ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC vs.
Revision 1.318 by root, Tue Nov 17 00:22:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
119#include <fcntl.h> 158#include <fcntl.h>
137#ifndef _WIN32 176#ifndef _WIN32
138# include <sys/time.h> 177# include <sys/time.h>
139# include <sys/wait.h> 178# include <sys/wait.h>
140# include <unistd.h> 179# include <unistd.h>
141#else 180#else
181# include <io.h>
142# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 183# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
146# endif 186# endif
147#endif 187#endif
148 188
149/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
150 225
151#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
152# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
153#endif 232#endif
154 233
155#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 236#endif
158 237
159#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
160# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
161#endif 244#endif
162 245
163#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
165#endif 248#endif
171# define EV_USE_POLL 1 254# define EV_USE_POLL 1
172# endif 255# endif
173#endif 256#endif
174 257
175#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
176# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
177#endif 264#endif
178 265
179#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
181#endif 268#endif
183#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 271# define EV_USE_PORT 0
185#endif 272#endif
186 273
187#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
188# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
189#endif 280#endif
190 281
191#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 283# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
202# else 293# else
203# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
204# endif 295# endif
205#endif 296#endif
206 297
207/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 347
209#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
212#endif 351#endif
226# include <sys/select.h> 365# include <sys/select.h>
227# endif 366# endif
228#endif 367#endif
229 368
230#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
231# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
232#endif 378#endif
233 379
234#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 381# include <winsock.h>
236#endif 382#endif
237 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
238/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
239 442
240/* 443/*
241 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
247 */ 450 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 452
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 455
254#if __GNUC__ >= 4 456#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
257#else 459#else
258# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
259# define noinline 461# define noinline
260# if __STDC_VERSION__ < 199901L 462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 463# define inline
262# endif 464# endif
263#endif 465#endif
264 466
265#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 472# define inline_speed static noinline
271#else 473#else
272# define inline_speed static inline 474# define inline_speed static inline
273#endif 475#endif
274 476
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
277 484
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
280 487
281typedef ev_watcher *W; 488typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
284 491
492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
288 514
289#ifdef _WIN32 515#ifdef _WIN32
290# include "ev_win32.c" 516# include "ev_win32.c"
291#endif 517#endif
292 518
299{ 525{
300 syserr_cb = cb; 526 syserr_cb = cb;
301} 527}
302 528
303static void noinline 529static void noinline
304syserr (const char *msg) 530ev_syserr (const char *msg)
305{ 531{
306 if (!msg) 532 if (!msg)
307 msg = "(libev) system error"; 533 msg = "(libev) system error";
308 534
309 if (syserr_cb) 535 if (syserr_cb)
313 perror (msg); 539 perror (msg);
314 abort (); 540 abort ();
315 } 541 }
316} 542}
317 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
318static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 560
320void 561void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 563{
323 alloc = cb; 564 alloc = cb;
324} 565}
325 566
326inline_speed void * 567inline_speed void *
327ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
328{ 569{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
330 571
331 if (!ptr && size) 572 if (!ptr && size)
332 { 573 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 575 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
342 583
343/*****************************************************************************/ 584/*****************************************************************************/
344 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
345typedef struct 590typedef struct
346{ 591{
347 WL head; 592 WL head;
348 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
350#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 601 SOCKET handle;
352#endif 602#endif
353} ANFD; 603} ANFD;
354 604
605/* stores the pending event set for a given watcher */
355typedef struct 606typedef struct
356{ 607{
357 W w; 608 W w;
358 int events; 609 int events; /* the pending event set for the given watcher */
359} ANPENDING; 610} ANPENDING;
360 611
361#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
362typedef struct 614typedef struct
363{ 615{
364 WL head; 616 WL head;
365} ANFS; 617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
366#endif 638#endif
367 639
368#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
369 641
370 struct ev_loop 642 struct ev_loop
389 661
390 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
391 663
392#endif 664#endif
393 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
394/*****************************************************************************/ 678/*****************************************************************************/
395 679
680#ifndef EV_HAVE_EV_TIME
396ev_tstamp 681ev_tstamp
397ev_time (void) 682ev_time (void)
398{ 683{
399#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
400 struct timespec ts; 687 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 690 }
691#endif
692
404 struct timeval tv; 693 struct timeval tv;
405 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 696}
697#endif
409 698
410ev_tstamp inline_size 699inline_size ev_tstamp
411get_clock (void) 700get_clock (void)
412{ 701{
413#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
415 { 704 {
441 ts.tv_sec = (time_t)delay; 730 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 732
444 nanosleep (&ts, 0); 733 nanosleep (&ts, 0);
445#elif defined(_WIN32) 734#elif defined(_WIN32)
446 Sleep (delay * 1e3); 735 Sleep ((unsigned long)(delay * 1e3));
447#else 736#else
448 struct timeval tv; 737 struct timeval tv;
449 738
450 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
453 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
454#endif 746#endif
455 } 747 }
456} 748}
457 749
458/*****************************************************************************/ 750/*****************************************************************************/
459 751
460int inline_size 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
461array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
462{ 758{
463 int ncur = cur + 1; 759 int ncur = cur + 1;
464 760
465 do 761 do
466 ncur <<= 1; 762 ncur <<= 1;
467 while (cnt > ncur); 763 while (cnt > ncur);
468 764
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 767 {
472 ncur *= elem; 768 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 770 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 771 ncur /= elem;
476 } 772 }
477 773
478 return ncur; 774 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
483{ 779{
484 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
486} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 786
488#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
490 { \ 789 { \
491 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 803 }
505#endif 804#endif
506 805
507#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 808
510/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
511 816
512void noinline 817void noinline
513ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
514{ 819{
515 W w_ = (W)w; 820 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
526 } 831 }
527} 832}
528 833
529void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 851{
532 int i; 852 int i;
533 853
534 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
536} 856}
537 857
538/*****************************************************************************/ 858/*****************************************************************************/
539 859
540void inline_size 860inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
555{ 862{
556 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
557 ev_io *w; 864 ev_io *w;
558 865
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 870 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
565 } 872 }
566} 873}
567 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
568void 886void
569ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 888{
571 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
573} 891}
574 892
575void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
576fd_reify (EV_P) 896fd_reify (EV_P)
577{ 897{
578 int i; 898 int i;
579 899
580 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 909 events |= (unsigned char)w->events;
590 910
591#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
592 if (events) 912 if (events)
593 { 913 {
594 unsigned long argp; 914 unsigned long arg;
595 anfd->handle = _get_osfhandle (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 917 }
598#endif 918#endif
599 919
600 { 920 {
601 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
603 923
604 anfd->reify = 0; 924 anfd->reify = 0;
605 anfd->events = events; 925 anfd->events = events;
606 926
607 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
609 } 929 }
610 } 930 }
611 931
612 fdchangecnt = 0; 932 fdchangecnt = 0;
613} 933}
614 934
615void inline_size 935/* something about the given fd changed */
936inline_size void
616fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
617{ 938{
618 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
620 941
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
626 } 947 }
627} 948}
628 949
629void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
630fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
631{ 953{
632 ev_io *w; 954 ev_io *w;
633 955
634 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 960 }
639} 961}
640 962
641int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
642fd_valid (int fd) 965fd_valid (int fd)
643{ 966{
644#ifdef _WIN32 967#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
646#else 969#else
654{ 977{
655 int fd; 978 int fd;
656 979
657 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 981 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
661} 984}
662 985
663/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 987static void noinline
668 991
669 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 993 if (anfds [fd].events)
671 { 994 {
672 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
673 return; 996 break;
674 } 997 }
675} 998}
676 999
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1001static void noinline
682 1005
683 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1007 if (anfds [fd].events)
685 { 1008 {
686 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1012 }
689} 1013}
690 1014
691/*****************************************************************************/ 1015/*****************************************************************************/
692 1016
693void inline_speed 1017/*
694upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
697 1022
698 while (k) 1023/*
699 { 1024 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029#if EV_USE_4HEAP
701 1030
702 if (heap [p]->at <= w->at) 1031#define DHEAP 4
1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036/* away from the root */
1037inline_speed void
1038downheap (ANHE *heap, int N, int k)
1039{
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
703 break; 1065 break;
704 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113}
1114#endif
1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
705 heap [k] = heap [p]; 1129 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1130 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1131 k = p;
708 } 1132 }
709 1133
710 heap [k] = w; 1134 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1135 ev_active (ANHE_w (he)) = k;
712} 1136}
713 1137
714void inline_speed 1138/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1139inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
744{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
745 upheap (heap, k); 1143 upheap (heap, k);
1144 else
746 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
747} 1158}
748 1159
749/*****************************************************************************/ 1160/*****************************************************************************/
750 1161
1162/* associate signal watchers to a signal signal */
751typedef struct 1163typedef struct
752{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
753 WL head; 1169 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG; 1170} ANSIG;
756 1171
757static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
758static int signalmax;
759 1173
760static int sigpipe [2]; 1174/*****************************************************************************/
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1175
764void inline_size 1176/* used to prepare libev internal fd's */
765signals_init (ANSIG *base, int count) 1177/* this is not fork-safe */
766{ 1178inline_speed void
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1179fd_intern (int fd)
829{ 1180{
830#ifdef _WIN32 1181#ifdef _WIN32
831 int arg = 1; 1182 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1184#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1187#endif
837} 1188}
838 1189
839static void noinline 1190static void noinline
840siginit (EV_P) 1191evpipe_init (EV_P)
841{ 1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
842 fd_intern (sigpipe [0]); 1212 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
844 1216
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1217 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1247static void
1248pipecb (EV_P_ ev_io *iow, int revents)
1249{
1250 int i;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
848} 1287}
849 1288
850/*****************************************************************************/ 1289/*****************************************************************************/
851 1290
1291static void
1292ev_sighandler (int signum)
1293{
1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
1297
1298#if _WIN32
1299 signal (signum, ev_sighandler);
1300#endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304}
1305
1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1350/*****************************************************************************/
1351
852static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
853 1353
854#ifndef _WIN32 1354#ifndef _WIN32
855 1355
856static ev_signal childev; 1356static ev_signal childev;
857 1357
858void inline_speed 1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
860{ 1365{
861 ev_child *w; 1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1368
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
864 if (w->pid == pid || !w->pid) 1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
865 { 1373 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1375 w->rpid = pid;
868 w->rstatus = status; 1376 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1378 }
1379 }
871} 1380}
872 1381
873#ifndef WCONTINUED 1382#ifndef WCONTINUED
874# define WCONTINUED 0 1383# define WCONTINUED 0
875#endif 1384#endif
876 1385
1386/* called on sigchld etc., calls waitpid */
877static void 1387static void
878childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
879{ 1389{
880 int pid, status; 1390 int pid, status;
881 1391
884 if (!WCONTINUED 1394 if (!WCONTINUED
885 || errno != EINVAL 1395 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1397 return;
888 1398
889 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1400 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1402
893 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1404 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1406}
897 1407
898#endif 1408#endif
899 1409
900/*****************************************************************************/ 1410/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
965#endif 1475#endif
966#ifdef __APPLE__ 1476#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1480#endif
970 1481
971 return flags; 1482 return flags;
972} 1483}
973 1484
978 1489
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */ 1491 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL; 1492 flags &= ~EVBACKEND_EPOLL;
982 1493
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags; 1494 return flags;
989} 1495}
990 1496
991unsigned int 1497unsigned int
992ev_backend (EV_P) 1498ev_backend (EV_P)
993{ 1499{
994 return backend; 1500 return backend;
995} 1501}
996 1502
1503#if EV_MINIMAL < 2
997unsigned int 1504unsigned int
998ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
999{ 1506{
1000 return loop_count; 1507 return loop_count;
1001} 1508}
1002 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1003void 1516void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1005{ 1518{
1006 io_blocktime = interval; 1519 io_blocktime = interval;
1007} 1520}
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{ 1524{
1012 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1013} 1526}
1014 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1015static void noinline 1553static void noinline
1016loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1017{ 1555{
1018 if (!backend) 1556 if (!backend)
1019 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1020#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1021 { 1570 {
1022 struct timespec ts; 1571 struct timespec ts;
1572
1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1024 have_monotonic = 1; 1574 have_monotonic = 1;
1025 } 1575 }
1026#endif 1576#endif
1027
1028 ev_rt_now = ev_time ();
1029 mn_now = get_clock ();
1030 now_floor = mn_now;
1031 rtmn_diff = ev_rt_now - mn_now;
1032
1033 io_blocktime = 0.;
1034 timeout_blocktime = 0.;
1035 1577
1036 /* pid check not overridable via env */ 1578 /* pid check not overridable via env */
1037#ifndef _WIN32 1579#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK) 1580 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid (); 1581 curpid = getpid ();
1042 if (!(flags & EVFLAG_NOENV) 1584 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure () 1585 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS")) 1586 && getenv ("LIBEV_FLAGS"))
1045 flags = atoi (getenv ("LIBEV_FLAGS")); 1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1046 1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
1047 if (!(flags & 0x0000ffffUL)) 1612 if (!(flags & 0x0000ffffU))
1048 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1049
1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY
1053 fs_fd = -2;
1054#endif
1055 1614
1056#if EV_USE_PORT 1615#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1058#endif 1617#endif
1059#if EV_USE_KQUEUE 1618#if EV_USE_KQUEUE
1067#endif 1626#endif
1068#if EV_USE_SELECT 1627#if EV_USE_SELECT
1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1070#endif 1629#endif
1071 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1072 ev_init (&sigev, sigcb); 1633 ev_init (&pipe_w, pipecb);
1073 ev_set_priority (&sigev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1074 } 1635 }
1075} 1636}
1076 1637
1638/* free up a loop structure */
1077static void noinline 1639static void noinline
1078loop_destroy (EV_P) 1640loop_destroy (EV_P)
1079{ 1641{
1080 int i; 1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1081 1665
1082#if EV_USE_INOTIFY 1666#if EV_USE_INOTIFY
1083 if (fs_fd >= 0) 1667 if (fs_fd >= 0)
1084 close (fs_fd); 1668 close (fs_fd);
1085#endif 1669#endif
1109#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1110 array_free (idle, [i]); 1694 array_free (idle, [i]);
1111#endif 1695#endif
1112 } 1696 }
1113 1697
1114 ev_free (anfds); anfdmax = 0; 1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1115 1699
1116 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1117 array_free (fdchange, EMPTY); 1702 array_free (fdchange, EMPTY);
1118 array_free (timer, EMPTY); 1703 array_free (timer, EMPTY);
1119#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1120 array_free (periodic, EMPTY); 1705 array_free (periodic, EMPTY);
1121#endif 1706#endif
1122#if EV_FORK_ENABLE 1707#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY); 1708 array_free (fork, EMPTY);
1124#endif 1709#endif
1125 array_free (prepare, EMPTY); 1710 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY); 1711 array_free (check, EMPTY);
1712#if EV_ASYNC_ENABLE
1713 array_free (async, EMPTY);
1714#endif
1127 1715
1128 backend = 0; 1716 backend = 0;
1129} 1717}
1130 1718
1719#if EV_USE_INOTIFY
1131void inline_size infy_fork (EV_P); 1720inline_size void infy_fork (EV_P);
1721#endif
1132 1722
1133void inline_size 1723inline_size void
1134loop_fork (EV_P) 1724loop_fork (EV_P)
1135{ 1725{
1136#if EV_USE_PORT 1726#if EV_USE_PORT
1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1138#endif 1728#endif
1144#endif 1734#endif
1145#if EV_USE_INOTIFY 1735#if EV_USE_INOTIFY
1146 infy_fork (EV_A); 1736 infy_fork (EV_A);
1147#endif 1737#endif
1148 1738
1149 if (ev_is_active (&sigev)) 1739 if (ev_is_active (&pipe_w))
1150 { 1740 {
1151 /* default loop */ 1741 /* this "locks" the handlers against writing to the pipe */
1742 /* while we modify the fd vars */
1743 sig_pending = 1;
1744#if EV_ASYNC_ENABLE
1745 async_pending = 1;
1746#endif
1152 1747
1153 ev_ref (EV_A); 1748 ev_ref (EV_A);
1154 ev_io_stop (EV_A_ &sigev); 1749 ev_io_stop (EV_A_ &pipe_w);
1155 close (sigpipe [0]);
1156 close (sigpipe [1]);
1157 1750
1158 while (pipe (sigpipe)) 1751#if EV_USE_EVENTFD
1159 syserr ("(libev) error creating pipe"); 1752 if (evfd >= 0)
1753 close (evfd);
1754#endif
1160 1755
1756 if (evpipe [0] >= 0)
1757 {
1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1760 }
1761
1161 siginit (EV_A); 1762 evpipe_init (EV_A);
1763 /* now iterate over everything, in case we missed something */
1764 pipecb (EV_A_ &pipe_w, EV_READ);
1162 } 1765 }
1163 1766
1164 postfork = 0; 1767 postfork = 0;
1165} 1768}
1166 1769
1167#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1771
1168struct ev_loop * 1772struct ev_loop *
1169ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
1170{ 1774{
1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1172 1776
1173 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
1174
1175 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
1176 1779
1177 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
1178 return loop; 1781 return EV_A;
1179 1782
1180 return 0; 1783 return 0;
1181} 1784}
1182 1785
1183void 1786void
1188} 1791}
1189 1792
1190void 1793void
1191ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
1192{ 1795{
1193 postfork = 1; 1796 postfork = 1; /* must be in line with ev_default_fork */
1194} 1797}
1798#endif /* multiplicity */
1195 1799
1800#if EV_VERIFY
1801static void noinline
1802verify_watcher (EV_P_ W w)
1803{
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808}
1809
1810static void noinline
1811verify_heap (EV_P_ ANHE *heap, int N)
1812{
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823}
1824
1825static void noinline
1826array_verify (EV_P_ W *ws, int cnt)
1827{
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833}
1834#endif
1835
1836#if EV_MINIMAL < 2
1837void
1838ev_loop_verify (EV_P)
1839{
1840#if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
1853 {
1854 verify_watcher (EV_A_ (W)w);
1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862#if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865#endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870#if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874#endif
1875 }
1876
1877#if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880#endif
1881
1882#if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885#endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893# if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896# endif
1897#endif
1898}
1196#endif 1899#endif
1197 1900
1198#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1199struct ev_loop * 1902struct ev_loop *
1200ev_default_loop_init (unsigned int flags) 1903ev_default_loop_init (unsigned int flags)
1201#else 1904#else
1202int 1905int
1203ev_default_loop (unsigned int flags) 1906ev_default_loop (unsigned int flags)
1204#endif 1907#endif
1205{ 1908{
1206 if (sigpipe [0] == sigpipe [1])
1207 if (pipe (sigpipe))
1208 return 0;
1209
1210 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
1211 { 1910 {
1212#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1214#else 1913#else
1215 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1216#endif 1915#endif
1217 1916
1218 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1219 1918
1220 if (ev_backend (EV_A)) 1919 if (ev_backend (EV_A))
1221 { 1920 {
1222 siginit (EV_A);
1223
1224#ifndef _WIN32 1921#ifndef _WIN32
1225 ev_signal_init (&childev, childcb, SIGCHLD); 1922 ev_signal_init (&childev, childcb, SIGCHLD);
1226 ev_set_priority (&childev, EV_MAXPRI); 1923 ev_set_priority (&childev, EV_MAXPRI);
1227 ev_signal_start (EV_A_ &childev); 1924 ev_signal_start (EV_A_ &childev);
1228 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1925 ev_unref (EV_A); /* child watcher should not keep loop alive */
1237 1934
1238void 1935void
1239ev_default_destroy (void) 1936ev_default_destroy (void)
1240{ 1937{
1241#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1242 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1243#endif 1940#endif
1941
1942 ev_default_loop_ptr = 0;
1244 1943
1245#ifndef _WIN32 1944#ifndef _WIN32
1246 ev_ref (EV_A); /* child watcher */ 1945 ev_ref (EV_A); /* child watcher */
1247 ev_signal_stop (EV_A_ &childev); 1946 ev_signal_stop (EV_A_ &childev);
1248#endif 1947#endif
1249 1948
1250 ev_ref (EV_A); /* signal watcher */
1251 ev_io_stop (EV_A_ &sigev);
1252
1253 close (sigpipe [0]); sigpipe [0] = 0;
1254 close (sigpipe [1]); sigpipe [1] = 0;
1255
1256 loop_destroy (EV_A); 1949 loop_destroy (EV_A);
1257} 1950}
1258 1951
1259void 1952void
1260ev_default_fork (void) 1953ev_default_fork (void)
1261{ 1954{
1262#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1263 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1264#endif 1957#endif
1265 1958
1266 if (backend) 1959 postfork = 1; /* must be in line with ev_loop_fork */
1267 postfork = 1;
1268} 1960}
1269 1961
1270/*****************************************************************************/ 1962/*****************************************************************************/
1271 1963
1272void 1964void
1273ev_invoke (EV_P_ void *w, int revents) 1965ev_invoke (EV_P_ void *w, int revents)
1274{ 1966{
1275 EV_CB_INVOKE ((W)w, revents); 1967 EV_CB_INVOKE ((W)w, revents);
1276} 1968}
1277 1969
1278void inline_speed 1970unsigned int
1279call_pending (EV_P) 1971ev_pending_count (EV_P)
1972{
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980}
1981
1982void noinline
1983ev_invoke_pending (EV_P)
1280{ 1984{
1281 int pri; 1985 int pri;
1282 1986
1283 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1284 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1285 { 1989 {
1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1287 1991
1288 if (expect_true (p->w))
1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1291 1994
1292 p->w->pending = 0; 1995 p->w->pending = 0;
1293 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1294 } 1997 EV_FREQUENT_CHECK;
1295 } 1998 }
1296} 1999}
1297 2000
1298void inline_size
1299timers_reify (EV_P)
1300{
1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1302 {
1303 ev_timer *w = (ev_timer *)timers [0];
1304
1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1306
1307 /* first reschedule or stop timer */
1308 if (w->repeat)
1309 {
1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
1316 downheap (timers, timercnt, 0);
1317 }
1318 else
1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1320
1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1322 }
1323}
1324
1325#if EV_PERIODIC_ENABLE
1326void inline_size
1327periodics_reify (EV_P)
1328{
1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1330 {
1331 ev_periodic *w = (ev_periodic *)periodics [0];
1332
1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1334
1335 /* first reschedule or stop timer */
1336 if (w->reschedule_cb)
1337 {
1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1340 downheap (periodics, periodiccnt, 0);
1341 }
1342 else if (w->interval)
1343 {
1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1347 downheap (periodics, periodiccnt, 0);
1348 }
1349 else
1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1351
1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1353 }
1354}
1355
1356static void noinline
1357periodics_reschedule (EV_P)
1358{
1359 int i;
1360
1361 /* adjust periodics after time jump */
1362 for (i = 0; i < periodiccnt; ++i)
1363 {
1364 ev_periodic *w = (ev_periodic *)periodics [i];
1365
1366 if (w->reschedule_cb)
1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1368 else if (w->interval)
1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 }
1371
1372 /* now rebuild the heap */
1373 for (i = periodiccnt >> 1; i--; )
1374 downheap (periodics, periodiccnt, i);
1375}
1376#endif
1377
1378#if EV_IDLE_ENABLE 2001#if EV_IDLE_ENABLE
1379void inline_size 2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
1380idle_reify (EV_P) 2005idle_reify (EV_P)
1381{ 2006{
1382 if (expect_false (idleall)) 2007 if (expect_false (idleall))
1383 { 2008 {
1384 int pri; 2009 int pri;
1396 } 2021 }
1397 } 2022 }
1398} 2023}
1399#endif 2024#endif
1400 2025
1401void inline_speed 2026/* make timers pending */
2027inline_size void
2028timers_reify (EV_P)
2029{
2030 EV_FREQUENT_CHECK;
2031
2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2033 {
2034 do
2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
2043 ev_at (w) += w->repeat;
2044 if (ev_at (w) < mn_now)
2045 ev_at (w) = mn_now;
2046
2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2048
2049 ANHE_at_cache (timers [HEAP0]);
2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
2057 }
2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2059
2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
2061 }
2062}
2063
2064#if EV_PERIODIC_ENABLE
2065/* make periodics pending */
2066inline_size void
2067periodics_reify (EV_P)
2068{
2069 EV_FREQUENT_CHECK;
2070
2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2072 {
2073 int feed_count = 0;
2074
2075 do
2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085
2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
2115 }
2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117
2118 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 }
2120}
2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124static void noinline
2125periodics_reschedule (EV_P)
2126{
2127 int i;
2128
2129 /* adjust periodics after time jump */
2130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 {
2132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133
2134 if (w->reschedule_cb)
2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 else if (w->interval)
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138
2139 ANHE_at_cache (periodics [i]);
2140 }
2141
2142 reheap (periodics, periodiccnt);
2143}
2144#endif
2145
2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
1402time_update (EV_P_ ev_tstamp max_block) 2163time_update (EV_P_ ev_tstamp max_block)
1403{ 2164{
1404 int i;
1405
1406#if EV_USE_MONOTONIC 2165#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic)) 2166 if (expect_true (have_monotonic))
1408 { 2167 {
2168 int i;
1409 ev_tstamp odiff = rtmn_diff; 2169 ev_tstamp odiff = rtmn_diff;
1410 2170
1411 mn_now = get_clock (); 2171 mn_now = get_clock ();
1412 2172
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1431 */ 2191 */
1432 for (i = 4; --i; ) 2192 for (i = 4; --i; )
1433 { 2193 {
1434 rtmn_diff = ev_rt_now - mn_now; 2194 rtmn_diff = ev_rt_now - mn_now;
1435 2195
1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2196 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1437 return; /* all is well */ 2197 return; /* all is well */
1438 2198
1439 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1440 mn_now = get_clock (); 2200 mn_now = get_clock ();
1441 now_floor = mn_now; 2201 now_floor = mn_now;
1442 } 2202 }
1443 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444# if EV_PERIODIC_ENABLE 2206# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A); 2207 periodics_reschedule (EV_A);
1446# endif 2208# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 } 2209 }
1450 else 2210 else
1451#endif 2211#endif
1452 { 2212 {
1453 ev_rt_now = ev_time (); 2213 ev_rt_now = ev_time ();
1454 2214
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 { 2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1457#if EV_PERIODIC_ENABLE 2219#if EV_PERIODIC_ENABLE
1458 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1459#endif 2221#endif
1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i)
1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1463 } 2222 }
1464 2223
1465 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1466 } 2225 }
1467} 2226}
1468 2227
1469void 2228void
1470ev_ref (EV_P)
1471{
1472 ++activecnt;
1473}
1474
1475void
1476ev_unref (EV_P)
1477{
1478 --activecnt;
1479}
1480
1481static int loop_done;
1482
1483void
1484ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1485{ 2230{
1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2231#if EV_MINIMAL < 2
1487 ? EVUNLOOP_ONE 2232 ++loop_depth;
1488 : EVUNLOOP_CANCEL; 2233#endif
1489 2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
2237 loop_done = EVUNLOOP_CANCEL;
2238
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1491 2240
1492 do 2241 do
1493 { 2242 {
2243#if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245#endif
2246
1494#ifndef _WIN32 2247#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */ 2248 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid)) 2249 if (expect_false (getpid () != curpid))
1497 { 2250 {
1498 curpid = getpid (); 2251 curpid = getpid ();
1504 /* we might have forked, so queue fork handlers */ 2257 /* we might have forked, so queue fork handlers */
1505 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1506 if (forkcnt) 2259 if (forkcnt)
1507 { 2260 {
1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1509 call_pending (EV_A); 2262 EV_INVOKE_PENDING;
1510 } 2263 }
1511#endif 2264#endif
1512 2265
1513 /* queue prepare watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1514 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1515 { 2268 {
1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1517 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1518 } 2271 }
1519 2272
1520 if (expect_false (!activecnt)) 2273 if (expect_false (loop_done))
1521 break; 2274 break;
1522 2275
1523 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1524 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1525 loop_fork (EV_A); 2278 loop_fork (EV_A);
1532 ev_tstamp waittime = 0.; 2285 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.; 2286 ev_tstamp sleeptime = 0.;
1534 2287
1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1536 { 2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
1537 /* update time to cancel out callback processing overhead */ 2293 /* update time to cancel out callback processing overhead */
1538 time_update (EV_A_ 1e100); 2294 time_update (EV_A_ 1e100);
1539 2295
1540 waittime = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
1541 2297
1542 if (timercnt) 2298 if (timercnt)
1543 { 2299 {
1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2300 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1545 if (waittime > to) waittime = to; 2301 if (waittime > to) waittime = to;
1546 } 2302 }
1547 2303
1548#if EV_PERIODIC_ENABLE 2304#if EV_PERIODIC_ENABLE
1549 if (periodiccnt) 2305 if (periodiccnt)
1550 { 2306 {
1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1552 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1553 } 2309 }
1554#endif 2310#endif
1555 2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
1556 if (expect_false (waittime < timeout_blocktime)) 2313 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime; 2314 waittime = timeout_blocktime;
1558 2315
1559 sleeptime = waittime - backend_fudge; 2316 /* extra check because io_blocktime is commonly 0 */
1560
1561 if (expect_true (sleeptime > io_blocktime)) 2317 if (expect_false (io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 { 2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
1566 ev_sleep (sleeptime); 2326 ev_sleep (sleeptime);
1567 waittime -= sleeptime; 2327 waittime -= sleeptime;
2328 }
1568 } 2329 }
1569 } 2330 }
1570 2331
2332#if EV_MINIMAL < 2
1571 ++loop_count; 2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1572 backend_poll (EV_A_ waittime); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1573 2338
1574 /* update ev_rt_now, do magic */ 2339 /* update ev_rt_now, do magic */
1575 time_update (EV_A_ waittime + sleeptime); 2340 time_update (EV_A_ waittime + sleeptime);
1576 } 2341 }
1577 2342
1588 2353
1589 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
1590 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1592 2357
1593 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
1594
1595 } 2359 }
1596 while (expect_true (activecnt && !loop_done)); 2360 while (expect_true (
2361 activecnt
2362 && !loop_done
2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2364 ));
1597 2365
1598 if (loop_done == EVUNLOOP_ONE) 2366 if (loop_done == EVUNLOOP_ONE)
1599 loop_done = EVUNLOOP_CANCEL; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
1600} 2372}
1601 2373
1602void 2374void
1603ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
1604{ 2376{
1605 loop_done = how; 2377 loop_done = how;
1606} 2378}
1607 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
1608/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
1609 2419
1610void inline_size 2420inline_size void
1611wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
1612{ 2422{
1613 elem->next = *head; 2423 elem->next = *head;
1614 *head = elem; 2424 *head = elem;
1615} 2425}
1616 2426
1617void inline_size 2427inline_size void
1618wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
1619{ 2429{
1620 while (*head) 2430 while (*head)
1621 { 2431 {
1622 if (*head == elem) 2432 if (expect_true (*head == elem))
1623 { 2433 {
1624 *head = elem->next; 2434 *head = elem->next;
1625 return; 2435 break;
1626 } 2436 }
1627 2437
1628 head = &(*head)->next; 2438 head = &(*head)->next;
1629 } 2439 }
1630} 2440}
1631 2441
1632void inline_speed 2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
1633clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
1634{ 2445{
1635 if (w->pending) 2446 if (w->pending)
1636 { 2447 {
1637 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1638 w->pending = 0; 2449 w->pending = 0;
1639 } 2450 }
1640} 2451}
1641 2452
1642int 2453int
1646 int pending = w_->pending; 2457 int pending = w_->pending;
1647 2458
1648 if (expect_true (pending)) 2459 if (expect_true (pending))
1649 { 2460 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
1651 w_->pending = 0; 2463 w_->pending = 0;
1652 p->w = 0;
1653 return p->events; 2464 return p->events;
1654 } 2465 }
1655 else 2466 else
1656 return 0; 2467 return 0;
1657} 2468}
1658 2469
1659void inline_size 2470inline_size void
1660pri_adjust (EV_P_ W w) 2471pri_adjust (EV_P_ W w)
1661{ 2472{
1662 int pri = w->priority; 2473 int pri = ev_priority (w);
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri; 2476 ev_set_priority (w, pri);
1666} 2477}
1667 2478
1668void inline_speed 2479inline_speed void
1669ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
1670{ 2481{
1671 pri_adjust (EV_A_ w); 2482 pri_adjust (EV_A_ w);
1672 w->active = active; 2483 w->active = active;
1673 ev_ref (EV_A); 2484 ev_ref (EV_A);
1674} 2485}
1675 2486
1676void inline_size 2487inline_size void
1677ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
1678{ 2489{
1679 ev_unref (EV_A); 2490 ev_unref (EV_A);
1680 w->active = 0; 2491 w->active = 0;
1681} 2492}
1688 int fd = w->fd; 2499 int fd = w->fd;
1689 2500
1690 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
1691 return; 2502 return;
1692 2503
1693 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
1694 2508
1695 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1697 wlist_add (&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
1698 2512
1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1700 w->events &= ~EV_IOFDSET; 2514 w->events &= ~EV__IOFDSET;
2515
2516 EV_FREQUENT_CHECK;
1701} 2517}
1702 2518
1703void noinline 2519void noinline
1704ev_io_stop (EV_P_ ev_io *w) 2520ev_io_stop (EV_P_ ev_io *w)
1705{ 2521{
1706 clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
1707 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
1708 return; 2524 return;
1709 2525
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2527
2528 EV_FREQUENT_CHECK;
1711 2529
1712 wlist_del (&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
1713 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
1714 2532
1715 fd_change (EV_A_ w->fd, 1); 2533 fd_change (EV_A_ w->fd, 1);
2534
2535 EV_FREQUENT_CHECK;
1716} 2536}
1717 2537
1718void noinline 2538void noinline
1719ev_timer_start (EV_P_ ev_timer *w) 2539ev_timer_start (EV_P_ ev_timer *w)
1720{ 2540{
1721 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
1722 return; 2542 return;
1723 2543
1724 ((WT)w)->at += mn_now; 2544 ev_at (w) += mn_now;
1725 2545
1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1727 2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
1728 ev_start (EV_A_ (W)w, ++timercnt); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1730 timers [timercnt - 1] = (WT)w; 2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
1731 upheap (timers, timercnt - 1); 2554 ANHE_at_cache (timers [ev_active (w)]);
2555 upheap (timers, ev_active (w));
1732 2556
2557 EV_FREQUENT_CHECK;
2558
1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1734} 2560}
1735 2561
1736void noinline 2562void noinline
1737ev_timer_stop (EV_P_ ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
1738{ 2564{
1739 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1740 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1741 return; 2567 return;
1742 2568
1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2569 EV_FREQUENT_CHECK;
1744 2570
1745 { 2571 {
1746 int active = ((W)w)->active; 2572 int active = ev_active (w);
1747 2573
2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2575
2576 --timercnt;
2577
1748 if (expect_true (--active < --timercnt)) 2578 if (expect_true (active < timercnt + HEAP0))
1749 { 2579 {
1750 timers [active] = timers [timercnt]; 2580 timers [active] = timers [timercnt + HEAP0];
1751 adjustheap (timers, timercnt, active); 2581 adjustheap (timers, timercnt, active);
1752 } 2582 }
1753 } 2583 }
1754 2584
1755 ((WT)w)->at -= mn_now; 2585 EV_FREQUENT_CHECK;
2586
2587 ev_at (w) -= mn_now;
1756 2588
1757 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
1758} 2590}
1759 2591
1760void noinline 2592void noinline
1761ev_timer_again (EV_P_ ev_timer *w) 2593ev_timer_again (EV_P_ ev_timer *w)
1762{ 2594{
2595 EV_FREQUENT_CHECK;
2596
1763 if (ev_is_active (w)) 2597 if (ev_is_active (w))
1764 { 2598 {
1765 if (w->repeat) 2599 if (w->repeat)
1766 { 2600 {
1767 ((WT)w)->at = mn_now + w->repeat; 2601 ev_at (w) = mn_now + w->repeat;
2602 ANHE_at_cache (timers [ev_active (w)]);
1768 adjustheap (timers, timercnt, ((W)w)->active - 1); 2603 adjustheap (timers, timercnt, ev_active (w));
1769 } 2604 }
1770 else 2605 else
1771 ev_timer_stop (EV_A_ w); 2606 ev_timer_stop (EV_A_ w);
1772 } 2607 }
1773 else if (w->repeat) 2608 else if (w->repeat)
1774 { 2609 {
1775 w->at = w->repeat; 2610 ev_at (w) = w->repeat;
1776 ev_timer_start (EV_A_ w); 2611 ev_timer_start (EV_A_ w);
1777 } 2612 }
2613
2614 EV_FREQUENT_CHECK;
2615}
2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1778} 2621}
1779 2622
1780#if EV_PERIODIC_ENABLE 2623#if EV_PERIODIC_ENABLE
1781void noinline 2624void noinline
1782ev_periodic_start (EV_P_ ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
1783{ 2626{
1784 if (expect_false (ev_is_active (w))) 2627 if (expect_false (ev_is_active (w)))
1785 return; 2628 return;
1786 2629
1787 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1789 else if (w->interval) 2632 else if (w->interval)
1790 { 2633 {
1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1792 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1794 } 2637 }
1795 else 2638 else
1796 ((WT)w)->at = w->offset; 2639 ev_at (w) = w->offset;
1797 2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
1798 ev_start (EV_A_ (W)w, ++periodiccnt); 2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1800 periodics [periodiccnt - 1] = (WT)w; 2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1801 upheap (periodics, periodiccnt - 1); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2648 upheap (periodics, ev_active (w));
1802 2649
2650 EV_FREQUENT_CHECK;
2651
1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1804} 2653}
1805 2654
1806void noinline 2655void noinline
1807ev_periodic_stop (EV_P_ ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
1808{ 2657{
1809 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
1811 return; 2660 return;
1812 2661
1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2662 EV_FREQUENT_CHECK;
1814 2663
1815 { 2664 {
1816 int active = ((W)w)->active; 2665 int active = ev_active (w);
1817 2666
2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2668
2669 --periodiccnt;
2670
1818 if (expect_true (--active < --periodiccnt)) 2671 if (expect_true (active < periodiccnt + HEAP0))
1819 { 2672 {
1820 periodics [active] = periodics [periodiccnt]; 2673 periodics [active] = periodics [periodiccnt + HEAP0];
1821 adjustheap (periodics, periodiccnt, active); 2674 adjustheap (periodics, periodiccnt, active);
1822 } 2675 }
1823 } 2676 }
1824 2677
2678 EV_FREQUENT_CHECK;
2679
1825 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
1826} 2681}
1827 2682
1828void noinline 2683void noinline
1829ev_periodic_again (EV_P_ ev_periodic *w) 2684ev_periodic_again (EV_P_ ev_periodic *w)
1839#endif 2694#endif
1840 2695
1841void noinline 2696void noinline
1842ev_signal_start (EV_P_ ev_signal *w) 2697ev_signal_start (EV_P_ ev_signal *w)
1843{ 2698{
1844#if EV_MULTIPLICITY
1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1846#endif
1847 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
1848 return; 2700 return;
1849 2701
1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1851 2703
2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2707
2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
1852 { 2715 {
1853#ifndef _WIN32 2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1854 sigset_t full, prev; 2717 if (sigfd < 0 && errno == EINVAL)
1855 sigfillset (&full); 2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1856 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif
1858 2719
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
1860 2723
1861#ifndef _WIN32 2724 sigemptyset (&sigfd_set);
1862 sigprocmask (SIG_SETMASK, &prev, 0); 2725
1863#endif 2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
1864 } 2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
1865 2742
1866 ev_start (EV_A_ (W)w, 1); 2743 ev_start (EV_A_ (W)w, 1);
1867 wlist_add (&signals [w->signum - 1].head, (WL)w); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
1868 2745
1869 if (!((WL)w)->next) 2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
1870 { 2750 {
1871#if _WIN32 2751# if _WIN32
2752 evpipe_init (EV_A);
2753
1872 signal (w->signum, sighandler); 2754 signal (w->signum, ev_sighandler);
1873#else 2755# else
1874 struct sigaction sa; 2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
1875 sa.sa_handler = sighandler; 2760 sa.sa_handler = ev_sighandler;
1876 sigfillset (&sa.sa_mask); 2761 sigfillset (&sa.sa_mask);
1877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1878 sigaction (w->signum, &sa, 0); 2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1879#endif 2768#endif
1880 } 2769 }
2770
2771 EV_FREQUENT_CHECK;
1881} 2772}
1882 2773
1883void noinline 2774void noinline
1884ev_signal_stop (EV_P_ ev_signal *w) 2775ev_signal_stop (EV_P_ ev_signal *w)
1885{ 2776{
1886 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1887 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1888 return; 2779 return;
1889 2780
2781 EV_FREQUENT_CHECK;
2782
1890 wlist_del (&signals [w->signum - 1].head, (WL)w); 2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
1891 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
1892 2785
1893 if (!signals [w->signum - 1].head) 2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
1894 signal (w->signum, SIG_DFL); 2802 signal (w->signum, SIG_DFL);
2803 }
2804
2805 EV_FREQUENT_CHECK;
1895} 2806}
1896 2807
1897void 2808void
1898ev_child_start (EV_P_ ev_child *w) 2809ev_child_start (EV_P_ ev_child *w)
1899{ 2810{
1900#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1902#endif 2813#endif
1903 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
1904 return; 2815 return;
1905 2816
2817 EV_FREQUENT_CHECK;
2818
1906 ev_start (EV_A_ (W)w, 1); 2819 ev_start (EV_A_ (W)w, 1);
1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821
2822 EV_FREQUENT_CHECK;
1908} 2823}
1909 2824
1910void 2825void
1911ev_child_stop (EV_P_ ev_child *w) 2826ev_child_stop (EV_P_ ev_child *w)
1912{ 2827{
1913 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
1914 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
1915 return; 2830 return;
1916 2831
2832 EV_FREQUENT_CHECK;
2833
1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1918 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
1919} 2838}
1920 2839
1921#if EV_STAT_ENABLE 2840#if EV_STAT_ENABLE
1922 2841
1923# ifdef _WIN32 2842# ifdef _WIN32
1924# undef lstat 2843# undef lstat
1925# define lstat(a,b) _stati64 (a,b) 2844# define lstat(a,b) _stati64 (a,b)
1926# endif 2845# endif
1927 2846
1928#define DEF_STAT_INTERVAL 5.0074891 2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1929#define MIN_STAT_INTERVAL 0.1074891 2849#define MIN_STAT_INTERVAL 0.1074891
1930 2850
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932 2852
1933#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192 2854# define EV_INOTIFY_BUFSIZE 8192
1936static void noinline 2856static void noinline
1937infy_add (EV_P_ ev_stat *w) 2857infy_add (EV_P_ ev_stat *w)
1938{ 2858{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940 2860
1941 if (w->wd < 0) 2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1942 { 2881 }
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1944 2886
1945 /* monitor some parent directory for speedup hints */ 2887 /* if path is not there, monitor some parent directory for speedup hints */
2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2889 /* but an efficiency issue only */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 { 2891 {
1948 char path [4096]; 2892 char path [4096];
1949 strcpy (path, w->path); 2893 strcpy (path, w->path);
1950 2894
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2897 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2898 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955 2899
1956 char *pend = strrchr (path, '/'); 2900 char *pend = strrchr (path, '/');
1957 2901
1958 if (!pend) 2902 if (!pend || pend == path)
1959 break; /* whoops, no '/', complain to your admin */ 2903 break;
1960 2904
1961 *pend = 0; 2905 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask); 2906 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 } 2907 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 } 2909 }
1966 } 2910 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969 2911
1970 if (w->wd >= 0) 2912 if (w->wd >= 0)
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2914
2915 /* now re-arm timer, if required */
2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2917 ev_timer_again (EV_A_ &w->timer);
2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1972} 2919}
1973 2920
1974static void noinline 2921static void noinline
1975infy_del (EV_P_ ev_stat *w) 2922infy_del (EV_P_ ev_stat *w)
1976{ 2923{
1990 2937
1991static void noinline 2938static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2939infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{ 2940{
1994 if (slot < 0) 2941 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */ 2942 /* overflow, need to check for all hash slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev); 2944 infy_wd (EV_A_ slot, wd, ev);
1998 else 2945 else
1999 { 2946 {
2000 WL w_; 2947 WL w_;
2006 2953
2007 if (w->wd == wd || wd == -1) 2954 if (w->wd == wd || wd == -1)
2008 { 2955 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2956 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 { 2957 {
2958 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2011 w->wd = -1; 2959 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */ 2960 infy_add (EV_A_ w); /* re-add, no matter what */
2013 } 2961 }
2014 2962
2015 stat_timer_cb (EV_A_ &w->timer, 0); 2963 stat_timer_cb (EV_A_ &w->timer, 0);
2028 2976
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2031} 2979}
2032 2980
2033void inline_size 2981inline_size void
2982check_2625 (EV_P)
2983{
2984 /* kernels < 2.6.25 are borked
2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2986 */
2987 struct utsname buf;
2988 int major, minor, micro;
2989
2990 if (uname (&buf))
2991 return;
2992
2993 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2994 return;
2995
2996 if (major < 2
2997 || (major == 2 && minor < 6)
2998 || (major == 2 && minor == 6 && micro < 25))
2999 return;
3000
3001 fs_2625 = 1;
3002}
3003
3004inline_size int
3005infy_newfd (void)
3006{
3007#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011#endif
3012 return inotify_init ();
3013}
3014
3015inline_size void
2034infy_init (EV_P) 3016infy_init (EV_P)
2035{ 3017{
2036 if (fs_fd != -2) 3018 if (fs_fd != -2)
2037 return; 3019 return;
2038 3020
3021 fs_fd = -1;
3022
3023 check_2625 (EV_A);
3024
2039 fs_fd = inotify_init (); 3025 fs_fd = infy_newfd ();
2040 3026
2041 if (fs_fd >= 0) 3027 if (fs_fd >= 0)
2042 { 3028 {
3029 fd_intern (fs_fd);
2043 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2044 ev_set_priority (&fs_w, EV_MAXPRI); 3031 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w); 3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
2046 } 3034 }
2047} 3035}
2048 3036
2049void inline_size 3037inline_size void
2050infy_fork (EV_P) 3038infy_fork (EV_P)
2051{ 3039{
2052 int slot; 3040 int slot;
2053 3041
2054 if (fs_fd < 0) 3042 if (fs_fd < 0)
2055 return; 3043 return;
2056 3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
2057 close (fs_fd); 3047 close (fs_fd);
2058 fs_fd = inotify_init (); 3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
2059 3057
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 { 3059 {
2062 WL w_ = fs_hash [slot].head; 3060 WL w_ = fs_hash [slot].head;
2063 fs_hash [slot].head = 0; 3061 fs_hash [slot].head = 0;
2070 w->wd = -1; 3068 w->wd = -1;
2071 3069
2072 if (fs_fd >= 0) 3070 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 3071 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else 3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2075 ev_timer_start (EV_A_ &w->timer); 3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
2076 } 3079 }
2077
2078 } 3080 }
2079} 3081}
2080 3082
3083#endif
3084
3085#ifdef _WIN32
3086# define EV_LSTAT(p,b) _stati64 (p, b)
3087#else
3088# define EV_LSTAT(p,b) lstat (p, b)
2081#endif 3089#endif
2082 3090
2083void 3091void
2084ev_stat_stat (EV_P_ ev_stat *w) 3092ev_stat_stat (EV_P_ ev_stat *w)
2085{ 3093{
2112 || w->prev.st_atime != w->attr.st_atime 3120 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime 3121 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime 3122 || w->prev.st_ctime != w->attr.st_ctime
2115 ) { 3123 ) {
2116 #if EV_USE_INOTIFY 3124 #if EV_USE_INOTIFY
3125 if (fs_fd >= 0)
3126 {
2117 infy_del (EV_A_ w); 3127 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w); 3128 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */ 3129 ev_stat_stat (EV_A_ w); /* avoid race... */
3130 }
2120 #endif 3131 #endif
2121 3132
2122 ev_feed_event (EV_A_ w, EV_STAT); 3133 ev_feed_event (EV_A_ w, EV_STAT);
2123 } 3134 }
2124} 3135}
2127ev_stat_start (EV_P_ ev_stat *w) 3138ev_stat_start (EV_P_ ev_stat *w)
2128{ 3139{
2129 if (expect_false (ev_is_active (w))) 3140 if (expect_false (ev_is_active (w)))
2130 return; 3141 return;
2131 3142
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w); 3143 ev_stat_stat (EV_A_ w);
2137 3144
3145 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2138 if (w->interval < MIN_STAT_INTERVAL) 3146 w->interval = MIN_STAT_INTERVAL;
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140 3147
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3148 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2142 ev_set_priority (&w->timer, ev_priority (w)); 3149 ev_set_priority (&w->timer, ev_priority (w));
2143 3150
2144#if EV_USE_INOTIFY 3151#if EV_USE_INOTIFY
2145 infy_init (EV_A); 3152 infy_init (EV_A);
2146 3153
2147 if (fs_fd >= 0) 3154 if (fs_fd >= 0)
2148 infy_add (EV_A_ w); 3155 infy_add (EV_A_ w);
2149 else 3156 else
2150#endif 3157#endif
3158 {
2151 ev_timer_start (EV_A_ &w->timer); 3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
3161 }
2152 3162
2153 ev_start (EV_A_ (W)w, 1); 3163 ev_start (EV_A_ (W)w, 1);
3164
3165 EV_FREQUENT_CHECK;
2154} 3166}
2155 3167
2156void 3168void
2157ev_stat_stop (EV_P_ ev_stat *w) 3169ev_stat_stop (EV_P_ ev_stat *w)
2158{ 3170{
2159 clear_pending (EV_A_ (W)w); 3171 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 3172 if (expect_false (!ev_is_active (w)))
2161 return; 3173 return;
2162 3174
3175 EV_FREQUENT_CHECK;
3176
2163#if EV_USE_INOTIFY 3177#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w); 3178 infy_del (EV_A_ w);
2165#endif 3179#endif
3180
3181 if (ev_is_active (&w->timer))
3182 {
3183 ev_ref (EV_A);
2166 ev_timer_stop (EV_A_ &w->timer); 3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
2167 3186
2168 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
2169} 3190}
2170#endif 3191#endif
2171 3192
2172#if EV_IDLE_ENABLE 3193#if EV_IDLE_ENABLE
2173void 3194void
2175{ 3196{
2176 if (expect_false (ev_is_active (w))) 3197 if (expect_false (ev_is_active (w)))
2177 return; 3198 return;
2178 3199
2179 pri_adjust (EV_A_ (W)w); 3200 pri_adjust (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2180 3203
2181 { 3204 {
2182 int active = ++idlecnt [ABSPRI (w)]; 3205 int active = ++idlecnt [ABSPRI (w)];
2183 3206
2184 ++idleall; 3207 ++idleall;
2185 ev_start (EV_A_ (W)w, active); 3208 ev_start (EV_A_ (W)w, active);
2186 3209
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3210 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w; 3211 idles [ABSPRI (w)][active - 1] = w;
2189 } 3212 }
3213
3214 EV_FREQUENT_CHECK;
2190} 3215}
2191 3216
2192void 3217void
2193ev_idle_stop (EV_P_ ev_idle *w) 3218ev_idle_stop (EV_P_ ev_idle *w)
2194{ 3219{
2195 clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2197 return; 3222 return;
2198 3223
3224 EV_FREQUENT_CHECK;
3225
2199 { 3226 {
2200 int active = ((W)w)->active; 3227 int active = ev_active (w);
2201 3228
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3229 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2204 3231
2205 ev_stop (EV_A_ (W)w); 3232 ev_stop (EV_A_ (W)w);
2206 --idleall; 3233 --idleall;
2207 } 3234 }
3235
3236 EV_FREQUENT_CHECK;
2208} 3237}
2209#endif 3238#endif
2210 3239
2211void 3240void
2212ev_prepare_start (EV_P_ ev_prepare *w) 3241ev_prepare_start (EV_P_ ev_prepare *w)
2213{ 3242{
2214 if (expect_false (ev_is_active (w))) 3243 if (expect_false (ev_is_active (w)))
2215 return; 3244 return;
3245
3246 EV_FREQUENT_CHECK;
2216 3247
2217 ev_start (EV_A_ (W)w, ++preparecnt); 3248 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3249 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w; 3250 prepares [preparecnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
2220} 3253}
2221 3254
2222void 3255void
2223ev_prepare_stop (EV_P_ ev_prepare *w) 3256ev_prepare_stop (EV_P_ ev_prepare *w)
2224{ 3257{
2225 clear_pending (EV_A_ (W)w); 3258 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w))) 3259 if (expect_false (!ev_is_active (w)))
2227 return; 3260 return;
2228 3261
3262 EV_FREQUENT_CHECK;
3263
2229 { 3264 {
2230 int active = ((W)w)->active; 3265 int active = ev_active (w);
3266
2231 prepares [active - 1] = prepares [--preparecnt]; 3267 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active; 3268 ev_active (prepares [active - 1]) = active;
2233 } 3269 }
2234 3270
2235 ev_stop (EV_A_ (W)w); 3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
2236} 3274}
2237 3275
2238void 3276void
2239ev_check_start (EV_P_ ev_check *w) 3277ev_check_start (EV_P_ ev_check *w)
2240{ 3278{
2241 if (expect_false (ev_is_active (w))) 3279 if (expect_false (ev_is_active (w)))
2242 return; 3280 return;
3281
3282 EV_FREQUENT_CHECK;
2243 3283
2244 ev_start (EV_A_ (W)w, ++checkcnt); 3284 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3285 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w; 3286 checks [checkcnt - 1] = w;
3287
3288 EV_FREQUENT_CHECK;
2247} 3289}
2248 3290
2249void 3291void
2250ev_check_stop (EV_P_ ev_check *w) 3292ev_check_stop (EV_P_ ev_check *w)
2251{ 3293{
2252 clear_pending (EV_A_ (W)w); 3294 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w))) 3295 if (expect_false (!ev_is_active (w)))
2254 return; 3296 return;
2255 3297
3298 EV_FREQUENT_CHECK;
3299
2256 { 3300 {
2257 int active = ((W)w)->active; 3301 int active = ev_active (w);
3302
2258 checks [active - 1] = checks [--checkcnt]; 3303 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active; 3304 ev_active (checks [active - 1]) = active;
2260 } 3305 }
2261 3306
2262 ev_stop (EV_A_ (W)w); 3307 ev_stop (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
2263} 3310}
2264 3311
2265#if EV_EMBED_ENABLE 3312#if EV_EMBED_ENABLE
2266void noinline 3313void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w) 3314ev_embed_sweep (EV_P_ ev_embed *w)
2284embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3331embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2285{ 3332{
2286 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2287 3334
2288 { 3335 {
2289 struct ev_loop *loop = w->other; 3336 EV_P = w->other;
2290 3337
2291 while (fdchangecnt) 3338 while (fdchangecnt)
2292 { 3339 {
2293 fd_reify (EV_A); 3340 fd_reify (EV_A);
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 } 3342 }
2296 } 3343 }
2297} 3344}
2298 3345
3346static void
3347embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3348{
3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3350
3351 ev_embed_stop (EV_A_ w);
3352
3353 {
3354 EV_P = w->other;
3355
3356 ev_loop_fork (EV_A);
3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3358 }
3359
3360 ev_embed_start (EV_A_ w);
3361}
3362
2299#if 0 3363#if 0
2300static void 3364static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{ 3366{
2303 ev_idle_stop (EV_A_ idle); 3367 ev_idle_stop (EV_A_ idle);
2309{ 3373{
2310 if (expect_false (ev_is_active (w))) 3374 if (expect_false (ev_is_active (w)))
2311 return; 3375 return;
2312 3376
2313 { 3377 {
2314 struct ev_loop *loop = w->other; 3378 EV_P = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 } 3381 }
3382
3383 EV_FREQUENT_CHECK;
2318 3384
2319 ev_set_priority (&w->io, ev_priority (w)); 3385 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io); 3386 ev_io_start (EV_A_ &w->io);
2321 3387
2322 ev_prepare_init (&w->prepare, embed_prepare_cb); 3388 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI); 3389 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare); 3390 ev_prepare_start (EV_A_ &w->prepare);
2325 3391
3392 ev_fork_init (&w->fork, embed_fork_cb);
3393 ev_fork_start (EV_A_ &w->fork);
3394
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3395 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327 3396
2328 ev_start (EV_A_ (W)w, 1); 3397 ev_start (EV_A_ (W)w, 1);
3398
3399 EV_FREQUENT_CHECK;
2329} 3400}
2330 3401
2331void 3402void
2332ev_embed_stop (EV_P_ ev_embed *w) 3403ev_embed_stop (EV_P_ ev_embed *w)
2333{ 3404{
2334 clear_pending (EV_A_ (W)w); 3405 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3406 if (expect_false (!ev_is_active (w)))
2336 return; 3407 return;
2337 3408
3409 EV_FREQUENT_CHECK;
3410
2338 ev_io_stop (EV_A_ &w->io); 3411 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare); 3412 ev_prepare_stop (EV_A_ &w->prepare);
3413 ev_fork_stop (EV_A_ &w->fork);
2340 3414
2341 ev_stop (EV_A_ (W)w); 3415 EV_FREQUENT_CHECK;
2342} 3416}
2343#endif 3417#endif
2344 3418
2345#if EV_FORK_ENABLE 3419#if EV_FORK_ENABLE
2346void 3420void
2347ev_fork_start (EV_P_ ev_fork *w) 3421ev_fork_start (EV_P_ ev_fork *w)
2348{ 3422{
2349 if (expect_false (ev_is_active (w))) 3423 if (expect_false (ev_is_active (w)))
2350 return; 3424 return;
3425
3426 EV_FREQUENT_CHECK;
2351 3427
2352 ev_start (EV_A_ (W)w, ++forkcnt); 3428 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3429 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w; 3430 forks [forkcnt - 1] = w;
3431
3432 EV_FREQUENT_CHECK;
2355} 3433}
2356 3434
2357void 3435void
2358ev_fork_stop (EV_P_ ev_fork *w) 3436ev_fork_stop (EV_P_ ev_fork *w)
2359{ 3437{
2360 clear_pending (EV_A_ (W)w); 3438 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3439 if (expect_false (!ev_is_active (w)))
2362 return; 3440 return;
2363 3441
3442 EV_FREQUENT_CHECK;
3443
2364 { 3444 {
2365 int active = ((W)w)->active; 3445 int active = ev_active (w);
3446
2366 forks [active - 1] = forks [--forkcnt]; 3447 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active; 3448 ev_active (forks [active - 1]) = active;
2368 } 3449 }
2369 3450
2370 ev_stop (EV_A_ (W)w); 3451 ev_stop (EV_A_ (W)w);
3452
3453 EV_FREQUENT_CHECK;
3454}
3455#endif
3456
3457#if EV_ASYNC_ENABLE
3458void
3459ev_async_start (EV_P_ ev_async *w)
3460{
3461 if (expect_false (ev_is_active (w)))
3462 return;
3463
3464 evpipe_init (EV_A);
3465
3466 EV_FREQUENT_CHECK;
3467
3468 ev_start (EV_A_ (W)w, ++asynccnt);
3469 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3470 asyncs [asynccnt - 1] = w;
3471
3472 EV_FREQUENT_CHECK;
3473}
3474
3475void
3476ev_async_stop (EV_P_ ev_async *w)
3477{
3478 clear_pending (EV_A_ (W)w);
3479 if (expect_false (!ev_is_active (w)))
3480 return;
3481
3482 EV_FREQUENT_CHECK;
3483
3484 {
3485 int active = ev_active (w);
3486
3487 asyncs [active - 1] = asyncs [--asynccnt];
3488 ev_active (asyncs [active - 1]) = active;
3489 }
3490
3491 ev_stop (EV_A_ (W)w);
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_send (EV_P_ ev_async *w)
3498{
3499 w->sent = 1;
3500 evpipe_write (EV_A_ &async_pending);
2371} 3501}
2372#endif 3502#endif
2373 3503
2374/*****************************************************************************/ 3504/*****************************************************************************/
2375 3505
2385once_cb (EV_P_ struct ev_once *once, int revents) 3515once_cb (EV_P_ struct ev_once *once, int revents)
2386{ 3516{
2387 void (*cb)(int revents, void *arg) = once->cb; 3517 void (*cb)(int revents, void *arg) = once->cb;
2388 void *arg = once->arg; 3518 void *arg = once->arg;
2389 3519
2390 ev_io_stop (EV_A_ &once->io); 3520 ev_io_stop (EV_A_ &once->io);
2391 ev_timer_stop (EV_A_ &once->to); 3521 ev_timer_stop (EV_A_ &once->to);
2392 ev_free (once); 3522 ev_free (once);
2393 3523
2394 cb (revents, arg); 3524 cb (revents, arg);
2395} 3525}
2396 3526
2397static void 3527static void
2398once_cb_io (EV_P_ ev_io *w, int revents) 3528once_cb_io (EV_P_ ev_io *w, int revents)
2399{ 3529{
2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3530 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3531
3532 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2401} 3533}
2402 3534
2403static void 3535static void
2404once_cb_to (EV_P_ ev_timer *w, int revents) 3536once_cb_to (EV_P_ ev_timer *w, int revents)
2405{ 3537{
2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3538 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3539
3540 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2407} 3541}
2408 3542
2409void 3543void
2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3544ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2411{ 3545{
2433 ev_timer_set (&once->to, timeout, 0.); 3567 ev_timer_set (&once->to, timeout, 0.);
2434 ev_timer_start (EV_A_ &once->to); 3568 ev_timer_start (EV_A_ &once->to);
2435 } 3569 }
2436} 3570}
2437 3571
3572/*****************************************************************************/
3573
3574#if EV_WALK_ENABLE
3575void
3576ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577{
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
3584 {
3585 wn = wl->next;
3586
3587#if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594#endif
3595#if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599#endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
3605 }
3606
3607 if (types & (EV_TIMER | EV_STAT))
3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609#if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3612 {
3613 if (types & EV_STAT)
3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3615 }
3616 else
3617#endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3620
3621#if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625#endif
3626
3627#if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632#endif
3633
3634#if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639#endif
3640
3641#if EV_ASYNC_ENABLE
3642 if (types & EV_ASYNC)
3643 for (i = asynccnt; i--; )
3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
3645#endif
3646
3647 if (types & EV_PREPARE)
3648 for (i = preparecnt; i--; )
3649#if EV_EMBED_ENABLE
3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
3651#endif
3652 cb (EV_A_ EV_PREPARE, prepares [i]);
3653
3654 if (types & EV_CHECK)
3655 for (i = checkcnt; i--; )
3656 cb (EV_A_ EV_CHECK, checks [i]);
3657
3658 if (types & EV_SIGNAL)
3659 for (i = 0; i < EV_NSIG - 1; ++i)
3660 for (wl = signals [i].head; wl; )
3661 {
3662 wn = wl->next;
3663 cb (EV_A_ EV_SIGNAL, wl);
3664 wl = wn;
3665 }
3666
3667 if (types & EV_CHILD)
3668 for (i = EV_PID_HASHSIZE; i--; )
3669 for (wl = childs [i]; wl; )
3670 {
3671 wn = wl->next;
3672 cb (EV_A_ EV_CHILD, wl);
3673 wl = wn;
3674 }
3675/* EV_STAT 0x00001000 /* stat data changed */
3676/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3677}
3678#endif
3679
2438#if EV_MULTIPLICITY 3680#if EV_MULTIPLICITY
2439 #include "ev_wrap.h" 3681 #include "ev_wrap.h"
2440#endif 3682#endif
2441 3683
2442#ifdef __cplusplus 3684#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines