ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.78 by root, Thu Nov 8 21:08:56 2007 UTC vs.
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
41# endif 65# endif
42 66
43# if HAVE_POLL && HAVE_POLL_H 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
45# endif 73# endif
46 74
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
53# endif 113# endif
54 114
55#endif 115#endif
56 116
57#include <math.h> 117#include <math.h>
66#include <sys/types.h> 126#include <sys/types.h>
67#include <time.h> 127#include <time.h>
68 128
69#include <signal.h> 129#include <signal.h>
70 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
71#ifndef WIN32 137#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 138# include <sys/time.h>
74# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
141#else
142# define WIN32_LEAN_AND_MEAN
143# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1
75#endif 146# endif
147#endif
148
76/**/ 149/**/
77 150
78#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
80#endif 161#endif
81 162
82#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
84#endif 165#endif
85 166
86#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 168# ifdef _WIN32
169# define EV_USE_POLL 0
170# else
171# define EV_USE_POLL 1
172# endif
88#endif 173#endif
89 174
90#ifndef EV_USE_EPOLL 175#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 176# define EV_USE_EPOLL 0
92#endif 177#endif
93 178
94#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
96#endif 181#endif
97 182
183#ifndef EV_USE_PORT
184# define EV_USE_PORT 0
185#endif
186
98#ifndef EV_USE_WIN32 187#ifndef EV_USE_INOTIFY
99# ifdef WIN32 188# define EV_USE_INOTIFY 0
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 189#endif
101# undef EV_USE_SELECT 190
102# define EV_USE_SELECT 1 191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
103# else 194# else
104# define EV_USE_WIN32 0 195# define EV_PID_HASHSIZE 16
105# endif 196# endif
106#endif 197#endif
107 198
108#ifndef EV_USE_REALTIME 199#ifndef EV_INOTIFY_HASHSIZE
109# define EV_USE_REALTIME 1 200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
110#endif 205#endif
111 206
112/**/ 207/**/
113 208
114#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
122#endif 217#endif
123 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
234#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h>
236#endif
237
124/**/ 238/**/
125 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 253
131#include "ev.h"
132
133#if __GNUC__ >= 3 254#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 256# define noinline __attribute__ ((noinline))
136#else 257#else
137# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
138# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
139#endif 263#endif
140 264
141#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
143 274
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 277
278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
280
147typedef struct ev_watcher *W; 281typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
150 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 288
289#ifdef _WIN32
153#include "ev_win32.c" 290# include "ev_win32.c"
291#endif
154 292
155/*****************************************************************************/ 293/*****************************************************************************/
156 294
157static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
158 296
297void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 299{
161 syserr_cb = cb; 300 syserr_cb = cb;
162} 301}
163 302
164static void 303static void noinline
165syserr (const char *msg) 304syserr (const char *msg)
166{ 305{
167 if (!msg) 306 if (!msg)
168 msg = "(libev) system error"; 307 msg = "(libev) system error";
169 308
176 } 315 }
177} 316}
178 317
179static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
180 319
320void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 322{
183 alloc = cb; 323 alloc = cb;
184} 324}
185 325
186static void * 326inline_speed void *
187ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
188{ 328{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190 330
191 if (!ptr && size) 331 if (!ptr && size)
205typedef struct 345typedef struct
206{ 346{
207 WL head; 347 WL head;
208 unsigned char events; 348 unsigned char events;
209 unsigned char reify; 349 unsigned char reify;
350#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle;
352#endif
210} ANFD; 353} ANFD;
211 354
212typedef struct 355typedef struct
213{ 356{
214 W w; 357 W w;
215 int events; 358 int events;
216} ANPENDING; 359} ANPENDING;
217 360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
367
218#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
219 369
220struct ev_loop 370 struct ev_loop
221{ 371 {
372 ev_tstamp ev_rt_now;
373 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 374 #define VAR(name,decl) decl;
223# include "ev_vars.h" 375 #include "ev_vars.h"
224};
225# undef VAR 376 #undef VAR
377 };
226# include "ev_wrap.h" 378 #include "ev_wrap.h"
379
380 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr;
227 382
228#else 383#else
229 384
385 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 386 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 387 #include "ev_vars.h"
232# undef VAR 388 #undef VAR
389
390 static int ev_default_loop_ptr;
233 391
234#endif 392#endif
235 393
236/*****************************************************************************/ 394/*****************************************************************************/
237 395
238inline ev_tstamp 396ev_tstamp
239ev_time (void) 397ev_time (void)
240{ 398{
241#if EV_USE_REALTIME 399#if EV_USE_REALTIME
242 struct timespec ts; 400 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 401 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 407#endif
250} 408}
251 409
252inline ev_tstamp 410ev_tstamp inline_size
253get_clock (void) 411get_clock (void)
254{ 412{
255#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
257 { 415 {
262#endif 420#endif
263 421
264 return ev_time (); 422 return ev_time ();
265} 423}
266 424
425#if EV_MULTIPLICITY
267ev_tstamp 426ev_tstamp
268ev_now (EV_P) 427ev_now (EV_P)
269{ 428{
270 return rt_now; 429 return ev_rt_now;
271} 430}
431#endif
272 432
273#define array_roundsize(type,n) ((n) | 4 & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
274 487
275#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
277 { \ 490 { \
278 int newcnt = cur; \ 491 int ocur_ = (cur); \
279 do \ 492 (base) = (type *)array_realloc \
280 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 495 }
289 496
497#if 0
290#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 500 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 504 }
297 505#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 506
303#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 509
306/*****************************************************************************/ 510/*****************************************************************************/
307 511
308static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
309anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
310{ 542{
311 while (count--) 543 while (count--)
312 { 544 {
313 base->head = 0; 545 base->head = 0;
316 548
317 ++base; 549 ++base;
318 } 550 }
319} 551}
320 552
321void 553void inline_speed
322ev_feed_event (EV_P_ void *w, int revents)
323{
324 W w_ = (W)w;
325
326 if (w_->pending)
327 {
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 return;
330 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336}
337
338static void
339queue_events (EV_P_ W *events, int eventcnt, int type)
340{
341 int i;
342
343 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type);
345}
346
347static void
348fd_event (EV_P_ int fd, int events) 554fd_event (EV_P_ int fd, int revents)
349{ 555{
350 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
351 struct ev_io *w; 557 ev_io *w;
352 558
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
354 { 560 {
355 int ev = w->events & events; 561 int ev = w->events & revents;
356 562
357 if (ev) 563 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
359 } 565 }
360} 566}
361 567
362/*****************************************************************************/ 568void
569ev_feed_fd_event (EV_P_ int fd, int revents)
570{
571 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents);
573}
363 574
364static void 575void inline_size
365fd_reify (EV_P) 576fd_reify (EV_P)
366{ 577{
367 int i; 578 int i;
368 579
369 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
370 { 581 {
371 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
372 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
373 struct ev_io *w; 584 ev_io *w;
374 585
375 int events = 0; 586 unsigned char events = 0;
376 587
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
378 events |= w->events; 589 events |= (unsigned char)w->events;
379 590
591#if EV_SELECT_IS_WINSOCKET
592 if (events)
593 {
594 unsigned long argp;
595 anfd->handle = _get_osfhandle (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 }
598#endif
599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
380 anfd->reify = 0; 604 anfd->reify = 0;
381
382 method_modify (EV_A_ fd, anfd->events, events);
383 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
384 } 610 }
385 611
386 fdchangecnt = 0; 612 fdchangecnt = 0;
387} 613}
388 614
389static void 615void inline_size
390fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
391{ 617{
392 if (anfds [fd].reify) 618 unsigned char reify = anfds [fd].reify;
393 return;
394
395 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
396 620
621 if (expect_true (!reify))
622 {
397 ++fdchangecnt; 623 ++fdchangecnt;
398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
399 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
400} 627}
401 628
402static void 629void inline_speed
403fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
404{ 631{
405 struct ev_io *w; 632 ev_io *w;
406 633
407 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
408 { 635 {
409 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
411 } 638 }
412} 639}
413 640
414static int 641int inline_size
415fd_valid (int fd) 642fd_valid (int fd)
416{ 643{
417#ifdef WIN32 644#ifdef _WIN32
418 return !!win32_get_osfhandle (fd); 645 return _get_osfhandle (fd) != -1;
419#else 646#else
420 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
421#endif 648#endif
422} 649}
423 650
424/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
425static void 652static void noinline
426fd_ebadf (EV_P) 653fd_ebadf (EV_P)
427{ 654{
428 int fd; 655 int fd;
429 656
430 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
432 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
433 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
434} 661}
435 662
436/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
437static void 664static void noinline
438fd_enomem (EV_P) 665fd_enomem (EV_P)
439{ 666{
440 int fd; 667 int fd;
441 668
442 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
445 fd_kill (EV_A_ fd); 672 fd_kill (EV_A_ fd);
446 return; 673 return;
447 } 674 }
448} 675}
449 676
450/* usually called after fork if method needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
451static void 678static void noinline
452fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
453{ 680{
454 int fd; 681 int fd;
455 682
456 /* this should be highly optimised to not do anything but set a flag */
457 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
458 if (anfds [fd].events) 684 if (anfds [fd].events)
459 { 685 {
460 anfds [fd].events = 0; 686 anfds [fd].events = 0;
461 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
462 } 688 }
463} 689}
464 690
465/*****************************************************************************/ 691/*****************************************************************************/
466 692
467static void 693void inline_speed
468upheap (WT *heap, int k) 694upheap (WT *heap, int k)
469{ 695{
470 WT w = heap [k]; 696 WT w = heap [k];
471 697
472 while (k && heap [k >> 1]->at > w->at) 698 while (k)
473 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
474 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
475 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
476 k >>= 1; 707 k = p;
477 } 708 }
478 709
479 heap [k] = w; 710 heap [k] = w;
480 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
481
482} 712}
483 713
484static void 714void inline_speed
485downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
486{ 716{
487 WT w = heap [k]; 717 WT w = heap [k];
488 718
489 while (k < (N >> 1)) 719 for (;;)
490 { 720 {
491 int j = k << 1; 721 int c = (k << 1) + 1;
492 722
493 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
494 ++j;
495
496 if (w->at <= heap [j]->at)
497 break; 724 break;
498 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
499 heap [k] = heap [j]; 732 heap [k] = heap [c];
500 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
501 k = j; 735 k = c;
502 } 736 }
503 737
504 heap [k] = w; 738 heap [k] = w;
505 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
506} 747}
507 748
508/*****************************************************************************/ 749/*****************************************************************************/
509 750
510typedef struct 751typedef struct
516static ANSIG *signals; 757static ANSIG *signals;
517static int signalmax; 758static int signalmax;
518 759
519static int sigpipe [2]; 760static int sigpipe [2];
520static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
521static struct ev_io sigev; 762static ev_io sigev;
522 763
523static void 764void inline_size
524signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
525{ 766{
526 while (count--) 767 while (count--)
527 { 768 {
528 base->head = 0; 769 base->head = 0;
533} 774}
534 775
535static void 776static void
536sighandler (int signum) 777sighandler (int signum)
537{ 778{
538#if WIN32 779#if _WIN32
539 signal (signum, sighandler); 780 signal (signum, sighandler);
540#endif 781#endif
541 782
542 signals [signum - 1].gotsig = 1; 783 signals [signum - 1].gotsig = 1;
543 784
544 if (!gotsig) 785 if (!gotsig)
545 { 786 {
546 int old_errno = errno; 787 int old_errno = errno;
547 gotsig = 1; 788 gotsig = 1;
548#ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550#else
551 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
552#endif
553 errno = old_errno; 790 errno = old_errno;
554 } 791 }
555} 792}
556 793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
557static void 814static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
559{ 816{
560 WL w;
561 int signum; 817 int signum;
562 818
563#ifdef WIN32
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565#else
566 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
567#endif
568 gotsig = 0; 820 gotsig = 0;
569 821
570 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
571 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
572 { 824 ev_feed_signal_event (EV_A_ signum + 1);
573 signals [signum].gotsig = 0;
574
575 for (w = signals [signum].head; w; w = w->next)
576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
577 }
578} 825}
579 826
580static void 827void inline_speed
828fd_intern (int fd)
829{
830#ifdef _WIN32
831 int arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif
837}
838
839static void noinline
581siginit (EV_P) 840siginit (EV_P)
582{ 841{
583#ifndef WIN32 842 fd_intern (sigpipe [0]);
584 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 843 fd_intern (sigpipe [1]);
585 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
586
587 /* rather than sort out wether we really need nb, set it */
588 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
589 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
590#endif
591 844
592 ev_io_set (&sigev, sigpipe [0], EV_READ); 845 ev_io_set (&sigev, sigpipe [0], EV_READ);
593 ev_io_start (EV_A_ &sigev); 846 ev_io_start (EV_A_ &sigev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
595} 848}
596 849
597/*****************************************************************************/ 850/*****************************************************************************/
598 851
599static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
600 853
601#ifndef WIN32 854#ifndef _WIN32
602 855
603static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
604 872
605#ifndef WCONTINUED 873#ifndef WCONTINUED
606# define WCONTINUED 0 874# define WCONTINUED 0
607#endif 875#endif
608 876
609static void 877static void
610child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
611{
612 struct ev_child *w;
613
614 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
615 if (w->pid == pid || !w->pid)
616 {
617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
618 w->rpid = pid;
619 w->rstatus = status;
620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
621 }
622}
623
624static void
625childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
626{ 879{
627 int pid, status; 880 int pid, status;
628 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
630 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
631 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
633 892
634 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
636 }
637} 896}
638 897
639#endif 898#endif
640 899
641/*****************************************************************************/ 900/*****************************************************************************/
642 901
902#if EV_USE_PORT
903# include "ev_port.c"
904#endif
643#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
644# include "ev_kqueue.c" 906# include "ev_kqueue.c"
645#endif 907#endif
646#if EV_USE_EPOLL 908#if EV_USE_EPOLL
647# include "ev_epoll.c" 909# include "ev_epoll.c"
664{ 926{
665 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
666} 928}
667 929
668/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
669static int 931int inline_size
670enable_secure (void) 932enable_secure (void)
671{ 933{
672#ifdef WIN32 934#ifdef _WIN32
673 return 0; 935 return 0;
674#else 936#else
675 return getuid () != geteuid () 937 return getuid () != geteuid ()
676 || getgid () != getegid (); 938 || getgid () != getegid ();
677#endif 939#endif
678} 940}
679 941
680int 942unsigned int
681ev_method (EV_P) 943ev_supported_backends (void)
682{ 944{
683 return method; 945 unsigned int flags = 0;
684}
685 946
686static void 947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
687loop_init (EV_P_ int methods) 948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
950 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952
953 return flags;
954}
955
956unsigned int
957ev_recommended_backends (void)
688{ 958{
689 if (!method) 959 unsigned int flags = ev_supported_backends ();
960
961#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE;
965#endif
966#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation
968 flags &= ~EVBACKEND_POLL;
969#endif
970
971 return flags;
972}
973
974unsigned int
975ev_embeddable_backends (void)
976{
977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
978
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags;
989}
990
991unsigned int
992ev_backend (EV_P)
993{
994 return backend;
995}
996
997unsigned int
998ev_loop_count (EV_P)
999{
1000 return loop_count;
1001}
1002
1003void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1005{
1006 io_blocktime = interval;
1007}
1008
1009void
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{
1012 timeout_blocktime = interval;
1013}
1014
1015static void noinline
1016loop_init (EV_P_ unsigned int flags)
1017{
1018 if (!backend)
690 { 1019 {
691#if EV_USE_MONOTONIC 1020#if EV_USE_MONOTONIC
692 { 1021 {
693 struct timespec ts; 1022 struct timespec ts;
694 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
695 have_monotonic = 1; 1024 have_monotonic = 1;
696 } 1025 }
697#endif 1026#endif
698 1027
699 rt_now = ev_time (); 1028 ev_rt_now = ev_time ();
700 mn_now = get_clock (); 1029 mn_now = get_clock ();
701 now_floor = mn_now; 1030 now_floor = mn_now;
702 rtmn_diff = rt_now - mn_now; 1031 rtmn_diff = ev_rt_now - mn_now;
703 1032
704 if (methods == EVMETHOD_AUTO) 1033 io_blocktime = 0.;
705 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1034 timeout_blocktime = 0.;
1035
1036 /* pid check not overridable via env */
1037#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid ();
1040#endif
1041
1042 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS"))
706 methods = atoi (getenv ("LIBEV_METHODS")); 1045 flags = atoi (getenv ("LIBEV_FLAGS"));
707 else
708 methods = EVMETHOD_ANY;
709 1046
710 method = 0; 1047 if (!(flags & 0x0000ffffUL))
1048 flags |= ev_recommended_backends ();
1049
1050 backend = 0;
1051 backend_fd = -1;
711#if EV_USE_WIN32 1052#if EV_USE_INOTIFY
712 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1053 fs_fd = -2;
1054#endif
1055
1056#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
713#endif 1058#endif
714#if EV_USE_KQUEUE 1059#if EV_USE_KQUEUE
715 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1060 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
716#endif 1061#endif
717#if EV_USE_EPOLL 1062#if EV_USE_EPOLL
718 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1063 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
719#endif 1064#endif
720#if EV_USE_POLL 1065#if EV_USE_POLL
721 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1066 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
722#endif 1067#endif
723#if EV_USE_SELECT 1068#if EV_USE_SELECT
724 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
725#endif 1070#endif
726 1071
727 ev_watcher_init (&sigev, sigcb); 1072 ev_init (&sigev, sigcb);
728 ev_set_priority (&sigev, EV_MAXPRI); 1073 ev_set_priority (&sigev, EV_MAXPRI);
729 } 1074 }
730} 1075}
731 1076
732void 1077static void noinline
733loop_destroy (EV_P) 1078loop_destroy (EV_P)
734{ 1079{
735 int i; 1080 int i;
736 1081
737#if EV_USE_WIN32 1082#if EV_USE_INOTIFY
738 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1083 if (fs_fd >= 0)
1084 close (fs_fd);
1085#endif
1086
1087 if (backend_fd >= 0)
1088 close (backend_fd);
1089
1090#if EV_USE_PORT
1091 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
739#endif 1092#endif
740#if EV_USE_KQUEUE 1093#if EV_USE_KQUEUE
741 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1094 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
742#endif 1095#endif
743#if EV_USE_EPOLL 1096#if EV_USE_EPOLL
744 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1097 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
745#endif 1098#endif
746#if EV_USE_POLL 1099#if EV_USE_POLL
747 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1100 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
748#endif 1101#endif
749#if EV_USE_SELECT 1102#if EV_USE_SELECT
750 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1103 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
751#endif 1104#endif
752 1105
753 for (i = NUMPRI; i--; ) 1106 for (i = NUMPRI; i--; )
1107 {
754 array_free (pending, [i]); 1108 array_free (pending, [i]);
1109#if EV_IDLE_ENABLE
1110 array_free (idle, [i]);
1111#endif
1112 }
1113
1114 ev_free (anfds); anfdmax = 0;
755 1115
756 /* have to use the microsoft-never-gets-it-right macro */ 1116 /* have to use the microsoft-never-gets-it-right macro */
757 array_free_microshit (fdchange); 1117 array_free (fdchange, EMPTY);
758 array_free_microshit (timer); 1118 array_free (timer, EMPTY);
759 array_free_microshit (periodic); 1119#if EV_PERIODIC_ENABLE
760 array_free_microshit (idle); 1120 array_free (periodic, EMPTY);
761 array_free_microshit (prepare); 1121#endif
762 array_free_microshit (check); 1122#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY);
1124#endif
1125 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY);
763 1127
764 method = 0; 1128 backend = 0;
765} 1129}
766 1130
767static void 1131void inline_size infy_fork (EV_P);
1132
1133void inline_size
768loop_fork (EV_P) 1134loop_fork (EV_P)
769{ 1135{
1136#if EV_USE_PORT
1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1138#endif
1139#if EV_USE_KQUEUE
1140 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1141#endif
770#if EV_USE_EPOLL 1142#if EV_USE_EPOLL
771 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1143 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
772#endif 1144#endif
773#if EV_USE_KQUEUE 1145#if EV_USE_INOTIFY
774 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1146 infy_fork (EV_A);
775#endif 1147#endif
776 1148
777 if (ev_is_active (&sigev)) 1149 if (ev_is_active (&sigev))
778 { 1150 {
779 /* default loop */ 1151 /* default loop */
792 postfork = 0; 1164 postfork = 0;
793} 1165}
794 1166
795#if EV_MULTIPLICITY 1167#if EV_MULTIPLICITY
796struct ev_loop * 1168struct ev_loop *
797ev_loop_new (int methods) 1169ev_loop_new (unsigned int flags)
798{ 1170{
799 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
800 1172
801 memset (loop, 0, sizeof (struct ev_loop)); 1173 memset (loop, 0, sizeof (struct ev_loop));
802 1174
803 loop_init (EV_A_ methods); 1175 loop_init (EV_A_ flags);
804 1176
805 if (ev_method (EV_A)) 1177 if (ev_backend (EV_A))
806 return loop; 1178 return loop;
807 1179
808 return 0; 1180 return 0;
809} 1181}
810 1182
822} 1194}
823 1195
824#endif 1196#endif
825 1197
826#if EV_MULTIPLICITY 1198#if EV_MULTIPLICITY
827struct ev_loop default_loop_struct;
828static struct ev_loop *default_loop;
829
830struct ev_loop * 1199struct ev_loop *
1200ev_default_loop_init (unsigned int flags)
831#else 1201#else
832static int default_loop;
833
834int 1202int
1203ev_default_loop (unsigned int flags)
835#endif 1204#endif
836ev_default_loop (int methods)
837{ 1205{
838 if (sigpipe [0] == sigpipe [1]) 1206 if (sigpipe [0] == sigpipe [1])
839 if (pipe (sigpipe)) 1207 if (pipe (sigpipe))
840 return 0; 1208 return 0;
841 1209
842 if (!default_loop) 1210 if (!ev_default_loop_ptr)
843 { 1211 {
844#if EV_MULTIPLICITY 1212#if EV_MULTIPLICITY
845 struct ev_loop *loop = default_loop = &default_loop_struct; 1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
846#else 1214#else
847 default_loop = 1; 1215 ev_default_loop_ptr = 1;
848#endif 1216#endif
849 1217
850 loop_init (EV_A_ methods); 1218 loop_init (EV_A_ flags);
851 1219
852 if (ev_method (EV_A)) 1220 if (ev_backend (EV_A))
853 { 1221 {
854 siginit (EV_A); 1222 siginit (EV_A);
855 1223
856#ifndef WIN32 1224#ifndef _WIN32
857 ev_signal_init (&childev, childcb, SIGCHLD); 1225 ev_signal_init (&childev, childcb, SIGCHLD);
858 ev_set_priority (&childev, EV_MAXPRI); 1226 ev_set_priority (&childev, EV_MAXPRI);
859 ev_signal_start (EV_A_ &childev); 1227 ev_signal_start (EV_A_ &childev);
860 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1228 ev_unref (EV_A); /* child watcher should not keep loop alive */
861#endif 1229#endif
862 } 1230 }
863 else 1231 else
864 default_loop = 0; 1232 ev_default_loop_ptr = 0;
865 } 1233 }
866 1234
867 return default_loop; 1235 return ev_default_loop_ptr;
868} 1236}
869 1237
870void 1238void
871ev_default_destroy (void) 1239ev_default_destroy (void)
872{ 1240{
873#if EV_MULTIPLICITY 1241#if EV_MULTIPLICITY
874 struct ev_loop *loop = default_loop; 1242 struct ev_loop *loop = ev_default_loop_ptr;
875#endif 1243#endif
876 1244
877#ifndef WIN32 1245#ifndef _WIN32
878 ev_ref (EV_A); /* child watcher */ 1246 ev_ref (EV_A); /* child watcher */
879 ev_signal_stop (EV_A_ &childev); 1247 ev_signal_stop (EV_A_ &childev);
880#endif 1248#endif
881 1249
882 ev_ref (EV_A); /* signal watcher */ 1250 ev_ref (EV_A); /* signal watcher */
890 1258
891void 1259void
892ev_default_fork (void) 1260ev_default_fork (void)
893{ 1261{
894#if EV_MULTIPLICITY 1262#if EV_MULTIPLICITY
895 struct ev_loop *loop = default_loop; 1263 struct ev_loop *loop = ev_default_loop_ptr;
896#endif 1264#endif
897 1265
898 if (method) 1266 if (backend)
899 postfork = 1; 1267 postfork = 1;
900} 1268}
901 1269
902/*****************************************************************************/ 1270/*****************************************************************************/
903 1271
904static int 1272void
905any_pending (EV_P) 1273ev_invoke (EV_P_ void *w, int revents)
906{ 1274{
907 int pri; 1275 EV_CB_INVOKE ((W)w, revents);
908
909 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri])
911 return 1;
912
913 return 0;
914} 1276}
915 1277
916static void 1278void inline_speed
917call_pending (EV_P) 1279call_pending (EV_P)
918{ 1280{
919 int pri; 1281 int pri;
920 1282
921 for (pri = NUMPRI; pri--; ) 1283 for (pri = NUMPRI; pri--; )
922 while (pendingcnt [pri]) 1284 while (pendingcnt [pri])
923 { 1285 {
924 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
925 1287
926 if (p->w) 1288 if (expect_true (p->w))
927 { 1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1291
928 p->w->pending = 0; 1292 p->w->pending = 0;
929 p->w->cb (EV_A_ p->w, p->events); 1293 EV_CB_INVOKE (p->w, p->events);
930 } 1294 }
931 } 1295 }
932} 1296}
933 1297
934static void 1298void inline_size
935timers_reify (EV_P) 1299timers_reify (EV_P)
936{ 1300{
937 while (timercnt && ((WT)timers [0])->at <= mn_now) 1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
938 { 1302 {
939 struct ev_timer *w = timers [0]; 1303 ev_timer *w = (ev_timer *)timers [0];
940 1304
941 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
942 1306
943 /* first reschedule or stop timer */ 1307 /* first reschedule or stop timer */
944 if (w->repeat) 1308 if (w->repeat)
945 { 1309 {
946 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
947 ((WT)w)->at = mn_now + w->repeat; 1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
948 downheap ((WT *)timers, timercnt, 0); 1316 downheap (timers, timercnt, 0);
949 } 1317 }
950 else 1318 else
951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
952 1320
953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
954 } 1322 }
955} 1323}
956 1324
957static void 1325#if EV_PERIODIC_ENABLE
1326void inline_size
958periodics_reify (EV_P) 1327periodics_reify (EV_P)
959{ 1328{
960 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
961 { 1330 {
962 struct ev_periodic *w = periodics [0]; 1331 ev_periodic *w = (ev_periodic *)periodics [0];
963 1332
964 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
965 1334
966 /* first reschedule or stop timer */ 1335 /* first reschedule or stop timer */
967 if (w->reschedule_cb) 1336 if (w->reschedule_cb)
968 { 1337 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
970
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
972 downheap ((WT *)periodics, periodiccnt, 0); 1340 downheap (periodics, periodiccnt, 0);
973 } 1341 }
974 else if (w->interval) 1342 else if (w->interval)
975 { 1343 {
976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
978 downheap ((WT *)periodics, periodiccnt, 0); 1347 downheap (periodics, periodiccnt, 0);
979 } 1348 }
980 else 1349 else
981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
982 1351
983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
984 } 1353 }
985} 1354}
986 1355
987static void 1356static void noinline
988periodics_reschedule (EV_P) 1357periodics_reschedule (EV_P)
989{ 1358{
990 int i; 1359 int i;
991 1360
992 /* adjust periodics after time jump */ 1361 /* adjust periodics after time jump */
993 for (i = 0; i < periodiccnt; ++i) 1362 for (i = 0; i < periodiccnt; ++i)
994 { 1363 {
995 struct ev_periodic *w = periodics [i]; 1364 ev_periodic *w = (ev_periodic *)periodics [i];
996 1365
997 if (w->reschedule_cb) 1366 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
999 else if (w->interval) 1368 else if (w->interval)
1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1001 } 1370 }
1002 1371
1003 /* now rebuild the heap */ 1372 /* now rebuild the heap */
1004 for (i = periodiccnt >> 1; i--; ) 1373 for (i = periodiccnt >> 1; i--; )
1005 downheap ((WT *)periodics, periodiccnt, i); 1374 downheap (periodics, periodiccnt, i);
1006} 1375}
1376#endif
1007 1377
1008inline int 1378#if EV_IDLE_ENABLE
1009time_update_monotonic (EV_P) 1379void inline_size
1380idle_reify (EV_P)
1010{ 1381{
1011 mn_now = get_clock (); 1382 if (expect_false (idleall))
1012
1013 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1014 {
1015 rt_now = rtmn_diff + mn_now;
1016 return 0;
1017 } 1383 {
1018 else 1384 int pri;
1385
1386 for (pri = NUMPRI; pri--; )
1387 {
1388 if (pendingcnt [pri])
1389 break;
1390
1391 if (idlecnt [pri])
1392 {
1393 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1394 break;
1395 }
1396 }
1019 { 1397 }
1020 now_floor = mn_now;
1021 rt_now = ev_time ();
1022 return 1;
1023 }
1024} 1398}
1399#endif
1025 1400
1026static void 1401void inline_speed
1027time_update (EV_P) 1402time_update (EV_P_ ev_tstamp max_block)
1028{ 1403{
1029 int i; 1404 int i;
1030 1405
1031#if EV_USE_MONOTONIC 1406#if EV_USE_MONOTONIC
1032 if (expect_true (have_monotonic)) 1407 if (expect_true (have_monotonic))
1033 { 1408 {
1034 if (time_update_monotonic (EV_A)) 1409 ev_tstamp odiff = rtmn_diff;
1410
1411 mn_now = get_clock ();
1412
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1414 /* interpolate in the meantime */
1415 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 1416 {
1036 ev_tstamp odiff = rtmn_diff; 1417 ev_rt_now = rtmn_diff + mn_now;
1418 return;
1419 }
1037 1420
1421 now_floor = mn_now;
1422 ev_rt_now = ev_time ();
1423
1038 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1424 /* loop a few times, before making important decisions.
1425 * on the choice of "4": one iteration isn't enough,
1426 * in case we get preempted during the calls to
1427 * ev_time and get_clock. a second call is almost guaranteed
1428 * to succeed in that case, though. and looping a few more times
1429 * doesn't hurt either as we only do this on time-jumps or
1430 * in the unlikely event of having been preempted here.
1431 */
1432 for (i = 4; --i; )
1039 { 1433 {
1040 rtmn_diff = rt_now - mn_now; 1434 rtmn_diff = ev_rt_now - mn_now;
1041 1435
1042 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1043 return; /* all is well */ 1437 return; /* all is well */
1044 1438
1045 rt_now = ev_time (); 1439 ev_rt_now = ev_time ();
1046 mn_now = get_clock (); 1440 mn_now = get_clock ();
1047 now_floor = mn_now; 1441 now_floor = mn_now;
1048 } 1442 }
1049 1443
1444# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A);
1446# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 }
1450 else
1451#endif
1452 {
1453 ev_rt_now = ev_time ();
1454
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 {
1457#if EV_PERIODIC_ENABLE
1050 periodics_reschedule (EV_A); 1458 periodics_reschedule (EV_A);
1051 /* no timer adjustment, as the monotonic clock doesn't jump */ 1459#endif
1052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i)
1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1053 } 1463 }
1054 }
1055 else
1056#endif
1057 {
1058 rt_now = ev_time ();
1059 1464
1060 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1061 {
1062 periodics_reschedule (EV_A);
1063
1064 /* adjust timers. this is easy, as the offset is the same for all */
1065 for (i = 0; i < timercnt; ++i)
1066 ((WT)timers [i])->at += rt_now - mn_now;
1067 }
1068
1069 mn_now = rt_now; 1465 mn_now = ev_rt_now;
1070 } 1466 }
1071} 1467}
1072 1468
1073void 1469void
1074ev_ref (EV_P) 1470ev_ref (EV_P)
1085static int loop_done; 1481static int loop_done;
1086 1482
1087void 1483void
1088ev_loop (EV_P_ int flags) 1484ev_loop (EV_P_ int flags)
1089{ 1485{
1090 double block;
1091 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1487 ? EVUNLOOP_ONE
1488 : EVUNLOOP_CANCEL;
1489
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1092 1491
1093 do 1492 do
1094 { 1493 {
1494#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid))
1497 {
1498 curpid = getpid ();
1499 postfork = 1;
1500 }
1501#endif
1502
1503#if EV_FORK_ENABLE
1504 /* we might have forked, so queue fork handlers */
1505 if (expect_false (postfork))
1506 if (forkcnt)
1507 {
1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1509 call_pending (EV_A);
1510 }
1511#endif
1512
1095 /* queue check watchers (and execute them) */ 1513 /* queue prepare watchers (and execute them) */
1096 if (expect_false (preparecnt)) 1514 if (expect_false (preparecnt))
1097 { 1515 {
1098 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1099 call_pending (EV_A); 1517 call_pending (EV_A);
1100 } 1518 }
1101 1519
1520 if (expect_false (!activecnt))
1521 break;
1522
1102 /* we might have forked, so reify kernel state if necessary */ 1523 /* we might have forked, so reify kernel state if necessary */
1103 if (expect_false (postfork)) 1524 if (expect_false (postfork))
1104 loop_fork (EV_A); 1525 loop_fork (EV_A);
1105 1526
1106 /* update fd-related kernel structures */ 1527 /* update fd-related kernel structures */
1107 fd_reify (EV_A); 1528 fd_reify (EV_A);
1108 1529
1109 /* calculate blocking time */ 1530 /* calculate blocking time */
1531 {
1532 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.;
1110 1534
1111 /* we only need this for !monotonic clock or timers, but as we basically 1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1112 always have timers, we just calculate it always */
1113#if EV_USE_MONOTONIC
1114 if (expect_true (have_monotonic))
1115 time_update_monotonic (EV_A);
1116 else
1117#endif
1118 { 1536 {
1119 rt_now = ev_time (); 1537 /* update time to cancel out callback processing overhead */
1120 mn_now = rt_now; 1538 time_update (EV_A_ 1e100);
1121 }
1122 1539
1123 if (flags & EVLOOP_NONBLOCK || idlecnt)
1124 block = 0.;
1125 else
1126 {
1127 block = MAX_BLOCKTIME; 1540 waittime = MAX_BLOCKTIME;
1128 1541
1129 if (timercnt) 1542 if (timercnt)
1130 { 1543 {
1131 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1132 if (block > to) block = to; 1545 if (waittime > to) waittime = to;
1133 } 1546 }
1134 1547
1548#if EV_PERIODIC_ENABLE
1135 if (periodiccnt) 1549 if (periodiccnt)
1136 { 1550 {
1137 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1138 if (block > to) block = to; 1552 if (waittime > to) waittime = to;
1139 } 1553 }
1554#endif
1140 1555
1141 if (block < 0.) block = 0.; 1556 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime;
1558
1559 sleeptime = waittime - backend_fudge;
1560
1561 if (expect_true (sleeptime > io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 {
1566 ev_sleep (sleeptime);
1567 waittime -= sleeptime;
1568 }
1142 } 1569 }
1143 1570
1144 method_poll (EV_A_ block); 1571 ++loop_count;
1572 backend_poll (EV_A_ waittime);
1145 1573
1146 /* update rt_now, do magic */ 1574 /* update ev_rt_now, do magic */
1147 time_update (EV_A); 1575 time_update (EV_A_ waittime + sleeptime);
1576 }
1148 1577
1149 /* queue pending timers and reschedule them */ 1578 /* queue pending timers and reschedule them */
1150 timers_reify (EV_A); /* relative timers called last */ 1579 timers_reify (EV_A); /* relative timers called last */
1580#if EV_PERIODIC_ENABLE
1151 periodics_reify (EV_A); /* absolute timers called first */ 1581 periodics_reify (EV_A); /* absolute timers called first */
1582#endif
1152 1583
1584#if EV_IDLE_ENABLE
1153 /* queue idle watchers unless io or timers are pending */ 1585 /* queue idle watchers unless other events are pending */
1154 if (idlecnt && !any_pending (EV_A)) 1586 idle_reify (EV_A);
1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1587#endif
1156 1588
1157 /* queue check watchers, to be executed first */ 1589 /* queue check watchers, to be executed first */
1158 if (checkcnt) 1590 if (expect_false (checkcnt))
1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1160 1592
1161 call_pending (EV_A); 1593 call_pending (EV_A);
1594
1162 } 1595 }
1163 while (activecnt && !loop_done); 1596 while (expect_true (activecnt && !loop_done));
1164 1597
1165 if (loop_done != 2) 1598 if (loop_done == EVUNLOOP_ONE)
1166 loop_done = 0; 1599 loop_done = EVUNLOOP_CANCEL;
1167} 1600}
1168 1601
1169void 1602void
1170ev_unloop (EV_P_ int how) 1603ev_unloop (EV_P_ int how)
1171{ 1604{
1172 loop_done = how; 1605 loop_done = how;
1173} 1606}
1174 1607
1175/*****************************************************************************/ 1608/*****************************************************************************/
1176 1609
1177inline void 1610void inline_size
1178wlist_add (WL *head, WL elem) 1611wlist_add (WL *head, WL elem)
1179{ 1612{
1180 elem->next = *head; 1613 elem->next = *head;
1181 *head = elem; 1614 *head = elem;
1182} 1615}
1183 1616
1184inline void 1617void inline_size
1185wlist_del (WL *head, WL elem) 1618wlist_del (WL *head, WL elem)
1186{ 1619{
1187 while (*head) 1620 while (*head)
1188 { 1621 {
1189 if (*head == elem) 1622 if (*head == elem)
1194 1627
1195 head = &(*head)->next; 1628 head = &(*head)->next;
1196 } 1629 }
1197} 1630}
1198 1631
1199inline void 1632void inline_speed
1200ev_clear_pending (EV_P_ W w) 1633clear_pending (EV_P_ W w)
1201{ 1634{
1202 if (w->pending) 1635 if (w->pending)
1203 { 1636 {
1204 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1637 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1205 w->pending = 0; 1638 w->pending = 0;
1206 } 1639 }
1207} 1640}
1208 1641
1209inline void 1642int
1643ev_clear_pending (EV_P_ void *w)
1644{
1645 W w_ = (W)w;
1646 int pending = w_->pending;
1647
1648 if (expect_true (pending))
1649 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1651 w_->pending = 0;
1652 p->w = 0;
1653 return p->events;
1654 }
1655 else
1656 return 0;
1657}
1658
1659void inline_size
1660pri_adjust (EV_P_ W w)
1661{
1662 int pri = w->priority;
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri;
1666}
1667
1668void inline_speed
1210ev_start (EV_P_ W w, int active) 1669ev_start (EV_P_ W w, int active)
1211{ 1670{
1212 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1671 pri_adjust (EV_A_ w);
1213 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1214
1215 w->active = active; 1672 w->active = active;
1216 ev_ref (EV_A); 1673 ev_ref (EV_A);
1217} 1674}
1218 1675
1219inline void 1676void inline_size
1220ev_stop (EV_P_ W w) 1677ev_stop (EV_P_ W w)
1221{ 1678{
1222 ev_unref (EV_A); 1679 ev_unref (EV_A);
1223 w->active = 0; 1680 w->active = 0;
1224} 1681}
1225 1682
1226/*****************************************************************************/ 1683/*****************************************************************************/
1227 1684
1228void 1685void noinline
1229ev_io_start (EV_P_ struct ev_io *w) 1686ev_io_start (EV_P_ ev_io *w)
1230{ 1687{
1231 int fd = w->fd; 1688 int fd = w->fd;
1232 1689
1233 if (ev_is_active (w)) 1690 if (expect_false (ev_is_active (w)))
1234 return; 1691 return;
1235 1692
1236 assert (("ev_io_start called with negative fd", fd >= 0)); 1693 assert (("ev_io_start called with negative fd", fd >= 0));
1237 1694
1238 ev_start (EV_A_ (W)w, 1); 1695 ev_start (EV_A_ (W)w, 1);
1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1240 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1697 wlist_add (&anfds[fd].head, (WL)w);
1241 1698
1242 fd_change (EV_A_ fd); 1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1700 w->events &= ~EV_IOFDSET;
1243} 1701}
1244 1702
1245void 1703void noinline
1246ev_io_stop (EV_P_ struct ev_io *w) 1704ev_io_stop (EV_P_ ev_io *w)
1247{ 1705{
1248 ev_clear_pending (EV_A_ (W)w); 1706 clear_pending (EV_A_ (W)w);
1249 if (!ev_is_active (w)) 1707 if (expect_false (!ev_is_active (w)))
1250 return; 1708 return;
1251 1709
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1711
1252 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1712 wlist_del (&anfds[w->fd].head, (WL)w);
1253 ev_stop (EV_A_ (W)w); 1713 ev_stop (EV_A_ (W)w);
1254 1714
1255 fd_change (EV_A_ w->fd); 1715 fd_change (EV_A_ w->fd, 1);
1256} 1716}
1257 1717
1258void 1718void noinline
1259ev_timer_start (EV_P_ struct ev_timer *w) 1719ev_timer_start (EV_P_ ev_timer *w)
1260{ 1720{
1261 if (ev_is_active (w)) 1721 if (expect_false (ev_is_active (w)))
1262 return; 1722 return;
1263 1723
1264 ((WT)w)->at += mn_now; 1724 ((WT)w)->at += mn_now;
1265 1725
1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1267 1727
1268 ev_start (EV_A_ (W)w, ++timercnt); 1728 ev_start (EV_A_ (W)w, ++timercnt);
1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1270 timers [timercnt - 1] = w; 1730 timers [timercnt - 1] = (WT)w;
1271 upheap ((WT *)timers, timercnt - 1); 1731 upheap (timers, timercnt - 1);
1272 1732
1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1274} 1734}
1275 1735
1276void 1736void noinline
1277ev_timer_stop (EV_P_ struct ev_timer *w) 1737ev_timer_stop (EV_P_ ev_timer *w)
1278{ 1738{
1279 ev_clear_pending (EV_A_ (W)w); 1739 clear_pending (EV_A_ (W)w);
1280 if (!ev_is_active (w)) 1740 if (expect_false (!ev_is_active (w)))
1281 return; 1741 return;
1282 1742
1283 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1284 1744
1285 if (((W)w)->active < timercnt--) 1745 {
1746 int active = ((W)w)->active;
1747
1748 if (expect_true (--active < --timercnt))
1286 { 1749 {
1287 timers [((W)w)->active - 1] = timers [timercnt]; 1750 timers [active] = timers [timercnt];
1288 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1751 adjustheap (timers, timercnt, active);
1289 } 1752 }
1753 }
1290 1754
1291 ((WT)w)->at = w->repeat; 1755 ((WT)w)->at -= mn_now;
1292 1756
1293 ev_stop (EV_A_ (W)w); 1757 ev_stop (EV_A_ (W)w);
1294} 1758}
1295 1759
1296void 1760void noinline
1297ev_timer_again (EV_P_ struct ev_timer *w) 1761ev_timer_again (EV_P_ ev_timer *w)
1298{ 1762{
1299 if (ev_is_active (w)) 1763 if (ev_is_active (w))
1300 { 1764 {
1301 if (w->repeat) 1765 if (w->repeat)
1302 { 1766 {
1303 ((WT)w)->at = mn_now + w->repeat; 1767 ((WT)w)->at = mn_now + w->repeat;
1304 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1768 adjustheap (timers, timercnt, ((W)w)->active - 1);
1305 } 1769 }
1306 else 1770 else
1307 ev_timer_stop (EV_A_ w); 1771 ev_timer_stop (EV_A_ w);
1308 } 1772 }
1309 else if (w->repeat) 1773 else if (w->repeat)
1774 {
1775 w->at = w->repeat;
1310 ev_timer_start (EV_A_ w); 1776 ev_timer_start (EV_A_ w);
1777 }
1311} 1778}
1312 1779
1313void 1780#if EV_PERIODIC_ENABLE
1781void noinline
1314ev_periodic_start (EV_P_ struct ev_periodic *w) 1782ev_periodic_start (EV_P_ ev_periodic *w)
1315{ 1783{
1316 if (ev_is_active (w)) 1784 if (expect_false (ev_is_active (w)))
1317 return; 1785 return;
1318 1786
1319 if (w->reschedule_cb) 1787 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1321 else if (w->interval) 1789 else if (w->interval)
1322 { 1790 {
1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1324 /* this formula differs from the one in periodic_reify because we do not always round up */ 1792 /* this formula differs from the one in periodic_reify because we do not always round up */
1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1326 } 1794 }
1795 else
1796 ((WT)w)->at = w->offset;
1327 1797
1328 ev_start (EV_A_ (W)w, ++periodiccnt); 1798 ev_start (EV_A_ (W)w, ++periodiccnt);
1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1330 periodics [periodiccnt - 1] = w; 1800 periodics [periodiccnt - 1] = (WT)w;
1331 upheap ((WT *)periodics, periodiccnt - 1); 1801 upheap (periodics, periodiccnt - 1);
1332 1802
1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1334} 1804}
1335 1805
1336void 1806void noinline
1337ev_periodic_stop (EV_P_ struct ev_periodic *w) 1807ev_periodic_stop (EV_P_ ev_periodic *w)
1338{ 1808{
1339 ev_clear_pending (EV_A_ (W)w); 1809 clear_pending (EV_A_ (W)w);
1340 if (!ev_is_active (w)) 1810 if (expect_false (!ev_is_active (w)))
1341 return; 1811 return;
1342 1812
1343 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1344 1814
1345 if (((W)w)->active < periodiccnt--) 1815 {
1816 int active = ((W)w)->active;
1817
1818 if (expect_true (--active < --periodiccnt))
1346 { 1819 {
1347 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1820 periodics [active] = periodics [periodiccnt];
1348 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1821 adjustheap (periodics, periodiccnt, active);
1349 } 1822 }
1823 }
1350 1824
1351 ev_stop (EV_A_ (W)w); 1825 ev_stop (EV_A_ (W)w);
1352} 1826}
1353 1827
1354void 1828void noinline
1355ev_periodic_again (EV_P_ struct ev_periodic *w) 1829ev_periodic_again (EV_P_ ev_periodic *w)
1356{ 1830{
1831 /* TODO: use adjustheap and recalculation */
1357 ev_periodic_stop (EV_A_ w); 1832 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w); 1833 ev_periodic_start (EV_A_ w);
1359} 1834}
1360 1835#endif
1361void
1362ev_idle_start (EV_P_ struct ev_idle *w)
1363{
1364 if (ev_is_active (w))
1365 return;
1366
1367 ev_start (EV_A_ (W)w, ++idlecnt);
1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1369 idles [idlecnt - 1] = w;
1370}
1371
1372void
1373ev_idle_stop (EV_P_ struct ev_idle *w)
1374{
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 idles [((W)w)->active - 1] = idles [--idlecnt];
1380 ev_stop (EV_A_ (W)w);
1381}
1382
1383void
1384ev_prepare_start (EV_P_ struct ev_prepare *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++preparecnt);
1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1391 prepares [preparecnt - 1] = w;
1392}
1393
1394void
1395ev_prepare_stop (EV_P_ struct ev_prepare *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_check_start (EV_P_ struct ev_check *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++checkcnt);
1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1413 checks [checkcnt - 1] = w;
1414}
1415
1416void
1417ev_check_stop (EV_P_ struct ev_check *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 checks [((W)w)->active - 1] = checks [--checkcnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426 1836
1427#ifndef SA_RESTART 1837#ifndef SA_RESTART
1428# define SA_RESTART 0 1838# define SA_RESTART 0
1429#endif 1839#endif
1430 1840
1431void 1841void noinline
1432ev_signal_start (EV_P_ struct ev_signal *w) 1842ev_signal_start (EV_P_ ev_signal *w)
1433{ 1843{
1434#if EV_MULTIPLICITY 1844#if EV_MULTIPLICITY
1435 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1436#endif 1846#endif
1437 if (ev_is_active (w)) 1847 if (expect_false (ev_is_active (w)))
1438 return; 1848 return;
1439 1849
1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1441 1851
1852 {
1853#ifndef _WIN32
1854 sigset_t full, prev;
1855 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif
1858
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1860
1861#ifndef _WIN32
1862 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif
1864 }
1865
1442 ev_start (EV_A_ (W)w, 1); 1866 ev_start (EV_A_ (W)w, 1);
1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1867 wlist_add (&signals [w->signum - 1].head, (WL)w);
1445 1868
1446 if (!((WL)w)->next) 1869 if (!((WL)w)->next)
1447 { 1870 {
1448#if WIN32 1871#if _WIN32
1449 signal (w->signum, sighandler); 1872 signal (w->signum, sighandler);
1450#else 1873#else
1451 struct sigaction sa; 1874 struct sigaction sa;
1452 sa.sa_handler = sighandler; 1875 sa.sa_handler = sighandler;
1453 sigfillset (&sa.sa_mask); 1876 sigfillset (&sa.sa_mask);
1455 sigaction (w->signum, &sa, 0); 1878 sigaction (w->signum, &sa, 0);
1456#endif 1879#endif
1457 } 1880 }
1458} 1881}
1459 1882
1460void 1883void noinline
1461ev_signal_stop (EV_P_ struct ev_signal *w) 1884ev_signal_stop (EV_P_ ev_signal *w)
1462{ 1885{
1463 ev_clear_pending (EV_A_ (W)w); 1886 clear_pending (EV_A_ (W)w);
1464 if (!ev_is_active (w)) 1887 if (expect_false (!ev_is_active (w)))
1465 return; 1888 return;
1466 1889
1467 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1890 wlist_del (&signals [w->signum - 1].head, (WL)w);
1468 ev_stop (EV_A_ (W)w); 1891 ev_stop (EV_A_ (W)w);
1469 1892
1470 if (!signals [w->signum - 1].head) 1893 if (!signals [w->signum - 1].head)
1471 signal (w->signum, SIG_DFL); 1894 signal (w->signum, SIG_DFL);
1472} 1895}
1473 1896
1474void 1897void
1475ev_child_start (EV_P_ struct ev_child *w) 1898ev_child_start (EV_P_ ev_child *w)
1476{ 1899{
1477#if EV_MULTIPLICITY 1900#if EV_MULTIPLICITY
1478 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1479#endif 1902#endif
1480 if (ev_is_active (w)) 1903 if (expect_false (ev_is_active (w)))
1481 return; 1904 return;
1482 1905
1483 ev_start (EV_A_ (W)w, 1); 1906 ev_start (EV_A_ (W)w, 1);
1484 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1485} 1908}
1486 1909
1487void 1910void
1488ev_child_stop (EV_P_ struct ev_child *w) 1911ev_child_stop (EV_P_ ev_child *w)
1489{ 1912{
1490 ev_clear_pending (EV_A_ (W)w); 1913 clear_pending (EV_A_ (W)w);
1491 if (ev_is_active (w)) 1914 if (expect_false (!ev_is_active (w)))
1492 return; 1915 return;
1493 1916
1494 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1495 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1496} 1919}
1497 1920
1921#if EV_STAT_ENABLE
1922
1923# ifdef _WIN32
1924# undef lstat
1925# define lstat(a,b) _stati64 (a,b)
1926# endif
1927
1928#define DEF_STAT_INTERVAL 5.0074891
1929#define MIN_STAT_INTERVAL 0.1074891
1930
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932
1933#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192
1935
1936static void noinline
1937infy_add (EV_P_ ev_stat *w)
1938{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940
1941 if (w->wd < 0)
1942 {
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1944
1945 /* monitor some parent directory for speedup hints */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 {
1948 char path [4096];
1949 strcpy (path, w->path);
1950
1951 do
1952 {
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955
1956 char *pend = strrchr (path, '/');
1957
1958 if (!pend)
1959 break; /* whoops, no '/', complain to your admin */
1960
1961 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 }
1966 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969
1970 if (w->wd >= 0)
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1972}
1973
1974static void noinline
1975infy_del (EV_P_ ev_stat *w)
1976{
1977 int slot;
1978 int wd = w->wd;
1979
1980 if (wd < 0)
1981 return;
1982
1983 w->wd = -2;
1984 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1985 wlist_del (&fs_hash [slot].head, (WL)w);
1986
1987 /* remove this watcher, if others are watching it, they will rearm */
1988 inotify_rm_watch (fs_fd, wd);
1989}
1990
1991static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{
1994 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev);
1998 else
1999 {
2000 WL w_;
2001
2002 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2003 {
2004 ev_stat *w = (ev_stat *)w_;
2005 w_ = w_->next; /* lets us remove this watcher and all before it */
2006
2007 if (w->wd == wd || wd == -1)
2008 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 {
2011 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */
2013 }
2014
2015 stat_timer_cb (EV_A_ &w->timer, 0);
2016 }
2017 }
2018 }
2019}
2020
2021static void
2022infy_cb (EV_P_ ev_io *w, int revents)
2023{
2024 char buf [EV_INOTIFY_BUFSIZE];
2025 struct inotify_event *ev = (struct inotify_event *)buf;
2026 int ofs;
2027 int len = read (fs_fd, buf, sizeof (buf));
2028
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2031}
2032
2033void inline_size
2034infy_init (EV_P)
2035{
2036 if (fs_fd != -2)
2037 return;
2038
2039 fs_fd = inotify_init ();
2040
2041 if (fs_fd >= 0)
2042 {
2043 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2044 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w);
2046 }
2047}
2048
2049void inline_size
2050infy_fork (EV_P)
2051{
2052 int slot;
2053
2054 if (fs_fd < 0)
2055 return;
2056
2057 close (fs_fd);
2058 fs_fd = inotify_init ();
2059
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 {
2062 WL w_ = fs_hash [slot].head;
2063 fs_hash [slot].head = 0;
2064
2065 while (w_)
2066 {
2067 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us add this watcher */
2069
2070 w->wd = -1;
2071
2072 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else
2075 ev_timer_start (EV_A_ &w->timer);
2076 }
2077
2078 }
2079}
2080
2081#endif
2082
2083void
2084ev_stat_stat (EV_P_ ev_stat *w)
2085{
2086 if (lstat (w->path, &w->attr) < 0)
2087 w->attr.st_nlink = 0;
2088 else if (!w->attr.st_nlink)
2089 w->attr.st_nlink = 1;
2090}
2091
2092static void noinline
2093stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2094{
2095 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2096
2097 /* we copy this here each the time so that */
2098 /* prev has the old value when the callback gets invoked */
2099 w->prev = w->attr;
2100 ev_stat_stat (EV_A_ w);
2101
2102 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2103 if (
2104 w->prev.st_dev != w->attr.st_dev
2105 || w->prev.st_ino != w->attr.st_ino
2106 || w->prev.st_mode != w->attr.st_mode
2107 || w->prev.st_nlink != w->attr.st_nlink
2108 || w->prev.st_uid != w->attr.st_uid
2109 || w->prev.st_gid != w->attr.st_gid
2110 || w->prev.st_rdev != w->attr.st_rdev
2111 || w->prev.st_size != w->attr.st_size
2112 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime
2115 ) {
2116 #if EV_USE_INOTIFY
2117 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */
2120 #endif
2121
2122 ev_feed_event (EV_A_ w, EV_STAT);
2123 }
2124}
2125
2126void
2127ev_stat_start (EV_P_ ev_stat *w)
2128{
2129 if (expect_false (ev_is_active (w)))
2130 return;
2131
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w);
2137
2138 if (w->interval < MIN_STAT_INTERVAL)
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2142 ev_set_priority (&w->timer, ev_priority (w));
2143
2144#if EV_USE_INOTIFY
2145 infy_init (EV_A);
2146
2147 if (fs_fd >= 0)
2148 infy_add (EV_A_ w);
2149 else
2150#endif
2151 ev_timer_start (EV_A_ &w->timer);
2152
2153 ev_start (EV_A_ (W)w, 1);
2154}
2155
2156void
2157ev_stat_stop (EV_P_ ev_stat *w)
2158{
2159 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w)))
2161 return;
2162
2163#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w);
2165#endif
2166 ev_timer_stop (EV_A_ &w->timer);
2167
2168 ev_stop (EV_A_ (W)w);
2169}
2170#endif
2171
2172#if EV_IDLE_ENABLE
2173void
2174ev_idle_start (EV_P_ ev_idle *w)
2175{
2176 if (expect_false (ev_is_active (w)))
2177 return;
2178
2179 pri_adjust (EV_A_ (W)w);
2180
2181 {
2182 int active = ++idlecnt [ABSPRI (w)];
2183
2184 ++idleall;
2185 ev_start (EV_A_ (W)w, active);
2186
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w;
2189 }
2190}
2191
2192void
2193ev_idle_stop (EV_P_ ev_idle *w)
2194{
2195 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w)))
2197 return;
2198
2199 {
2200 int active = ((W)w)->active;
2201
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2204
2205 ev_stop (EV_A_ (W)w);
2206 --idleall;
2207 }
2208}
2209#endif
2210
2211void
2212ev_prepare_start (EV_P_ ev_prepare *w)
2213{
2214 if (expect_false (ev_is_active (w)))
2215 return;
2216
2217 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w;
2220}
2221
2222void
2223ev_prepare_stop (EV_P_ ev_prepare *w)
2224{
2225 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w)))
2227 return;
2228
2229 {
2230 int active = ((W)w)->active;
2231 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active;
2233 }
2234
2235 ev_stop (EV_A_ (W)w);
2236}
2237
2238void
2239ev_check_start (EV_P_ ev_check *w)
2240{
2241 if (expect_false (ev_is_active (w)))
2242 return;
2243
2244 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w;
2247}
2248
2249void
2250ev_check_stop (EV_P_ ev_check *w)
2251{
2252 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w)))
2254 return;
2255
2256 {
2257 int active = ((W)w)->active;
2258 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active;
2260 }
2261
2262 ev_stop (EV_A_ (W)w);
2263}
2264
2265#if EV_EMBED_ENABLE
2266void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w)
2268{
2269 ev_loop (w->other, EVLOOP_NONBLOCK);
2270}
2271
2272static void
2273embed_io_cb (EV_P_ ev_io *io, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2276
2277 if (ev_cb (w))
2278 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2279 else
2280 ev_loop (w->other, EVLOOP_NONBLOCK);
2281}
2282
2283static void
2284embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2285{
2286 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2287
2288 {
2289 struct ev_loop *loop = w->other;
2290
2291 while (fdchangecnt)
2292 {
2293 fd_reify (EV_A);
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 }
2296 }
2297}
2298
2299#if 0
2300static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{
2303 ev_idle_stop (EV_A_ idle);
2304}
2305#endif
2306
2307void
2308ev_embed_start (EV_P_ ev_embed *w)
2309{
2310 if (expect_false (ev_is_active (w)))
2311 return;
2312
2313 {
2314 struct ev_loop *loop = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 }
2318
2319 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io);
2321
2322 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare);
2325
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327
2328 ev_start (EV_A_ (W)w, 1);
2329}
2330
2331void
2332ev_embed_stop (EV_P_ ev_embed *w)
2333{
2334 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w)))
2336 return;
2337
2338 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_FORK_ENABLE
2346void
2347ev_fork_start (EV_P_ ev_fork *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w;
2355}
2356
2357void
2358ev_fork_stop (EV_P_ ev_fork *w)
2359{
2360 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w)))
2362 return;
2363
2364 {
2365 int active = ((W)w)->active;
2366 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active;
2368 }
2369
2370 ev_stop (EV_A_ (W)w);
2371}
2372#endif
2373
1498/*****************************************************************************/ 2374/*****************************************************************************/
1499 2375
1500struct ev_once 2376struct ev_once
1501{ 2377{
1502 struct ev_io io; 2378 ev_io io;
1503 struct ev_timer to; 2379 ev_timer to;
1504 void (*cb)(int revents, void *arg); 2380 void (*cb)(int revents, void *arg);
1505 void *arg; 2381 void *arg;
1506}; 2382};
1507 2383
1508static void 2384static void
1517 2393
1518 cb (revents, arg); 2394 cb (revents, arg);
1519} 2395}
1520 2396
1521static void 2397static void
1522once_cb_io (EV_P_ struct ev_io *w, int revents) 2398once_cb_io (EV_P_ ev_io *w, int revents)
1523{ 2399{
1524 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1525} 2401}
1526 2402
1527static void 2403static void
1528once_cb_to (EV_P_ struct ev_timer *w, int revents) 2404once_cb_to (EV_P_ ev_timer *w, int revents)
1529{ 2405{
1530 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1531} 2407}
1532 2408
1533void 2409void
1534ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1535{ 2411{
1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2412 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1537 2413
1538 if (!once) 2414 if (expect_false (!once))
2415 {
1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2416 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1540 else 2417 return;
1541 { 2418 }
2419
1542 once->cb = cb; 2420 once->cb = cb;
1543 once->arg = arg; 2421 once->arg = arg;
1544 2422
1545 ev_watcher_init (&once->io, once_cb_io); 2423 ev_init (&once->io, once_cb_io);
1546 if (fd >= 0) 2424 if (fd >= 0)
1547 { 2425 {
1548 ev_io_set (&once->io, fd, events); 2426 ev_io_set (&once->io, fd, events);
1549 ev_io_start (EV_A_ &once->io); 2427 ev_io_start (EV_A_ &once->io);
1550 } 2428 }
1551 2429
1552 ev_watcher_init (&once->to, once_cb_to); 2430 ev_init (&once->to, once_cb_to);
1553 if (timeout >= 0.) 2431 if (timeout >= 0.)
1554 { 2432 {
1555 ev_timer_set (&once->to, timeout, 0.); 2433 ev_timer_set (&once->to, timeout, 0.);
1556 ev_timer_start (EV_A_ &once->to); 2434 ev_timer_start (EV_A_ &once->to);
1557 }
1558 } 2435 }
1559} 2436}
1560 2437
2438#if EV_MULTIPLICITY
2439 #include "ev_wrap.h"
2440#endif
2441
2442#ifdef __cplusplus
2443}
2444#endif
2445

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines