ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC vs.
Revision 1.441 by root, Wed May 30 15:45:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
135#endif 197#endif
136 198
137#ifndef _WIN32 199#ifndef _WIN32
138# include <sys/time.h> 200# include <sys/time.h>
139# include <sys/wait.h> 201# include <sys/wait.h>
140# include <unistd.h> 202# include <unistd.h>
141#else 203#else
204# include <io.h>
142# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
143# include <windows.h> 207# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
146# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
147#endif 261# endif
148 262#endif
149/**/
150 263
151#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
152# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
153#endif 270#endif
154 271
155#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 274#endif
158 275
159#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
160# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
161#endif 282#endif
162 283
163#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 286#endif
166 287
167#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
168# ifdef _WIN32 289# ifdef _WIN32
169# define EV_USE_POLL 0 290# define EV_USE_POLL 0
170# else 291# else
171# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 293# endif
173#endif 294#endif
174 295
175#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
176# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
177#endif 302#endif
178 303
179#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
181#endif 306#endif
183#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 309# define EV_USE_PORT 0
185#endif 310#endif
186 311
187#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
188# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
189#endif 318#endif
190 319
191#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 331# else
195# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
196# endif 333# endif
197#endif 334#endif
198 335
199#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 339# else
203# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
204# endif 341# endif
205#endif 342#endif
206 343
207/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
208 383
209#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
212#endif 387#endif
220# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
222#endif 397#endif
223 398
224#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
226# include <sys/select.h> 402# include <sys/select.h>
227# endif 403# endif
228#endif 404#endif
229 405
230#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
231# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
232#endif 413# endif
414#endif
233 415
234#if EV_SELECT_IS_WINSOCKET 416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
235# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
236#endif 452#endif
237 453
238/**/ 454/**/
239 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
240/* 462/*
241 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 465 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 468
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
254#if __GNUC__ >= 4 519 #if __GNUC__
255# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
256# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
257#else 536#else
258# define expect(expr,value) (expr) 537 #include <inttypes.h>
259# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
260# if __STDC_VERSION__ < 199901L 539 #define ECB_PTRSIZE 8
261# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
262# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
263#endif 557 #endif
558#endif
264 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720#endif
721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
265#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
267#define inline_size static inline 1010#define inline_size ecb_inline
268 1011
269#if EV_MINIMAL 1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
270# define inline_speed static noinline 1015# define inline_speed static noinline
1016#endif
1017
1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
271#else 1022#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
277 1025
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
280 1028
281typedef ev_watcher *W; 1029typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 1030typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 1031typedef ev_watcher_time *WT;
284 1032
1033#define ev_active(w) ((W)(w))->active
1034#define ev_at(w) ((WT)(w))->at
1035
1036#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 1038/* giving it a reasonably high chance of working on typical architectures */
1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040#endif
1041
1042#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044#endif
1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
1054#endif
288 1055
289#ifdef _WIN32 1056#ifdef _WIN32
290# include "ev_win32.c" 1057# include "ev_win32.c"
291#endif 1058#endif
292 1059
293/*****************************************************************************/ 1060/*****************************************************************************/
294 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
295static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
296 1161
297void 1162void ecb_cold
298ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
299{ 1164{
300 syserr_cb = cb; 1165 syserr_cb = cb;
301} 1166}
302 1167
303static void noinline 1168static void noinline ecb_cold
304syserr (const char *msg) 1169ev_syserr (const char *msg)
305{ 1170{
306 if (!msg) 1171 if (!msg)
307 msg = "(libev) system error"; 1172 msg = "(libev) system error";
308 1173
309 if (syserr_cb) 1174 if (syserr_cb)
310 syserr_cb (msg); 1175 syserr_cb (msg);
311 else 1176 else
312 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
313 perror (msg); 1184 perror (msg);
1185#endif
314 abort (); 1186 abort ();
315 } 1187 }
316} 1188}
317 1189
1190static void *
1191ev_realloc_emul (void *ptr, long size) EV_THROW
1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 */
1200
1201 if (size)
1202 return realloc (ptr, size);
1203
1204 free (ptr);
1205 return 0;
1206#endif
1207}
1208
318static void *(*alloc)(void *ptr, long size); 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
319 1210
320void 1211void ecb_cold
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
322{ 1213{
323 alloc = cb; 1214 alloc = cb;
324} 1215}
325 1216
326inline_speed void * 1217inline_speed void *
327ev_realloc (void *ptr, long size) 1218ev_realloc (void *ptr, long size)
328{ 1219{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1220 ptr = alloc (ptr, size);
330 1221
331 if (!ptr && size) 1222 if (!ptr && size)
332 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
334 abort (); 1229 abort ();
335 } 1230 }
336 1231
337 return ptr; 1232 return ptr;
338} 1233}
340#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
342 1237
343/*****************************************************************************/ 1238/*****************************************************************************/
344 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
345typedef struct 1244typedef struct
346{ 1245{
347 WL head; 1246 WL head;
348 unsigned char events; 1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 1250 unsigned char unused;
1251#if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253#endif
350#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
351 SOCKET handle; 1255 SOCKET handle;
352#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
353} ANFD; 1260} ANFD;
354 1261
1262/* stores the pending event set for a given watcher */
355typedef struct 1263typedef struct
356{ 1264{
357 W w; 1265 W w;
358 int events; 1266 int events; /* the pending event set for the given watcher */
359} ANPENDING; 1267} ANPENDING;
360 1268
361#if EV_USE_INOTIFY 1269#if EV_USE_INOTIFY
1270/* hash table entry per inotify-id */
362typedef struct 1271typedef struct
363{ 1272{
364 WL head; 1273 WL head;
365} ANFS; 1274} ANFS;
1275#endif
1276
1277/* Heap Entry */
1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
1280 typedef struct {
1281 ev_tstamp at;
1282 WT w;
1283 } ANHE;
1284
1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288#else
1289 /* a heap element */
1290 typedef WT ANHE;
1291
1292 #define ANHE_w(he) (he)
1293 #define ANHE_at(he) (he)->at
1294 #define ANHE_at_cache(he)
366#endif 1295#endif
367 1296
368#if EV_MULTIPLICITY 1297#if EV_MULTIPLICITY
369 1298
370 struct ev_loop 1299 struct ev_loop
376 #undef VAR 1305 #undef VAR
377 }; 1306 };
378 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
379 1308
380 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
382 1311
383#else 1312#else
384 1313
385 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
386 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
387 #include "ev_vars.h" 1316 #include "ev_vars.h"
388 #undef VAR 1317 #undef VAR
389 1318
390 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
391 1320
392#endif 1321#endif
393 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
394/*****************************************************************************/ 1335/*****************************************************************************/
395 1336
1337#ifndef EV_HAVE_EV_TIME
396ev_tstamp 1338ev_tstamp
397ev_time (void) 1339ev_time (void) EV_THROW
398{ 1340{
399#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
400 struct timespec ts; 1344 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 1345 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 1347 }
1348#endif
1349
404 struct timeval tv; 1350 struct timeval tv;
405 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 1353}
1354#endif
409 1355
410ev_tstamp inline_size 1356inline_size ev_tstamp
411get_clock (void) 1357get_clock (void)
412{ 1358{
413#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
415 { 1361 {
422 return ev_time (); 1368 return ev_time ();
423} 1369}
424 1370
425#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
426ev_tstamp 1372ev_tstamp
427ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
428{ 1374{
429 return ev_rt_now; 1375 return ev_rt_now;
430} 1376}
431#endif 1377#endif
432 1378
433void 1379void
434ev_sleep (ev_tstamp delay) 1380ev_sleep (ev_tstamp delay) EV_THROW
435{ 1381{
436 if (delay > 0.) 1382 if (delay > 0.)
437 { 1383 {
438#if EV_USE_NANOSLEEP 1384#if EV_USE_NANOSLEEP
439 struct timespec ts; 1385 struct timespec ts;
440 1386
441 ts.tv_sec = (time_t)delay; 1387 EV_TS_SET (ts, delay);
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0); 1388 nanosleep (&ts, 0);
445#elif defined(_WIN32) 1389#elif defined _WIN32
446 Sleep (delay * 1e3); 1390 Sleep ((unsigned long)(delay * 1e3));
447#else 1391#else
448 struct timeval tv; 1392 struct timeval tv;
449 1393
450 tv.tv_sec = (time_t)delay; 1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1395 /* something not guaranteed by newer posix versions, but guaranteed */
452 1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
453 select (0, 0, 0, 0, &tv); 1398 select (0, 0, 0, 0, &tv);
454#endif 1399#endif
455 } 1400 }
456} 1401}
457 1402
458/*****************************************************************************/ 1403/*****************************************************************************/
459 1404
460int inline_size 1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406
1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
461array_nextsize (int elem, int cur, int cnt) 1410array_nextsize (int elem, int cur, int cnt)
462{ 1411{
463 int ncur = cur + 1; 1412 int ncur = cur + 1;
464 1413
465 do 1414 do
466 ncur <<= 1; 1415 ncur <<= 1;
467 while (cnt > ncur); 1416 while (cnt > ncur);
468 1417
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
470 if (elem * ncur > 4096) 1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 1420 {
472 ncur *= elem; 1421 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 1423 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 1424 ncur /= elem;
476 } 1425 }
477 1426
478 return ncur; 1427 return ncur;
479} 1428}
480 1429
481static noinline void * 1430static void * noinline ecb_cold
482array_realloc (int elem, void *base, int *cur, int cnt) 1431array_realloc (int elem, void *base, int *cur, int cnt)
483{ 1432{
484 *cur = array_nextsize (elem, *cur, cnt); 1433 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 1434 return ev_realloc (base, elem * *cur);
486} 1435}
1436
1437#define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 1439
488#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 1441 if (expect_false ((cnt) > (cur))) \
490 { \ 1442 { \
491 int ocur_ = (cur); \ 1443 int ecb_unused ocur_ = (cur); \
492 (base) = (type *)array_realloc \ 1444 (base) = (type *)array_realloc \
493 (sizeof (type), (base), &(cur), (cnt)); \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
494 init ((base) + (ocur_), (cur) - ocur_); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
495 } 1447 }
496 1448
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 1456 }
505#endif 1457#endif
506 1458
507#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 1461
510/*****************************************************************************/ 1462/*****************************************************************************/
511 1463
1464/* dummy callback for pending events */
1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
1467{
1468}
1469
512void noinline 1470void noinline
513ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
514{ 1472{
515 W w_ = (W)w; 1473 W w_ = (W)w;
516 int pri = ABSPRI (w_); 1474 int pri = ABSPRI (w_);
517 1475
518 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
522 w_->pending = ++pendingcnt [pri]; 1480 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_; 1482 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 1483 pendings [pri][w_->pending - 1].events = revents;
526 } 1484 }
527}
528 1485
529void inline_speed 1486 pendingpri = NUMPRI - 1;
1487}
1488
1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 1506{
532 int i; 1507 int i;
533 1508
534 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
536} 1511}
537 1512
538/*****************************************************************************/ 1513/*****************************************************************************/
539 1514
540void inline_size 1515inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
555{ 1517{
556 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
557 ev_io *w; 1519 ev_io *w;
558 1520
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 1525 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
565 } 1527 }
566} 1528}
567 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
568void 1541void
569ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
570{ 1543{
571 if (fd >= 0 && fd < anfdmax) 1544 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
573} 1546}
574 1547
575void inline_size 1548/* make sure the external fd watch events are in-sync */
1549/* with the kernel/libev internal state */
1550inline_size void
576fd_reify (EV_P) 1551fd_reify (EV_P)
577{ 1552{
578 int i; 1553 int i;
1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578#endif
579 1579
580 for (i = 0; i < fdchangecnt; ++i) 1580 for (i = 0; i < fdchangecnt; ++i)
581 { 1581 {
582 int fd = fdchanges [i]; 1582 int fd = fdchanges [i];
583 ANFD *anfd = anfds + fd; 1583 ANFD *anfd = anfds + fd;
584 ev_io *w; 1584 ev_io *w;
585 1585
586 unsigned char events = 0; 1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
587 1588
588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1589 anfd->reify = 0;
589 events |= (unsigned char)w->events;
590 1590
591#if EV_SELECT_IS_WINSOCKET 1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
592 if (events)
593 { 1592 {
594 unsigned long argp; 1593 anfd->events = 0;
595 anfd->handle = _get_osfhandle (fd); 1594
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1596 anfd->events |= (unsigned char)w->events;
1597
1598 if (o_events != anfd->events)
1599 o_reify = EV__IOFDSET; /* actually |= */
597 } 1600 }
598#endif
599 1601
600 { 1602 if (o_reify & EV__IOFDSET)
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
604 anfd->reify = 0;
605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
609 }
610 } 1604 }
611 1605
612 fdchangecnt = 0; 1606 fdchangecnt = 0;
613} 1607}
614 1608
615void inline_size 1609/* something about the given fd changed */
1610inline_size void
616fd_change (EV_P_ int fd, int flags) 1611fd_change (EV_P_ int fd, int flags)
617{ 1612{
618 unsigned char reify = anfds [fd].reify; 1613 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 1614 anfds [fd].reify |= flags;
620 1615
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
626 } 1621 }
627} 1622}
628 1623
629void inline_speed 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
630fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
631{ 1627{
632 ev_io *w; 1628 ev_io *w;
633 1629
634 while ((w = (ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 1634 }
639} 1635}
640 1636
641int inline_size 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
642fd_valid (int fd) 1639fd_valid (int fd)
643{ 1640{
644#ifdef _WIN32 1641#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1643#else
647 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
648#endif 1645#endif
649} 1646}
650 1647
651/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
652static void noinline 1649static void noinline ecb_cold
653fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
654{ 1651{
655 int fd; 1652 int fd;
656 1653
657 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 1655 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
661} 1658}
662 1659
663/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 1661static void noinline ecb_cold
665fd_enomem (EV_P) 1662fd_enomem (EV_P)
666{ 1663{
667 int fd; 1664 int fd;
668 1665
669 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1667 if (anfds [fd].events)
671 { 1668 {
672 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
673 return; 1670 break;
674 } 1671 }
675} 1672}
676 1673
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1675static void noinline
682 1679
683 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1681 if (anfds [fd].events)
685 { 1682 {
686 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
1684 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1686 }
689} 1687}
690 1688
691/*****************************************************************************/ 1689/* used to prepare libev internal fd's */
692 1690/* this is not fork-safe */
693void inline_speed 1691inline_speed void
694upheap (WT *heap, int k)
695{
696 WT w = heap [k];
697
698 while (k)
699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
705 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1;
707 k = p;
708 }
709
710 heap [k] = w;
711 ((W)heap [k])->active = k + 1;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
747}
748
749/*****************************************************************************/
750
751typedef struct
752{
753 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG;
756
757static ANSIG *signals;
758static int signalmax;
759
760static int sigpipe [2];
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763
764void inline_size
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1692fd_intern (int fd)
829{ 1693{
830#ifdef _WIN32 1694#ifdef _WIN32
831 int arg = 1; 1695 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1697#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1699 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1700#endif
837} 1701}
838 1702
839static void noinline
840siginit (EV_P)
841{
842 fd_intern (sigpipe [0]);
843 fd_intern (sigpipe [1]);
844
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */
848}
849
850/*****************************************************************************/ 1703/*****************************************************************************/
851 1704
1705/*
1706 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708 * the branching factor of the d-tree.
1709 */
1710
1711/*
1712 * at the moment we allow libev the luxury of two heaps,
1713 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714 * which is more cache-efficient.
1715 * the difference is about 5% with 50000+ watchers.
1716 */
1717#if EV_USE_4HEAP
1718
1719#define DHEAP 4
1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722#define UPHEAP_DONE(p,k) ((p) == (k))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729 ANHE *E = heap + N + HEAP0;
1730
1731 for (;;)
1732 {
1733 ev_tstamp minat;
1734 ANHE *minpos;
1735 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736
1737 /* find minimum child */
1738 if (expect_true (pos + DHEAP - 1 < E))
1739 {
1740 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 }
1745 else if (pos < E)
1746 {
1747 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 }
1752 else
1753 break;
1754
1755 if (ANHE_at (he) <= minat)
1756 break;
1757
1758 heap [k] = *minpos;
1759 ev_active (ANHE_w (*minpos)) = k;
1760
1761 k = minpos - heap;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768#else /* 4HEAP */
1769
1770#define HEAP0 1
1771#define HPARENT(k) ((k) >> 1)
1772#define UPHEAP_DONE(p,k) (!(p))
1773
1774/* away from the root */
1775inline_speed void
1776downheap (ANHE *heap, int N, int k)
1777{
1778 ANHE he = heap [k];
1779
1780 for (;;)
1781 {
1782 int c = k << 1;
1783
1784 if (c >= N + HEAP0)
1785 break;
1786
1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788 ? 1 : 0;
1789
1790 if (ANHE_at (he) <= ANHE_at (heap [c]))
1791 break;
1792
1793 heap [k] = heap [c];
1794 ev_active (ANHE_w (heap [k])) = k;
1795
1796 k = c;
1797 }
1798
1799 heap [k] = he;
1800 ev_active (ANHE_w (he)) = k;
1801}
1802#endif
1803
1804/* towards the root */
1805inline_speed void
1806upheap (ANHE *heap, int k)
1807{
1808 ANHE he = heap [k];
1809
1810 for (;;)
1811 {
1812 int p = HPARENT (k);
1813
1814 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 break;
1816
1817 heap [k] = heap [p];
1818 ev_active (ANHE_w (heap [k])) = k;
1819 k = p;
1820 }
1821
1822 heap [k] = he;
1823 ev_active (ANHE_w (he)) = k;
1824}
1825
1826/* move an element suitably so it is in a correct place */
1827inline_size void
1828adjustheap (ANHE *heap, int N, int k)
1829{
1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 upheap (heap, k);
1832 else
1833 downheap (heap, N, k);
1834}
1835
1836/* rebuild the heap: this function is used only once and executed rarely */
1837inline_size void
1838reheap (ANHE *heap, int N)
1839{
1840 int i;
1841
1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844 for (i = 0; i < N; ++i)
1845 upheap (heap, i + HEAP0);
1846}
1847
1848/*****************************************************************************/
1849
1850/* associate signal watchers to a signal signal */
1851typedef struct
1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
1857 WL head;
1858} ANSIG;
1859
1860static ANSIG signals [EV_NSIG - 1];
1861
1862/*****************************************************************************/
1863
1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865
1866static void noinline ecb_cold
1867evpipe_init (EV_P)
1868{
1869 if (!ev_is_active (&pipe_w))
1870 {
1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
1877 {
1878 evpipe [0] = -1;
1879 fd_intern (evfd); /* doing it twice doesn't hurt */
1880 ev_io_set (&pipe_w, evfd, EV_READ);
1881 }
1882 else
1883# endif
1884 {
1885 while (pipe (evpipe))
1886 ev_syserr ("(libev) error creating signal/async pipe");
1887
1888 fd_intern (evpipe [0]);
1889 fd_intern (evpipe [1]);
1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1891 }
1892
1893 ev_io_start (EV_A_ &pipe_w);
1894 ev_unref (EV_A); /* watcher should not keep loop alive */
1895 }
1896}
1897
1898inline_speed void
1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1900{
1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
1920 old_errno = errno; /* save errno because write will clobber it */
1921
1922#if EV_USE_EVENTFD
1923 if (evfd >= 0)
1924 {
1925 uint64_t counter = 1;
1926 write (evfd, &counter, sizeof (uint64_t));
1927 }
1928 else
1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
1941
1942 errno = old_errno;
1943 }
1944}
1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
1948static void
1949pipecb (EV_P_ ev_io *iow, int revents)
1950{
1951 int i;
1952
1953 if (revents & EV_READ)
1954 {
1955#if EV_USE_EVENTFD
1956 if (evfd >= 0)
1957 {
1958 uint64_t counter;
1959 read (evfd, &counter, sizeof (uint64_t));
1960 }
1961 else
1962#endif
1963 {
1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
1984 {
1985 sig_pending = 0;
1986
1987 ECB_MEMORY_FENCE;
1988
1989 for (i = EV_NSIG - 1; i--; )
1990 if (expect_false (signals [i].pending))
1991 ev_feed_signal_event (EV_A_ i + 1);
1992 }
1993#endif
1994
1995#if EV_ASYNC_ENABLE
1996 if (async_pending)
1997 {
1998 async_pending = 0;
1999
2000 ECB_MEMORY_FENCE;
2001
2002 for (i = asynccnt; i--; )
2003 if (asyncs [i]->sent)
2004 {
2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2008 }
2009 }
2010#endif
2011}
2012
2013/*****************************************************************************/
2014
2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
2032static void
2033ev_sighandler (int signum)
2034{
2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
2052#if EV_MULTIPLICITY
2053 /* it is permissible to try to feed a signal to the wrong loop */
2054 /* or, likely more useful, feeding a signal nobody is waiting for */
2055
2056 if (expect_false (signals [signum].loop != EV_A))
2057 return;
2058#endif
2059
2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
2062
2063 for (w = signals [signum].head; w; w = w->next)
2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2065}
2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
2089/*****************************************************************************/
2090
2091#if EV_CHILD_ENABLE
852static WL childs [EV_PID_HASHSIZE]; 2092static WL childs [EV_PID_HASHSIZE];
853 2093
854#ifndef _WIN32
855
856static ev_signal childev; 2094static ev_signal childev;
857 2095
858void inline_speed 2096#ifndef WIFCONTINUED
2097# define WIFCONTINUED(status) 0
2098#endif
2099
2100/* handle a single child status event */
2101inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2102child_reap (EV_P_ int chain, int pid, int status)
860{ 2103{
861 ev_child *w; 2104 ev_child *w;
2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 2106
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2108 {
864 if (w->pid == pid || !w->pid) 2109 if ((w->pid == pid || !w->pid)
2110 && (!traced || (w->flags & 1)))
865 { 2111 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 2113 w->rpid = pid;
868 w->rstatus = status; 2114 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2115 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 2116 }
2117 }
871} 2118}
872 2119
873#ifndef WCONTINUED 2120#ifndef WCONTINUED
874# define WCONTINUED 0 2121# define WCONTINUED 0
875#endif 2122#endif
876 2123
2124/* called on sigchld etc., calls waitpid */
877static void 2125static void
878childcb (EV_P_ ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
879{ 2127{
880 int pid, status; 2128 int pid, status;
881 2129
884 if (!WCONTINUED 2132 if (!WCONTINUED
885 || errno != EINVAL 2133 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2134 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 2135 return;
888 2136
889 /* make sure we are called again until all childs have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 2138 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 2140
893 child_reap (EV_A_ sw, pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 2142 if ((EV_PID_HASHSIZE) > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 2144}
897 2145
898#endif 2146#endif
899 2147
900/*****************************************************************************/ 2148/*****************************************************************************/
901 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
902#if EV_USE_PORT 2153#if EV_USE_PORT
903# include "ev_port.c" 2154# include "ev_port.c"
904#endif 2155#endif
905#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
906# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
913#endif 2164#endif
914#if EV_USE_SELECT 2165#if EV_USE_SELECT
915# include "ev_select.c" 2166# include "ev_select.c"
916#endif 2167#endif
917 2168
918int 2169int ecb_cold
919ev_version_major (void) 2170ev_version_major (void) EV_THROW
920{ 2171{
921 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
922} 2173}
923 2174
924int 2175int ecb_cold
925ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
926{ 2177{
927 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
928} 2179}
929 2180
930/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
931int inline_size 2182int inline_size ecb_cold
932enable_secure (void) 2183enable_secure (void)
933{ 2184{
934#ifdef _WIN32 2185#ifdef _WIN32
935 return 0; 2186 return 0;
936#else 2187#else
937 return getuid () != geteuid () 2188 return getuid () != geteuid ()
938 || getgid () != getegid (); 2189 || getgid () != getegid ();
939#endif 2190#endif
940} 2191}
941 2192
942unsigned int 2193unsigned int ecb_cold
943ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
944{ 2195{
945 unsigned int flags = 0; 2196 unsigned int flags = 0;
946 2197
947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952 2203
953 return flags; 2204 return flags;
954} 2205}
955 2206
956unsigned int 2207unsigned int ecb_cold
957ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
958{ 2209{
959 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
960 2211
961#ifndef __NetBSD__ 2212#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 2214 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 2215 flags &= ~EVBACKEND_KQUEUE;
965#endif 2216#endif
966#ifdef __APPLE__ 2217#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 2218 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
969#endif 2224#endif
970 2225
971 return flags; 2226 return flags;
972} 2227}
973 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
974unsigned int 2241unsigned int
975ev_embeddable_backends (void) 2242ev_backend (EV_P) EV_THROW
976{ 2243{
977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2244 return backend;
978
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags;
989} 2245}
990 2246
2247#if EV_FEATURE_API
991unsigned int 2248unsigned int
992ev_backend (EV_P) 2249ev_iteration (EV_P) EV_THROW
993{ 2250{
994 return backend; 2251 return loop_count;
995} 2252}
996 2253
997unsigned int 2254unsigned int
998ev_loop_count (EV_P) 2255ev_depth (EV_P) EV_THROW
999{ 2256{
1000 return loop_count; 2257 return loop_depth;
1001} 2258}
1002 2259
1003void 2260void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1005{ 2262{
1006 io_blocktime = interval; 2263 io_blocktime = interval;
1007} 2264}
1008 2265
1009void 2266void
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1011{ 2268{
1012 timeout_blocktime = interval; 2269 timeout_blocktime = interval;
1013} 2270}
1014 2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
1015static void noinline 2299static void noinline ecb_cold
1016loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
1017{ 2301{
1018 if (!backend) 2302 if (!backend)
1019 { 2303 {
2304 origflags = flags;
2305
2306#if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314#endif
2315
1020#if EV_USE_MONOTONIC 2316#if EV_USE_MONOTONIC
2317 if (!have_monotonic)
1021 { 2318 {
1022 struct timespec ts; 2319 struct timespec ts;
2320
1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1024 have_monotonic = 1; 2322 have_monotonic = 1;
1025 } 2323 }
1026#endif 2324#endif
1027
1028 ev_rt_now = ev_time ();
1029 mn_now = get_clock ();
1030 now_floor = mn_now;
1031 rtmn_diff = ev_rt_now - mn_now;
1032
1033 io_blocktime = 0.;
1034 timeout_blocktime = 0.;
1035 2325
1036 /* pid check not overridable via env */ 2326 /* pid check not overridable via env */
1037#ifndef _WIN32 2327#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK) 2328 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid (); 2329 curpid = getpid ();
1042 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure () 2333 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
1045 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
1046 2336
1047 if (!(flags & 0x0000ffffUL)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
1048 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
1049 2364
1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY 2365#if EV_USE_IOCP
1053 fs_fd = -2; 2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1054#endif 2367#endif
1055
1056#if EV_USE_PORT 2368#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1058#endif 2370#endif
1059#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
1060 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1067#endif 2379#endif
1068#if EV_USE_SELECT 2380#if EV_USE_SELECT
1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1070#endif 2382#endif
1071 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1072 ev_init (&sigev, sigcb); 2387 ev_init (&pipe_w, pipecb);
1073 ev_set_priority (&sigev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
1074 } 2390 }
1075} 2391}
1076 2392
1077static void noinline 2393/* free up a loop structure */
2394void ecb_cold
1078loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
1079{ 2396{
1080 int i; 2397 int i;
2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
2422 if (ev_is_active (&pipe_w))
2423 {
2424 /*ev_ref (EV_A);*/
2425 /*ev_io_stop (EV_A_ &pipe_w);*/
2426
2427#if EV_USE_EVENTFD
2428 if (evfd >= 0)
2429 close (evfd);
2430#endif
2431
2432 if (evpipe [0] >= 0)
2433 {
2434 EV_WIN32_CLOSE_FD (evpipe [0]);
2435 EV_WIN32_CLOSE_FD (evpipe [1]);
2436 }
2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
1081 2443
1082#if EV_USE_INOTIFY 2444#if EV_USE_INOTIFY
1083 if (fs_fd >= 0) 2445 if (fs_fd >= 0)
1084 close (fs_fd); 2446 close (fs_fd);
1085#endif 2447#endif
1086 2448
1087 if (backend_fd >= 0) 2449 if (backend_fd >= 0)
1088 close (backend_fd); 2450 close (backend_fd);
1089 2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
1090#if EV_USE_PORT 2455#if EV_USE_PORT
1091 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1092#endif 2457#endif
1093#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
1094 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1109#if EV_IDLE_ENABLE 2474#if EV_IDLE_ENABLE
1110 array_free (idle, [i]); 2475 array_free (idle, [i]);
1111#endif 2476#endif
1112 } 2477 }
1113 2478
1114 ev_free (anfds); anfdmax = 0; 2479 ev_free (anfds); anfds = 0; anfdmax = 0;
1115 2480
1116 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
1117 array_free (fdchange, EMPTY); 2483 array_free (fdchange, EMPTY);
1118 array_free (timer, EMPTY); 2484 array_free (timer, EMPTY);
1119#if EV_PERIODIC_ENABLE 2485#if EV_PERIODIC_ENABLE
1120 array_free (periodic, EMPTY); 2486 array_free (periodic, EMPTY);
1121#endif 2487#endif
1122#if EV_FORK_ENABLE 2488#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY); 2489 array_free (fork, EMPTY);
1124#endif 2490#endif
2491#if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493#endif
1125 array_free (prepare, EMPTY); 2494 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY); 2495 array_free (check, EMPTY);
2496#if EV_ASYNC_ENABLE
2497 array_free (async, EMPTY);
2498#endif
1127 2499
1128 backend = 0; 2500 backend = 0;
1129}
1130 2501
2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
2510}
2511
2512#if EV_USE_INOTIFY
1131void inline_size infy_fork (EV_P); 2513inline_size void infy_fork (EV_P);
2514#endif
1132 2515
1133void inline_size 2516inline_size void
1134loop_fork (EV_P) 2517loop_fork (EV_P)
1135{ 2518{
1136#if EV_USE_PORT 2519#if EV_USE_PORT
1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1138#endif 2521#endif
1144#endif 2527#endif
1145#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1146 infy_fork (EV_A); 2529 infy_fork (EV_A);
1147#endif 2530#endif
1148 2531
1149 if (ev_is_active (&sigev)) 2532 if (ev_is_active (&pipe_w))
1150 { 2533 {
1151 /* default loop */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1152 2535
1153 ev_ref (EV_A); 2536 ev_ref (EV_A);
1154 ev_io_stop (EV_A_ &sigev); 2537 ev_io_stop (EV_A_ &pipe_w);
1155 close (sigpipe [0]);
1156 close (sigpipe [1]);
1157 2538
1158 while (pipe (sigpipe)) 2539#if EV_USE_EVENTFD
1159 syserr ("(libev) error creating pipe"); 2540 if (evfd >= 0)
2541 close (evfd);
2542#endif
1160 2543
2544 if (evpipe [0] >= 0)
2545 {
2546 EV_WIN32_CLOSE_FD (evpipe [0]);
2547 EV_WIN32_CLOSE_FD (evpipe [1]);
2548 }
2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1161 siginit (EV_A); 2551 evpipe_init (EV_A);
2552 /* now iterate over everything, in case we missed something */
2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
1162 } 2555 }
1163 2556
1164 postfork = 0; 2557 postfork = 0;
1165} 2558}
1166 2559
1167#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
2561
1168struct ev_loop * 2562struct ev_loop * ecb_cold
1169ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
1170{ 2564{
1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1172 2566
1173 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
1174
1175 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
1176 2569
1177 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
1178 return loop; 2571 return EV_A;
1179 2572
2573 ev_free (EV_A);
1180 return 0; 2574 return 0;
1181} 2575}
1182 2576
1183void 2577#endif /* multiplicity */
1184ev_loop_destroy (EV_P)
1185{
1186 loop_destroy (EV_A);
1187 ev_free (loop);
1188}
1189 2578
1190void 2579#if EV_VERIFY
1191ev_loop_fork (EV_P) 2580static void noinline ecb_cold
2581verify_watcher (EV_P_ W w)
1192{ 2582{
1193 postfork = 1; 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1194}
1195 2584
2585 if (w->pending)
2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587}
2588
2589static void noinline ecb_cold
2590verify_heap (EV_P_ ANHE *heap, int N)
2591{
2592 int i;
2593
2594 for (i = HEAP0; i < N + HEAP0; ++i)
2595 {
2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599
2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601 }
2602}
2603
2604static void noinline ecb_cold
2605array_verify (EV_P_ W *ws, int cnt)
2606{
2607 while (cnt--)
2608 {
2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 verify_watcher (EV_A_ ws [cnt]);
2611 }
2612}
2613#endif
2614
2615#if EV_FEATURE_API
2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
2618{
2619#if EV_VERIFY
2620 int i;
2621 WL w, w2;
2622
2623 assert (activecnt >= -1);
2624
2625 assert (fdchangemax >= fdchangecnt);
2626 for (i = 0; i < fdchangecnt; ++i)
2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628
2629 assert (anfdmax >= 0);
2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
2634 for (w = w2 = anfds [i].head; w; w = w->next)
2635 {
2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646 }
2647 }
2648
2649 assert (timermax >= timercnt);
2650 verify_heap (EV_A_ timers, timercnt);
2651
2652#if EV_PERIODIC_ENABLE
2653 assert (periodicmax >= periodiccnt);
2654 verify_heap (EV_A_ periodics, periodiccnt);
2655#endif
2656
2657 for (i = NUMPRI; i--; )
2658 {
2659 assert (pendingmax [i] >= pendingcnt [i]);
2660#if EV_IDLE_ENABLE
2661 assert (idleall >= 0);
2662 assert (idlemax [i] >= idlecnt [i]);
2663 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664#endif
2665 }
2666
2667#if EV_FORK_ENABLE
2668 assert (forkmax >= forkcnt);
2669 array_verify (EV_A_ (W *)forks, forkcnt);
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
2677#if EV_ASYNC_ENABLE
2678 assert (asyncmax >= asynccnt);
2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
2680#endif
2681
2682#if EV_PREPARE_ENABLE
2683 assert (preparemax >= preparecnt);
2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
2686
2687#if EV_CHECK_ENABLE
2688 assert (checkmax >= checkcnt);
2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
2691
2692# if 0
2693#if EV_CHILD_ENABLE
2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
2697# endif
2698#endif
2699}
1196#endif 2700#endif
1197 2701
1198#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
1199struct ev_loop * 2703struct ev_loop * ecb_cold
1200ev_default_loop_init (unsigned int flags)
1201#else 2704#else
1202int 2705int
2706#endif
1203ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
1204#endif
1205{ 2708{
1206 if (sigpipe [0] == sigpipe [1])
1207 if (pipe (sigpipe))
1208 return 0;
1209
1210 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
1211 { 2710 {
1212#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
1214#else 2713#else
1215 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
1216#endif 2715#endif
1217 2716
1218 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
1219 2718
1220 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
1221 { 2720 {
1222 siginit (EV_A); 2721#if EV_CHILD_ENABLE
1223
1224#ifndef _WIN32
1225 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
1226 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
1227 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
1228 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1229#endif 2726#endif
1234 2731
1235 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1236} 2733}
1237 2734
1238void 2735void
1239ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1240{ 2737{
1241#if EV_MULTIPLICITY
1242 struct ev_loop *loop = ev_default_loop_ptr;
1243#endif
1244
1245#ifndef _WIN32
1246 ev_ref (EV_A); /* child watcher */
1247 ev_signal_stop (EV_A_ &childev);
1248#endif
1249
1250 ev_ref (EV_A); /* signal watcher */
1251 ev_io_stop (EV_A_ &sigev);
1252
1253 close (sigpipe [0]); sigpipe [0] = 0;
1254 close (sigpipe [1]); sigpipe [1] = 0;
1255
1256 loop_destroy (EV_A);
1257}
1258
1259void
1260ev_default_fork (void)
1261{
1262#if EV_MULTIPLICITY
1263 struct ev_loop *loop = ev_default_loop_ptr;
1264#endif
1265
1266 if (backend)
1267 postfork = 1; 2738 postfork = 1;
1268} 2739}
1269 2740
1270/*****************************************************************************/ 2741/*****************************************************************************/
1271 2742
1272void 2743void
1273ev_invoke (EV_P_ void *w, int revents) 2744ev_invoke (EV_P_ void *w, int revents)
1274{ 2745{
1275 EV_CB_INVOKE ((W)w, revents); 2746 EV_CB_INVOKE ((W)w, revents);
1276} 2747}
1277 2748
1278void inline_speed 2749unsigned int
1279call_pending (EV_P) 2750ev_pending_count (EV_P) EV_THROW
1280{ 2751{
1281 int pri; 2752 int pri;
2753 unsigned int count = 0;
1282 2754
1283 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759}
2760
2761void noinline
2762ev_invoke_pending (EV_P)
2763{
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1284 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1285 { 2766 {
1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1287 2768
1288 if (expect_true (p->w))
1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1291
1292 p->w->pending = 0; 2769 p->w->pending = 0;
1293 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1294 } 2771 EV_FREQUENT_CHECK;
1295 } 2772 }
1296} 2773}
1297 2774
1298void inline_size
1299timers_reify (EV_P)
1300{
1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1302 {
1303 ev_timer *w = (ev_timer *)timers [0];
1304
1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1306
1307 /* first reschedule or stop timer */
1308 if (w->repeat)
1309 {
1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
1316 downheap (timers, timercnt, 0);
1317 }
1318 else
1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1320
1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1322 }
1323}
1324
1325#if EV_PERIODIC_ENABLE
1326void inline_size
1327periodics_reify (EV_P)
1328{
1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1330 {
1331 ev_periodic *w = (ev_periodic *)periodics [0];
1332
1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1334
1335 /* first reschedule or stop timer */
1336 if (w->reschedule_cb)
1337 {
1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1340 downheap (periodics, periodiccnt, 0);
1341 }
1342 else if (w->interval)
1343 {
1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1347 downheap (periodics, periodiccnt, 0);
1348 }
1349 else
1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1351
1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1353 }
1354}
1355
1356static void noinline
1357periodics_reschedule (EV_P)
1358{
1359 int i;
1360
1361 /* adjust periodics after time jump */
1362 for (i = 0; i < periodiccnt; ++i)
1363 {
1364 ev_periodic *w = (ev_periodic *)periodics [i];
1365
1366 if (w->reschedule_cb)
1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1368 else if (w->interval)
1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 }
1371
1372 /* now rebuild the heap */
1373 for (i = periodiccnt >> 1; i--; )
1374 downheap (periodics, periodiccnt, i);
1375}
1376#endif
1377
1378#if EV_IDLE_ENABLE 2775#if EV_IDLE_ENABLE
1379void inline_size 2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
2778inline_size void
1380idle_reify (EV_P) 2779idle_reify (EV_P)
1381{ 2780{
1382 if (expect_false (idleall)) 2781 if (expect_false (idleall))
1383 { 2782 {
1384 int pri; 2783 int pri;
1396 } 2795 }
1397 } 2796 }
1398} 2797}
1399#endif 2798#endif
1400 2799
1401void inline_speed 2800/* make timers pending */
2801inline_size void
2802timers_reify (EV_P)
2803{
2804 EV_FREQUENT_CHECK;
2805
2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2807 {
2808 do
2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
2817 ev_at (w) += w->repeat;
2818 if (ev_at (w) < mn_now)
2819 ev_at (w) = mn_now;
2820
2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2822
2823 ANHE_at_cache (timers [HEAP0]);
2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
2831 }
2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2833
2834 feed_reverse_done (EV_A_ EV_TIMER);
2835 }
2836}
2837
2838#if EV_PERIODIC_ENABLE
2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
2865inline_size void
2866periodics_reify (EV_P)
2867{
2868 EV_FREQUENT_CHECK;
2869
2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2871 {
2872 do
2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882
2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884
2885 ANHE_at_cache (periodics [HEAP0]);
2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
2899 }
2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901
2902 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 }
2904}
2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
2908static void noinline ecb_cold
2909periodics_reschedule (EV_P)
2910{
2911 int i;
2912
2913 /* adjust periodics after time jump */
2914 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 {
2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917
2918 if (w->reschedule_cb)
2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 else if (w->interval)
2921 periodic_recalc (EV_A_ w);
2922
2923 ANHE_at_cache (periodics [i]);
2924 }
2925
2926 reheap (periodics, periodiccnt);
2927}
2928#endif
2929
2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
1402time_update (EV_P_ ev_tstamp max_block) 2947time_update (EV_P_ ev_tstamp max_block)
1403{ 2948{
1404 int i;
1405
1406#if EV_USE_MONOTONIC 2949#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic)) 2950 if (expect_true (have_monotonic))
1408 { 2951 {
2952 int i;
1409 ev_tstamp odiff = rtmn_diff; 2953 ev_tstamp odiff = rtmn_diff;
1410 2954
1411 mn_now = get_clock (); 2955 mn_now = get_clock ();
1412 2956
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1429 * doesn't hurt either as we only do this on time-jumps or 2973 * doesn't hurt either as we only do this on time-jumps or
1430 * in the unlikely event of having been preempted here. 2974 * in the unlikely event of having been preempted here.
1431 */ 2975 */
1432 for (i = 4; --i; ) 2976 for (i = 4; --i; )
1433 { 2977 {
2978 ev_tstamp diff;
1434 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1435 2980
1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2981 diff = odiff - rtmn_diff;
2982
2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1437 return; /* all is well */ 2984 return; /* all is well */
1438 2985
1439 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1440 mn_now = get_clock (); 2987 mn_now = get_clock ();
1441 now_floor = mn_now; 2988 now_floor = mn_now;
1442 } 2989 }
1443 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444# if EV_PERIODIC_ENABLE 2993# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A); 2994 periodics_reschedule (EV_A);
1446# endif 2995# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 } 2996 }
1450 else 2997 else
1451#endif 2998#endif
1452 { 2999 {
1453 ev_rt_now = ev_time (); 3000 ev_rt_now = ev_time ();
1454 3001
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 { 3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1457#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1458 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1459#endif 3008#endif
1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i)
1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1463 } 3009 }
1464 3010
1465 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1466 } 3012 }
1467} 3013}
1468 3014
1469void 3015int
1470ev_ref (EV_P)
1471{
1472 ++activecnt;
1473}
1474
1475void
1476ev_unref (EV_P)
1477{
1478 --activecnt;
1479}
1480
1481static int loop_done;
1482
1483void
1484ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1485{ 3017{
1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3018#if EV_FEATURE_API
1487 ? EVUNLOOP_ONE 3019 ++loop_depth;
1488 : EVUNLOOP_CANCEL; 3020#endif
1489 3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
3024 loop_done = EVBREAK_CANCEL;
3025
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1491 3027
1492 do 3028 do
1493 { 3029 {
3030#if EV_VERIFY >= 2
3031 ev_verify (EV_A);
3032#endif
3033
1494#ifndef _WIN32 3034#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */ 3035 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid)) 3036 if (expect_false (getpid () != curpid))
1497 { 3037 {
1498 curpid = getpid (); 3038 curpid = getpid ();
1504 /* we might have forked, so queue fork handlers */ 3044 /* we might have forked, so queue fork handlers */
1505 if (expect_false (postfork)) 3045 if (expect_false (postfork))
1506 if (forkcnt) 3046 if (forkcnt)
1507 { 3047 {
1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1509 call_pending (EV_A); 3049 EV_INVOKE_PENDING;
1510 } 3050 }
1511#endif 3051#endif
1512 3052
3053#if EV_PREPARE_ENABLE
1513 /* queue prepare watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1514 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1515 { 3056 {
1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1517 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1518 } 3059 }
3060#endif
1519 3061
1520 if (expect_false (!activecnt)) 3062 if (expect_false (loop_done))
1521 break; 3063 break;
1522 3064
1523 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
1524 if (expect_false (postfork)) 3066 if (expect_false (postfork))
1525 loop_fork (EV_A); 3067 loop_fork (EV_A);
1530 /* calculate blocking time */ 3072 /* calculate blocking time */
1531 { 3073 {
1532 ev_tstamp waittime = 0.; 3074 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.; 3075 ev_tstamp sleeptime = 0.;
1534 3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1536 { 3089 {
1537 /* update time to cancel out callback processing overhead */
1538 time_update (EV_A_ 1e100);
1539
1540 waittime = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
1541 3091
1542 if (timercnt) 3092 if (timercnt)
1543 { 3093 {
1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1545 if (waittime > to) waittime = to; 3095 if (waittime > to) waittime = to;
1546 } 3096 }
1547 3097
1548#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
1549 if (periodiccnt) 3099 if (periodiccnt)
1550 { 3100 {
1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1552 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
1553 } 3103 }
1554#endif 3104#endif
1555 3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
1556 if (expect_false (waittime < timeout_blocktime)) 3107 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime; 3108 waittime = timeout_blocktime;
1558 3109
1559 sleeptime = waittime - backend_fudge; 3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
1560 3114
3115 /* extra check because io_blocktime is commonly 0 */
1561 if (expect_true (sleeptime > io_blocktime)) 3116 if (expect_false (io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 { 3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
1566 ev_sleep (sleeptime); 3125 ev_sleep (sleeptime);
1567 waittime -= sleeptime; 3126 waittime -= sleeptime;
3127 }
1568 } 3128 }
1569 } 3129 }
1570 3130
3131#if EV_FEATURE_API
1571 ++loop_count; 3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1572 backend_poll (EV_A_ waittime); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 MEMORY_FENCE_ACQUIRE;
3141 if (pipe_write_skipped)
3142 {
3143 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3144 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3145 }
3146
1573 3147
1574 /* update ev_rt_now, do magic */ 3148 /* update ev_rt_now, do magic */
1575 time_update (EV_A_ waittime + sleeptime); 3149 time_update (EV_A_ waittime + sleeptime);
1576 } 3150 }
1577 3151
1584#if EV_IDLE_ENABLE 3158#if EV_IDLE_ENABLE
1585 /* queue idle watchers unless other events are pending */ 3159 /* queue idle watchers unless other events are pending */
1586 idle_reify (EV_A); 3160 idle_reify (EV_A);
1587#endif 3161#endif
1588 3162
3163#if EV_CHECK_ENABLE
1589 /* queue check watchers, to be executed first */ 3164 /* queue check watchers, to be executed first */
1590 if (expect_false (checkcnt)) 3165 if (expect_false (checkcnt))
1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3166 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3167#endif
1592 3168
1593 call_pending (EV_A); 3169 EV_INVOKE_PENDING;
1594
1595 } 3170 }
1596 while (expect_true (activecnt && !loop_done)); 3171 while (expect_true (
3172 activecnt
3173 && !loop_done
3174 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3175 ));
1597 3176
1598 if (loop_done == EVUNLOOP_ONE) 3177 if (loop_done == EVBREAK_ONE)
1599 loop_done = EVUNLOOP_CANCEL; 3178 loop_done = EVBREAK_CANCEL;
3179
3180#if EV_FEATURE_API
3181 --loop_depth;
3182#endif
3183
3184 return activecnt;
1600} 3185}
1601 3186
1602void 3187void
1603ev_unloop (EV_P_ int how) 3188ev_break (EV_P_ int how) EV_THROW
1604{ 3189{
1605 loop_done = how; 3190 loop_done = how;
1606} 3191}
1607 3192
3193void
3194ev_ref (EV_P) EV_THROW
3195{
3196 ++activecnt;
3197}
3198
3199void
3200ev_unref (EV_P) EV_THROW
3201{
3202 --activecnt;
3203}
3204
3205void
3206ev_now_update (EV_P) EV_THROW
3207{
3208 time_update (EV_A_ 1e100);
3209}
3210
3211void
3212ev_suspend (EV_P) EV_THROW
3213{
3214 ev_now_update (EV_A);
3215}
3216
3217void
3218ev_resume (EV_P) EV_THROW
3219{
3220 ev_tstamp mn_prev = mn_now;
3221
3222 ev_now_update (EV_A);
3223 timers_reschedule (EV_A_ mn_now - mn_prev);
3224#if EV_PERIODIC_ENABLE
3225 /* TODO: really do this? */
3226 periodics_reschedule (EV_A);
3227#endif
3228}
3229
1608/*****************************************************************************/ 3230/*****************************************************************************/
3231/* singly-linked list management, used when the expected list length is short */
1609 3232
1610void inline_size 3233inline_size void
1611wlist_add (WL *head, WL elem) 3234wlist_add (WL *head, WL elem)
1612{ 3235{
1613 elem->next = *head; 3236 elem->next = *head;
1614 *head = elem; 3237 *head = elem;
1615} 3238}
1616 3239
1617void inline_size 3240inline_size void
1618wlist_del (WL *head, WL elem) 3241wlist_del (WL *head, WL elem)
1619{ 3242{
1620 while (*head) 3243 while (*head)
1621 { 3244 {
1622 if (*head == elem) 3245 if (expect_true (*head == elem))
1623 { 3246 {
1624 *head = elem->next; 3247 *head = elem->next;
1625 return; 3248 break;
1626 } 3249 }
1627 3250
1628 head = &(*head)->next; 3251 head = &(*head)->next;
1629 } 3252 }
1630} 3253}
1631 3254
1632void inline_speed 3255/* internal, faster, version of ev_clear_pending */
3256inline_speed void
1633clear_pending (EV_P_ W w) 3257clear_pending (EV_P_ W w)
1634{ 3258{
1635 if (w->pending) 3259 if (w->pending)
1636 { 3260 {
1637 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3261 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1638 w->pending = 0; 3262 w->pending = 0;
1639 } 3263 }
1640} 3264}
1641 3265
1642int 3266int
1643ev_clear_pending (EV_P_ void *w) 3267ev_clear_pending (EV_P_ void *w) EV_THROW
1644{ 3268{
1645 W w_ = (W)w; 3269 W w_ = (W)w;
1646 int pending = w_->pending; 3270 int pending = w_->pending;
1647 3271
1648 if (expect_true (pending)) 3272 if (expect_true (pending))
1649 { 3273 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3274 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3275 p->w = (W)&pending_w;
1651 w_->pending = 0; 3276 w_->pending = 0;
1652 p->w = 0;
1653 return p->events; 3277 return p->events;
1654 } 3278 }
1655 else 3279 else
1656 return 0; 3280 return 0;
1657} 3281}
1658 3282
1659void inline_size 3283inline_size void
1660pri_adjust (EV_P_ W w) 3284pri_adjust (EV_P_ W w)
1661{ 3285{
1662 int pri = w->priority; 3286 int pri = ev_priority (w);
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3287 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3288 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri; 3289 ev_set_priority (w, pri);
1666} 3290}
1667 3291
1668void inline_speed 3292inline_speed void
1669ev_start (EV_P_ W w, int active) 3293ev_start (EV_P_ W w, int active)
1670{ 3294{
1671 pri_adjust (EV_A_ w); 3295 pri_adjust (EV_A_ w);
1672 w->active = active; 3296 w->active = active;
1673 ev_ref (EV_A); 3297 ev_ref (EV_A);
1674} 3298}
1675 3299
1676void inline_size 3300inline_size void
1677ev_stop (EV_P_ W w) 3301ev_stop (EV_P_ W w)
1678{ 3302{
1679 ev_unref (EV_A); 3303 ev_unref (EV_A);
1680 w->active = 0; 3304 w->active = 0;
1681} 3305}
1682 3306
1683/*****************************************************************************/ 3307/*****************************************************************************/
1684 3308
1685void noinline 3309void noinline
1686ev_io_start (EV_P_ ev_io *w) 3310ev_io_start (EV_P_ ev_io *w) EV_THROW
1687{ 3311{
1688 int fd = w->fd; 3312 int fd = w->fd;
1689 3313
1690 if (expect_false (ev_is_active (w))) 3314 if (expect_false (ev_is_active (w)))
1691 return; 3315 return;
1692 3316
1693 assert (("ev_io_start called with negative fd", fd >= 0)); 3317 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3318 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3319
3320 EV_FREQUENT_CHECK;
1694 3321
1695 ev_start (EV_A_ (W)w, 1); 3322 ev_start (EV_A_ (W)w, 1);
1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3323 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1697 wlist_add (&anfds[fd].head, (WL)w); 3324 wlist_add (&anfds[fd].head, (WL)w);
1698 3325
3326 /* common bug, apparently */
3327 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3328
1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3329 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1700 w->events &= ~EV_IOFDSET; 3330 w->events &= ~EV__IOFDSET;
3331
3332 EV_FREQUENT_CHECK;
1701} 3333}
1702 3334
1703void noinline 3335void noinline
1704ev_io_stop (EV_P_ ev_io *w) 3336ev_io_stop (EV_P_ ev_io *w) EV_THROW
1705{ 3337{
1706 clear_pending (EV_A_ (W)w); 3338 clear_pending (EV_A_ (W)w);
1707 if (expect_false (!ev_is_active (w))) 3339 if (expect_false (!ev_is_active (w)))
1708 return; 3340 return;
1709 3341
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3342 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3343
3344 EV_FREQUENT_CHECK;
1711 3345
1712 wlist_del (&anfds[w->fd].head, (WL)w); 3346 wlist_del (&anfds[w->fd].head, (WL)w);
1713 ev_stop (EV_A_ (W)w); 3347 ev_stop (EV_A_ (W)w);
1714 3348
1715 fd_change (EV_A_ w->fd, 1); 3349 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3350
3351 EV_FREQUENT_CHECK;
1716} 3352}
1717 3353
1718void noinline 3354void noinline
1719ev_timer_start (EV_P_ ev_timer *w) 3355ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1720{ 3356{
1721 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
1722 return; 3358 return;
1723 3359
1724 ((WT)w)->at += mn_now; 3360 ev_at (w) += mn_now;
1725 3361
1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3362 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1727 3363
3364 EV_FREQUENT_CHECK;
3365
3366 ++timercnt;
1728 ev_start (EV_A_ (W)w, ++timercnt); 3367 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3368 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1730 timers [timercnt - 1] = (WT)w; 3369 ANHE_w (timers [ev_active (w)]) = (WT)w;
1731 upheap (timers, timercnt - 1); 3370 ANHE_at_cache (timers [ev_active (w)]);
3371 upheap (timers, ev_active (w));
1732 3372
3373 EV_FREQUENT_CHECK;
3374
1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3375 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1734} 3376}
1735 3377
1736void noinline 3378void noinline
1737ev_timer_stop (EV_P_ ev_timer *w) 3379ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1738{ 3380{
1739 clear_pending (EV_A_ (W)w); 3381 clear_pending (EV_A_ (W)w);
1740 if (expect_false (!ev_is_active (w))) 3382 if (expect_false (!ev_is_active (w)))
1741 return; 3383 return;
1742 3384
1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3385 EV_FREQUENT_CHECK;
1744 3386
1745 { 3387 {
1746 int active = ((W)w)->active; 3388 int active = ev_active (w);
1747 3389
3390 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3391
3392 --timercnt;
3393
1748 if (expect_true (--active < --timercnt)) 3394 if (expect_true (active < timercnt + HEAP0))
1749 { 3395 {
1750 timers [active] = timers [timercnt]; 3396 timers [active] = timers [timercnt + HEAP0];
1751 adjustheap (timers, timercnt, active); 3397 adjustheap (timers, timercnt, active);
1752 } 3398 }
1753 } 3399 }
1754 3400
1755 ((WT)w)->at -= mn_now; 3401 ev_at (w) -= mn_now;
1756 3402
1757 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
1758} 3406}
1759 3407
1760void noinline 3408void noinline
1761ev_timer_again (EV_P_ ev_timer *w) 3409ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1762{ 3410{
3411 EV_FREQUENT_CHECK;
3412
3413 clear_pending (EV_A_ (W)w);
3414
1763 if (ev_is_active (w)) 3415 if (ev_is_active (w))
1764 { 3416 {
1765 if (w->repeat) 3417 if (w->repeat)
1766 { 3418 {
1767 ((WT)w)->at = mn_now + w->repeat; 3419 ev_at (w) = mn_now + w->repeat;
3420 ANHE_at_cache (timers [ev_active (w)]);
1768 adjustheap (timers, timercnt, ((W)w)->active - 1); 3421 adjustheap (timers, timercnt, ev_active (w));
1769 } 3422 }
1770 else 3423 else
1771 ev_timer_stop (EV_A_ w); 3424 ev_timer_stop (EV_A_ w);
1772 } 3425 }
1773 else if (w->repeat) 3426 else if (w->repeat)
1774 { 3427 {
1775 w->at = w->repeat; 3428 ev_at (w) = w->repeat;
1776 ev_timer_start (EV_A_ w); 3429 ev_timer_start (EV_A_ w);
1777 } 3430 }
3431
3432 EV_FREQUENT_CHECK;
3433}
3434
3435ev_tstamp
3436ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3437{
3438 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1778} 3439}
1779 3440
1780#if EV_PERIODIC_ENABLE 3441#if EV_PERIODIC_ENABLE
1781void noinline 3442void noinline
1782ev_periodic_start (EV_P_ ev_periodic *w) 3443ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1783{ 3444{
1784 if (expect_false (ev_is_active (w))) 3445 if (expect_false (ev_is_active (w)))
1785 return; 3446 return;
1786 3447
1787 if (w->reschedule_cb) 3448 if (w->reschedule_cb)
1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3449 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1789 else if (w->interval) 3450 else if (w->interval)
1790 { 3451 {
1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3452 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1792 /* this formula differs from the one in periodic_reify because we do not always round up */ 3453 periodic_recalc (EV_A_ w);
1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1794 } 3454 }
1795 else 3455 else
1796 ((WT)w)->at = w->offset; 3456 ev_at (w) = w->offset;
1797 3457
3458 EV_FREQUENT_CHECK;
3459
3460 ++periodiccnt;
1798 ev_start (EV_A_ (W)w, ++periodiccnt); 3461 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3462 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1800 periodics [periodiccnt - 1] = (WT)w; 3463 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1801 upheap (periodics, periodiccnt - 1); 3464 ANHE_at_cache (periodics [ev_active (w)]);
3465 upheap (periodics, ev_active (w));
1802 3466
3467 EV_FREQUENT_CHECK;
3468
1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3469 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1804} 3470}
1805 3471
1806void noinline 3472void noinline
1807ev_periodic_stop (EV_P_ ev_periodic *w) 3473ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1808{ 3474{
1809 clear_pending (EV_A_ (W)w); 3475 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 3476 if (expect_false (!ev_is_active (w)))
1811 return; 3477 return;
1812 3478
1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3479 EV_FREQUENT_CHECK;
1814 3480
1815 { 3481 {
1816 int active = ((W)w)->active; 3482 int active = ev_active (w);
1817 3483
3484 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3485
3486 --periodiccnt;
3487
1818 if (expect_true (--active < --periodiccnt)) 3488 if (expect_true (active < periodiccnt + HEAP0))
1819 { 3489 {
1820 periodics [active] = periodics [periodiccnt]; 3490 periodics [active] = periodics [periodiccnt + HEAP0];
1821 adjustheap (periodics, periodiccnt, active); 3491 adjustheap (periodics, periodiccnt, active);
1822 } 3492 }
1823 } 3493 }
1824 3494
1825 ev_stop (EV_A_ (W)w); 3495 ev_stop (EV_A_ (W)w);
3496
3497 EV_FREQUENT_CHECK;
1826} 3498}
1827 3499
1828void noinline 3500void noinline
1829ev_periodic_again (EV_P_ ev_periodic *w) 3501ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1830{ 3502{
1831 /* TODO: use adjustheap and recalculation */ 3503 /* TODO: use adjustheap and recalculation */
1832 ev_periodic_stop (EV_A_ w); 3504 ev_periodic_stop (EV_A_ w);
1833 ev_periodic_start (EV_A_ w); 3505 ev_periodic_start (EV_A_ w);
1834} 3506}
1836 3508
1837#ifndef SA_RESTART 3509#ifndef SA_RESTART
1838# define SA_RESTART 0 3510# define SA_RESTART 0
1839#endif 3511#endif
1840 3512
3513#if EV_SIGNAL_ENABLE
3514
1841void noinline 3515void noinline
1842ev_signal_start (EV_P_ ev_signal *w) 3516ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1843{ 3517{
1844#if EV_MULTIPLICITY
1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1846#endif
1847 if (expect_false (ev_is_active (w))) 3518 if (expect_false (ev_is_active (w)))
1848 return; 3519 return;
1849 3520
1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3521 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1851 3522
3523#if EV_MULTIPLICITY
3524 assert (("libev: a signal must not be attached to two different loops",
3525 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3526
3527 signals [w->signum - 1].loop = EV_A;
3528#endif
3529
3530 EV_FREQUENT_CHECK;
3531
3532#if EV_USE_SIGNALFD
3533 if (sigfd == -2)
1852 { 3534 {
1853#ifndef _WIN32 3535 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1854 sigset_t full, prev; 3536 if (sigfd < 0 && errno == EINVAL)
1855 sigfillset (&full); 3537 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1856 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif
1858 3538
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3539 if (sigfd >= 0)
3540 {
3541 fd_intern (sigfd); /* doing it twice will not hurt */
1860 3542
1861#ifndef _WIN32 3543 sigemptyset (&sigfd_set);
1862 sigprocmask (SIG_SETMASK, &prev, 0); 3544
1863#endif 3545 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3546 ev_set_priority (&sigfd_w, EV_MAXPRI);
3547 ev_io_start (EV_A_ &sigfd_w);
3548 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3549 }
1864 } 3550 }
3551
3552 if (sigfd >= 0)
3553 {
3554 /* TODO: check .head */
3555 sigaddset (&sigfd_set, w->signum);
3556 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3557
3558 signalfd (sigfd, &sigfd_set, 0);
3559 }
3560#endif
1865 3561
1866 ev_start (EV_A_ (W)w, 1); 3562 ev_start (EV_A_ (W)w, 1);
1867 wlist_add (&signals [w->signum - 1].head, (WL)w); 3563 wlist_add (&signals [w->signum - 1].head, (WL)w);
1868 3564
1869 if (!((WL)w)->next) 3565 if (!((WL)w)->next)
3566# if EV_USE_SIGNALFD
3567 if (sigfd < 0) /*TODO*/
3568# endif
1870 { 3569 {
1871#if _WIN32 3570# ifdef _WIN32
3571 evpipe_init (EV_A);
3572
1872 signal (w->signum, sighandler); 3573 signal (w->signum, ev_sighandler);
1873#else 3574# else
1874 struct sigaction sa; 3575 struct sigaction sa;
3576
3577 evpipe_init (EV_A);
3578
1875 sa.sa_handler = sighandler; 3579 sa.sa_handler = ev_sighandler;
1876 sigfillset (&sa.sa_mask); 3580 sigfillset (&sa.sa_mask);
1877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3581 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1878 sigaction (w->signum, &sa, 0); 3582 sigaction (w->signum, &sa, 0);
3583
3584 if (origflags & EVFLAG_NOSIGMASK)
3585 {
3586 sigemptyset (&sa.sa_mask);
3587 sigaddset (&sa.sa_mask, w->signum);
3588 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3589 }
1879#endif 3590#endif
1880 } 3591 }
3592
3593 EV_FREQUENT_CHECK;
1881} 3594}
1882 3595
1883void noinline 3596void noinline
1884ev_signal_stop (EV_P_ ev_signal *w) 3597ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1885{ 3598{
1886 clear_pending (EV_A_ (W)w); 3599 clear_pending (EV_A_ (W)w);
1887 if (expect_false (!ev_is_active (w))) 3600 if (expect_false (!ev_is_active (w)))
1888 return; 3601 return;
1889 3602
3603 EV_FREQUENT_CHECK;
3604
1890 wlist_del (&signals [w->signum - 1].head, (WL)w); 3605 wlist_del (&signals [w->signum - 1].head, (WL)w);
1891 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
1892 3607
1893 if (!signals [w->signum - 1].head) 3608 if (!signals [w->signum - 1].head)
3609 {
3610#if EV_MULTIPLICITY
3611 signals [w->signum - 1].loop = 0; /* unattach from signal */
3612#endif
3613#if EV_USE_SIGNALFD
3614 if (sigfd >= 0)
3615 {
3616 sigset_t ss;
3617
3618 sigemptyset (&ss);
3619 sigaddset (&ss, w->signum);
3620 sigdelset (&sigfd_set, w->signum);
3621
3622 signalfd (sigfd, &sigfd_set, 0);
3623 sigprocmask (SIG_UNBLOCK, &ss, 0);
3624 }
3625 else
3626#endif
1894 signal (w->signum, SIG_DFL); 3627 signal (w->signum, SIG_DFL);
3628 }
3629
3630 EV_FREQUENT_CHECK;
1895} 3631}
3632
3633#endif
3634
3635#if EV_CHILD_ENABLE
1896 3636
1897void 3637void
1898ev_child_start (EV_P_ ev_child *w) 3638ev_child_start (EV_P_ ev_child *w) EV_THROW
1899{ 3639{
1900#if EV_MULTIPLICITY 3640#if EV_MULTIPLICITY
1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1902#endif 3642#endif
1903 if (expect_false (ev_is_active (w))) 3643 if (expect_false (ev_is_active (w)))
1904 return; 3644 return;
1905 3645
3646 EV_FREQUENT_CHECK;
3647
1906 ev_start (EV_A_ (W)w, 1); 3648 ev_start (EV_A_ (W)w, 1);
1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3649 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3650
3651 EV_FREQUENT_CHECK;
1908} 3652}
1909 3653
1910void 3654void
1911ev_child_stop (EV_P_ ev_child *w) 3655ev_child_stop (EV_P_ ev_child *w) EV_THROW
1912{ 3656{
1913 clear_pending (EV_A_ (W)w); 3657 clear_pending (EV_A_ (W)w);
1914 if (expect_false (!ev_is_active (w))) 3658 if (expect_false (!ev_is_active (w)))
1915 return; 3659 return;
1916 3660
3661 EV_FREQUENT_CHECK;
3662
1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3663 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1918 ev_stop (EV_A_ (W)w); 3664 ev_stop (EV_A_ (W)w);
3665
3666 EV_FREQUENT_CHECK;
1919} 3667}
3668
3669#endif
1920 3670
1921#if EV_STAT_ENABLE 3671#if EV_STAT_ENABLE
1922 3672
1923# ifdef _WIN32 3673# ifdef _WIN32
1924# undef lstat 3674# undef lstat
1925# define lstat(a,b) _stati64 (a,b) 3675# define lstat(a,b) _stati64 (a,b)
1926# endif 3676# endif
1927 3677
1928#define DEF_STAT_INTERVAL 5.0074891 3678#define DEF_STAT_INTERVAL 5.0074891
3679#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1929#define MIN_STAT_INTERVAL 0.1074891 3680#define MIN_STAT_INTERVAL 0.1074891
1930 3681
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3682static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932 3683
1933#if EV_USE_INOTIFY 3684#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192 3685
3686/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3687# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1935 3688
1936static void noinline 3689static void noinline
1937infy_add (EV_P_ ev_stat *w) 3690infy_add (EV_P_ ev_stat *w)
1938{ 3691{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3692 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940 3693
1941 if (w->wd < 0) 3694 if (w->wd >= 0)
3695 {
3696 struct statfs sfs;
3697
3698 /* now local changes will be tracked by inotify, but remote changes won't */
3699 /* unless the filesystem is known to be local, we therefore still poll */
3700 /* also do poll on <2.6.25, but with normal frequency */
3701
3702 if (!fs_2625)
3703 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3704 else if (!statfs (w->path, &sfs)
3705 && (sfs.f_type == 0x1373 /* devfs */
3706 || sfs.f_type == 0xEF53 /* ext2/3 */
3707 || sfs.f_type == 0x3153464a /* jfs */
3708 || sfs.f_type == 0x52654973 /* reiser3 */
3709 || sfs.f_type == 0x01021994 /* tempfs */
3710 || sfs.f_type == 0x58465342 /* xfs */))
3711 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3712 else
3713 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1942 { 3714 }
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3715 else
3716 {
3717 /* can't use inotify, continue to stat */
3718 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1944 3719
1945 /* monitor some parent directory for speedup hints */ 3720 /* if path is not there, monitor some parent directory for speedup hints */
3721 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3722 /* but an efficiency issue only */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3723 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 { 3724 {
1948 char path [4096]; 3725 char path [4096];
1949 strcpy (path, w->path); 3726 strcpy (path, w->path);
1950 3727
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3730 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3731 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955 3732
1956 char *pend = strrchr (path, '/'); 3733 char *pend = strrchr (path, '/');
1957 3734
1958 if (!pend) 3735 if (!pend || pend == path)
1959 break; /* whoops, no '/', complain to your admin */ 3736 break;
1960 3737
1961 *pend = 0; 3738 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask); 3739 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 } 3740 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3741 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 } 3742 }
1966 } 3743 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969 3744
1970 if (w->wd >= 0) 3745 if (w->wd >= 0)
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3746 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3747
3748 /* now re-arm timer, if required */
3749 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3750 ev_timer_again (EV_A_ &w->timer);
3751 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1972} 3752}
1973 3753
1974static void noinline 3754static void noinline
1975infy_del (EV_P_ ev_stat *w) 3755infy_del (EV_P_ ev_stat *w)
1976{ 3756{
1979 3759
1980 if (wd < 0) 3760 if (wd < 0)
1981 return; 3761 return;
1982 3762
1983 w->wd = -2; 3763 w->wd = -2;
1984 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3764 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1985 wlist_del (&fs_hash [slot].head, (WL)w); 3765 wlist_del (&fs_hash [slot].head, (WL)w);
1986 3766
1987 /* remove this watcher, if others are watching it, they will rearm */ 3767 /* remove this watcher, if others are watching it, they will rearm */
1988 inotify_rm_watch (fs_fd, wd); 3768 inotify_rm_watch (fs_fd, wd);
1989} 3769}
1990 3770
1991static void noinline 3771static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3772infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{ 3773{
1994 if (slot < 0) 3774 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */ 3775 /* overflow, need to check for all hash slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3776 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1997 infy_wd (EV_A_ slot, wd, ev); 3777 infy_wd (EV_A_ slot, wd, ev);
1998 else 3778 else
1999 { 3779 {
2000 WL w_; 3780 WL w_;
2001 3781
2002 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3782 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2003 { 3783 {
2004 ev_stat *w = (ev_stat *)w_; 3784 ev_stat *w = (ev_stat *)w_;
2005 w_ = w_->next; /* lets us remove this watcher and all before it */ 3785 w_ = w_->next; /* lets us remove this watcher and all before it */
2006 3786
2007 if (w->wd == wd || wd == -1) 3787 if (w->wd == wd || wd == -1)
2008 { 3788 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3789 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 { 3790 {
3791 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2011 w->wd = -1; 3792 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */ 3793 infy_add (EV_A_ w); /* re-add, no matter what */
2013 } 3794 }
2014 3795
2015 stat_timer_cb (EV_A_ &w->timer, 0); 3796 stat_timer_cb (EV_A_ &w->timer, 0);
2020 3801
2021static void 3802static void
2022infy_cb (EV_P_ ev_io *w, int revents) 3803infy_cb (EV_P_ ev_io *w, int revents)
2023{ 3804{
2024 char buf [EV_INOTIFY_BUFSIZE]; 3805 char buf [EV_INOTIFY_BUFSIZE];
2025 struct inotify_event *ev = (struct inotify_event *)buf;
2026 int ofs; 3806 int ofs;
2027 int len = read (fs_fd, buf, sizeof (buf)); 3807 int len = read (fs_fd, buf, sizeof (buf));
2028 3808
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3809 for (ofs = 0; ofs < len; )
3810 {
3811 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3812 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3813 ofs += sizeof (struct inotify_event) + ev->len;
3814 }
2031} 3815}
2032 3816
2033void inline_size 3817inline_size void ecb_cold
3818ev_check_2625 (EV_P)
3819{
3820 /* kernels < 2.6.25 are borked
3821 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3822 */
3823 if (ev_linux_version () < 0x020619)
3824 return;
3825
3826 fs_2625 = 1;
3827}
3828
3829inline_size int
3830infy_newfd (void)
3831{
3832#if defined IN_CLOEXEC && defined IN_NONBLOCK
3833 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3834 if (fd >= 0)
3835 return fd;
3836#endif
3837 return inotify_init ();
3838}
3839
3840inline_size void
2034infy_init (EV_P) 3841infy_init (EV_P)
2035{ 3842{
2036 if (fs_fd != -2) 3843 if (fs_fd != -2)
2037 return; 3844 return;
2038 3845
3846 fs_fd = -1;
3847
3848 ev_check_2625 (EV_A);
3849
2039 fs_fd = inotify_init (); 3850 fs_fd = infy_newfd ();
2040 3851
2041 if (fs_fd >= 0) 3852 if (fs_fd >= 0)
2042 { 3853 {
3854 fd_intern (fs_fd);
2043 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3855 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2044 ev_set_priority (&fs_w, EV_MAXPRI); 3856 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w); 3857 ev_io_start (EV_A_ &fs_w);
3858 ev_unref (EV_A);
2046 } 3859 }
2047} 3860}
2048 3861
2049void inline_size 3862inline_size void
2050infy_fork (EV_P) 3863infy_fork (EV_P)
2051{ 3864{
2052 int slot; 3865 int slot;
2053 3866
2054 if (fs_fd < 0) 3867 if (fs_fd < 0)
2055 return; 3868 return;
2056 3869
3870 ev_ref (EV_A);
3871 ev_io_stop (EV_A_ &fs_w);
2057 close (fs_fd); 3872 close (fs_fd);
2058 fs_fd = inotify_init (); 3873 fs_fd = infy_newfd ();
2059 3874
3875 if (fs_fd >= 0)
3876 {
3877 fd_intern (fs_fd);
3878 ev_io_set (&fs_w, fs_fd, EV_READ);
3879 ev_io_start (EV_A_ &fs_w);
3880 ev_unref (EV_A);
3881 }
3882
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3883 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2061 { 3884 {
2062 WL w_ = fs_hash [slot].head; 3885 WL w_ = fs_hash [slot].head;
2063 fs_hash [slot].head = 0; 3886 fs_hash [slot].head = 0;
2064 3887
2065 while (w_) 3888 while (w_)
2070 w->wd = -1; 3893 w->wd = -1;
2071 3894
2072 if (fs_fd >= 0) 3895 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 3896 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else 3897 else
3898 {
3899 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3900 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2075 ev_timer_start (EV_A_ &w->timer); 3901 ev_timer_again (EV_A_ &w->timer);
3902 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3903 }
2076 } 3904 }
2077
2078 } 3905 }
2079} 3906}
2080 3907
3908#endif
3909
3910#ifdef _WIN32
3911# define EV_LSTAT(p,b) _stati64 (p, b)
3912#else
3913# define EV_LSTAT(p,b) lstat (p, b)
2081#endif 3914#endif
2082 3915
2083void 3916void
2084ev_stat_stat (EV_P_ ev_stat *w) 3917ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2085{ 3918{
2086 if (lstat (w->path, &w->attr) < 0) 3919 if (lstat (w->path, &w->attr) < 0)
2087 w->attr.st_nlink = 0; 3920 w->attr.st_nlink = 0;
2088 else if (!w->attr.st_nlink) 3921 else if (!w->attr.st_nlink)
2089 w->attr.st_nlink = 1; 3922 w->attr.st_nlink = 1;
2092static void noinline 3925static void noinline
2093stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3926stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2094{ 3927{
2095 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3928 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2096 3929
2097 /* we copy this here each the time so that */ 3930 ev_statdata prev = w->attr;
2098 /* prev has the old value when the callback gets invoked */
2099 w->prev = w->attr;
2100 ev_stat_stat (EV_A_ w); 3931 ev_stat_stat (EV_A_ w);
2101 3932
2102 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3933 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2103 if ( 3934 if (
2104 w->prev.st_dev != w->attr.st_dev 3935 prev.st_dev != w->attr.st_dev
2105 || w->prev.st_ino != w->attr.st_ino 3936 || prev.st_ino != w->attr.st_ino
2106 || w->prev.st_mode != w->attr.st_mode 3937 || prev.st_mode != w->attr.st_mode
2107 || w->prev.st_nlink != w->attr.st_nlink 3938 || prev.st_nlink != w->attr.st_nlink
2108 || w->prev.st_uid != w->attr.st_uid 3939 || prev.st_uid != w->attr.st_uid
2109 || w->prev.st_gid != w->attr.st_gid 3940 || prev.st_gid != w->attr.st_gid
2110 || w->prev.st_rdev != w->attr.st_rdev 3941 || prev.st_rdev != w->attr.st_rdev
2111 || w->prev.st_size != w->attr.st_size 3942 || prev.st_size != w->attr.st_size
2112 || w->prev.st_atime != w->attr.st_atime 3943 || prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime 3944 || prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime 3945 || prev.st_ctime != w->attr.st_ctime
2115 ) { 3946 ) {
3947 /* we only update w->prev on actual differences */
3948 /* in case we test more often than invoke the callback, */
3949 /* to ensure that prev is always different to attr */
3950 w->prev = prev;
3951
2116 #if EV_USE_INOTIFY 3952 #if EV_USE_INOTIFY
3953 if (fs_fd >= 0)
3954 {
2117 infy_del (EV_A_ w); 3955 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w); 3956 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */ 3957 ev_stat_stat (EV_A_ w); /* avoid race... */
3958 }
2120 #endif 3959 #endif
2121 3960
2122 ev_feed_event (EV_A_ w, EV_STAT); 3961 ev_feed_event (EV_A_ w, EV_STAT);
2123 } 3962 }
2124} 3963}
2125 3964
2126void 3965void
2127ev_stat_start (EV_P_ ev_stat *w) 3966ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2128{ 3967{
2129 if (expect_false (ev_is_active (w))) 3968 if (expect_false (ev_is_active (w)))
2130 return; 3969 return;
2131 3970
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w); 3971 ev_stat_stat (EV_A_ w);
2137 3972
3973 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2138 if (w->interval < MIN_STAT_INTERVAL) 3974 w->interval = MIN_STAT_INTERVAL;
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140 3975
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3976 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2142 ev_set_priority (&w->timer, ev_priority (w)); 3977 ev_set_priority (&w->timer, ev_priority (w));
2143 3978
2144#if EV_USE_INOTIFY 3979#if EV_USE_INOTIFY
2145 infy_init (EV_A); 3980 infy_init (EV_A);
2146 3981
2147 if (fs_fd >= 0) 3982 if (fs_fd >= 0)
2148 infy_add (EV_A_ w); 3983 infy_add (EV_A_ w);
2149 else 3984 else
2150#endif 3985#endif
3986 {
2151 ev_timer_start (EV_A_ &w->timer); 3987 ev_timer_again (EV_A_ &w->timer);
3988 ev_unref (EV_A);
3989 }
2152 3990
2153 ev_start (EV_A_ (W)w, 1); 3991 ev_start (EV_A_ (W)w, 1);
3992
3993 EV_FREQUENT_CHECK;
2154} 3994}
2155 3995
2156void 3996void
2157ev_stat_stop (EV_P_ ev_stat *w) 3997ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2158{ 3998{
2159 clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
2161 return; 4001 return;
2162 4002
4003 EV_FREQUENT_CHECK;
4004
2163#if EV_USE_INOTIFY 4005#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w); 4006 infy_del (EV_A_ w);
2165#endif 4007#endif
4008
4009 if (ev_is_active (&w->timer))
4010 {
4011 ev_ref (EV_A);
2166 ev_timer_stop (EV_A_ &w->timer); 4012 ev_timer_stop (EV_A_ &w->timer);
4013 }
2167 4014
2168 ev_stop (EV_A_ (W)w); 4015 ev_stop (EV_A_ (W)w);
4016
4017 EV_FREQUENT_CHECK;
2169} 4018}
2170#endif 4019#endif
2171 4020
2172#if EV_IDLE_ENABLE 4021#if EV_IDLE_ENABLE
2173void 4022void
2174ev_idle_start (EV_P_ ev_idle *w) 4023ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2175{ 4024{
2176 if (expect_false (ev_is_active (w))) 4025 if (expect_false (ev_is_active (w)))
2177 return; 4026 return;
2178 4027
2179 pri_adjust (EV_A_ (W)w); 4028 pri_adjust (EV_A_ (W)w);
4029
4030 EV_FREQUENT_CHECK;
2180 4031
2181 { 4032 {
2182 int active = ++idlecnt [ABSPRI (w)]; 4033 int active = ++idlecnt [ABSPRI (w)];
2183 4034
2184 ++idleall; 4035 ++idleall;
2185 ev_start (EV_A_ (W)w, active); 4036 ev_start (EV_A_ (W)w, active);
2186 4037
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4038 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w; 4039 idles [ABSPRI (w)][active - 1] = w;
2189 } 4040 }
4041
4042 EV_FREQUENT_CHECK;
2190} 4043}
2191 4044
2192void 4045void
2193ev_idle_stop (EV_P_ ev_idle *w) 4046ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2194{ 4047{
2195 clear_pending (EV_A_ (W)w); 4048 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w))) 4049 if (expect_false (!ev_is_active (w)))
2197 return; 4050 return;
2198 4051
4052 EV_FREQUENT_CHECK;
4053
2199 { 4054 {
2200 int active = ((W)w)->active; 4055 int active = ev_active (w);
2201 4056
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4057 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4058 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2204 4059
2205 ev_stop (EV_A_ (W)w); 4060 ev_stop (EV_A_ (W)w);
2206 --idleall; 4061 --idleall;
2207 } 4062 }
2208}
2209#endif
2210 4063
4064 EV_FREQUENT_CHECK;
4065}
4066#endif
4067
4068#if EV_PREPARE_ENABLE
2211void 4069void
2212ev_prepare_start (EV_P_ ev_prepare *w) 4070ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2213{ 4071{
2214 if (expect_false (ev_is_active (w))) 4072 if (expect_false (ev_is_active (w)))
2215 return; 4073 return;
4074
4075 EV_FREQUENT_CHECK;
2216 4076
2217 ev_start (EV_A_ (W)w, ++preparecnt); 4077 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4078 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w; 4079 prepares [preparecnt - 1] = w;
4080
4081 EV_FREQUENT_CHECK;
2220} 4082}
2221 4083
2222void 4084void
2223ev_prepare_stop (EV_P_ ev_prepare *w) 4085ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2224{ 4086{
2225 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2227 return; 4089 return;
2228 4090
4091 EV_FREQUENT_CHECK;
4092
2229 { 4093 {
2230 int active = ((W)w)->active; 4094 int active = ev_active (w);
4095
2231 prepares [active - 1] = prepares [--preparecnt]; 4096 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active; 4097 ev_active (prepares [active - 1]) = active;
2233 } 4098 }
2234 4099
2235 ev_stop (EV_A_ (W)w); 4100 ev_stop (EV_A_ (W)w);
2236}
2237 4101
4102 EV_FREQUENT_CHECK;
4103}
4104#endif
4105
4106#if EV_CHECK_ENABLE
2238void 4107void
2239ev_check_start (EV_P_ ev_check *w) 4108ev_check_start (EV_P_ ev_check *w) EV_THROW
2240{ 4109{
2241 if (expect_false (ev_is_active (w))) 4110 if (expect_false (ev_is_active (w)))
2242 return; 4111 return;
4112
4113 EV_FREQUENT_CHECK;
2243 4114
2244 ev_start (EV_A_ (W)w, ++checkcnt); 4115 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4116 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w; 4117 checks [checkcnt - 1] = w;
4118
4119 EV_FREQUENT_CHECK;
2247} 4120}
2248 4121
2249void 4122void
2250ev_check_stop (EV_P_ ev_check *w) 4123ev_check_stop (EV_P_ ev_check *w) EV_THROW
2251{ 4124{
2252 clear_pending (EV_A_ (W)w); 4125 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w))) 4126 if (expect_false (!ev_is_active (w)))
2254 return; 4127 return;
2255 4128
4129 EV_FREQUENT_CHECK;
4130
2256 { 4131 {
2257 int active = ((W)w)->active; 4132 int active = ev_active (w);
4133
2258 checks [active - 1] = checks [--checkcnt]; 4134 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active; 4135 ev_active (checks [active - 1]) = active;
2260 } 4136 }
2261 4137
2262 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
2263} 4141}
4142#endif
2264 4143
2265#if EV_EMBED_ENABLE 4144#if EV_EMBED_ENABLE
2266void noinline 4145void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w) 4146ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2268{ 4147{
2269 ev_loop (w->other, EVLOOP_NONBLOCK); 4148 ev_run (w->other, EVRUN_NOWAIT);
2270} 4149}
2271 4150
2272static void 4151static void
2273embed_io_cb (EV_P_ ev_io *io, int revents) 4152embed_io_cb (EV_P_ ev_io *io, int revents)
2274{ 4153{
2275 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4154 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2276 4155
2277 if (ev_cb (w)) 4156 if (ev_cb (w))
2278 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4157 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2279 else 4158 else
2280 ev_loop (w->other, EVLOOP_NONBLOCK); 4159 ev_run (w->other, EVRUN_NOWAIT);
2281} 4160}
2282 4161
2283static void 4162static void
2284embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4163embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2285{ 4164{
2286 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4165 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2287 4166
2288 { 4167 {
2289 struct ev_loop *loop = w->other; 4168 EV_P = w->other;
2290 4169
2291 while (fdchangecnt) 4170 while (fdchangecnt)
2292 { 4171 {
2293 fd_reify (EV_A); 4172 fd_reify (EV_A);
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4173 ev_run (EV_A_ EVRUN_NOWAIT);
2295 } 4174 }
2296 } 4175 }
4176}
4177
4178static void
4179embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4180{
4181 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4182
4183 ev_embed_stop (EV_A_ w);
4184
4185 {
4186 EV_P = w->other;
4187
4188 ev_loop_fork (EV_A);
4189 ev_run (EV_A_ EVRUN_NOWAIT);
4190 }
4191
4192 ev_embed_start (EV_A_ w);
2297} 4193}
2298 4194
2299#if 0 4195#if 0
2300static void 4196static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4197embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2303 ev_idle_stop (EV_A_ idle); 4199 ev_idle_stop (EV_A_ idle);
2304} 4200}
2305#endif 4201#endif
2306 4202
2307void 4203void
2308ev_embed_start (EV_P_ ev_embed *w) 4204ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2309{ 4205{
2310 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
2311 return; 4207 return;
2312 4208
2313 { 4209 {
2314 struct ev_loop *loop = w->other; 4210 EV_P = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4211 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4212 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 } 4213 }
4214
4215 EV_FREQUENT_CHECK;
2318 4216
2319 ev_set_priority (&w->io, ev_priority (w)); 4217 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io); 4218 ev_io_start (EV_A_ &w->io);
2321 4219
2322 ev_prepare_init (&w->prepare, embed_prepare_cb); 4220 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI); 4221 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare); 4222 ev_prepare_start (EV_A_ &w->prepare);
2325 4223
4224 ev_fork_init (&w->fork, embed_fork_cb);
4225 ev_fork_start (EV_A_ &w->fork);
4226
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4227 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327 4228
2328 ev_start (EV_A_ (W)w, 1); 4229 ev_start (EV_A_ (W)w, 1);
4230
4231 EV_FREQUENT_CHECK;
2329} 4232}
2330 4233
2331void 4234void
2332ev_embed_stop (EV_P_ ev_embed *w) 4235ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2333{ 4236{
2334 clear_pending (EV_A_ (W)w); 4237 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 4238 if (expect_false (!ev_is_active (w)))
2336 return; 4239 return;
2337 4240
4241 EV_FREQUENT_CHECK;
4242
2338 ev_io_stop (EV_A_ &w->io); 4243 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare); 4244 ev_prepare_stop (EV_A_ &w->prepare);
4245 ev_fork_stop (EV_A_ &w->fork);
2340 4246
2341 ev_stop (EV_A_ (W)w); 4247 ev_stop (EV_A_ (W)w);
4248
4249 EV_FREQUENT_CHECK;
2342} 4250}
2343#endif 4251#endif
2344 4252
2345#if EV_FORK_ENABLE 4253#if EV_FORK_ENABLE
2346void 4254void
2347ev_fork_start (EV_P_ ev_fork *w) 4255ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2348{ 4256{
2349 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
2350 return; 4258 return;
4259
4260 EV_FREQUENT_CHECK;
2351 4261
2352 ev_start (EV_A_ (W)w, ++forkcnt); 4262 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4263 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w; 4264 forks [forkcnt - 1] = w;
4265
4266 EV_FREQUENT_CHECK;
2355} 4267}
2356 4268
2357void 4269void
2358ev_fork_stop (EV_P_ ev_fork *w) 4270ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2359{ 4271{
2360 clear_pending (EV_A_ (W)w); 4272 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 4273 if (expect_false (!ev_is_active (w)))
2362 return; 4274 return;
2363 4275
4276 EV_FREQUENT_CHECK;
4277
2364 { 4278 {
2365 int active = ((W)w)->active; 4279 int active = ev_active (w);
4280
2366 forks [active - 1] = forks [--forkcnt]; 4281 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active; 4282 ev_active (forks [active - 1]) = active;
2368 } 4283 }
2369 4284
2370 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
4286
4287 EV_FREQUENT_CHECK;
4288}
4289#endif
4290
4291#if EV_CLEANUP_ENABLE
4292void
4293ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4294{
4295 if (expect_false (ev_is_active (w)))
4296 return;
4297
4298 EV_FREQUENT_CHECK;
4299
4300 ev_start (EV_A_ (W)w, ++cleanupcnt);
4301 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4302 cleanups [cleanupcnt - 1] = w;
4303
4304 /* cleanup watchers should never keep a refcount on the loop */
4305 ev_unref (EV_A);
4306 EV_FREQUENT_CHECK;
4307}
4308
4309void
4310ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4311{
4312 clear_pending (EV_A_ (W)w);
4313 if (expect_false (!ev_is_active (w)))
4314 return;
4315
4316 EV_FREQUENT_CHECK;
4317 ev_ref (EV_A);
4318
4319 {
4320 int active = ev_active (w);
4321
4322 cleanups [active - 1] = cleanups [--cleanupcnt];
4323 ev_active (cleanups [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
4329}
4330#endif
4331
4332#if EV_ASYNC_ENABLE
4333void
4334ev_async_start (EV_P_ ev_async *w) EV_THROW
4335{
4336 if (expect_false (ev_is_active (w)))
4337 return;
4338
4339 w->sent = 0;
4340
4341 evpipe_init (EV_A);
4342
4343 EV_FREQUENT_CHECK;
4344
4345 ev_start (EV_A_ (W)w, ++asynccnt);
4346 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4347 asyncs [asynccnt - 1] = w;
4348
4349 EV_FREQUENT_CHECK;
4350}
4351
4352void
4353ev_async_stop (EV_P_ ev_async *w) EV_THROW
4354{
4355 clear_pending (EV_A_ (W)w);
4356 if (expect_false (!ev_is_active (w)))
4357 return;
4358
4359 EV_FREQUENT_CHECK;
4360
4361 {
4362 int active = ev_active (w);
4363
4364 asyncs [active - 1] = asyncs [--asynccnt];
4365 ev_active (asyncs [active - 1]) = active;
4366 }
4367
4368 ev_stop (EV_A_ (W)w);
4369
4370 EV_FREQUENT_CHECK;
4371}
4372
4373void
4374ev_async_send (EV_P_ ev_async *w) EV_THROW
4375{
4376 w->sent = 1;
4377 evpipe_write (EV_A_ &async_pending);
2371} 4378}
2372#endif 4379#endif
2373 4380
2374/*****************************************************************************/ 4381/*****************************************************************************/
2375 4382
2385once_cb (EV_P_ struct ev_once *once, int revents) 4392once_cb (EV_P_ struct ev_once *once, int revents)
2386{ 4393{
2387 void (*cb)(int revents, void *arg) = once->cb; 4394 void (*cb)(int revents, void *arg) = once->cb;
2388 void *arg = once->arg; 4395 void *arg = once->arg;
2389 4396
2390 ev_io_stop (EV_A_ &once->io); 4397 ev_io_stop (EV_A_ &once->io);
2391 ev_timer_stop (EV_A_ &once->to); 4398 ev_timer_stop (EV_A_ &once->to);
2392 ev_free (once); 4399 ev_free (once);
2393 4400
2394 cb (revents, arg); 4401 cb (revents, arg);
2395} 4402}
2396 4403
2397static void 4404static void
2398once_cb_io (EV_P_ ev_io *w, int revents) 4405once_cb_io (EV_P_ ev_io *w, int revents)
2399{ 4406{
2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4407 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4408
4409 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2401} 4410}
2402 4411
2403static void 4412static void
2404once_cb_to (EV_P_ ev_timer *w, int revents) 4413once_cb_to (EV_P_ ev_timer *w, int revents)
2405{ 4414{
2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4415 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4416
4417 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2407} 4418}
2408 4419
2409void 4420void
2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4421ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2411{ 4422{
2412 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4423 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2413 4424
2414 if (expect_false (!once)) 4425 if (expect_false (!once))
2415 { 4426 {
2416 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4427 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2417 return; 4428 return;
2418 } 4429 }
2419 4430
2420 once->cb = cb; 4431 once->cb = cb;
2421 once->arg = arg; 4432 once->arg = arg;
2433 ev_timer_set (&once->to, timeout, 0.); 4444 ev_timer_set (&once->to, timeout, 0.);
2434 ev_timer_start (EV_A_ &once->to); 4445 ev_timer_start (EV_A_ &once->to);
2435 } 4446 }
2436} 4447}
2437 4448
4449/*****************************************************************************/
4450
4451#if EV_WALK_ENABLE
4452void ecb_cold
4453ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4454{
4455 int i, j;
4456 ev_watcher_list *wl, *wn;
4457
4458 if (types & (EV_IO | EV_EMBED))
4459 for (i = 0; i < anfdmax; ++i)
4460 for (wl = anfds [i].head; wl; )
4461 {
4462 wn = wl->next;
4463
4464#if EV_EMBED_ENABLE
4465 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4466 {
4467 if (types & EV_EMBED)
4468 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4469 }
4470 else
4471#endif
4472#if EV_USE_INOTIFY
4473 if (ev_cb ((ev_io *)wl) == infy_cb)
4474 ;
4475 else
4476#endif
4477 if ((ev_io *)wl != &pipe_w)
4478 if (types & EV_IO)
4479 cb (EV_A_ EV_IO, wl);
4480
4481 wl = wn;
4482 }
4483
4484 if (types & (EV_TIMER | EV_STAT))
4485 for (i = timercnt + HEAP0; i-- > HEAP0; )
4486#if EV_STAT_ENABLE
4487 /*TODO: timer is not always active*/
4488 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4489 {
4490 if (types & EV_STAT)
4491 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4492 }
4493 else
4494#endif
4495 if (types & EV_TIMER)
4496 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4497
4498#if EV_PERIODIC_ENABLE
4499 if (types & EV_PERIODIC)
4500 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4501 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4502#endif
4503
4504#if EV_IDLE_ENABLE
4505 if (types & EV_IDLE)
4506 for (j = NUMPRI; j--; )
4507 for (i = idlecnt [j]; i--; )
4508 cb (EV_A_ EV_IDLE, idles [j][i]);
4509#endif
4510
4511#if EV_FORK_ENABLE
4512 if (types & EV_FORK)
4513 for (i = forkcnt; i--; )
4514 if (ev_cb (forks [i]) != embed_fork_cb)
4515 cb (EV_A_ EV_FORK, forks [i]);
4516#endif
4517
4518#if EV_ASYNC_ENABLE
4519 if (types & EV_ASYNC)
4520 for (i = asynccnt; i--; )
4521 cb (EV_A_ EV_ASYNC, asyncs [i]);
4522#endif
4523
4524#if EV_PREPARE_ENABLE
4525 if (types & EV_PREPARE)
4526 for (i = preparecnt; i--; )
4527# if EV_EMBED_ENABLE
4528 if (ev_cb (prepares [i]) != embed_prepare_cb)
4529# endif
4530 cb (EV_A_ EV_PREPARE, prepares [i]);
4531#endif
4532
4533#if EV_CHECK_ENABLE
4534 if (types & EV_CHECK)
4535 for (i = checkcnt; i--; )
4536 cb (EV_A_ EV_CHECK, checks [i]);
4537#endif
4538
4539#if EV_SIGNAL_ENABLE
4540 if (types & EV_SIGNAL)
4541 for (i = 0; i < EV_NSIG - 1; ++i)
4542 for (wl = signals [i].head; wl; )
4543 {
4544 wn = wl->next;
4545 cb (EV_A_ EV_SIGNAL, wl);
4546 wl = wn;
4547 }
4548#endif
4549
4550#if EV_CHILD_ENABLE
4551 if (types & EV_CHILD)
4552 for (i = (EV_PID_HASHSIZE); i--; )
4553 for (wl = childs [i]; wl; )
4554 {
4555 wn = wl->next;
4556 cb (EV_A_ EV_CHILD, wl);
4557 wl = wn;
4558 }
4559#endif
4560/* EV_STAT 0x00001000 /* stat data changed */
4561/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4562}
4563#endif
4564
2438#if EV_MULTIPLICITY 4565#if EV_MULTIPLICITY
2439 #include "ev_wrap.h" 4566 #include "ev_wrap.h"
2440#endif 4567#endif
2441 4568
2442#ifdef __cplusplus
2443}
2444#endif
2445

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines