w);
1462 } 1772 }
1463 else if (w->repeat) 1773 else if (w->repeat)
1465 w->at = w->repeat; 1775 w->at = w->repeat;
1466 ev_timer_start (EV_A_ w); 1776 ev_timer_start (EV_A_ w);
1467 } 1777 }
1468} 1778}
1469 1779
1470#if EV_PERIODICS 1780#if EV_PERIODIC_ENABLE
1471void 1781void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 1782ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 1783{
1474 if (expect_false (ev_is_active (w))) 1784 if (expect_false (ev_is_active (w)))
1475 return; 1785 return;
1476 1786
1477 if (w->reschedule_cb) 1787 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 1789 else if (w->interval)
1480 { 1790 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 1792 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 1794 }
1795 else
1796 ((WT)w)->at = w->offset;
1485 1797
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 1798 ev_start (EV_A_ (W)w, ++periodiccnt);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 1800 periodics [periodiccnt - 1] = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 1801 upheap (periodics, periodiccnt - 1);
1490 1802
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1492} 1804}
1493 1805
1494void 1806void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 1807ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 1808{
1497 ev_clear_pending (EV_A_ (W)w); 1809 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 1810 if (expect_false (!ev_is_active (w)))
1499 return; 1811 return;
1500 1812
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1502 1814
1815 {
1816 int active = ((W)w)->active;
1817
1503 if (expect_true (((W)w)->active < periodiccnt--)) 1818 if (expect_true (--active < --periodiccnt))
1504 { 1819 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1820 periodics [active] = periodics [periodiccnt];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1821 adjustheap (periodics, periodiccnt, active);
1507 } 1822 }
1823 }
1508 1824
1509 ev_stop (EV_A_ (W)w); 1825 ev_stop (EV_A_ (W)w);
1510} 1826}
1511 1827
1512void 1828void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 1829ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 1830{
1515 /* TODO: use adjustheap and recalculation */ 1831 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 1832 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 1833 ev_periodic_start (EV_A_ w);
1518} 1834}
1519#endif 1835#endif
1520 1836
1521void
1522ev_idle_start (EV_P_ struct ev_idle *w)
1523{
1524 if (expect_false (ev_is_active (w)))
1525 return;
1526
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART 1837#ifndef SA_RESTART
1588# define SA_RESTART 0 1838# define SA_RESTART 0
1589#endif 1839#endif
1590 1840
1591void 1841void noinline
1592ev_signal_start (EV_P_ struct ev_signal *w) 1842ev_signal_start (EV_P_ ev_signal *w)
1593{ 1843{
1594#if EV_MULTIPLICITY 1844#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif 1846#endif
1597 if (expect_false (ev_is_active (w))) 1847 if (expect_false (ev_is_active (w)))
1598 return; 1848 return;
1599 1849
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1601 1851
1852 {
1853#ifndef _WIN32
1854 sigset_t full, prev;
1855 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif
1858
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1860
1861#ifndef _WIN32
1862 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif
1864 }
1865
1602 ev_start (EV_A_ (W)w, 1); 1866 ev_start (EV_A_ (W)w, 1);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1867 wlist_add (&signals [w->signum - 1].head, (WL)w);
1605 1868
1606 if (!((WL)w)->next) 1869 if (!((WL)w)->next)
1607 { 1870 {
1608#if _WIN32 1871#if _WIN32
1609 signal (w->signum, sighandler); 1872 signal (w->signum, sighandler);
1615 sigaction (w->signum, &sa, 0); 1878 sigaction (w->signum, &sa, 0);
1616#endif 1879#endif
1617 } 1880 }
1618} 1881}
1619 1882
1620void 1883void noinline
1621ev_signal_stop (EV_P_ struct ev_signal *w) 1884ev_signal_stop (EV_P_ ev_signal *w)
1622{ 1885{
1623 ev_clear_pending (EV_A_ (W)w); 1886 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 1887 if (expect_false (!ev_is_active (w)))
1625 return; 1888 return;
1626 1889
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1890 wlist_del (&signals [w->signum - 1].head, (WL)w);
1628 ev_stop (EV_A_ (W)w); 1891 ev_stop (EV_A_ (W)w);
1629 1892
1630 if (!signals [w->signum - 1].head) 1893 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 1894 signal (w->signum, SIG_DFL);
1632} 1895}
1633 1896
1634void 1897void
1635ev_child_start (EV_P_ struct ev_child *w) 1898ev_child_start (EV_P_ ev_child *w)
1636{ 1899{
1637#if EV_MULTIPLICITY 1900#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 1902#endif
1640 if (expect_false (ev_is_active (w))) 1903 if (expect_false (ev_is_active (w)))
1641 return; 1904 return;
1642 1905
1643 ev_start (EV_A_ (W)w, 1); 1906 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645} 1908}
1646 1909
1647void 1910void
1648ev_child_stop (EV_P_ struct ev_child *w) 1911ev_child_stop (EV_P_ ev_child *w)
1649{ 1912{
1650 ev_clear_pending (EV_A_ (W)w); 1913 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 1914 if (expect_false (!ev_is_active (w)))
1652 return; 1915 return;
1653 1916
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1656} 1919}
1657 1920
1921#if EV_STAT_ENABLE
1922
1923# ifdef _WIN32
1924# undef lstat
1925# define lstat(a,b) _stati64 (a,b)
1926# endif
1927
1928#define DEF_STAT_INTERVAL 5.0074891
1929#define MIN_STAT_INTERVAL 0.1074891
1930
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932
1933#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192
1935
1936static void noinline
1937infy_add (EV_P_ ev_stat *w)
1938{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940
1941 if (w->wd < 0)
1942 {
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1944
1945 /* monitor some parent directory for speedup hints */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 {
1948 char path [4096];
1949 strcpy (path, w->path);
1950
1951 do
1952 {
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955
1956 char *pend = strrchr (path, '/');
1957
1958 if (!pend)
1959 break; /* whoops, no '/', complain to your admin */
1960
1961 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 }
1966 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969
1970 if (w->wd >= 0)
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1972}
1973
1974static void noinline
1975infy_del (EV_P_ ev_stat *w)
1976{
1977 int slot;
1978 int wd = w->wd;
1979
1980 if (wd < 0)
1981 return;
1982
1983 w->wd = -2;
1984 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1985 wlist_del (&fs_hash [slot].head, (WL)w);
1986
1987 /* remove this watcher, if others are watching it, they will rearm */
1988 inotify_rm_watch (fs_fd, wd);
1989}
1990
1991static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{
1994 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev);
1998 else
1999 {
2000 WL w_;
2001
2002 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2003 {
2004 ev_stat *w = (ev_stat *)w_;
2005 w_ = w_->next; /* lets us remove this watcher and all before it */
2006
2007 if (w->wd == wd || wd == -1)
2008 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 {
2011 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */
2013 }
2014
2015 stat_timer_cb (EV_A_ &w->timer, 0);
2016 }
2017 }
2018 }
2019}
2020
2021static void
2022infy_cb (EV_P_ ev_io *w, int revents)
2023{
2024 char buf [EV_INOTIFY_BUFSIZE];
2025 struct inotify_event *ev = (struct inotify_event *)buf;
2026 int ofs;
2027 int len = read (fs_fd, buf, sizeof (buf));
2028
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2031}
2032
2033void inline_size
2034infy_init (EV_P)
2035{
2036 if (fs_fd != -2)
2037 return;
2038
2039 fs_fd = inotify_init ();
2040
2041 if (fs_fd >= 0)
2042 {
2043 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2044 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w);
2046 }
2047}
2048
2049void inline_size
2050infy_fork (EV_P)
2051{
2052 int slot;
2053
2054 if (fs_fd < 0)
2055 return;
2056
2057 close (fs_fd);
2058 fs_fd = inotify_init ();
2059
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 {
2062 WL w_ = fs_hash [slot].head;
2063 fs_hash [slot].head = 0;
2064
2065 while (w_)
2066 {
2067 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us add this watcher */
2069
2070 w->wd = -1;
2071
2072 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else
2075 ev_timer_start (EV_A_ &w->timer);
2076 }
2077
2078 }
2079}
2080
2081#endif
2082
2083void
2084ev_stat_stat (EV_P_ ev_stat *w)
2085{
2086 if (lstat (w->path, &w->attr) < 0)
2087 w->attr.st_nlink = 0;
2088 else if (!w->attr.st_nlink)
2089 w->attr.st_nlink = 1;
2090}
2091
2092static void noinline
2093stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2094{
2095 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2096
2097 /* we copy this here each the time so that */
2098 /* prev has the old value when the callback gets invoked */
2099 w->prev = w->attr;
2100 ev_stat_stat (EV_A_ w);
2101
2102 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2103 if (
2104 w->prev.st_dev != w->attr.st_dev
2105 || w->prev.st_ino != w->attr.st_ino
2106 || w->prev.st_mode != w->attr.st_mode
2107 || w->prev.st_nlink != w->attr.st_nlink
2108 || w->prev.st_uid != w->attr.st_uid
2109 || w->prev.st_gid != w->attr.st_gid
2110 || w->prev.st_rdev != w->attr.st_rdev
2111 || w->prev.st_size != w->attr.st_size
2112 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime
2115 ) {
2116 #if EV_USE_INOTIFY
2117 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */
2120 #endif
2121
2122 ev_feed_event (EV_A_ w, EV_STAT);
2123 }
2124}
2125
2126void
2127ev_stat_start (EV_P_ ev_stat *w)
2128{
2129 if (expect_false (ev_is_active (w)))
2130 return;
2131
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w);
2137
2138 if (w->interval < MIN_STAT_INTERVAL)
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2142 ev_set_priority (&w->timer, ev_priority (w));
2143
2144#if EV_USE_INOTIFY
2145 infy_init (EV_A);
2146
2147 if (fs_fd >= 0)
2148 infy_add (EV_A_ w);
2149 else
2150#endif
2151 ev_timer_start (EV_A_ &w->timer);
2152
2153 ev_start (EV_A_ (W)w, 1);
2154}
2155
2156void
2157ev_stat_stop (EV_P_ ev_stat *w)
2158{
2159 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w)))
2161 return;
2162
2163#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w);
2165#endif
2166 ev_timer_stop (EV_A_ &w->timer);
2167
2168 ev_stop (EV_A_ (W)w);
2169}
2170#endif
2171
2172#if EV_IDLE_ENABLE
2173void
2174ev_idle_start (EV_P_ ev_idle *w)
2175{
2176 if (expect_false (ev_is_active (w)))
2177 return;
2178
2179 pri_adjust (EV_A_ (W)w);
2180
2181 {
2182 int active = ++idlecnt [ABSPRI (w)];
2183
2184 ++idleall;
2185 ev_start (EV_A_ (W)w, active);
2186
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w;
2189 }
2190}
2191
2192void
2193ev_idle_stop (EV_P_ ev_idle *w)
2194{
2195 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w)))
2197 return;
2198
2199 {
2200 int active = ((W)w)->active;
2201
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2204
2205 ev_stop (EV_A_ (W)w);
2206 --idleall;
2207 }
2208}
2209#endif
2210
2211void
2212ev_prepare_start (EV_P_ ev_prepare *w)
2213{
2214 if (expect_false (ev_is_active (w)))
2215 return;
2216
2217 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w;
2220}
2221
2222void
2223ev_prepare_stop (EV_P_ ev_prepare *w)
2224{
2225 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w)))
2227 return;
2228
2229 {
2230 int active = ((W)w)->active;
2231 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active;
2233 }
2234
2235 ev_stop (EV_A_ (W)w);
2236}
2237
2238void
2239ev_check_start (EV_P_ ev_check *w)
2240{
2241 if (expect_false (ev_is_active (w)))
2242 return;
2243
2244 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w;
2247}
2248
2249void
2250ev_check_stop (EV_P_ ev_check *w)
2251{
2252 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w)))
2254 return;
2255
2256 {
2257 int active = ((W)w)->active;
2258 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active;
2260 }
2261
2262 ev_stop (EV_A_ (W)w);
2263}
2264
2265#if EV_EMBED_ENABLE
2266void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w)
2268{
2269 ev_loop (w->other, EVLOOP_NONBLOCK);
2270}
2271
2272static void
2273embed_io_cb (EV_P_ ev_io *io, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2276
2277 if (ev_cb (w))
2278 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2279 else
2280 ev_loop (w->other, EVLOOP_NONBLOCK);
2281}
2282
2283static void
2284embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2285{
2286 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2287
2288 {
2289 struct ev_loop *loop = w->other;
2290
2291 while (fdchangecnt)
2292 {
2293 fd_reify (EV_A);
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 }
2296 }
2297}
2298
2299#if 0
2300static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{
2303 ev_idle_stop (EV_A_ idle);
2304}
2305#endif
2306
2307void
2308ev_embed_start (EV_P_ ev_embed *w)
2309{
2310 if (expect_false (ev_is_active (w)))
2311 return;
2312
2313 {
2314 struct ev_loop *loop = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 }
2318
2319 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io);
2321
2322 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare);
2325
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327
2328 ev_start (EV_A_ (W)w, 1);
2329}
2330
2331void
2332ev_embed_stop (EV_P_ ev_embed *w)
2333{
2334 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w)))
2336 return;
2337
2338 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_FORK_ENABLE
2346void
2347ev_fork_start (EV_P_ ev_fork *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w;
2355}
2356
2357void
2358ev_fork_stop (EV_P_ ev_fork *w)
2359{
2360 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w)))
2362 return;
2363
2364 {
2365 int active = ((W)w)->active;
2366 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active;
2368 }
2369
2370 ev_stop (EV_A_ (W)w);
2371}
2372#endif
2373
1658/*****************************************************************************/ 2374/*****************************************************************************/
1659 2375
1660struct ev_once 2376struct ev_once
1661{ 2377{
1662 struct ev_io io; 2378 ev_io io;
1663 struct ev_timer to; 2379 ev_timer to;
1664 void (*cb)(int revents, void *arg); 2380 void (*cb)(int revents, void *arg);
1665 void *arg; 2381 void *arg;
1666}; 2382};
1667 2383
1668static void 2384static void
1677 2393
1678 cb (revents, arg); 2394 cb (revents, arg);
1679} 2395}
1680 2396
1681static void 2397static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 2398once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 2399{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 2401}
1686 2402
1687static void 2403static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 2404once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 2405{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 2407}
1692 2408
1693void 2409void
1717 ev_timer_set (&once->to, timeout, 0.); 2433 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 2434 ev_timer_start (EV_A_ &once->to);
1719 } 2435 }
1720} 2436}
1721 2437
2438#if EV_MULTIPLICITY
2439 #include "ev_wrap.h"
2440#endif
2441
1722#ifdef __cplusplus 2442#ifdef __cplusplus
1723} 2443}
1724#endif 2444#endif
1725 2445

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines