ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
119#include <fcntl.h> 158#include <fcntl.h>
137#ifndef _WIN32 176#ifndef _WIN32
138# include <sys/time.h> 177# include <sys/time.h>
139# include <sys/wait.h> 178# include <sys/wait.h>
140# include <unistd.h> 179# include <unistd.h>
141#else 180#else
181# include <io.h>
142# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 183# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
146# endif 186# endif
147#endif 187#endif
148 188
149/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
150 198
151#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
152# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
153#endif 205#endif
154 206
155#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 209#endif
158 210
159#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
160# define EV_USE_NANOSLEEP 0 215# define EV_USE_NANOSLEEP 0
216# endif
161#endif 217#endif
162 218
163#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
165#endif 221#endif
171# define EV_USE_POLL 1 227# define EV_USE_POLL 1
172# endif 228# endif
173#endif 229#endif
174 230
175#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
176# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
177#endif 237#endif
178 238
179#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
181#endif 241#endif
183#ifndef EV_USE_PORT 243#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 244# define EV_USE_PORT 0
185#endif 245#endif
186 246
187#ifndef EV_USE_INOTIFY 247#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249# define EV_USE_INOTIFY 1
250# else
188# define EV_USE_INOTIFY 0 251# define EV_USE_INOTIFY 0
252# endif
189#endif 253#endif
190 254
191#ifndef EV_PID_HASHSIZE 255#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 256# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 257# define EV_PID_HASHSIZE 1
202# else 266# else
203# define EV_INOTIFY_HASHSIZE 16 267# define EV_INOTIFY_HASHSIZE 16
204# endif 268# endif
205#endif 269#endif
206 270
207/**/ 271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 320
209#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
212#endif 324#endif
226# include <sys/select.h> 338# include <sys/select.h>
227# endif 339# endif
228#endif 340#endif
229 341
230#if EV_USE_INOTIFY 342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
231# include <sys/inotify.h> 345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
232#endif 351#endif
233 352
234#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 354# include <winsock.h>
236#endif 355#endif
237 356
357#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
238/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
239 386
240/* 387/*
241 * This is used to avoid floating point rounding problems. 388 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 389 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 390 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 403# define noinline __attribute__ ((noinline))
257#else 404#else
258# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
259# define noinline 406# define noinline
260# if __STDC_VERSION__ < 199901L 407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 408# define inline
262# endif 409# endif
263#endif 410#endif
264 411
265#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 417# define inline_speed static noinline
271#else 418#else
272# define inline_speed static inline 419# define inline_speed static inline
273#endif 420#endif
274 421
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
277 429
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
280 432
281typedef ev_watcher *W; 433typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
284 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
288 449
289#ifdef _WIN32 450#ifdef _WIN32
290# include "ev_win32.c" 451# include "ev_win32.c"
291#endif 452#endif
292 453
299{ 460{
300 syserr_cb = cb; 461 syserr_cb = cb;
301} 462}
302 463
303static void noinline 464static void noinline
304syserr (const char *msg) 465ev_syserr (const char *msg)
305{ 466{
306 if (!msg) 467 if (!msg)
307 msg = "(libev) system error"; 468 msg = "(libev) system error";
308 469
309 if (syserr_cb) 470 if (syserr_cb)
313 perror (msg); 474 perror (msg);
314 abort (); 475 abort ();
315 } 476 }
316} 477}
317 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
318static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 495
320void 496void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 498{
323 alloc = cb; 499 alloc = cb;
324} 500}
325 501
326inline_speed void * 502inline_speed void *
327ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
328{ 504{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
330 506
331 if (!ptr && size) 507 if (!ptr && size)
332 { 508 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 510 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
342 518
343/*****************************************************************************/ 519/*****************************************************************************/
344 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
345typedef struct 525typedef struct
346{ 526{
347 WL head; 527 WL head;
348 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
350#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 536 SOCKET handle;
352#endif 537#endif
353} ANFD; 538} ANFD;
354 539
540/* stores the pending event set for a given watcher */
355typedef struct 541typedef struct
356{ 542{
357 W w; 543 W w;
358 int events; 544 int events; /* the pending event set for the given watcher */
359} ANPENDING; 545} ANPENDING;
360 546
361#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
362typedef struct 549typedef struct
363{ 550{
364 WL head; 551 WL head;
365} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
366#endif 573#endif
367 574
368#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
369 576
370 struct ev_loop 577 struct ev_loop
389 596
390 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
391 598
392#endif 599#endif
393 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
394/*****************************************************************************/ 613/*****************************************************************************/
395 614
615#ifndef EV_HAVE_EV_TIME
396ev_tstamp 616ev_tstamp
397ev_time (void) 617ev_time (void)
398{ 618{
399#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
400 struct timespec ts; 622 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 625 }
626#endif
627
404 struct timeval tv; 628 struct timeval tv;
405 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 631}
632#endif
409 633
410ev_tstamp inline_size 634inline_size ev_tstamp
411get_clock (void) 635get_clock (void)
412{ 636{
413#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
415 { 639 {
441 ts.tv_sec = (time_t)delay; 665 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 667
444 nanosleep (&ts, 0); 668 nanosleep (&ts, 0);
445#elif defined(_WIN32) 669#elif defined(_WIN32)
446 Sleep (delay * 1e3); 670 Sleep ((unsigned long)(delay * 1e3));
447#else 671#else
448 struct timeval tv; 672 struct timeval tv;
449 673
450 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
453 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
454#endif 681#endif
455 } 682 }
456} 683}
457 684
458/*****************************************************************************/ 685/*****************************************************************************/
459 686
460int inline_size 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
461array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
462{ 693{
463 int ncur = cur + 1; 694 int ncur = cur + 1;
464 695
465 do 696 do
466 ncur <<= 1; 697 ncur <<= 1;
467 while (cnt > ncur); 698 while (cnt > ncur);
468 699
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 702 {
472 ncur *= elem; 703 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 705 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 706 ncur /= elem;
476 } 707 }
477 708
478 return ncur; 709 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
483{ 714{
484 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
486} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 721
488#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
490 { \ 724 { \
491 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 738 }
505#endif 739#endif
506 740
507#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 743
510/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
511 751
512void noinline 752void noinline
513ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
514{ 754{
515 W w_ = (W)w; 755 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
526 } 766 }
527} 767}
528 768
529void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 786{
532 int i; 787 int i;
533 788
534 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
536} 791}
537 792
538/*****************************************************************************/ 793/*****************************************************************************/
539 794
540void inline_size 795inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
555{ 797{
556 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
557 ev_io *w; 799 ev_io *w;
558 800
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 805 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
565 } 807 }
566} 808}
567 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
568void 821void
569ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 823{
571 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
573} 826}
574 827
575void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
576fd_reify (EV_P) 831fd_reify (EV_P)
577{ 832{
578 int i; 833 int i;
579 834
580 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 844 events |= (unsigned char)w->events;
590 845
591#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
592 if (events) 847 if (events)
593 { 848 {
594 unsigned long argp; 849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
595 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
854 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 856 }
598#endif 857#endif
599 858
600 { 859 {
601 unsigned char o_events = anfd->events; 860 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
603 862
604 anfd->reify = 0; 863 anfd->reify = 0;
605 anfd->events = events; 864 anfd->events = events;
606 865
607 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
609 } 868 }
610 } 869 }
611 870
612 fdchangecnt = 0; 871 fdchangecnt = 0;
613} 872}
614 873
615void inline_size 874/* something about the given fd changed */
875inline_size void
616fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
617{ 877{
618 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
620 880
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
626 } 886 }
627} 887}
628 888
629void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
630fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
631{ 892{
632 ev_io *w; 893 ev_io *w;
633 894
634 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 899 }
639} 900}
640 901
641int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
642fd_valid (int fd) 904fd_valid (int fd)
643{ 905{
644#ifdef _WIN32 906#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
646#else 908#else
654{ 916{
655 int fd; 917 int fd;
656 918
657 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 920 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
661} 923}
662 924
663/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 926static void noinline
682 944
683 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 946 if (anfds [fd].events)
685 { 947 {
686 anfds [fd].events = 0; 948 anfds [fd].events = 0;
949 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 951 }
689} 952}
690 953
691/*****************************************************************************/ 954/*****************************************************************************/
692 955
693void inline_speed 956/*
694upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
697 961
698 while (k) 962/*
699 { 963 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
965 * which is more cache-efficient.
966 * the difference is about 5% with 50000+ watchers.
967 */
968#if EV_USE_4HEAP
701 969
702 if (heap [p]->at <= w->at) 970#define DHEAP 4
971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
974
975/* away from the root */
976inline_speed void
977downheap (ANHE *heap, int N, int k)
978{
979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
981
982 for (;;)
983 {
984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987
988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
990 {
991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
703 break; 1004 break;
704 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
1044 heap [k] = heap [c];
1045 ev_active (ANHE_w (heap [k])) = k;
1046
1047 k = c;
1048 }
1049
1050 heap [k] = he;
1051 ev_active (ANHE_w (he)) = k;
1052}
1053#endif
1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
705 heap [k] = heap [p]; 1068 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1069 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1070 k = p;
708 } 1071 }
709 1072
710 heap [k] = w; 1073 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1074 ev_active (ANHE_w (he)) = k;
712} 1075}
713 1076
714void inline_speed 1077/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1078inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
744{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 1082 upheap (heap, k);
1083 else
746 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
747} 1097}
748 1098
749/*****************************************************************************/ 1099/*****************************************************************************/
750 1100
1101/* associate signal watchers to a signal signal */
751typedef struct 1102typedef struct
752{ 1103{
753 WL head; 1104 WL head;
754 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
755} ANSIG; 1106} ANSIG;
756 1107
757static ANSIG *signals; 1108static ANSIG *signals;
758static int signalmax; 1109static int signalmax;
759 1110
760static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1112
764void inline_size 1113/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771 1114
772 ++base; 1115/* used to prepare libev internal fd's */
773 } 1116/* this is not fork-safe */
774} 1117inline_speed void
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1118fd_intern (int fd)
829{ 1119{
830#ifdef _WIN32 1120#ifdef _WIN32
831 int arg = 1; 1121 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1123#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1126#endif
837} 1127}
838 1128
839static void noinline 1129static void noinline
840siginit (EV_P) 1130evpipe_init (EV_P)
841{ 1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
842 fd_intern (sigpipe [0]); 1151 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
844 1155
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1156 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
1186static void
1187pipecb (EV_P_ ev_io *iow, int revents)
1188{
1189#if EV_USE_EVENTFD
1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
1194 }
1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
1201
1202 if (gotsig && ev_is_default_loop (EV_A))
1203 {
1204 int signum;
1205 gotsig = 0;
1206
1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
848} 1226}
849 1227
850/*****************************************************************************/ 1228/*****************************************************************************/
851 1229
1230static void
1231ev_sighandler (int signum)
1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
1237#if _WIN32
1238 signal (signum, ev_sighandler);
1239#endif
1240
1241 signals [signum - 1].gotsig = 1;
1242 evpipe_write (EV_A_ &gotsig);
1243}
1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return;
1258
1259 signals [signum].gotsig = 0;
1260
1261 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263}
1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1285/*****************************************************************************/
1286
852static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
853 1288
854#ifndef _WIN32 1289#ifndef _WIN32
855 1290
856static ev_signal childev; 1291static ev_signal childev;
857 1292
858void inline_speed 1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
860{ 1300{
861 ev_child *w; 1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1303
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
864 if (w->pid == pid || !w->pid) 1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
865 { 1308 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1310 w->rpid = pid;
868 w->rstatus = status; 1311 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1313 }
1314 }
871} 1315}
872 1316
873#ifndef WCONTINUED 1317#ifndef WCONTINUED
874# define WCONTINUED 0 1318# define WCONTINUED 0
875#endif 1319#endif
876 1320
1321/* called on sigchld etc., calls waitpid */
877static void 1322static void
878childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
879{ 1324{
880 int pid, status; 1325 int pid, status;
881 1326
884 if (!WCONTINUED 1329 if (!WCONTINUED
885 || errno != EINVAL 1330 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1332 return;
888 1333
889 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1335 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1337
893 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1339 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1341}
897 1342
898#endif 1343#endif
899 1344
900/*****************************************************************************/ 1345/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
965#endif 1410#endif
966#ifdef __APPLE__ 1411#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1415#endif
970 1416
971 return flags; 1417 return flags;
972} 1418}
973 1419
978 1424
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */ 1426 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL; 1427 flags &= ~EVBACKEND_EPOLL;
982 1428
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags; 1429 return flags;
989} 1430}
990 1431
991unsigned int 1432unsigned int
992ev_backend (EV_P) 1433ev_backend (EV_P)
993{ 1434{
994 return backend; 1435 return backend;
995} 1436}
996 1437
1438#if EV_MINIMAL < 2
997unsigned int 1439unsigned int
998ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
999{ 1441{
1000 return loop_count; 1442 return loop_count;
1001} 1443}
1002 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1003void 1451void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1005{ 1453{
1006 io_blocktime = interval; 1454 io_blocktime = interval;
1007} 1455}
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{ 1459{
1012 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1013} 1461}
1014 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1015static void noinline 1488static void noinline
1016loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1017{ 1490{
1018 if (!backend) 1491 if (!backend)
1019 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1020#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1021 { 1505 {
1022 struct timespec ts; 1506 struct timespec ts;
1507
1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1024 have_monotonic = 1; 1509 have_monotonic = 1;
1025 } 1510 }
1026#endif 1511#endif
1027 1512
1028 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1514 mn_now = get_clock ();
1030 now_floor = mn_now; 1515 now_floor = mn_now;
1031 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1032 1520
1033 io_blocktime = 0.; 1521 io_blocktime = 0.;
1034 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1035 1532
1036 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1037#ifndef _WIN32 1534#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid (); 1536 curpid = getpid ();
1042 if (!(flags & EVFLAG_NOENV) 1539 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure () 1540 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS")) 1541 && getenv ("LIBEV_FLAGS"))
1045 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
1046 1543
1047 if (!(flags & 0x0000ffffUL)) 1544 if (!(flags & 0x0000ffffU))
1048 flags |= ev_recommended_backends (); 1545 flags |= ev_recommended_backends ();
1049
1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY
1053 fs_fd = -2;
1054#endif
1055 1546
1056#if EV_USE_PORT 1547#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1058#endif 1549#endif
1059#if EV_USE_KQUEUE 1550#if EV_USE_KQUEUE
1067#endif 1558#endif
1068#if EV_USE_SELECT 1559#if EV_USE_SELECT
1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1070#endif 1561#endif
1071 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1072 ev_init (&sigev, sigcb); 1565 ev_init (&pipe_w, pipecb);
1073 ev_set_priority (&sigev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1074 } 1567 }
1075} 1568}
1076 1569
1570/* free up a loop structure */
1077static void noinline 1571static void noinline
1078loop_destroy (EV_P) 1572loop_destroy (EV_P)
1079{ 1573{
1080 int i; 1574 int i;
1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1081 1602
1082#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1083 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1084 close (fs_fd); 1605 close (fs_fd);
1085#endif 1606#endif
1112 } 1633 }
1113 1634
1114 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1115 1636
1116 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1117 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1118 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1119#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1120 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1121#endif 1643#endif
1122#if EV_FORK_ENABLE 1644#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY); 1645 array_free (fork, EMPTY);
1124#endif 1646#endif
1125 array_free (prepare, EMPTY); 1647 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY); 1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
1127 1652
1128 backend = 0; 1653 backend = 0;
1129} 1654}
1130 1655
1656#if EV_USE_INOTIFY
1131void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1658#endif
1132 1659
1133void inline_size 1660inline_size void
1134loop_fork (EV_P) 1661loop_fork (EV_P)
1135{ 1662{
1136#if EV_USE_PORT 1663#if EV_USE_PORT
1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1138#endif 1665#endif
1144#endif 1671#endif
1145#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1146 infy_fork (EV_A); 1673 infy_fork (EV_A);
1147#endif 1674#endif
1148 1675
1149 if (ev_is_active (&sigev)) 1676 if (ev_is_active (&pipe_w))
1150 { 1677 {
1151 /* default loop */ 1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
1152 1684
1153 ev_ref (EV_A); 1685 ev_ref (EV_A);
1154 ev_io_stop (EV_A_ &sigev); 1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
1155 close (sigpipe [0]); 1695 close (evpipe [0]);
1156 close (sigpipe [1]); 1696 close (evpipe [1]);
1697 }
1157 1698
1158 while (pipe (sigpipe))
1159 syserr ("(libev) error creating pipe");
1160
1161 siginit (EV_A); 1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
1162 } 1702 }
1163 1703
1164 postfork = 0; 1704 postfork = 0;
1165} 1705}
1166 1706
1167#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1168struct ev_loop * 1709struct ev_loop *
1169ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1170{ 1711{
1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1172 1713
1173 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1174
1175 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1176 1716
1177 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1178 return loop; 1718 return loop;
1179 1719
1188} 1728}
1189 1729
1190void 1730void
1191ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1192{ 1732{
1193 postfork = 1; 1733 postfork = 1; /* must be in line with ev_default_fork */
1194} 1734}
1735#endif /* multiplicity */
1195 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1196#endif 1836#endif
1197 1837
1198#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1199struct ev_loop * 1839struct ev_loop *
1200ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1201#else 1841#else
1202int 1842int
1203ev_default_loop (unsigned int flags) 1843ev_default_loop (unsigned int flags)
1204#endif 1844#endif
1205{ 1845{
1206 if (sigpipe [0] == sigpipe [1])
1207 if (pipe (sigpipe))
1208 return 0;
1209
1210 if (!ev_default_loop_ptr) 1846 if (!ev_default_loop_ptr)
1211 { 1847 {
1212#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1214#else 1850#else
1217 1853
1218 loop_init (EV_A_ flags); 1854 loop_init (EV_A_ flags);
1219 1855
1220 if (ev_backend (EV_A)) 1856 if (ev_backend (EV_A))
1221 { 1857 {
1222 siginit (EV_A);
1223
1224#ifndef _WIN32 1858#ifndef _WIN32
1225 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
1226 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
1227 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
1228 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240{ 1874{
1241#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1242 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1243#endif 1877#endif
1244 1878
1879 ev_default_loop_ptr = 0;
1880
1245#ifndef _WIN32 1881#ifndef _WIN32
1246 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1247 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1248#endif 1884#endif
1249 1885
1250 ev_ref (EV_A); /* signal watcher */
1251 ev_io_stop (EV_A_ &sigev);
1252
1253 close (sigpipe [0]); sigpipe [0] = 0;
1254 close (sigpipe [1]); sigpipe [1] = 0;
1255
1256 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
1257} 1887}
1258 1888
1259void 1889void
1260ev_default_fork (void) 1890ev_default_fork (void)
1261{ 1891{
1262#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1263 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1264#endif 1894#endif
1265 1895
1266 if (backend) 1896 postfork = 1; /* must be in line with ev_loop_fork */
1267 postfork = 1;
1268} 1897}
1269 1898
1270/*****************************************************************************/ 1899/*****************************************************************************/
1271 1900
1272void 1901void
1273ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1274{ 1903{
1275 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1276} 1905}
1277 1906
1278void inline_speed 1907unsigned int
1279call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1280{ 1921{
1281 int pri; 1922 int pri;
1282 1923
1283 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1284 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1285 { 1926 {
1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1287 1928
1288 if (expect_true (p->w))
1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1291 1931
1292 p->w->pending = 0; 1932 p->w->pending = 0;
1293 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1294 } 1934 EV_FREQUENT_CHECK;
1295 } 1935 }
1296} 1936}
1297 1937
1298void inline_size
1299timers_reify (EV_P)
1300{
1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1302 {
1303 ev_timer *w = (ev_timer *)timers [0];
1304
1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1306
1307 /* first reschedule or stop timer */
1308 if (w->repeat)
1309 {
1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
1316 downheap (timers, timercnt, 0);
1317 }
1318 else
1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1320
1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1322 }
1323}
1324
1325#if EV_PERIODIC_ENABLE
1326void inline_size
1327periodics_reify (EV_P)
1328{
1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1330 {
1331 ev_periodic *w = (ev_periodic *)periodics [0];
1332
1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1334
1335 /* first reschedule or stop timer */
1336 if (w->reschedule_cb)
1337 {
1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1340 downheap (periodics, periodiccnt, 0);
1341 }
1342 else if (w->interval)
1343 {
1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1347 downheap (periodics, periodiccnt, 0);
1348 }
1349 else
1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1351
1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1353 }
1354}
1355
1356static void noinline
1357periodics_reschedule (EV_P)
1358{
1359 int i;
1360
1361 /* adjust periodics after time jump */
1362 for (i = 0; i < periodiccnt; ++i)
1363 {
1364 ev_periodic *w = (ev_periodic *)periodics [i];
1365
1366 if (w->reschedule_cb)
1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1368 else if (w->interval)
1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 }
1371
1372 /* now rebuild the heap */
1373 for (i = periodiccnt >> 1; i--; )
1374 downheap (periodics, periodiccnt, i);
1375}
1376#endif
1377
1378#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1379void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1380idle_reify (EV_P) 1942idle_reify (EV_P)
1381{ 1943{
1382 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1383 { 1945 {
1384 int pri; 1946 int pri;
1396 } 1958 }
1397 } 1959 }
1398} 1960}
1399#endif 1961#endif
1400 1962
1401void inline_speed 1963/* make timers pending */
1964inline_size void
1965timers_reify (EV_P)
1966{
1967 EV_FREQUENT_CHECK;
1968
1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 {
1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 }
1999}
2000
2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 {
2010 int feed_count = 0;
2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1402time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1403{ 2101{
1404 int i;
1405
1406#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1408 { 2104 {
2105 int i;
1409 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1410 2107
1411 mn_now = get_clock (); 2108 mn_now = get_clock ();
1412 2109
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1431 */ 2128 */
1432 for (i = 4; --i; ) 2129 for (i = 4; --i; )
1433 { 2130 {
1434 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1435 2132
1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1437 return; /* all is well */ 2134 return; /* all is well */
1438 2135
1439 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1440 mn_now = get_clock (); 2137 mn_now = get_clock ();
1441 now_floor = mn_now; 2138 now_floor = mn_now;
1442 } 2139 }
1443 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1446# endif 2145# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 } 2146 }
1450 else 2147 else
1451#endif 2148#endif
1452 { 2149 {
1453 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1454 2151
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1457#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1458 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1459#endif 2158#endif
1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i)
1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1463 } 2159 }
1464 2160
1465 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1466 } 2162 }
1467} 2163}
1468 2164
1469void 2165void
1470ev_ref (EV_P)
1471{
1472 ++activecnt;
1473}
1474
1475void
1476ev_unref (EV_P)
1477{
1478 --activecnt;
1479}
1480
1481static int loop_done;
1482
1483void
1484ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1485{ 2167{
1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2168#if EV_MINIMAL < 2
1487 ? EVUNLOOP_ONE 2169 ++loop_depth;
1488 : EVUNLOOP_CANCEL; 2170#endif
1489 2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1491 2177
1492 do 2178 do
1493 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1494#ifndef _WIN32 2184#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1497 { 2187 {
1498 curpid = getpid (); 2188 curpid = getpid ();
1504 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1505 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1506 if (forkcnt) 2196 if (forkcnt)
1507 { 2197 {
1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1509 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1510 } 2200 }
1511#endif 2201#endif
1512 2202
1513 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1514 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1515 { 2205 {
1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1517 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1518 } 2208 }
1519 2209
1520 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1521 break; 2211 break;
1522 2212
1523 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1524 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1525 loop_fork (EV_A); 2215 loop_fork (EV_A);
1532 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1534 2224
1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1536 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1537 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1538 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
1539 2232
1540 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1541 2234
1542 if (timercnt) 2235 if (timercnt)
1543 { 2236 {
1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1545 if (waittime > to) waittime = to; 2238 if (waittime > to) waittime = to;
1546 } 2239 }
1547 2240
1548#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1549 if (periodiccnt) 2242 if (periodiccnt)
1550 { 2243 {
1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1552 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
1553 } 2246 }
1554#endif 2247#endif
1555 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
1556 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
1558 2252
1559 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
1560
1561 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
1566 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
1567 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
1568 } 2266 }
1569 } 2267 }
1570 2268
2269#if EV_MINIMAL < 2
1571 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1572 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1573 2275
1574 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1575 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
1576 } 2278 }
1577 2279
1588 2290
1589 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1590 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1592 2294
1593 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1594
1595 } 2296 }
1596 while (expect_true (activecnt && !loop_done)); 2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1597 2302
1598 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1599 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1600} 2309}
1601 2310
1602void 2311void
1603ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1604{ 2313{
1605 loop_done = how; 2314 loop_done = how;
1606} 2315}
1607 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1608/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1609 2356
1610void inline_size 2357inline_size void
1611wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1612{ 2359{
1613 elem->next = *head; 2360 elem->next = *head;
1614 *head = elem; 2361 *head = elem;
1615} 2362}
1616 2363
1617void inline_size 2364inline_size void
1618wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1619{ 2366{
1620 while (*head) 2367 while (*head)
1621 { 2368 {
1622 if (*head == elem) 2369 if (*head == elem)
1627 2374
1628 head = &(*head)->next; 2375 head = &(*head)->next;
1629 } 2376 }
1630} 2377}
1631 2378
1632void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1633clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1634{ 2382{
1635 if (w->pending) 2383 if (w->pending)
1636 { 2384 {
1637 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1638 w->pending = 0; 2386 w->pending = 0;
1639 } 2387 }
1640} 2388}
1641 2389
1642int 2390int
1646 int pending = w_->pending; 2394 int pending = w_->pending;
1647 2395
1648 if (expect_true (pending)) 2396 if (expect_true (pending))
1649 { 2397 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
1651 w_->pending = 0; 2400 w_->pending = 0;
1652 p->w = 0;
1653 return p->events; 2401 return p->events;
1654 } 2402 }
1655 else 2403 else
1656 return 0; 2404 return 0;
1657} 2405}
1658 2406
1659void inline_size 2407inline_size void
1660pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1661{ 2409{
1662 int pri = w->priority; 2410 int pri = ev_priority (w);
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri; 2413 ev_set_priority (w, pri);
1666} 2414}
1667 2415
1668void inline_speed 2416inline_speed void
1669ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1670{ 2418{
1671 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1672 w->active = active; 2420 w->active = active;
1673 ev_ref (EV_A); 2421 ev_ref (EV_A);
1674} 2422}
1675 2423
1676void inline_size 2424inline_size void
1677ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1678{ 2426{
1679 ev_unref (EV_A); 2427 ev_unref (EV_A);
1680 w->active = 0; 2428 w->active = 0;
1681} 2429}
1688 int fd = w->fd; 2436 int fd = w->fd;
1689 2437
1690 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1691 return; 2439 return;
1692 2440
1693 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1694 2445
1695 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1697 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1698 2449
1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1700 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
1701} 2454}
1702 2455
1703void noinline 2456void noinline
1704ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1705{ 2458{
1706 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1707 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1708 return; 2461 return;
1709 2462
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
1711 2466
1712 wlist_del (&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1713 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1714 2469
1715 fd_change (EV_A_ w->fd, 1); 2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
1716} 2473}
1717 2474
1718void noinline 2475void noinline
1719ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1720{ 2477{
1721 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1722 return; 2479 return;
1723 2480
1724 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1725 2482
1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1727 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1728 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1730 timers [timercnt - 1] = (WT)w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1731 upheap (timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1732 2493
2494 EV_FREQUENT_CHECK;
2495
1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1734} 2497}
1735 2498
1736void noinline 2499void noinline
1737ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1738{ 2501{
1739 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1740 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1741 return; 2504 return;
1742 2505
1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2506 EV_FREQUENT_CHECK;
1744 2507
1745 { 2508 {
1746 int active = ((W)w)->active; 2509 int active = ev_active (w);
1747 2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
1748 if (expect_true (--active < --timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1749 { 2516 {
1750 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1751 adjustheap (timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1752 } 2519 }
1753 } 2520 }
1754 2521
1755 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1756 2525
1757 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1758} 2527}
1759 2528
1760void noinline 2529void noinline
1761ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1762{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1763 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1764 { 2535 {
1765 if (w->repeat) 2536 if (w->repeat)
1766 { 2537 {
1767 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1768 adjustheap (timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1769 } 2541 }
1770 else 2542 else
1771 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1772 } 2544 }
1773 else if (w->repeat) 2545 else if (w->repeat)
1774 { 2546 {
1775 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1776 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1777 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1778} 2558}
1779 2559
1780#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1781void noinline 2561void noinline
1782ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1783{ 2563{
1784 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1785 return; 2565 return;
1786 2566
1787 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1789 else if (w->interval) 2569 else if (w->interval)
1790 { 2570 {
1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1792 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1794 } 2574 }
1795 else 2575 else
1796 ((WT)w)->at = w->offset; 2576 ev_at (w) = w->offset;
1797 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1798 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1800 periodics [periodiccnt - 1] = (WT)w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1801 upheap (periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1802 2586
2587 EV_FREQUENT_CHECK;
2588
1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1804} 2590}
1805 2591
1806void noinline 2592void noinline
1807ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1808{ 2594{
1809 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1811 return; 2597 return;
1812 2598
1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1814 2600
1815 { 2601 {
1816 int active = ((W)w)->active; 2602 int active = ev_active (w);
1817 2603
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605
2606 --periodiccnt;
2607
1818 if (expect_true (--active < --periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1819 { 2609 {
1820 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1821 adjustheap (periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1822 } 2612 }
1823 } 2613 }
1824 2614
2615 EV_FREQUENT_CHECK;
2616
1825 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1826} 2618}
1827 2619
1828void noinline 2620void noinline
1829ev_periodic_again (EV_P_ ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1840 2632
1841void noinline 2633void noinline
1842ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1843{ 2635{
1844#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1846#endif 2638#endif
1847 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
1848 return; 2640 return;
1849 2641
1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
1851 2677
1852 { 2678 {
1853#ifndef _WIN32 2679#ifndef _WIN32
1854 sigset_t full, prev; 2680 sigset_t full, prev;
1855 sigfillset (&full); 2681 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev); 2682 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif 2683#endif
1858 2684
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1860 2686
1861#ifndef _WIN32 2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
1862 sigprocmask (SIG_SETMASK, &prev, 0); 2692 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif 2693#endif
1864 } 2694 }
1865 2695
1866 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
1867 wlist_add (&signals [w->signum - 1].head, (WL)w); 2697 wlist_add (&signals [w->signum - 1].head, (WL)w);
1868 2698
1869 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
1870 { 2700 {
1871#if _WIN32 2701#if _WIN32
1872 signal (w->signum, sighandler); 2702 signal (w->signum, ev_sighandler);
1873#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
1874 struct sigaction sa; 2708 struct sigaction sa = { };
1875 sa.sa_handler = sighandler; 2709 sa.sa_handler = ev_sighandler;
1876 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
1877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1878 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
1879#endif 2714#endif
1880 } 2715 }
2716
2717 EV_FREQUENT_CHECK;
1881} 2718}
1882 2719
1883void noinline 2720void noinline
1884ev_signal_stop (EV_P_ ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
1885{ 2722{
1886 clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1887 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1888 return; 2725 return;
1889 2726
2727 EV_FREQUENT_CHECK;
2728
1890 wlist_del (&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
1891 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
1892 2731
1893 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
1894 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
2745
2746 EV_FREQUENT_CHECK;
1895} 2747}
1896 2748
1897void 2749void
1898ev_child_start (EV_P_ ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
1899{ 2751{
1900#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1902#endif 2754#endif
1903 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
1904 return; 2756 return;
1905 2757
2758 EV_FREQUENT_CHECK;
2759
1906 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2762
2763 EV_FREQUENT_CHECK;
1908} 2764}
1909 2765
1910void 2766void
1911ev_child_stop (EV_P_ ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
1912{ 2768{
1913 clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1914 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
1915 return; 2771 return;
1916 2772
2773 EV_FREQUENT_CHECK;
2774
1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1918 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
1919} 2779}
1920 2780
1921#if EV_STAT_ENABLE 2781#if EV_STAT_ENABLE
1922 2782
1923# ifdef _WIN32 2783# ifdef _WIN32
1924# undef lstat 2784# undef lstat
1925# define lstat(a,b) _stati64 (a,b) 2785# define lstat(a,b) _stati64 (a,b)
1926# endif 2786# endif
1927 2787
1928#define DEF_STAT_INTERVAL 5.0074891 2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1929#define MIN_STAT_INTERVAL 0.1074891 2790#define MIN_STAT_INTERVAL 0.1074891
1930 2791
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932 2793
1933#if EV_USE_INOTIFY 2794#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192 2795# define EV_INOTIFY_BUFSIZE 8192
1938{ 2799{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940 2801
1941 if (w->wd < 0) 2802 if (w->wd < 0)
1942 { 2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1944 2806
1945 /* monitor some parent directory for speedup hints */ 2807 /* monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 { 2811 {
1948 char path [4096]; 2812 char path [4096];
1949 strcpy (path, w->path); 2813 strcpy (path, w->path);
1950 2814
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955 2819
1956 char *pend = strrchr (path, '/'); 2820 char *pend = strrchr (path, '/');
1957 2821
1958 if (!pend) 2822 if (!pend || pend == path)
1959 break; /* whoops, no '/', complain to your admin */ 2823 break;
1960 2824
1961 *pend = 0; 2825 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask); 2826 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 } 2827 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 } 2829 }
1966 } 2830 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969 2831
1970 if (w->wd >= 0) 2832 if (w->wd >= 0)
2833 {
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
1972} 2853}
1973 2854
1974static void noinline 2855static void noinline
1975infy_del (EV_P_ ev_stat *w) 2856infy_del (EV_P_ ev_stat *w)
1976{ 2857{
1990 2871
1991static void noinline 2872static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{ 2874{
1994 if (slot < 0) 2875 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */ 2876 /* overflow, need to check for all hash slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev); 2878 infy_wd (EV_A_ slot, wd, ev);
1998 else 2879 else
1999 { 2880 {
2000 WL w_; 2881 WL w_;
2006 2887
2007 if (w->wd == wd || wd == -1) 2888 if (w->wd == wd || wd == -1)
2008 { 2889 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 { 2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2011 w->wd = -1; 2893 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */ 2894 infy_add (EV_A_ w); /* re-add, no matter what */
2013 } 2895 }
2014 2896
2015 stat_timer_cb (EV_A_ &w->timer, 0); 2897 stat_timer_cb (EV_A_ &w->timer, 0);
2028 2910
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2031} 2913}
2032 2914
2033void inline_size 2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2034infy_init (EV_P) 2939infy_init (EV_P)
2035{ 2940{
2036 if (fs_fd != -2) 2941 if (fs_fd != -2)
2037 return; 2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2038 2947
2039 fs_fd = inotify_init (); 2948 fs_fd = inotify_init ();
2040 2949
2041 if (fs_fd >= 0) 2950 if (fs_fd >= 0)
2042 { 2951 {
2044 ev_set_priority (&fs_w, EV_MAXPRI); 2953 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w); 2954 ev_io_start (EV_A_ &fs_w);
2046 } 2955 }
2047} 2956}
2048 2957
2049void inline_size 2958inline_size void
2050infy_fork (EV_P) 2959infy_fork (EV_P)
2051{ 2960{
2052 int slot; 2961 int slot;
2053 2962
2054 if (fs_fd < 0) 2963 if (fs_fd < 0)
2070 w->wd = -1; 2979 w->wd = -1;
2071 2980
2072 if (fs_fd >= 0) 2981 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 2982 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else 2983 else
2075 ev_timer_start (EV_A_ &w->timer); 2984 ev_timer_again (EV_A_ &w->timer);
2076 } 2985 }
2077
2078 } 2986 }
2079} 2987}
2080 2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2081#endif 2995#endif
2082 2996
2083void 2997void
2084ev_stat_stat (EV_P_ ev_stat *w) 2998ev_stat_stat (EV_P_ ev_stat *w)
2085{ 2999{
2112 || w->prev.st_atime != w->attr.st_atime 3026 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime 3027 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime 3028 || w->prev.st_ctime != w->attr.st_ctime
2115 ) { 3029 ) {
2116 #if EV_USE_INOTIFY 3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
2117 infy_del (EV_A_ w); 3033 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w); 3034 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */ 3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
2120 #endif 3037 #endif
2121 3038
2122 ev_feed_event (EV_A_ w, EV_STAT); 3039 ev_feed_event (EV_A_ w, EV_STAT);
2123 } 3040 }
2124} 3041}
2127ev_stat_start (EV_P_ ev_stat *w) 3044ev_stat_start (EV_P_ ev_stat *w)
2128{ 3045{
2129 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
2130 return; 3047 return;
2131 3048
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w); 3049 ev_stat_stat (EV_A_ w);
2137 3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2138 if (w->interval < MIN_STAT_INTERVAL) 3052 w->interval = MIN_STAT_INTERVAL;
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140 3053
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2142 ev_set_priority (&w->timer, ev_priority (w)); 3055 ev_set_priority (&w->timer, ev_priority (w));
2143 3056
2144#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
2145 infy_init (EV_A); 3058 infy_init (EV_A);
2146 3059
2147 if (fs_fd >= 0) 3060 if (fs_fd >= 0)
2148 infy_add (EV_A_ w); 3061 infy_add (EV_A_ w);
2149 else 3062 else
2150#endif 3063#endif
2151 ev_timer_start (EV_A_ &w->timer); 3064 ev_timer_again (EV_A_ &w->timer);
2152 3065
2153 ev_start (EV_A_ (W)w, 1); 3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
2154} 3069}
2155 3070
2156void 3071void
2157ev_stat_stop (EV_P_ ev_stat *w) 3072ev_stat_stop (EV_P_ ev_stat *w)
2158{ 3073{
2159 clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
2161 return; 3076 return;
2162 3077
3078 EV_FREQUENT_CHECK;
3079
2163#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w); 3081 infy_del (EV_A_ w);
2165#endif 3082#endif
2166 ev_timer_stop (EV_A_ &w->timer); 3083 ev_timer_stop (EV_A_ &w->timer);
2167 3084
2168 ev_stop (EV_A_ (W)w); 3085 ev_stop (EV_A_ (W)w);
3086
3087 EV_FREQUENT_CHECK;
2169} 3088}
2170#endif 3089#endif
2171 3090
2172#if EV_IDLE_ENABLE 3091#if EV_IDLE_ENABLE
2173void 3092void
2175{ 3094{
2176 if (expect_false (ev_is_active (w))) 3095 if (expect_false (ev_is_active (w)))
2177 return; 3096 return;
2178 3097
2179 pri_adjust (EV_A_ (W)w); 3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
2180 3101
2181 { 3102 {
2182 int active = ++idlecnt [ABSPRI (w)]; 3103 int active = ++idlecnt [ABSPRI (w)];
2183 3104
2184 ++idleall; 3105 ++idleall;
2185 ev_start (EV_A_ (W)w, active); 3106 ev_start (EV_A_ (W)w, active);
2186 3107
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w; 3109 idles [ABSPRI (w)][active - 1] = w;
2189 } 3110 }
3111
3112 EV_FREQUENT_CHECK;
2190} 3113}
2191 3114
2192void 3115void
2193ev_idle_stop (EV_P_ ev_idle *w) 3116ev_idle_stop (EV_P_ ev_idle *w)
2194{ 3117{
2195 clear_pending (EV_A_ (W)w); 3118 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w))) 3119 if (expect_false (!ev_is_active (w)))
2197 return; 3120 return;
2198 3121
3122 EV_FREQUENT_CHECK;
3123
2199 { 3124 {
2200 int active = ((W)w)->active; 3125 int active = ev_active (w);
2201 3126
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2204 3129
2205 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
2206 --idleall; 3131 --idleall;
2207 } 3132 }
3133
3134 EV_FREQUENT_CHECK;
2208} 3135}
2209#endif 3136#endif
2210 3137
2211void 3138void
2212ev_prepare_start (EV_P_ ev_prepare *w) 3139ev_prepare_start (EV_P_ ev_prepare *w)
2213{ 3140{
2214 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
2215 return; 3142 return;
3143
3144 EV_FREQUENT_CHECK;
2216 3145
2217 ev_start (EV_A_ (W)w, ++preparecnt); 3146 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w; 3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
2220} 3151}
2221 3152
2222void 3153void
2223ev_prepare_stop (EV_P_ ev_prepare *w) 3154ev_prepare_stop (EV_P_ ev_prepare *w)
2224{ 3155{
2225 clear_pending (EV_A_ (W)w); 3156 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w))) 3157 if (expect_false (!ev_is_active (w)))
2227 return; 3158 return;
2228 3159
3160 EV_FREQUENT_CHECK;
3161
2229 { 3162 {
2230 int active = ((W)w)->active; 3163 int active = ev_active (w);
3164
2231 prepares [active - 1] = prepares [--preparecnt]; 3165 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active; 3166 ev_active (prepares [active - 1]) = active;
2233 } 3167 }
2234 3168
2235 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
2236} 3172}
2237 3173
2238void 3174void
2239ev_check_start (EV_P_ ev_check *w) 3175ev_check_start (EV_P_ ev_check *w)
2240{ 3176{
2241 if (expect_false (ev_is_active (w))) 3177 if (expect_false (ev_is_active (w)))
2242 return; 3178 return;
3179
3180 EV_FREQUENT_CHECK;
2243 3181
2244 ev_start (EV_A_ (W)w, ++checkcnt); 3182 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w; 3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
2247} 3187}
2248 3188
2249void 3189void
2250ev_check_stop (EV_P_ ev_check *w) 3190ev_check_stop (EV_P_ ev_check *w)
2251{ 3191{
2252 clear_pending (EV_A_ (W)w); 3192 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w))) 3193 if (expect_false (!ev_is_active (w)))
2254 return; 3194 return;
2255 3195
3196 EV_FREQUENT_CHECK;
3197
2256 { 3198 {
2257 int active = ((W)w)->active; 3199 int active = ev_active (w);
3200
2258 checks [active - 1] = checks [--checkcnt]; 3201 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active; 3202 ev_active (checks [active - 1]) = active;
2260 } 3203 }
2261 3204
2262 ev_stop (EV_A_ (W)w); 3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
2263} 3208}
2264 3209
2265#if EV_EMBED_ENABLE 3210#if EV_EMBED_ENABLE
2266void noinline 3211void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w) 3212ev_embed_sweep (EV_P_ ev_embed *w)
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 } 3240 }
2296 } 3241 }
2297} 3242}
2298 3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
2299#if 0 3261#if 0
2300static void 3262static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{ 3264{
2303 ev_idle_stop (EV_A_ idle); 3265 ev_idle_stop (EV_A_ idle);
2310 if (expect_false (ev_is_active (w))) 3272 if (expect_false (ev_is_active (w)))
2311 return; 3273 return;
2312 3274
2313 { 3275 {
2314 struct ev_loop *loop = w->other; 3276 struct ev_loop *loop = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 } 3279 }
3280
3281 EV_FREQUENT_CHECK;
2318 3282
2319 ev_set_priority (&w->io, ev_priority (w)); 3283 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io); 3284 ev_io_start (EV_A_ &w->io);
2321 3285
2322 ev_prepare_init (&w->prepare, embed_prepare_cb); 3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI); 3287 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare); 3288 ev_prepare_start (EV_A_ &w->prepare);
2325 3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327 3294
2328 ev_start (EV_A_ (W)w, 1); 3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
2329} 3298}
2330 3299
2331void 3300void
2332ev_embed_stop (EV_P_ ev_embed *w) 3301ev_embed_stop (EV_P_ ev_embed *w)
2333{ 3302{
2334 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2336 return; 3305 return;
2337 3306
3307 EV_FREQUENT_CHECK;
3308
2338 ev_io_stop (EV_A_ &w->io); 3309 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare); 3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
2340 3312
2341 ev_stop (EV_A_ (W)w); 3313 EV_FREQUENT_CHECK;
2342} 3314}
2343#endif 3315#endif
2344 3316
2345#if EV_FORK_ENABLE 3317#if EV_FORK_ENABLE
2346void 3318void
2347ev_fork_start (EV_P_ ev_fork *w) 3319ev_fork_start (EV_P_ ev_fork *w)
2348{ 3320{
2349 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
2350 return; 3322 return;
3323
3324 EV_FREQUENT_CHECK;
2351 3325
2352 ev_start (EV_A_ (W)w, ++forkcnt); 3326 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w; 3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
2355} 3331}
2356 3332
2357void 3333void
2358ev_fork_stop (EV_P_ ev_fork *w) 3334ev_fork_stop (EV_P_ ev_fork *w)
2359{ 3335{
2360 clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2362 return; 3338 return;
2363 3339
3340 EV_FREQUENT_CHECK;
3341
2364 { 3342 {
2365 int active = ((W)w)->active; 3343 int active = ev_active (w);
3344
2366 forks [active - 1] = forks [--forkcnt]; 3345 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active; 3346 ev_active (forks [active - 1]) = active;
2368 } 3347 }
2369 3348
2370 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
3352}
3353#endif
3354
3355#if EV_ASYNC_ENABLE
3356void
3357ev_async_start (EV_P_ ev_async *w)
3358{
3359 if (expect_false (ev_is_active (w)))
3360 return;
3361
3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_start (EV_A_ (W)w, ++asynccnt);
3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373void
3374ev_async_stop (EV_P_ ev_async *w)
3375{
3376 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w)))
3378 return;
3379
3380 EV_FREQUENT_CHECK;
3381
3382 {
3383 int active = ev_active (w);
3384
3385 asyncs [active - 1] = asyncs [--asynccnt];
3386 ev_active (asyncs [active - 1]) = active;
3387 }
3388
3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
3392}
3393
3394void
3395ev_async_send (EV_P_ ev_async *w)
3396{
3397 w->sent = 1;
3398 evpipe_write (EV_A_ &gotasync);
2371} 3399}
2372#endif 3400#endif
2373 3401
2374/*****************************************************************************/ 3402/*****************************************************************************/
2375 3403
2385once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
2386{ 3414{
2387 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
2388 void *arg = once->arg; 3416 void *arg = once->arg;
2389 3417
2390 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
2391 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
2392 ev_free (once); 3420 ev_free (once);
2393 3421
2394 cb (revents, arg); 3422 cb (revents, arg);
2395} 3423}
2396 3424
2397static void 3425static void
2398once_cb_io (EV_P_ ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
2399{ 3427{
2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2401} 3431}
2402 3432
2403static void 3433static void
2404once_cb_to (EV_P_ ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
2405{ 3435{
2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2407} 3439}
2408 3440
2409void 3441void
2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2411{ 3443{
2433 ev_timer_set (&once->to, timeout, 0.); 3465 ev_timer_set (&once->to, timeout, 0.);
2434 ev_timer_start (EV_A_ &once->to); 3466 ev_timer_start (EV_A_ &once->to);
2435 } 3467 }
2436} 3468}
2437 3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
3482 {
3483 wn = wl->next;
3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
3503 }
3504
3505 if (types & (EV_TIMER | EV_STAT))
3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3510 {
3511 if (types & EV_STAT)
3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3513 }
3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
2438#if EV_MULTIPLICITY 3578#if EV_MULTIPLICITY
2439 #include "ev_wrap.h" 3579 #include "ev_wrap.h"
2440#endif 3580#endif
2441 3581
2442#ifdef __cplusplus 3582#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines