ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 257#else
236# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
240#endif 263#endif
241 264
242#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
244 274
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 277
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
250 280
251typedef ev_watcher *W; 281typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
254 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
256 288
257#ifdef _WIN32 289#ifdef _WIN32
258# include "ev_win32.c" 290# include "ev_win32.c"
259#endif 291#endif
260 292
396{ 428{
397 return ev_rt_now; 429 return ev_rt_now;
398} 430}
399#endif 431#endif
400 432
401#define array_roundsize(type,n) (((n) | 4) & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
402 487
403#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
405 { \ 490 { \
406 int newcnt = cur; \ 491 int ocur_ = (cur); \
407 do \ 492 (base) = (type *)array_realloc \
408 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 495 }
417 496
497#if 0
418#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 500 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 504 }
505#endif
425 506
426#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 509
429/*****************************************************************************/ 510/*****************************************************************************/
430 511
431void noinline 512void noinline
432ev_feed_event (EV_P_ void *w, int revents) 513ev_feed_event (EV_P_ void *w, int revents)
433{ 514{
434 W w_ = (W)w; 515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
435 517
436 if (expect_false (w_->pending)) 518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
437 { 521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 525 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 526 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 527}
447 528
448void inline_size 529void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 530queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 531{
451 int i; 532 int i;
452 533
453 for (i = 0; i < eventcnt; ++i) 534 for (i = 0; i < eventcnt; ++i)
485} 566}
486 567
487void 568void
488ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 570{
571 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
491} 573}
492 574
493void inline_size 575void inline_size
494fd_reify (EV_P) 576fd_reify (EV_P)
495{ 577{
499 { 581 {
500 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
502 ev_io *w; 584 ev_io *w;
503 585
504 int events = 0; 586 unsigned char events = 0;
505 587
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 589 events |= (unsigned char)w->events;
508 590
509#if EV_SELECT_IS_WINSOCKET 591#if EV_SELECT_IS_WINSOCKET
510 if (events) 592 if (events)
511 { 593 {
512 unsigned long argp; 594 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 595 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 597 }
516#endif 598#endif
517 599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
518 anfd->reify = 0; 604 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
522 } 610 }
523 611
524 fdchangecnt = 0; 612 fdchangecnt = 0;
525} 613}
526 614
527void inline_size 615void inline_size
528fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
529{ 617{
530 if (expect_false (anfds [fd].reify)) 618 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
534 620
621 if (expect_true (!reify))
622 {
535 ++fdchangecnt; 623 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
538} 627}
539 628
540void inline_speed 629void inline_speed
541fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
542{ 631{
593 682
594 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 684 if (anfds [fd].events)
596 { 685 {
597 anfds [fd].events = 0; 686 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 688 }
600} 689}
601 690
602/*****************************************************************************/ 691/*****************************************************************************/
603 692
604void inline_speed 693void inline_speed
605upheap (WT *heap, int k) 694upheap (WT *heap, int k)
606{ 695{
607 WT w = heap [k]; 696 WT w = heap [k];
608 697
609 while (k && heap [k >> 1]->at > w->at) 698 while (k)
610 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
611 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
613 k >>= 1; 707 k = p;
614 } 708 }
615 709
616 heap [k] = w; 710 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
618
619} 712}
620 713
621void inline_speed 714void inline_speed
622downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
623{ 716{
624 WT w = heap [k]; 717 WT w = heap [k];
625 718
626 while (k < (N >> 1)) 719 for (;;)
627 { 720 {
628 int j = k << 1; 721 int c = (k << 1) + 1;
629 722
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 724 break;
635 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
636 heap [k] = heap [j]; 732 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
638 k = j; 735 k = c;
639 } 736 }
640 737
641 heap [k] = w; 738 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
643} 740}
725 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
728} 825}
729 826
730void inline_size 827void inline_speed
731fd_intern (int fd) 828fd_intern (int fd)
732{ 829{
733#ifdef _WIN32 830#ifdef _WIN32
734 int arg = 1; 831 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 848}
752 849
753/*****************************************************************************/ 850/*****************************************************************************/
754 851
755static ev_child *childs [EV_PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
756 853
757#ifndef _WIN32 854#ifndef _WIN32
758 855
759static ev_signal childev; 856static ev_signal childev;
760 857
764 ev_child *w; 861 ev_child *w;
765 862
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 864 if (w->pid == pid || !w->pid)
768 { 865 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 867 w->rpid = pid;
771 w->rstatus = status; 868 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 870 }
774} 871}
775 872
776#ifndef WCONTINUED 873#ifndef WCONTINUED
875} 972}
876 973
877unsigned int 974unsigned int
878ev_embeddable_backends (void) 975ev_embeddable_backends (void)
879{ 976{
880 return EVBACKEND_EPOLL 977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 978
882 | EVBACKEND_PORT; 979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags;
883} 989}
884 990
885unsigned int 991unsigned int
886ev_backend (EV_P) 992ev_backend (EV_P)
887{ 993{
888 return backend; 994 return backend;
995}
996
997unsigned int
998ev_loop_count (EV_P)
999{
1000 return loop_count;
1001}
1002
1003void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1005{
1006 io_blocktime = interval;
1007}
1008
1009void
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{
1012 timeout_blocktime = interval;
889} 1013}
890 1014
891static void noinline 1015static void noinline
892loop_init (EV_P_ unsigned int flags) 1016loop_init (EV_P_ unsigned int flags)
893{ 1017{
904 ev_rt_now = ev_time (); 1028 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1029 mn_now = get_clock ();
906 now_floor = mn_now; 1030 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1031 rtmn_diff = ev_rt_now - mn_now;
908 1032
1033 io_blocktime = 0.;
1034 timeout_blocktime = 0.;
1035
909 /* pid check not overridable via env */ 1036 /* pid check not overridable via env */
910#ifndef _WIN32 1037#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1038 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1039 curpid = getpid ();
913#endif 1040#endif
975#if EV_USE_SELECT 1102#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1103 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1104#endif
978 1105
979 for (i = NUMPRI; i--; ) 1106 for (i = NUMPRI; i--; )
1107 {
980 array_free (pending, [i]); 1108 array_free (pending, [i]);
1109#if EV_IDLE_ENABLE
1110 array_free (idle, [i]);
1111#endif
1112 }
1113
1114 ev_free (anfds); anfdmax = 0;
981 1115
982 /* have to use the microsoft-never-gets-it-right macro */ 1116 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1117 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1118 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1119#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1120 array_free (periodic, EMPTY);
987#endif 1121#endif
1122#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1123 array_free (fork, EMPTY);
1124#endif
989 array_free (prepare, EMPTY0); 1125 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1126 array_free (check, EMPTY);
991 1127
992 backend = 0; 1128 backend = 0;
993} 1129}
994 1130
995void inline_size infy_fork (EV_P); 1131void inline_size infy_fork (EV_P);
1131 postfork = 1; 1267 postfork = 1;
1132} 1268}
1133 1269
1134/*****************************************************************************/ 1270/*****************************************************************************/
1135 1271
1136int inline_size 1272void
1137any_pending (EV_P) 1273ev_invoke (EV_P_ void *w, int revents)
1138{ 1274{
1139 int pri; 1275 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1276}
1147 1277
1148void inline_speed 1278void inline_speed
1149call_pending (EV_P) 1279call_pending (EV_P)
1150{ 1280{
1168void inline_size 1298void inline_size
1169timers_reify (EV_P) 1299timers_reify (EV_P)
1170{ 1300{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1302 {
1173 ev_timer *w = timers [0]; 1303 ev_timer *w = (ev_timer *)timers [0];
1174 1304
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1306
1177 /* first reschedule or stop timer */ 1307 /* first reschedule or stop timer */
1178 if (w->repeat) 1308 if (w->repeat)
1181 1311
1182 ((WT)w)->at += w->repeat; 1312 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1313 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1314 ((WT)w)->at = mn_now;
1185 1315
1186 downheap ((WT *)timers, timercnt, 0); 1316 downheap (timers, timercnt, 0);
1187 } 1317 }
1188 else 1318 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1320
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1326void inline_size
1197periodics_reify (EV_P) 1327periodics_reify (EV_P)
1198{ 1328{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1330 {
1201 ev_periodic *w = periodics [0]; 1331 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1332
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1334
1205 /* first reschedule or stop timer */ 1335 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1336 if (w->reschedule_cb)
1207 { 1337 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1340 downheap (periodics, periodiccnt, 0);
1211 } 1341 }
1212 else if (w->interval) 1342 else if (w->interval)
1213 { 1343 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1347 downheap (periodics, periodiccnt, 0);
1217 } 1348 }
1218 else 1349 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1351
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1359 int i;
1229 1360
1230 /* adjust periodics after time jump */ 1361 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1362 for (i = 0; i < periodiccnt; ++i)
1232 { 1363 {
1233 ev_periodic *w = periodics [i]; 1364 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1365
1235 if (w->reschedule_cb) 1366 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1368 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1370 }
1240 1371
1241 /* now rebuild the heap */ 1372 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1373 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1374 downheap (periodics, periodiccnt, i);
1244} 1375}
1245#endif 1376#endif
1246 1377
1378#if EV_IDLE_ENABLE
1247int inline_size 1379void inline_size
1248time_update_monotonic (EV_P) 1380idle_reify (EV_P)
1249{ 1381{
1382 if (expect_false (idleall))
1383 {
1384 int pri;
1385
1386 for (pri = NUMPRI; pri--; )
1387 {
1388 if (pendingcnt [pri])
1389 break;
1390
1391 if (idlecnt [pri])
1392 {
1393 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1394 break;
1395 }
1396 }
1397 }
1398}
1399#endif
1400
1401void inline_speed
1402time_update (EV_P_ ev_tstamp max_block)
1403{
1404 int i;
1405
1406#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic))
1408 {
1409 ev_tstamp odiff = rtmn_diff;
1410
1250 mn_now = get_clock (); 1411 mn_now = get_clock ();
1251 1412
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1414 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1415 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1416 {
1254 ev_rt_now = rtmn_diff + mn_now; 1417 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1418 return;
1256 } 1419 }
1257 else 1420
1258 {
1259 now_floor = mn_now; 1421 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1422 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1423
1265void inline_size 1424 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1425 * on the choice of "4": one iteration isn't enough,
1267{ 1426 * in case we get preempted during the calls to
1268 int i; 1427 * ev_time and get_clock. a second call is almost guaranteed
1269 1428 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1429 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1430 * in the unlikely event of having been preempted here.
1272 { 1431 */
1273 if (time_update_monotonic (EV_A)) 1432 for (i = 4; --i; )
1274 { 1433 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1434 rtmn_diff = ev_rt_now - mn_now;
1288 1435
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1437 return; /* all is well */
1291 1438
1292 ev_rt_now = ev_time (); 1439 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1440 mn_now = get_clock ();
1294 now_floor = mn_now; 1441 now_floor = mn_now;
1295 } 1442 }
1296 1443
1297# if EV_PERIODIC_ENABLE 1444# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1445 periodics_reschedule (EV_A);
1299# endif 1446# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1449 }
1304 else 1450 else
1305#endif 1451#endif
1306 { 1452 {
1307 ev_rt_now = ev_time (); 1453 ev_rt_now = ev_time ();
1308 1454
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1456 {
1311#if EV_PERIODIC_ENABLE 1457#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1458 periodics_reschedule (EV_A);
1313#endif 1459#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1461 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1463 }
1319 1464
1342 ? EVUNLOOP_ONE 1487 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1488 : EVUNLOOP_CANCEL;
1344 1489
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1491
1347 for (;;) 1492 do
1348 { 1493 {
1349#ifndef _WIN32 1494#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1495 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1496 if (expect_false (getpid () != curpid))
1352 { 1497 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1509 call_pending (EV_A);
1365 } 1510 }
1366#endif 1511#endif
1367 1512
1368 /* queue check watchers (and execute them) */ 1513 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1514 if (expect_false (preparecnt))
1370 { 1515 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1517 call_pending (EV_A);
1373 } 1518 }
1382 /* update fd-related kernel structures */ 1527 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 1528 fd_reify (EV_A);
1384 1529
1385 /* calculate blocking time */ 1530 /* calculate blocking time */
1386 { 1531 {
1387 ev_tstamp block; 1532 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.;
1388 1534
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 1536 {
1393 /* update time to cancel out callback processing overhead */ 1537 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1538 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1539
1404 block = MAX_BLOCKTIME; 1540 waittime = MAX_BLOCKTIME;
1405 1541
1406 if (timercnt) 1542 if (timercnt)
1407 { 1543 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1409 if (block > to) block = to; 1545 if (waittime > to) waittime = to;
1410 } 1546 }
1411 1547
1412#if EV_PERIODIC_ENABLE 1548#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 1549 if (periodiccnt)
1414 { 1550 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 1552 if (waittime > to) waittime = to;
1417 } 1553 }
1418#endif 1554#endif
1419 1555
1420 if (expect_false (block < 0.)) block = 0.; 1556 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime;
1558
1559 sleeptime = waittime - backend_fudge;
1560
1561 if (expect_true (sleeptime > io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 {
1566 ev_sleep (sleeptime);
1567 waittime -= sleeptime;
1568 }
1421 } 1569 }
1422 1570
1571 ++loop_count;
1423 backend_poll (EV_A_ block); 1572 backend_poll (EV_A_ waittime);
1573
1574 /* update ev_rt_now, do magic */
1575 time_update (EV_A_ waittime + sleeptime);
1424 } 1576 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1577
1429 /* queue pending timers and reschedule them */ 1578 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 1579 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 1580#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 1581 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 1582#endif
1434 1583
1584#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 1585 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 1586 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1587#endif
1438 1588
1439 /* queue check watchers, to be executed first */ 1589 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 1590 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 1592
1443 call_pending (EV_A); 1593 call_pending (EV_A);
1444 1594
1445 if (expect_false (loop_done))
1446 break;
1447 } 1595 }
1596 while (expect_true (activecnt && !loop_done));
1448 1597
1449 if (loop_done == EVUNLOOP_ONE) 1598 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 1599 loop_done = EVUNLOOP_CANCEL;
1451} 1600}
1452 1601
1479 head = &(*head)->next; 1628 head = &(*head)->next;
1480 } 1629 }
1481} 1630}
1482 1631
1483void inline_speed 1632void inline_speed
1484ev_clear_pending (EV_P_ W w) 1633clear_pending (EV_P_ W w)
1485{ 1634{
1486 if (w->pending) 1635 if (w->pending)
1487 { 1636 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1637 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 1638 w->pending = 0;
1490 } 1639 }
1491} 1640}
1492 1641
1642int
1643ev_clear_pending (EV_P_ void *w)
1644{
1645 W w_ = (W)w;
1646 int pending = w_->pending;
1647
1648 if (expect_true (pending))
1649 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1651 w_->pending = 0;
1652 p->w = 0;
1653 return p->events;
1654 }
1655 else
1656 return 0;
1657}
1658
1659void inline_size
1660pri_adjust (EV_P_ W w)
1661{
1662 int pri = w->priority;
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri;
1666}
1667
1493void inline_speed 1668void inline_speed
1494ev_start (EV_P_ W w, int active) 1669ev_start (EV_P_ W w, int active)
1495{ 1670{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1671 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 1672 w->active = active;
1500 ev_ref (EV_A); 1673 ev_ref (EV_A);
1501} 1674}
1502 1675
1503void inline_size 1676void inline_size
1507 w->active = 0; 1680 w->active = 0;
1508} 1681}
1509 1682
1510/*****************************************************************************/ 1683/*****************************************************************************/
1511 1684
1512void 1685void noinline
1513ev_io_start (EV_P_ ev_io *w) 1686ev_io_start (EV_P_ ev_io *w)
1514{ 1687{
1515 int fd = w->fd; 1688 int fd = w->fd;
1516 1689
1517 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1519 1692
1520 assert (("ev_io_start called with negative fd", fd >= 0)); 1693 assert (("ev_io_start called with negative fd", fd >= 0));
1521 1694
1522 ev_start (EV_A_ (W)w, 1); 1695 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1697 wlist_add (&anfds[fd].head, (WL)w);
1525 1698
1526 fd_change (EV_A_ fd); 1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1700 w->events &= ~EV_IOFDSET;
1527} 1701}
1528 1702
1529void 1703void noinline
1530ev_io_stop (EV_P_ ev_io *w) 1704ev_io_stop (EV_P_ ev_io *w)
1531{ 1705{
1532 ev_clear_pending (EV_A_ (W)w); 1706 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 1707 if (expect_false (!ev_is_active (w)))
1534 return; 1708 return;
1535 1709
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 1711
1538 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1712 wlist_del (&anfds[w->fd].head, (WL)w);
1539 ev_stop (EV_A_ (W)w); 1713 ev_stop (EV_A_ (W)w);
1540 1714
1541 fd_change (EV_A_ w->fd); 1715 fd_change (EV_A_ w->fd, 1);
1542} 1716}
1543 1717
1544void 1718void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 1719ev_timer_start (EV_P_ ev_timer *w)
1546{ 1720{
1547 if (expect_false (ev_is_active (w))) 1721 if (expect_false (ev_is_active (w)))
1548 return; 1722 return;
1549 1723
1550 ((WT)w)->at += mn_now; 1724 ((WT)w)->at += mn_now;
1551 1725
1552 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1553 1727
1554 ev_start (EV_A_ (W)w, ++timercnt); 1728 ev_start (EV_A_ (W)w, ++timercnt);
1555 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1556 timers [timercnt - 1] = w; 1730 timers [timercnt - 1] = (WT)w;
1557 upheap ((WT *)timers, timercnt - 1); 1731 upheap (timers, timercnt - 1);
1558 1732
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1560} 1734}
1561 1735
1562void 1736void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 1737ev_timer_stop (EV_P_ ev_timer *w)
1564{ 1738{
1565 ev_clear_pending (EV_A_ (W)w); 1739 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 1740 if (expect_false (!ev_is_active (w)))
1567 return; 1741 return;
1568 1742
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1570 1744
1571 { 1745 {
1572 int active = ((W)w)->active; 1746 int active = ((W)w)->active;
1573 1747
1574 if (expect_true (--active < --timercnt)) 1748 if (expect_true (--active < --timercnt))
1575 { 1749 {
1576 timers [active] = timers [timercnt]; 1750 timers [active] = timers [timercnt];
1577 adjustheap ((WT *)timers, timercnt, active); 1751 adjustheap (timers, timercnt, active);
1578 } 1752 }
1579 } 1753 }
1580 1754
1581 ((WT)w)->at -= mn_now; 1755 ((WT)w)->at -= mn_now;
1582 1756
1583 ev_stop (EV_A_ (W)w); 1757 ev_stop (EV_A_ (W)w);
1584} 1758}
1585 1759
1586void 1760void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 1761ev_timer_again (EV_P_ ev_timer *w)
1588{ 1762{
1589 if (ev_is_active (w)) 1763 if (ev_is_active (w))
1590 { 1764 {
1591 if (w->repeat) 1765 if (w->repeat)
1592 { 1766 {
1593 ((WT)w)->at = mn_now + w->repeat; 1767 ((WT)w)->at = mn_now + w->repeat;
1594 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1768 adjustheap (timers, timercnt, ((W)w)->active - 1);
1595 } 1769 }
1596 else 1770 else
1597 ev_timer_stop (EV_A_ w); 1771 ev_timer_stop (EV_A_ w);
1598 } 1772 }
1599 else if (w->repeat) 1773 else if (w->repeat)
1602 ev_timer_start (EV_A_ w); 1776 ev_timer_start (EV_A_ w);
1603 } 1777 }
1604} 1778}
1605 1779
1606#if EV_PERIODIC_ENABLE 1780#if EV_PERIODIC_ENABLE
1607void 1781void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 1782ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 1783{
1610 if (expect_false (ev_is_active (w))) 1784 if (expect_false (ev_is_active (w)))
1611 return; 1785 return;
1612 1786
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 1789 else if (w->interval)
1616 { 1790 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 1792 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 1794 }
1795 else
1796 ((WT)w)->at = w->offset;
1621 1797
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 1798 ev_start (EV_A_ (W)w, ++periodiccnt);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 1800 periodics [periodiccnt - 1] = (WT)w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 1801 upheap (periodics, periodiccnt - 1);
1626 1802
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1628} 1804}
1629 1805
1630void 1806void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 1807ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 1808{
1633 ev_clear_pending (EV_A_ (W)w); 1809 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 1810 if (expect_false (!ev_is_active (w)))
1635 return; 1811 return;
1636 1812
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1638 1814
1639 { 1815 {
1640 int active = ((W)w)->active; 1816 int active = ((W)w)->active;
1641 1817
1642 if (expect_true (--active < --periodiccnt)) 1818 if (expect_true (--active < --periodiccnt))
1643 { 1819 {
1644 periodics [active] = periodics [periodiccnt]; 1820 periodics [active] = periodics [periodiccnt];
1645 adjustheap ((WT *)periodics, periodiccnt, active); 1821 adjustheap (periodics, periodiccnt, active);
1646 } 1822 }
1647 } 1823 }
1648 1824
1649 ev_stop (EV_A_ (W)w); 1825 ev_stop (EV_A_ (W)w);
1650} 1826}
1651 1827
1652void 1828void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 1829ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 1830{
1655 /* TODO: use adjustheap and recalculation */ 1831 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 1832 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 1833 ev_periodic_start (EV_A_ w);
1660 1836
1661#ifndef SA_RESTART 1837#ifndef SA_RESTART
1662# define SA_RESTART 0 1838# define SA_RESTART 0
1663#endif 1839#endif
1664 1840
1665void 1841void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 1842ev_signal_start (EV_P_ ev_signal *w)
1667{ 1843{
1668#if EV_MULTIPLICITY 1844#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 1846#endif
1671 if (expect_false (ev_is_active (w))) 1847 if (expect_false (ev_is_active (w)))
1672 return; 1848 return;
1673 1849
1674 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1675 1851
1852 {
1853#ifndef _WIN32
1854 sigset_t full, prev;
1855 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif
1858
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1860
1861#ifndef _WIN32
1862 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif
1864 }
1865
1676 ev_start (EV_A_ (W)w, 1); 1866 ev_start (EV_A_ (W)w, 1);
1677 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1867 wlist_add (&signals [w->signum - 1].head, (WL)w);
1679 1868
1680 if (!((WL)w)->next) 1869 if (!((WL)w)->next)
1681 { 1870 {
1682#if _WIN32 1871#if _WIN32
1683 signal (w->signum, sighandler); 1872 signal (w->signum, sighandler);
1689 sigaction (w->signum, &sa, 0); 1878 sigaction (w->signum, &sa, 0);
1690#endif 1879#endif
1691 } 1880 }
1692} 1881}
1693 1882
1694void 1883void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 1884ev_signal_stop (EV_P_ ev_signal *w)
1696{ 1885{
1697 ev_clear_pending (EV_A_ (W)w); 1886 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 1887 if (expect_false (!ev_is_active (w)))
1699 return; 1888 return;
1700 1889
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1890 wlist_del (&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 1891 ev_stop (EV_A_ (W)w);
1703 1892
1704 if (!signals [w->signum - 1].head) 1893 if (!signals [w->signum - 1].head)
1705 signal (w->signum, SIG_DFL); 1894 signal (w->signum, SIG_DFL);
1706} 1895}
1713#endif 1902#endif
1714 if (expect_false (ev_is_active (w))) 1903 if (expect_false (ev_is_active (w)))
1715 return; 1904 return;
1716 1905
1717 ev_start (EV_A_ (W)w, 1); 1906 ev_start (EV_A_ (W)w, 1);
1718 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1719} 1908}
1720 1909
1721void 1910void
1722ev_child_stop (EV_P_ ev_child *w) 1911ev_child_stop (EV_P_ ev_child *w)
1723{ 1912{
1724 ev_clear_pending (EV_A_ (W)w); 1913 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 1914 if (expect_false (!ev_is_active (w)))
1726 return; 1915 return;
1727 1916
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1730} 1919}
1731 1920
1732#if EV_STAT_ENABLE 1921#if EV_STAT_ENABLE
1733 1922
1965} 2154}
1966 2155
1967void 2156void
1968ev_stat_stop (EV_P_ ev_stat *w) 2157ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2158{
1970 ev_clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1972 return; 2161 return;
1973 2162
1974#if EV_USE_INOTIFY 2163#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2164 infy_del (EV_A_ w);
1978 2167
1979 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1980} 2169}
1981#endif 2170#endif
1982 2171
2172#if EV_IDLE_ENABLE
1983void 2173void
1984ev_idle_start (EV_P_ ev_idle *w) 2174ev_idle_start (EV_P_ ev_idle *w)
1985{ 2175{
1986 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1987 return; 2177 return;
1988 2178
2179 pri_adjust (EV_A_ (W)w);
2180
2181 {
2182 int active = ++idlecnt [ABSPRI (w)];
2183
2184 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2185 ev_start (EV_A_ (W)w, active);
2186
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2188 idles [ABSPRI (w)][active - 1] = w;
2189 }
1992} 2190}
1993 2191
1994void 2192void
1995ev_idle_stop (EV_P_ ev_idle *w) 2193ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2194{
1997 ev_clear_pending (EV_A_ (W)w); 2195 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2196 if (expect_false (!ev_is_active (w)))
1999 return; 2197 return;
2000 2198
2001 { 2199 {
2002 int active = ((W)w)->active; 2200 int active = ((W)w)->active;
2003 idles [active - 1] = idles [--idlecnt]; 2201
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2004 ((W)idles [active - 1])->active = active; 2203 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2204
2205 ev_stop (EV_A_ (W)w);
2206 --idleall;
2005 } 2207 }
2006
2007 ev_stop (EV_A_ (W)w);
2008} 2208}
2209#endif
2009 2210
2010void 2211void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2212ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2213{
2013 if (expect_false (ev_is_active (w))) 2214 if (expect_false (ev_is_active (w)))
2019} 2220}
2020 2221
2021void 2222void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2223ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2224{
2024 ev_clear_pending (EV_A_ (W)w); 2225 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2226 if (expect_false (!ev_is_active (w)))
2026 return; 2227 return;
2027 2228
2028 { 2229 {
2029 int active = ((W)w)->active; 2230 int active = ((W)w)->active;
2046} 2247}
2047 2248
2048void 2249void
2049ev_check_stop (EV_P_ ev_check *w) 2250ev_check_stop (EV_P_ ev_check *w)
2050{ 2251{
2051 ev_clear_pending (EV_A_ (W)w); 2252 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2253 if (expect_false (!ev_is_active (w)))
2053 return; 2254 return;
2054 2255
2055 { 2256 {
2056 int active = ((W)w)->active; 2257 int active = ((W)w)->active;
2063 2264
2064#if EV_EMBED_ENABLE 2265#if EV_EMBED_ENABLE
2065void noinline 2266void noinline
2066ev_embed_sweep (EV_P_ ev_embed *w) 2267ev_embed_sweep (EV_P_ ev_embed *w)
2067{ 2268{
2068 ev_loop (w->loop, EVLOOP_NONBLOCK); 2269 ev_loop (w->other, EVLOOP_NONBLOCK);
2069} 2270}
2070 2271
2071static void 2272static void
2072embed_cb (EV_P_ ev_io *io, int revents) 2273embed_io_cb (EV_P_ ev_io *io, int revents)
2073{ 2274{
2074 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2275 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2075 2276
2076 if (ev_cb (w)) 2277 if (ev_cb (w))
2077 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2278 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2078 else 2279 else
2079 ev_embed_sweep (loop, w); 2280 ev_loop (w->other, EVLOOP_NONBLOCK);
2080} 2281}
2282
2283static void
2284embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2285{
2286 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2287
2288 {
2289 struct ev_loop *loop = w->other;
2290
2291 while (fdchangecnt)
2292 {
2293 fd_reify (EV_A);
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 }
2296 }
2297}
2298
2299#if 0
2300static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{
2303 ev_idle_stop (EV_A_ idle);
2304}
2305#endif
2081 2306
2082void 2307void
2083ev_embed_start (EV_P_ ev_embed *w) 2308ev_embed_start (EV_P_ ev_embed *w)
2084{ 2309{
2085 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
2086 return; 2311 return;
2087 2312
2088 { 2313 {
2089 struct ev_loop *loop = w->loop; 2314 struct ev_loop *loop = w->other;
2090 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2091 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2092 } 2317 }
2093 2318
2094 ev_set_priority (&w->io, ev_priority (w)); 2319 ev_set_priority (&w->io, ev_priority (w));
2095 ev_io_start (EV_A_ &w->io); 2320 ev_io_start (EV_A_ &w->io);
2096 2321
2322 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare);
2325
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327
2097 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
2098} 2329}
2099 2330
2100void 2331void
2101ev_embed_stop (EV_P_ ev_embed *w) 2332ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2333{
2103 ev_clear_pending (EV_A_ (W)w); 2334 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2335 if (expect_false (!ev_is_active (w)))
2105 return; 2336 return;
2106 2337
2107 ev_io_stop (EV_A_ &w->io); 2338 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare);
2108 2340
2109 ev_stop (EV_A_ (W)w); 2341 ev_stop (EV_A_ (W)w);
2110} 2342}
2111#endif 2343#endif
2112 2344
2123} 2355}
2124 2356
2125void 2357void
2126ev_fork_stop (EV_P_ ev_fork *w) 2358ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2359{
2128 ev_clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
2130 return; 2362 return;
2131 2363
2132 { 2364 {
2133 int active = ((W)w)->active; 2365 int active = ((W)w)->active;
2201 ev_timer_set (&once->to, timeout, 0.); 2433 ev_timer_set (&once->to, timeout, 0.);
2202 ev_timer_start (EV_A_ &once->to); 2434 ev_timer_start (EV_A_ &once->to);
2203 } 2435 }
2204} 2436}
2205 2437
2438#if EV_MULTIPLICITY
2439 #include "ev_wrap.h"
2440#endif
2441
2206#ifdef __cplusplus 2442#ifdef __cplusplus
2207} 2443}
2208#endif 2444#endif
2209 2445

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines