ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC vs.
Revision 1.270 by root, Thu Oct 30 13:07:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
137#ifndef _WIN32 154#ifndef _WIN32
138# include <sys/time.h> 155# include <sys/time.h>
139# include <sys/wait.h> 156# include <sys/wait.h>
140# include <unistd.h> 157# include <unistd.h>
141#else 158#else
159# include <io.h>
142# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 161# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
146# endif 164# endif
147#endif 165#endif
148 166
149/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
150 168
151#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
152# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
153#endif 175#endif
154 176
155#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
157#endif 179#endif
158 180
159#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
160# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
161#endif 187#endif
162 188
163#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
165#endif 191#endif
171# define EV_USE_POLL 1 197# define EV_USE_POLL 1
172# endif 198# endif
173#endif 199#endif
174 200
175#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
176# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
177#endif 207#endif
178 208
179#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
181#endif 211#endif
183#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 214# define EV_USE_PORT 0
185#endif 215#endif
186 216
187#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
188# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
189#endif 223#endif
190 224
191#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 226# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
202# else 236# else
203# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
204# endif 238# endif
205#endif 239#endif
206 240
207/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 268
209#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
212#endif 272#endif
226# include <sys/select.h> 286# include <sys/select.h>
227# endif 287# endif
228#endif 288#endif
229 289
230#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
231# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
232#endif 298#endif
233 299
234#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 301# include <winsock.h>
236#endif 302#endif
237 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
238/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
239 323
240/* 324/*
241 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
257#else 341#else
258# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
259# define noinline 343# define noinline
260# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 345# define inline
262# endif 346# endif
263#endif 347#endif
264 348
265#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
280 364
281typedef ev_watcher *W; 365typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
284 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
288 377
289#ifdef _WIN32 378#ifdef _WIN32
290# include "ev_win32.c" 379# include "ev_win32.c"
291#endif 380#endif
292 381
299{ 388{
300 syserr_cb = cb; 389 syserr_cb = cb;
301} 390}
302 391
303static void noinline 392static void noinline
304syserr (const char *msg) 393ev_syserr (const char *msg)
305{ 394{
306 if (!msg) 395 if (!msg)
307 msg = "(libev) system error"; 396 msg = "(libev) system error";
308 397
309 if (syserr_cb) 398 if (syserr_cb)
313 perror (msg); 402 perror (msg);
314 abort (); 403 abort ();
315 } 404 }
316} 405}
317 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
318static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 423
320void 424void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 426{
323 alloc = cb; 427 alloc = cb;
324} 428}
325 429
326inline_speed void * 430inline_speed void *
327ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
328{ 432{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
330 434
331 if (!ptr && size) 435 if (!ptr && size)
332 { 436 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 438 abort ();
345typedef struct 449typedef struct
346{ 450{
347 WL head; 451 WL head;
348 unsigned char events; 452 unsigned char events;
349 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
350#if EV_SELECT_IS_WINSOCKET 459#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 460 SOCKET handle;
352#endif 461#endif
353} ANFD; 462} ANFD;
354 463
357 W w; 466 W w;
358 int events; 467 int events;
359} ANPENDING; 468} ANPENDING;
360 469
361#if EV_USE_INOTIFY 470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
362typedef struct 472typedef struct
363{ 473{
364 WL head; 474 WL head;
365} ANFS; 475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
366#endif 494#endif
367 495
368#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
369 497
370 struct ev_loop 498 struct ev_loop
441 ts.tv_sec = (time_t)delay; 569 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 571
444 nanosleep (&ts, 0); 572 nanosleep (&ts, 0);
445#elif defined(_WIN32) 573#elif defined(_WIN32)
446 Sleep (delay * 1e3); 574 Sleep ((unsigned long)(delay * 1e3));
447#else 575#else
448 struct timeval tv; 576 struct timeval tv;
449 577
450 tv.tv_sec = (time_t)delay; 578 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
453 select (0, 0, 0, 0, &tv); 584 select (0, 0, 0, 0, &tv);
454#endif 585#endif
455 } 586 }
456} 587}
457 588
458/*****************************************************************************/ 589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 592
460int inline_size 593int inline_size
461array_nextsize (int elem, int cur, int cnt) 594array_nextsize (int elem, int cur, int cnt)
462{ 595{
463 int ncur = cur + 1; 596 int ncur = cur + 1;
464 597
465 do 598 do
466 ncur <<= 1; 599 ncur <<= 1;
467 while (cnt > ncur); 600 while (cnt > ncur);
468 601
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 604 {
472 ncur *= elem; 605 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 607 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 608 ncur /= elem;
476 } 609 }
477 610
478 return ncur; 611 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 615array_realloc (int elem, void *base, int *cur, int cnt)
483{ 616{
484 *cur = array_nextsize (elem, *cur, cnt); 617 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 618 return ev_realloc (base, elem * *cur);
486} 619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 623
488#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 625 if (expect_false ((cnt) > (cur))) \
490 { \ 626 { \
491 int ocur_ = (cur); \ 627 int ocur_ = (cur); \
535 ev_feed_event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
536} 672}
537 673
538/*****************************************************************************/ 674/*****************************************************************************/
539 675
540void inline_size
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed 676void inline_speed
554fd_event (EV_P_ int fd, int revents) 677fd_event (EV_P_ int fd, int revents)
555{ 678{
556 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
557 ev_io *w; 680 ev_io *w;
589 events |= (unsigned char)w->events; 712 events |= (unsigned char)w->events;
590 713
591#if EV_SELECT_IS_WINSOCKET 714#if EV_SELECT_IS_WINSOCKET
592 if (events) 715 if (events)
593 { 716 {
594 unsigned long argp; 717 unsigned long arg;
718 #ifdef EV_FD_TO_WIN32_HANDLE
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
720 #else
595 anfd->handle = _get_osfhandle (fd); 721 anfd->handle = _get_osfhandle (fd);
722 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 724 }
598#endif 725#endif
599 726
600 { 727 {
601 unsigned char o_events = anfd->events; 728 unsigned char o_events = anfd->events;
654{ 781{
655 int fd; 782 int fd;
656 783
657 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 785 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
661} 788}
662 789
663/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 791static void noinline
682 809
683 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 811 if (anfds [fd].events)
685 { 812 {
686 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
688 } 816 }
689} 817}
690 818
691/*****************************************************************************/ 819/*****************************************************************************/
692 820
821/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree.
825 */
826
827/*
828 * at the moment we allow libev the luxury of two heaps,
829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
830 * which is more cache-efficient.
831 * the difference is about 5% with 50000+ watchers.
832 */
833#if EV_USE_4HEAP
834
835#define DHEAP 4
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
839
840/* away from the root */
693void inline_speed 841void inline_speed
694upheap (WT *heap, int k) 842downheap (ANHE *heap, int N, int k)
695{ 843{
696 WT w = heap [k]; 844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
697 846
698 while (k) 847 for (;;)
699 { 848 {
700 int p = (k - 1) >> 1; 849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 852
702 if (heap [p]->at <= w->at) 853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
855 {
856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
703 break; 869 break;
704 870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
880 heap [k] = he;
881 ev_active (ANHE_w (he)) = k;
882}
883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
891void inline_speed
892downheap (ANHE *heap, int N, int k)
893{
894 ANHE he = heap [k];
895
896 for (;;)
897 {
898 int c = k << 1;
899
900 if (c > N + HEAP0 - 1)
901 break;
902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
909 heap [k] = heap [c];
910 ev_active (ANHE_w (heap [k])) = k;
911
912 k = c;
913 }
914
915 heap [k] = he;
916 ev_active (ANHE_w (he)) = k;
917}
918#endif
919
920/* towards the root */
921void inline_speed
922upheap (ANHE *heap, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int p = HPARENT (k);
929
930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
931 break;
932
705 heap [k] = heap [p]; 933 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 934 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 935 k = p;
708 } 936 }
709 937
710 heap [k] = w; 938 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 939 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 940}
741 941
742void inline_size 942void inline_size
743adjustheap (WT *heap, int N, int k) 943adjustheap (ANHE *heap, int N, int k)
744{ 944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 946 upheap (heap, k);
947 else
746 downheap (heap, N, k); 948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
747} 961}
748 962
749/*****************************************************************************/ 963/*****************************************************************************/
750 964
751typedef struct 965typedef struct
752{ 966{
753 WL head; 967 WL head;
754 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
755} ANSIG; 969} ANSIG;
756 970
757static ANSIG *signals; 971static ANSIG *signals;
758static int signalmax; 972static int signalmax;
759 973
760static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 975
764void inline_size 976/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 977
827void inline_speed 978void inline_speed
828fd_intern (int fd) 979fd_intern (int fd)
829{ 980{
830#ifdef _WIN32 981#ifdef _WIN32
831 int arg = 1; 982 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 984#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 985 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 986 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 987#endif
837} 988}
838 989
839static void noinline 990static void noinline
840siginit (EV_P) 991evpipe_init (EV_P)
841{ 992{
993 if (!ev_is_active (&pipeev))
994 {
995#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0)
997 {
998 evpipe [0] = -1;
999 fd_intern (evfd);
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 }
1002 else
1003#endif
1004 {
1005 while (pipe (evpipe))
1006 ev_syserr ("(libev) error creating signal/async pipe");
1007
842 fd_intern (sigpipe [0]); 1008 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1009 fd_intern (evpipe [1]);
1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
1011 }
844 1012
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1013 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 }
1016}
1017
1018void inline_size
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{
1021 if (!*flag)
1022 {
1023 int old_errno = errno; /* save errno because write might clobber it */
1024
1025 *flag = 1;
1026
1027#if EV_USE_EVENTFD
1028 if (evfd >= 0)
1029 {
1030 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t));
1032 }
1033 else
1034#endif
1035 write (evpipe [1], &old_errno, 1);
1036
1037 errno = old_errno;
1038 }
1039}
1040
1041static void
1042pipecb (EV_P_ ev_io *iow, int revents)
1043{
1044#if EV_USE_EVENTFD
1045 if (evfd >= 0)
1046 {
1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
1049 }
1050 else
1051#endif
1052 {
1053 char dummy;
1054 read (evpipe [0], &dummy, 1);
1055 }
1056
1057 if (gotsig && ev_is_default_loop (EV_A))
1058 {
1059 int signum;
1060 gotsig = 0;
1061
1062 for (signum = signalmax; signum--; )
1063 if (signals [signum].gotsig)
1064 ev_feed_signal_event (EV_A_ signum + 1);
1065 }
1066
1067#if EV_ASYNC_ENABLE
1068 if (gotasync)
1069 {
1070 int i;
1071 gotasync = 0;
1072
1073 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent)
1075 {
1076 asyncs [i]->sent = 0;
1077 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1078 }
1079 }
1080#endif
848} 1081}
849 1082
850/*****************************************************************************/ 1083/*****************************************************************************/
851 1084
1085static void
1086ev_sighandler (int signum)
1087{
1088#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct;
1090#endif
1091
1092#if _WIN32
1093 signal (signum, ev_sighandler);
1094#endif
1095
1096 signals [signum - 1].gotsig = 1;
1097 evpipe_write (EV_A_ &gotsig);
1098}
1099
1100void noinline
1101ev_feed_signal_event (EV_P_ int signum)
1102{
1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
1109 --signum;
1110
1111 if (signum < 0 || signum >= signalmax)
1112 return;
1113
1114 signals [signum].gotsig = 0;
1115
1116 for (w = signals [signum].head; w; w = w->next)
1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1118}
1119
1120/*****************************************************************************/
1121
852static WL childs [EV_PID_HASHSIZE]; 1122static WL childs [EV_PID_HASHSIZE];
853 1123
854#ifndef _WIN32 1124#ifndef _WIN32
855 1125
856static ev_signal childev; 1126static ev_signal childev;
857 1127
1128#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0
1130#endif
1131
858void inline_speed 1132void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1133child_reap (EV_P_ int chain, int pid, int status)
860{ 1134{
861 ev_child *w; 1135 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1137
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 {
864 if (w->pid == pid || !w->pid) 1140 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1)))
865 { 1142 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1144 w->rpid = pid;
868 w->rstatus = status; 1145 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1146 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1147 }
1148 }
871} 1149}
872 1150
873#ifndef WCONTINUED 1151#ifndef WCONTINUED
874# define WCONTINUED 0 1152# define WCONTINUED 0
875#endif 1153#endif
884 if (!WCONTINUED 1162 if (!WCONTINUED
885 || errno != EINVAL 1163 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1164 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1165 return;
888 1166
889 /* make sure we are called again until all childs have been reaped */ 1167 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1168 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1170
893 child_reap (EV_A_ sw, pid, pid, status); 1171 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1172 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1174}
897 1175
898#endif 1176#endif
899 1177
900/*****************************************************************************/ 1178/*****************************************************************************/
978 1256
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */ 1258 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL; 1259 flags &= ~EVBACKEND_EPOLL;
982 1260
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags; 1261 return flags;
989} 1262}
990 1263
991unsigned int 1264unsigned int
992ev_backend (EV_P) 1265ev_backend (EV_P)
1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1024 have_monotonic = 1; 1297 have_monotonic = 1;
1025 } 1298 }
1026#endif 1299#endif
1027 1300
1028 ev_rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1302 mn_now = get_clock ();
1030 now_floor = mn_now; 1303 now_floor = mn_now;
1031 rtmn_diff = ev_rt_now - mn_now; 1304 rtmn_diff = ev_rt_now - mn_now;
1032 1305
1033 io_blocktime = 0.; 1306 io_blocktime = 0.;
1034 timeout_blocktime = 0.; 1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif
1035 1314
1036 /* pid check not overridable via env */ 1315 /* pid check not overridable via env */
1037#ifndef _WIN32 1316#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK) 1317 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid (); 1318 curpid = getpid ();
1042 if (!(flags & EVFLAG_NOENV) 1321 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure () 1322 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS")) 1323 && getenv ("LIBEV_FLAGS"))
1045 flags = atoi (getenv ("LIBEV_FLAGS")); 1324 flags = atoi (getenv ("LIBEV_FLAGS"));
1046 1325
1047 if (!(flags & 0x0000ffffUL)) 1326 if (!(flags & 0x0000ffffU))
1048 flags |= ev_recommended_backends (); 1327 flags |= ev_recommended_backends ();
1049
1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY
1053 fs_fd = -2;
1054#endif
1055 1328
1056#if EV_USE_PORT 1329#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1058#endif 1331#endif
1059#if EV_USE_KQUEUE 1332#if EV_USE_KQUEUE
1067#endif 1340#endif
1068#if EV_USE_SELECT 1341#if EV_USE_SELECT
1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1070#endif 1343#endif
1071 1344
1072 ev_init (&sigev, sigcb); 1345 ev_init (&pipeev, pipecb);
1073 ev_set_priority (&sigev, EV_MAXPRI); 1346 ev_set_priority (&pipeev, EV_MAXPRI);
1074 } 1347 }
1075} 1348}
1076 1349
1077static void noinline 1350static void noinline
1078loop_destroy (EV_P) 1351loop_destroy (EV_P)
1079{ 1352{
1080 int i; 1353 int i;
1354
1355 if (ev_is_active (&pipeev))
1356 {
1357 ev_ref (EV_A); /* signal watcher */
1358 ev_io_stop (EV_A_ &pipeev);
1359
1360#if EV_USE_EVENTFD
1361 if (evfd >= 0)
1362 close (evfd);
1363#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1370 }
1081 1371
1082#if EV_USE_INOTIFY 1372#if EV_USE_INOTIFY
1083 if (fs_fd >= 0) 1373 if (fs_fd >= 0)
1084 close (fs_fd); 1374 close (fs_fd);
1085#endif 1375#endif
1122#if EV_FORK_ENABLE 1412#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY); 1413 array_free (fork, EMPTY);
1124#endif 1414#endif
1125 array_free (prepare, EMPTY); 1415 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY); 1416 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY);
1419#endif
1127 1420
1128 backend = 0; 1421 backend = 0;
1129} 1422}
1130 1423
1424#if EV_USE_INOTIFY
1131void inline_size infy_fork (EV_P); 1425void inline_size infy_fork (EV_P);
1426#endif
1132 1427
1133void inline_size 1428void inline_size
1134loop_fork (EV_P) 1429loop_fork (EV_P)
1135{ 1430{
1136#if EV_USE_PORT 1431#if EV_USE_PORT
1144#endif 1439#endif
1145#if EV_USE_INOTIFY 1440#if EV_USE_INOTIFY
1146 infy_fork (EV_A); 1441 infy_fork (EV_A);
1147#endif 1442#endif
1148 1443
1149 if (ev_is_active (&sigev)) 1444 if (ev_is_active (&pipeev))
1150 { 1445 {
1151 /* default loop */ 1446 /* this "locks" the handlers against writing to the pipe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
1152 1452
1153 ev_ref (EV_A); 1453 ev_ref (EV_A);
1154 ev_io_stop (EV_A_ &sigev); 1454 ev_io_stop (EV_A_ &pipeev);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460
1461 if (evpipe [0] >= 0)
1462 {
1155 close (sigpipe [0]); 1463 close (evpipe [0]);
1156 close (sigpipe [1]); 1464 close (evpipe [1]);
1465 }
1157 1466
1158 while (pipe (sigpipe))
1159 syserr ("(libev) error creating pipe");
1160
1161 siginit (EV_A); 1467 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */
1469 pipecb (EV_A_ &pipeev, EV_READ);
1162 } 1470 }
1163 1471
1164 postfork = 0; 1472 postfork = 0;
1165} 1473}
1166 1474
1167#if EV_MULTIPLICITY 1475#if EV_MULTIPLICITY
1476
1168struct ev_loop * 1477struct ev_loop *
1169ev_loop_new (unsigned int flags) 1478ev_loop_new (unsigned int flags)
1170{ 1479{
1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1172 1481
1188} 1497}
1189 1498
1190void 1499void
1191ev_loop_fork (EV_P) 1500ev_loop_fork (EV_P)
1192{ 1501{
1193 postfork = 1; 1502 postfork = 1; /* must be in line with ev_default_fork */
1194} 1503}
1195 1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1196#endif 1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
1197 1605
1198#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1199struct ev_loop * 1607struct ev_loop *
1200ev_default_loop_init (unsigned int flags) 1608ev_default_loop_init (unsigned int flags)
1201#else 1609#else
1202int 1610int
1203ev_default_loop (unsigned int flags) 1611ev_default_loop (unsigned int flags)
1204#endif 1612#endif
1205{ 1613{
1206 if (sigpipe [0] == sigpipe [1])
1207 if (pipe (sigpipe))
1208 return 0;
1209
1210 if (!ev_default_loop_ptr) 1614 if (!ev_default_loop_ptr)
1211 { 1615 {
1212#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1214#else 1618#else
1217 1621
1218 loop_init (EV_A_ flags); 1622 loop_init (EV_A_ flags);
1219 1623
1220 if (ev_backend (EV_A)) 1624 if (ev_backend (EV_A))
1221 { 1625 {
1222 siginit (EV_A);
1223
1224#ifndef _WIN32 1626#ifndef _WIN32
1225 ev_signal_init (&childev, childcb, SIGCHLD); 1627 ev_signal_init (&childev, childcb, SIGCHLD);
1226 ev_set_priority (&childev, EV_MAXPRI); 1628 ev_set_priority (&childev, EV_MAXPRI);
1227 ev_signal_start (EV_A_ &childev); 1629 ev_signal_start (EV_A_ &childev);
1228 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1630 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240{ 1642{
1241#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1242 struct ev_loop *loop = ev_default_loop_ptr; 1644 struct ev_loop *loop = ev_default_loop_ptr;
1243#endif 1645#endif
1244 1646
1647 ev_default_loop_ptr = 0;
1648
1245#ifndef _WIN32 1649#ifndef _WIN32
1246 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
1247 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
1248#endif 1652#endif
1249 1653
1250 ev_ref (EV_A); /* signal watcher */
1251 ev_io_stop (EV_A_ &sigev);
1252
1253 close (sigpipe [0]); sigpipe [0] = 0;
1254 close (sigpipe [1]); sigpipe [1] = 0;
1255
1256 loop_destroy (EV_A); 1654 loop_destroy (EV_A);
1257} 1655}
1258 1656
1259void 1657void
1260ev_default_fork (void) 1658ev_default_fork (void)
1261{ 1659{
1262#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
1263 struct ev_loop *loop = ev_default_loop_ptr; 1661 struct ev_loop *loop = ev_default_loop_ptr;
1264#endif 1662#endif
1265 1663
1266 if (backend) 1664 postfork = 1; /* must be in line with ev_loop_fork */
1267 postfork = 1;
1268} 1665}
1269 1666
1270/*****************************************************************************/ 1667/*****************************************************************************/
1271 1668
1272void 1669void
1289 { 1686 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1291 1688
1292 p->w->pending = 0; 1689 p->w->pending = 0;
1293 EV_CB_INVOKE (p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
1294 } 1692 }
1295 } 1693 }
1296} 1694}
1297
1298void inline_size
1299timers_reify (EV_P)
1300{
1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1302 {
1303 ev_timer *w = (ev_timer *)timers [0];
1304
1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1306
1307 /* first reschedule or stop timer */
1308 if (w->repeat)
1309 {
1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
1316 downheap (timers, timercnt, 0);
1317 }
1318 else
1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1320
1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1322 }
1323}
1324
1325#if EV_PERIODIC_ENABLE
1326void inline_size
1327periodics_reify (EV_P)
1328{
1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1330 {
1331 ev_periodic *w = (ev_periodic *)periodics [0];
1332
1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1334
1335 /* first reschedule or stop timer */
1336 if (w->reschedule_cb)
1337 {
1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1340 downheap (periodics, periodiccnt, 0);
1341 }
1342 else if (w->interval)
1343 {
1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1347 downheap (periodics, periodiccnt, 0);
1348 }
1349 else
1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1351
1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1353 }
1354}
1355
1356static void noinline
1357periodics_reschedule (EV_P)
1358{
1359 int i;
1360
1361 /* adjust periodics after time jump */
1362 for (i = 0; i < periodiccnt; ++i)
1363 {
1364 ev_periodic *w = (ev_periodic *)periodics [i];
1365
1366 if (w->reschedule_cb)
1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1368 else if (w->interval)
1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 }
1371
1372 /* now rebuild the heap */
1373 for (i = periodiccnt >> 1; i--; )
1374 downheap (periodics, periodiccnt, i);
1375}
1376#endif
1377 1695
1378#if EV_IDLE_ENABLE 1696#if EV_IDLE_ENABLE
1379void inline_size 1697void inline_size
1380idle_reify (EV_P) 1698idle_reify (EV_P)
1381{ 1699{
1393 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1711 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1394 break; 1712 break;
1395 } 1713 }
1396 } 1714 }
1397 } 1715 }
1716}
1717#endif
1718
1719void inline_size
1720timers_reify (EV_P)
1721{
1722 EV_FREQUENT_CHECK;
1723
1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1725 {
1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1727
1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1729
1730 /* first reschedule or stop timer */
1731 if (w->repeat)
1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1738
1739 ANHE_at_cache (timers [HEAP0]);
1740 downheap (timers, timercnt, HEAP0);
1741 }
1742 else
1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1744
1745 EV_FREQUENT_CHECK;
1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1747 }
1748}
1749
1750#if EV_PERIODIC_ENABLE
1751void inline_size
1752periodics_reify (EV_P)
1753{
1754 EV_FREQUENT_CHECK;
1755
1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1757 {
1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1759
1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1761
1762 /* first reschedule or stop timer */
1763 if (w->reschedule_cb)
1764 {
1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
1770 downheap (periodics, periodiccnt, HEAP0);
1771 }
1772 else if (w->interval)
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
1790 }
1791 else
1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1793
1794 EV_FREQUENT_CHECK;
1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1796 }
1797}
1798
1799static void noinline
1800periodics_reschedule (EV_P)
1801{
1802 int i;
1803
1804 /* adjust periodics after time jump */
1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1806 {
1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1808
1809 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1811 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1398} 1818}
1399#endif 1819#endif
1400 1820
1401void inline_speed 1821void inline_speed
1402time_update (EV_P_ ev_tstamp max_block) 1822time_update (EV_P_ ev_tstamp max_block)
1431 */ 1851 */
1432 for (i = 4; --i; ) 1852 for (i = 4; --i; )
1433 { 1853 {
1434 rtmn_diff = ev_rt_now - mn_now; 1854 rtmn_diff = ev_rt_now - mn_now;
1435 1855
1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1437 return; /* all is well */ 1857 return; /* all is well */
1438 1858
1439 ev_rt_now = ev_time (); 1859 ev_rt_now = ev_time ();
1440 mn_now = get_clock (); 1860 mn_now = get_clock ();
1441 now_floor = mn_now; 1861 now_floor = mn_now;
1457#if EV_PERIODIC_ENABLE 1877#if EV_PERIODIC_ENABLE
1458 periodics_reschedule (EV_A); 1878 periodics_reschedule (EV_A);
1459#endif 1879#endif
1460 /* adjust timers. this is easy, as the offset is the same for all of them */ 1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i) 1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1462 ((WT)timers [i])->at += ev_rt_now - mn_now; 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1463 } 1887 }
1464 1888
1465 mn_now = ev_rt_now; 1889 mn_now = ev_rt_now;
1466 } 1890 }
1467} 1891}
1476ev_unref (EV_P) 1900ev_unref (EV_P)
1477{ 1901{
1478 --activecnt; 1902 --activecnt;
1479} 1903}
1480 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1481static int loop_done; 1911static int loop_done;
1482 1912
1483void 1913void
1484ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1485{ 1915{
1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1487 ? EVUNLOOP_ONE
1488 : EVUNLOOP_CANCEL;
1489 1917
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1491 1919
1492 do 1920 do
1493 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1494#ifndef _WIN32 1926#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1497 { 1929 {
1498 curpid = getpid (); 1930 curpid = getpid ();
1539 1971
1540 waittime = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1541 1973
1542 if (timercnt) 1974 if (timercnt)
1543 { 1975 {
1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1545 if (waittime > to) waittime = to; 1977 if (waittime > to) waittime = to;
1546 } 1978 }
1547 1979
1548#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1549 if (periodiccnt) 1981 if (periodiccnt)
1550 { 1982 {
1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1552 if (waittime > to) waittime = to; 1984 if (waittime > to) waittime = to;
1553 } 1985 }
1554#endif 1986#endif
1555 1987
1556 if (expect_false (waittime < timeout_blocktime)) 1988 if (expect_false (waittime < timeout_blocktime))
1589 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1590 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1592 2024
1593 call_pending (EV_A); 2025 call_pending (EV_A);
1594
1595 } 2026 }
1596 while (expect_true (activecnt && !loop_done)); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1597 2032
1598 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1599 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1600} 2035}
1601 2036
1689 2124
1690 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1691 return; 2126 return;
1692 2127
1693 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1694 2132
1695 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1697 wlist_add (&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1698 2136
1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1700 w->events &= ~EV_IOFDSET; 2138 w->events &= ~EV_IOFDSET;
2139
2140 EV_FREQUENT_CHECK;
1701} 2141}
1702 2142
1703void noinline 2143void noinline
1704ev_io_stop (EV_P_ ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1705{ 2145{
1706 clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1707 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1708 return; 2148 return;
1709 2149
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2151
2152 EV_FREQUENT_CHECK;
1711 2153
1712 wlist_del (&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1713 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1714 2156
1715 fd_change (EV_A_ w->fd, 1); 2157 fd_change (EV_A_ w->fd, 1);
2158
2159 EV_FREQUENT_CHECK;
1716} 2160}
1717 2161
1718void noinline 2162void noinline
1719ev_timer_start (EV_P_ ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1720{ 2164{
1721 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1722 return; 2166 return;
1723 2167
1724 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1725 2169
1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1727 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1728 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1730 timers [timercnt - 1] = (WT)w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1731 upheap (timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1732 2180
2181 EV_FREQUENT_CHECK;
2182
1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1734} 2184}
1735 2185
1736void noinline 2186void noinline
1737ev_timer_stop (EV_P_ ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1738{ 2188{
1739 clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1740 if (expect_false (!ev_is_active (w))) 2190 if (expect_false (!ev_is_active (w)))
1741 return; 2191 return;
1742 2192
1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2193 EV_FREQUENT_CHECK;
1744 2194
1745 { 2195 {
1746 int active = ((W)w)->active; 2196 int active = ev_active (w);
1747 2197
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199
2200 --timercnt;
2201
1748 if (expect_true (--active < --timercnt)) 2202 if (expect_true (active < timercnt + HEAP0))
1749 { 2203 {
1750 timers [active] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1751 adjustheap (timers, timercnt, active); 2205 adjustheap (timers, timercnt, active);
1752 } 2206 }
1753 } 2207 }
1754 2208
1755 ((WT)w)->at -= mn_now; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1756 2212
1757 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1758} 2214}
1759 2215
1760void noinline 2216void noinline
1761ev_timer_again (EV_P_ ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1762{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1763 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1764 { 2222 {
1765 if (w->repeat) 2223 if (w->repeat)
1766 { 2224 {
1767 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
2226 ANHE_at_cache (timers [ev_active (w)]);
1768 adjustheap (timers, timercnt, ((W)w)->active - 1); 2227 adjustheap (timers, timercnt, ev_active (w));
1769 } 2228 }
1770 else 2229 else
1771 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1772 } 2231 }
1773 else if (w->repeat) 2232 else if (w->repeat)
1774 { 2233 {
1775 w->at = w->repeat; 2234 ev_at (w) = w->repeat;
1776 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1777 } 2236 }
2237
2238 EV_FREQUENT_CHECK;
1778} 2239}
1779 2240
1780#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1781void noinline 2242void noinline
1782ev_periodic_start (EV_P_ ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1783{ 2244{
1784 if (expect_false (ev_is_active (w))) 2245 if (expect_false (ev_is_active (w)))
1785 return; 2246 return;
1786 2247
1787 if (w->reschedule_cb) 2248 if (w->reschedule_cb)
1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1789 else if (w->interval) 2250 else if (w->interval)
1790 { 2251 {
1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1792 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1794 } 2255 }
1795 else 2256 else
1796 ((WT)w)->at = w->offset; 2257 ev_at (w) = w->offset;
1797 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1798 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1800 periodics [periodiccnt - 1] = (WT)w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1801 upheap (periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1802 2267
2268 EV_FREQUENT_CHECK;
2269
1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1804} 2271}
1805 2272
1806void noinline 2273void noinline
1807ev_periodic_stop (EV_P_ ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1808{ 2275{
1809 clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2277 if (expect_false (!ev_is_active (w)))
1811 return; 2278 return;
1812 2279
1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2280 EV_FREQUENT_CHECK;
1814 2281
1815 { 2282 {
1816 int active = ((W)w)->active; 2283 int active = ev_active (w);
1817 2284
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286
2287 --periodiccnt;
2288
1818 if (expect_true (--active < --periodiccnt)) 2289 if (expect_true (active < periodiccnt + HEAP0))
1819 { 2290 {
1820 periodics [active] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1821 adjustheap (periodics, periodiccnt, active); 2292 adjustheap (periodics, periodiccnt, active);
1822 } 2293 }
1823 } 2294 }
1824 2295
2296 EV_FREQUENT_CHECK;
2297
1825 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1826} 2299}
1827 2300
1828void noinline 2301void noinline
1829ev_periodic_again (EV_P_ ev_periodic *w) 2302ev_periodic_again (EV_P_ ev_periodic *w)
1846#endif 2319#endif
1847 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
1848 return; 2321 return;
1849 2322
1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2324
2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
1851 2328
1852 { 2329 {
1853#ifndef _WIN32 2330#ifndef _WIN32
1854 sigset_t full, prev; 2331 sigset_t full, prev;
1855 sigfillset (&full); 2332 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev); 2333 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif 2334#endif
1858 2335
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1860 2337
1861#ifndef _WIN32 2338#ifndef _WIN32
1862 sigprocmask (SIG_SETMASK, &prev, 0); 2339 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif 2340#endif
1864 } 2341 }
1867 wlist_add (&signals [w->signum - 1].head, (WL)w); 2344 wlist_add (&signals [w->signum - 1].head, (WL)w);
1868 2345
1869 if (!((WL)w)->next) 2346 if (!((WL)w)->next)
1870 { 2347 {
1871#if _WIN32 2348#if _WIN32
1872 signal (w->signum, sighandler); 2349 signal (w->signum, ev_sighandler);
1873#else 2350#else
1874 struct sigaction sa; 2351 struct sigaction sa;
1875 sa.sa_handler = sighandler; 2352 sa.sa_handler = ev_sighandler;
1876 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
1877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1878 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
1879#endif 2356#endif
1880 } 2357 }
2358
2359 EV_FREQUENT_CHECK;
1881} 2360}
1882 2361
1883void noinline 2362void noinline
1884ev_signal_stop (EV_P_ ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
1885{ 2364{
1886 clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1887 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
1888 return; 2367 return;
1889 2368
2369 EV_FREQUENT_CHECK;
2370
1890 wlist_del (&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
1891 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
1892 2373
1893 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
1894 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
2376
2377 EV_FREQUENT_CHECK;
1895} 2378}
1896 2379
1897void 2380void
1898ev_child_start (EV_P_ ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
1899{ 2382{
1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1902#endif 2385#endif
1903 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1904 return; 2387 return;
1905 2388
2389 EV_FREQUENT_CHECK;
2390
1906 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2393
2394 EV_FREQUENT_CHECK;
1908} 2395}
1909 2396
1910void 2397void
1911ev_child_stop (EV_P_ ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
1912{ 2399{
1913 clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
1914 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
1915 return; 2402 return;
1916 2403
2404 EV_FREQUENT_CHECK;
2405
1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1918 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
1919} 2410}
1920 2411
1921#if EV_STAT_ENABLE 2412#if EV_STAT_ENABLE
1922 2413
1923# ifdef _WIN32 2414# ifdef _WIN32
1941 if (w->wd < 0) 2432 if (w->wd < 0)
1942 { 2433 {
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1944 2435
1945 /* monitor some parent directory for speedup hints */ 2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */
2438 /* but an efficiency issue only */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 { 2440 {
1948 char path [4096]; 2441 char path [4096];
1949 strcpy (path, w->path); 2442 strcpy (path, w->path);
1950 2443
1990 2483
1991static void noinline 2484static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{ 2486{
1994 if (slot < 0) 2487 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */ 2488 /* overflow, need to check for all hash slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev); 2490 infy_wd (EV_A_ slot, wd, ev);
1998 else 2491 else
1999 { 2492 {
2000 WL w_; 2493 WL w_;
2034infy_init (EV_P) 2527infy_init (EV_P)
2035{ 2528{
2036 if (fs_fd != -2) 2529 if (fs_fd != -2)
2037 return; 2530 return;
2038 2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2039 fs_fd = inotify_init (); 2553 fs_fd = inotify_init ();
2040 2554
2041 if (fs_fd >= 0) 2555 if (fs_fd >= 0)
2042 { 2556 {
2043 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2072 if (fs_fd >= 0) 2586 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 2587 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else 2588 else
2075 ev_timer_start (EV_A_ &w->timer); 2589 ev_timer_start (EV_A_ &w->timer);
2076 } 2590 }
2077
2078 } 2591 }
2079} 2592}
2080 2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
2081#endif 2600#endif
2082 2601
2083void 2602void
2084ev_stat_stat (EV_P_ ev_stat *w) 2603ev_stat_stat (EV_P_ ev_stat *w)
2085{ 2604{
2112 || w->prev.st_atime != w->attr.st_atime 2631 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime 2632 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime 2633 || w->prev.st_ctime != w->attr.st_ctime
2115 ) { 2634 ) {
2116 #if EV_USE_INOTIFY 2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
2117 infy_del (EV_A_ w); 2638 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w); 2639 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */ 2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
2120 #endif 2642 #endif
2121 2643
2122 ev_feed_event (EV_A_ w, EV_STAT); 2644 ev_feed_event (EV_A_ w, EV_STAT);
2123 } 2645 }
2124} 2646}
2149 else 2671 else
2150#endif 2672#endif
2151 ev_timer_start (EV_A_ &w->timer); 2673 ev_timer_start (EV_A_ &w->timer);
2152 2674
2153 ev_start (EV_A_ (W)w, 1); 2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
2154} 2678}
2155 2679
2156void 2680void
2157ev_stat_stop (EV_P_ ev_stat *w) 2681ev_stat_stop (EV_P_ ev_stat *w)
2158{ 2682{
2159 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2161 return; 2685 return;
2162 2686
2687 EV_FREQUENT_CHECK;
2688
2163#if EV_USE_INOTIFY 2689#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w); 2690 infy_del (EV_A_ w);
2165#endif 2691#endif
2166 ev_timer_stop (EV_A_ &w->timer); 2692 ev_timer_stop (EV_A_ &w->timer);
2167 2693
2168 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695
2696 EV_FREQUENT_CHECK;
2169} 2697}
2170#endif 2698#endif
2171 2699
2172#if EV_IDLE_ENABLE 2700#if EV_IDLE_ENABLE
2173void 2701void
2175{ 2703{
2176 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2177 return; 2705 return;
2178 2706
2179 pri_adjust (EV_A_ (W)w); 2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2180 2710
2181 { 2711 {
2182 int active = ++idlecnt [ABSPRI (w)]; 2712 int active = ++idlecnt [ABSPRI (w)];
2183 2713
2184 ++idleall; 2714 ++idleall;
2185 ev_start (EV_A_ (W)w, active); 2715 ev_start (EV_A_ (W)w, active);
2186 2716
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w; 2718 idles [ABSPRI (w)][active - 1] = w;
2189 } 2719 }
2720
2721 EV_FREQUENT_CHECK;
2190} 2722}
2191 2723
2192void 2724void
2193ev_idle_stop (EV_P_ ev_idle *w) 2725ev_idle_stop (EV_P_ ev_idle *w)
2194{ 2726{
2195 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
2197 return; 2729 return;
2198 2730
2731 EV_FREQUENT_CHECK;
2732
2199 { 2733 {
2200 int active = ((W)w)->active; 2734 int active = ev_active (w);
2201 2735
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2204 2738
2205 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2206 --idleall; 2740 --idleall;
2207 } 2741 }
2742
2743 EV_FREQUENT_CHECK;
2208} 2744}
2209#endif 2745#endif
2210 2746
2211void 2747void
2212ev_prepare_start (EV_P_ ev_prepare *w) 2748ev_prepare_start (EV_P_ ev_prepare *w)
2213{ 2749{
2214 if (expect_false (ev_is_active (w))) 2750 if (expect_false (ev_is_active (w)))
2215 return; 2751 return;
2752
2753 EV_FREQUENT_CHECK;
2216 2754
2217 ev_start (EV_A_ (W)w, ++preparecnt); 2755 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w; 2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
2220} 2760}
2221 2761
2222void 2762void
2223ev_prepare_stop (EV_P_ ev_prepare *w) 2763ev_prepare_stop (EV_P_ ev_prepare *w)
2224{ 2764{
2225 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
2227 return; 2767 return;
2228 2768
2769 EV_FREQUENT_CHECK;
2770
2229 { 2771 {
2230 int active = ((W)w)->active; 2772 int active = ev_active (w);
2773
2231 prepares [active - 1] = prepares [--preparecnt]; 2774 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active; 2775 ev_active (prepares [active - 1]) = active;
2233 } 2776 }
2234 2777
2235 ev_stop (EV_A_ (W)w); 2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2236} 2781}
2237 2782
2238void 2783void
2239ev_check_start (EV_P_ ev_check *w) 2784ev_check_start (EV_P_ ev_check *w)
2240{ 2785{
2241 if (expect_false (ev_is_active (w))) 2786 if (expect_false (ev_is_active (w)))
2242 return; 2787 return;
2788
2789 EV_FREQUENT_CHECK;
2243 2790
2244 ev_start (EV_A_ (W)w, ++checkcnt); 2791 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w; 2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2247} 2796}
2248 2797
2249void 2798void
2250ev_check_stop (EV_P_ ev_check *w) 2799ev_check_stop (EV_P_ ev_check *w)
2251{ 2800{
2252 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
2254 return; 2803 return;
2255 2804
2805 EV_FREQUENT_CHECK;
2806
2256 { 2807 {
2257 int active = ((W)w)->active; 2808 int active = ev_active (w);
2809
2258 checks [active - 1] = checks [--checkcnt]; 2810 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active; 2811 ev_active (checks [active - 1]) = active;
2260 } 2812 }
2261 2813
2262 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2263} 2817}
2264 2818
2265#if EV_EMBED_ENABLE 2819#if EV_EMBED_ENABLE
2266void noinline 2820void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w) 2821ev_embed_sweep (EV_P_ ev_embed *w)
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 } 2849 }
2296 } 2850 }
2297} 2851}
2298 2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2299#if 0 2865#if 0
2300static void 2866static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{ 2868{
2303 ev_idle_stop (EV_A_ idle); 2869 ev_idle_stop (EV_A_ idle);
2314 struct ev_loop *loop = w->other; 2880 struct ev_loop *loop = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 } 2883 }
2318 2884
2885 EV_FREQUENT_CHECK;
2886
2319 ev_set_priority (&w->io, ev_priority (w)); 2887 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io); 2888 ev_io_start (EV_A_ &w->io);
2321 2889
2322 ev_prepare_init (&w->prepare, embed_prepare_cb); 2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI); 2891 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare); 2892 ev_prepare_start (EV_A_ &w->prepare);
2325 2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327 2898
2328 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2329} 2902}
2330 2903
2331void 2904void
2332ev_embed_stop (EV_P_ ev_embed *w) 2905ev_embed_stop (EV_P_ ev_embed *w)
2333{ 2906{
2334 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2336 return; 2909 return;
2337 2910
2911 EV_FREQUENT_CHECK;
2912
2338 ev_io_stop (EV_A_ &w->io); 2913 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare); 2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2340 2916
2341 ev_stop (EV_A_ (W)w); 2917 EV_FREQUENT_CHECK;
2342} 2918}
2343#endif 2919#endif
2344 2920
2345#if EV_FORK_ENABLE 2921#if EV_FORK_ENABLE
2346void 2922void
2347ev_fork_start (EV_P_ ev_fork *w) 2923ev_fork_start (EV_P_ ev_fork *w)
2348{ 2924{
2349 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2350 return; 2926 return;
2927
2928 EV_FREQUENT_CHECK;
2351 2929
2352 ev_start (EV_A_ (W)w, ++forkcnt); 2930 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w; 2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2355} 2935}
2356 2936
2357void 2937void
2358ev_fork_stop (EV_P_ ev_fork *w) 2938ev_fork_stop (EV_P_ ev_fork *w)
2359{ 2939{
2360 clear_pending (EV_A_ (W)w); 2940 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2941 if (expect_false (!ev_is_active (w)))
2362 return; 2942 return;
2363 2943
2944 EV_FREQUENT_CHECK;
2945
2364 { 2946 {
2365 int active = ((W)w)->active; 2947 int active = ev_active (w);
2948
2366 forks [active - 1] = forks [--forkcnt]; 2949 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active; 2950 ev_active (forks [active - 1]) = active;
2368 } 2951 }
2369 2952
2370 ev_stop (EV_A_ (W)w); 2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2956}
2957#endif
2958
2959#if EV_ASYNC_ENABLE
2960void
2961ev_async_start (EV_P_ ev_async *w)
2962{
2963 if (expect_false (ev_is_active (w)))
2964 return;
2965
2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2969
2970 ev_start (EV_A_ (W)w, ++asynccnt);
2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_async_stop (EV_P_ ev_async *w)
2979{
2980 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w)))
2982 return;
2983
2984 EV_FREQUENT_CHECK;
2985
2986 {
2987 int active = ev_active (w);
2988
2989 asyncs [active - 1] = asyncs [--asynccnt];
2990 ev_active (asyncs [active - 1]) = active;
2991 }
2992
2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_send (EV_P_ ev_async *w)
3000{
3001 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync);
2371} 3003}
2372#endif 3004#endif
2373 3005
2374/*****************************************************************************/ 3006/*****************************************************************************/
2375 3007
2385once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
2386{ 3018{
2387 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
2388 void *arg = once->arg; 3020 void *arg = once->arg;
2389 3021
2390 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
2391 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
2392 ev_free (once); 3024 ev_free (once);
2393 3025
2394 cb (revents, arg); 3026 cb (revents, arg);
2395} 3027}
2396 3028
2397static void 3029static void
2398once_cb_io (EV_P_ ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
2399{ 3031{
2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2401} 3035}
2402 3036
2403static void 3037static void
2404once_cb_to (EV_P_ ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
2405{ 3039{
2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2407} 3043}
2408 3044
2409void 3045void
2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2411{ 3047{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines