ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
47# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
49# endif 53# endif
50# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
52# endif 64# endif
53# endif 65# endif
54 66
55# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 102# else
91# define EV_USE_PORT 0 103# define EV_USE_PORT 0
92# endif 104# endif
93# endif 105# endif
94 106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
113# endif
114
95#endif 115#endif
96 116
97#include <math.h> 117#include <math.h>
98#include <stdlib.h> 118#include <stdlib.h>
99#include <fcntl.h> 119#include <fcntl.h>
106#include <sys/types.h> 126#include <sys/types.h>
107#include <time.h> 127#include <time.h>
108 128
109#include <signal.h> 129#include <signal.h>
110 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
111#ifndef _WIN32 137#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 138# include <sys/time.h>
114# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
115#else 141#else
116# define WIN32_LEAN_AND_MEAN 142# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 143# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 144# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 145# define EV_SELECT_IS_WINSOCKET 1
128 154
129#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
131#endif 157#endif
132 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
133#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
135#endif 165#endif
136 166
137#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
152 182
153#ifndef EV_USE_PORT 183#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 184# define EV_USE_PORT 0
155#endif 185#endif
156 186
187#ifndef EV_USE_INOTIFY
188# define EV_USE_INOTIFY 0
189#endif
190
191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
194# else
195# define EV_PID_HASHSIZE 16
196# endif
197#endif
198
199#ifndef EV_INOTIFY_HASHSIZE
200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
205#endif
206
157/**/ 207/**/
158 208
159#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 210# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 211# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
167#endif 217#endif
168 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
169#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 235# include <winsock.h>
171#endif 236#endif
172 237
173/**/ 238/**/
174 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 253
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 254#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 256# define noinline __attribute__ ((noinline))
189#else 257#else
190# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
191# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
192#endif 263#endif
193 264
194#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
196 274
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 277
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
202 280
203typedef struct ev_watcher *W; 281typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
206 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 288
209#ifdef _WIN32 289#ifdef _WIN32
210# include "ev_win32.c" 290# include "ev_win32.c"
211#endif 291#endif
212 292
213/*****************************************************************************/ 293/*****************************************************************************/
214 294
215static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
216 296
297void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 299{
219 syserr_cb = cb; 300 syserr_cb = cb;
220} 301}
221 302
222static void 303static void noinline
223syserr (const char *msg) 304syserr (const char *msg)
224{ 305{
225 if (!msg) 306 if (!msg)
226 msg = "(libev) system error"; 307 msg = "(libev) system error";
227 308
234 } 315 }
235} 316}
236 317
237static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
238 319
320void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 322{
241 alloc = cb; 323 alloc = cb;
242} 324}
243 325
244static void * 326inline_speed void *
245ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
246{ 328{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 330
249 if (!ptr && size) 331 if (!ptr && size)
273typedef struct 355typedef struct
274{ 356{
275 W w; 357 W w;
276 int events; 358 int events;
277} ANPENDING; 359} ANPENDING;
360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
278 367
279#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
280 369
281 struct ev_loop 370 struct ev_loop
282 { 371 {
316 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 407#endif
319} 408}
320 409
321inline ev_tstamp 410ev_tstamp inline_size
322get_clock (void) 411get_clock (void)
323{ 412{
324#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
326 { 415 {
339{ 428{
340 return ev_rt_now; 429 return ev_rt_now;
341} 430}
342#endif 431#endif
343 432
344#define array_roundsize(type,n) (((n) | 4) & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
345 487
346#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
348 { \ 490 { \
349 int newcnt = cur; \ 491 int ocur_ = (cur); \
350 do \ 492 (base) = (type *)array_realloc \
351 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 495 }
360 496
497#if 0
361#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 500 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 504 }
505#endif
368 506
369#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 509
372/*****************************************************************************/ 510/*****************************************************************************/
373 511
374static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
375anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
376{ 542{
377 while (count--) 543 while (count--)
378 { 544 {
379 base->head = 0; 545 base->head = 0;
382 548
383 ++base; 549 ++base;
384 } 550 }
385} 551}
386 552
387void 553void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 554fd_event (EV_P_ int fd, int revents)
415{ 555{
416 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 557 ev_io *w;
418 558
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 560 {
421 int ev = w->events & revents; 561 int ev = w->events & revents;
422 562
423 if (ev) 563 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
426} 566}
427 567
428void 568void
429ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 570{
571 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
432} 573}
433 574
434/*****************************************************************************/ 575void inline_size
435
436inline void
437fd_reify (EV_P) 576fd_reify (EV_P)
438{ 577{
439 int i; 578 int i;
440 579
441 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
442 { 581 {
443 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 584 ev_io *w;
446 585
447 int events = 0; 586 unsigned char events = 0;
448 587
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 589 events |= (unsigned char)w->events;
451 590
452#if EV_SELECT_IS_WINSOCKET 591#if EV_SELECT_IS_WINSOCKET
453 if (events) 592 if (events)
454 { 593 {
455 unsigned long argp; 594 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 595 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 597 }
459#endif 598#endif
460 599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
461 anfd->reify = 0; 604 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
465 } 610 }
466 611
467 fdchangecnt = 0; 612 fdchangecnt = 0;
468} 613}
469 614
470static void 615void inline_size
471fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
472{ 617{
473 if (expect_false (anfds [fd].reify)) 618 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
477 620
621 if (expect_true (!reify))
622 {
478 ++fdchangecnt; 623 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
481} 627}
482 628
483static void 629void inline_speed
484fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
485{ 631{
486 struct ev_io *w; 632 ev_io *w;
487 633
488 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
489 { 635 {
490 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 638 }
493} 639}
494 640
495inline int 641int inline_size
496fd_valid (int fd) 642fd_valid (int fd)
497{ 643{
498#ifdef _WIN32 644#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 645 return _get_osfhandle (fd) != -1;
500#else 646#else
501 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
502#endif 648#endif
503} 649}
504 650
505/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
506static void 652static void noinline
507fd_ebadf (EV_P) 653fd_ebadf (EV_P)
508{ 654{
509 int fd; 655 int fd;
510 656
511 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
515} 661}
516 662
517/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 664static void noinline
519fd_enomem (EV_P) 665fd_enomem (EV_P)
520{ 666{
521 int fd; 667 int fd;
522 668
523 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
527 return; 673 return;
528 } 674 }
529} 675}
530 676
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 678static void noinline
533fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
534{ 680{
535 int fd; 681 int fd;
536 682
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 684 if (anfds [fd].events)
540 { 685 {
541 anfds [fd].events = 0; 686 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 688 }
544} 689}
545 690
546/*****************************************************************************/ 691/*****************************************************************************/
547 692
548static void 693void inline_speed
549upheap (WT *heap, int k) 694upheap (WT *heap, int k)
550{ 695{
551 WT w = heap [k]; 696 WT w = heap [k];
552 697
553 while (k && heap [k >> 1]->at > w->at) 698 while (k)
554 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
555 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
557 k >>= 1; 707 k = p;
558 } 708 }
559 709
560 heap [k] = w; 710 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
562
563} 712}
564 713
565static void 714void inline_speed
566downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
567{ 716{
568 WT w = heap [k]; 717 WT w = heap [k];
569 718
570 while (k < (N >> 1)) 719 for (;;)
571 { 720 {
572 int j = k << 1; 721 int c = (k << 1) + 1;
573 722
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 724 break;
579 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
580 heap [k] = heap [j]; 732 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
582 k = j; 735 k = c;
583 } 736 }
584 737
585 heap [k] = w; 738 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
587} 740}
588 741
589inline void 742void inline_size
590adjustheap (WT *heap, int N, int k) 743adjustheap (WT *heap, int N, int k)
591{ 744{
592 upheap (heap, k); 745 upheap (heap, k);
593 downheap (heap, N, k); 746 downheap (heap, N, k);
594} 747}
604static ANSIG *signals; 757static ANSIG *signals;
605static int signalmax; 758static int signalmax;
606 759
607static int sigpipe [2]; 760static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 762static ev_io sigev;
610 763
611static void 764void inline_size
612signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
613{ 766{
614 while (count--) 767 while (count--)
615 { 768 {
616 base->head = 0; 769 base->head = 0;
636 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 790 errno = old_errno;
638 } 791 }
639} 792}
640 793
641void 794void noinline
642ev_feed_signal_event (EV_P_ int signum) 795ev_feed_signal_event (EV_P_ int signum)
643{ 796{
644 WL w; 797 WL w;
645 798
646#if EV_MULTIPLICITY 799#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 810 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 812}
660 813
661static void 814static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
663{ 816{
664 int signum; 817 int signum;
665 818
666 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 820 gotsig = 0;
669 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
672} 825}
673 826
674static void 827void inline_speed
675fd_intern (int fd) 828fd_intern (int fd)
676{ 829{
677#ifdef _WIN32 830#ifdef _WIN32
678 int arg = 1; 831 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 834 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 835 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 836#endif
684} 837}
685 838
686static void 839static void noinline
687siginit (EV_P) 840siginit (EV_P)
688{ 841{
689 fd_intern (sigpipe [0]); 842 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 843 fd_intern (sigpipe [1]);
691 844
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 848}
696 849
697/*****************************************************************************/ 850/*****************************************************************************/
698 851
699static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
700 853
701#ifndef _WIN32 854#ifndef _WIN32
702 855
703static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
704 872
705#ifndef WCONTINUED 873#ifndef WCONTINUED
706# define WCONTINUED 0 874# define WCONTINUED 0
707#endif 875#endif
708 876
709static void 877static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
726{ 879{
727 int pid, status; 880 int pid, status;
728 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
731 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 892
734 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 896}
738 897
739#endif 898#endif
740 899
741/*****************************************************************************/ 900/*****************************************************************************/
767{ 926{
768 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
769} 928}
770 929
771/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
772static int 931int inline_size
773enable_secure (void) 932enable_secure (void)
774{ 933{
775#ifdef _WIN32 934#ifdef _WIN32
776 return 0; 935 return 0;
777#else 936#else
811 970
812 return flags; 971 return flags;
813} 972}
814 973
815unsigned int 974unsigned int
975ev_embeddable_backends (void)
976{
977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
978
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983 return flags;
984}
985
986unsigned int
816ev_backend (EV_P) 987ev_backend (EV_P)
817{ 988{
818 return backend; 989 return backend;
819} 990}
820 991
821static void 992unsigned int
993ev_loop_count (EV_P)
994{
995 return loop_count;
996}
997
998void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 io_blocktime = interval;
1002}
1003
1004void
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{
1007 timeout_blocktime = interval;
1008}
1009
1010static void noinline
822loop_init (EV_P_ unsigned int flags) 1011loop_init (EV_P_ unsigned int flags)
823{ 1012{
824 if (!backend) 1013 if (!backend)
825 { 1014 {
826#if EV_USE_MONOTONIC 1015#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 1023 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1024 mn_now = get_clock ();
836 now_floor = mn_now; 1025 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1026 rtmn_diff = ev_rt_now - mn_now;
838 1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030
1031 /* pid check not overridable via env */
1032#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid ();
1035#endif
1036
839 if (!(flags & EVFLAG_NOENV) 1037 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1038 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1039 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1040 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1041
844 if (!(flags & 0x0000ffffUL)) 1042 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 1043 flags |= ev_recommended_backends ();
846 1044
847 backend = 0; 1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050
848#if EV_USE_PORT 1051#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1053#endif
851#if EV_USE_KQUEUE 1054#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1055 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 1067 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1068 ev_set_priority (&sigev, EV_MAXPRI);
866 } 1069 }
867} 1070}
868 1071
869static void 1072static void noinline
870loop_destroy (EV_P) 1073loop_destroy (EV_P)
871{ 1074{
872 int i; 1075 int i;
1076
1077#if EV_USE_INOTIFY
1078 if (fs_fd >= 0)
1079 close (fs_fd);
1080#endif
1081
1082 if (backend_fd >= 0)
1083 close (backend_fd);
873 1084
874#if EV_USE_PORT 1085#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1086 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1087#endif
877#if EV_USE_KQUEUE 1088#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1097#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1098 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1099#endif
889 1100
890 for (i = NUMPRI; i--; ) 1101 for (i = NUMPRI; i--; )
1102 {
891 array_free (pending, [i]); 1103 array_free (pending, [i]);
1104#if EV_IDLE_ENABLE
1105 array_free (idle, [i]);
1106#endif
1107 }
1108
1109 ev_free (anfds); anfdmax = 0;
892 1110
893 /* have to use the microsoft-never-gets-it-right macro */ 1111 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1112 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1113 array_free (timer, EMPTY);
896#if EV_PERIODICS 1114#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1115 array_free (periodic, EMPTY);
898#endif 1116#endif
1117#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1118 array_free (fork, EMPTY);
1119#endif
900 array_free (prepare, EMPTY0); 1120 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1121 array_free (check, EMPTY);
902 1122
903 backend = 0; 1123 backend = 0;
904} 1124}
905 1125
906static void 1126void inline_size infy_fork (EV_P);
1127
1128void inline_size
907loop_fork (EV_P) 1129loop_fork (EV_P)
908{ 1130{
909#if EV_USE_PORT 1131#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1133#endif
912#if EV_USE_KQUEUE 1134#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1135 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1136#endif
915#if EV_USE_EPOLL 1137#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1138 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1139#endif
1140#if EV_USE_INOTIFY
1141 infy_fork (EV_A);
917#endif 1142#endif
918 1143
919 if (ev_is_active (&sigev)) 1144 if (ev_is_active (&sigev))
920 { 1145 {
921 /* default loop */ 1146 /* default loop */
1037 postfork = 1; 1262 postfork = 1;
1038} 1263}
1039 1264
1040/*****************************************************************************/ 1265/*****************************************************************************/
1041 1266
1042static int 1267void
1043any_pending (EV_P) 1268ev_invoke (EV_P_ void *w, int revents)
1044{ 1269{
1045 int pri; 1270 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1271}
1053 1272
1054inline void 1273void inline_speed
1055call_pending (EV_P) 1274call_pending (EV_P)
1056{ 1275{
1057 int pri; 1276 int pri;
1058 1277
1059 for (pri = NUMPRI; pri--; ) 1278 for (pri = NUMPRI; pri--; )
1061 { 1280 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1282
1064 if (expect_true (p->w)) 1283 if (expect_true (p->w))
1065 { 1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1286
1066 p->w->pending = 0; 1287 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1288 EV_CB_INVOKE (p->w, p->events);
1068 } 1289 }
1069 } 1290 }
1070} 1291}
1071 1292
1072inline void 1293void inline_size
1073timers_reify (EV_P) 1294timers_reify (EV_P)
1074{ 1295{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1297 {
1077 struct ev_timer *w = timers [0]; 1298 ev_timer *w = (ev_timer *)timers [0];
1078 1299
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1301
1081 /* first reschedule or stop timer */ 1302 /* first reschedule or stop timer */
1082 if (w->repeat) 1303 if (w->repeat)
1083 { 1304 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1306
1086 ((WT)w)->at += w->repeat; 1307 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now) 1308 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now; 1309 ((WT)w)->at = mn_now;
1089 1310
1090 downheap ((WT *)timers, timercnt, 0); 1311 downheap (timers, timercnt, 0);
1091 } 1312 }
1092 else 1313 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1315
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1317 }
1097} 1318}
1098 1319
1099#if EV_PERIODICS 1320#if EV_PERIODIC_ENABLE
1100inline void 1321void inline_size
1101periodics_reify (EV_P) 1322periodics_reify (EV_P)
1102{ 1323{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1325 {
1105 struct ev_periodic *w = periodics [0]; 1326 ev_periodic *w = (ev_periodic *)periodics [0];
1106 1327
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1329
1109 /* first reschedule or stop timer */ 1330 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1331 if (w->reschedule_cb)
1111 { 1332 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1335 downheap (periodics, periodiccnt, 0);
1115 } 1336 }
1116 else if (w->interval) 1337 else if (w->interval)
1117 { 1338 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1342 downheap (periodics, periodiccnt, 0);
1121 } 1343 }
1122 else 1344 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1346
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1348 }
1127} 1349}
1128 1350
1129static void 1351static void noinline
1130periodics_reschedule (EV_P) 1352periodics_reschedule (EV_P)
1131{ 1353{
1132 int i; 1354 int i;
1133 1355
1134 /* adjust periodics after time jump */ 1356 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1357 for (i = 0; i < periodiccnt; ++i)
1136 { 1358 {
1137 struct ev_periodic *w = periodics [i]; 1359 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1360
1139 if (w->reschedule_cb) 1361 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1363 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1365 }
1144 1366
1145 /* now rebuild the heap */ 1367 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1368 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1369 downheap (periodics, periodiccnt, i);
1148} 1370}
1149#endif 1371#endif
1150 1372
1151inline int 1373#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1374void inline_size
1375idle_reify (EV_P)
1153{ 1376{
1377 if (expect_false (idleall))
1378 {
1379 int pri;
1380
1381 for (pri = NUMPRI; pri--; )
1382 {
1383 if (pendingcnt [pri])
1384 break;
1385
1386 if (idlecnt [pri])
1387 {
1388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1389 break;
1390 }
1391 }
1392 }
1393}
1394#endif
1395
1396void inline_speed
1397time_update (EV_P_ ev_tstamp max_block)
1398{
1399 int i;
1400
1401#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic))
1403 {
1404 ev_tstamp odiff = rtmn_diff;
1405
1154 mn_now = get_clock (); 1406 mn_now = get_clock ();
1155 1407
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1409 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1410 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1411 {
1158 ev_rt_now = rtmn_diff + mn_now; 1412 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1413 return;
1160 } 1414 }
1161 else 1415
1162 {
1163 now_floor = mn_now; 1416 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1417 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1418
1169inline void 1419 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1420 * on the choice of "4": one iteration isn't enough,
1171{ 1421 * in case we get preempted during the calls to
1172 int i; 1422 * ev_time and get_clock. a second call is almost guaranteed
1173 1423 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1424 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1425 * in the unlikely event of having been preempted here.
1176 { 1426 */
1177 if (time_update_monotonic (EV_A)) 1427 for (i = 4; --i; )
1178 { 1428 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1429 rtmn_diff = ev_rt_now - mn_now;
1184 1430
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1432 return; /* all is well */
1187 1433
1188 ev_rt_now = ev_time (); 1434 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1435 mn_now = get_clock ();
1190 now_floor = mn_now; 1436 now_floor = mn_now;
1191 } 1437 }
1192 1438
1193# if EV_PERIODICS 1439# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A);
1441# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 }
1445 else
1446#endif
1447 {
1448 ev_rt_now = ev_time ();
1449
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 {
1452#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1453 periodics_reschedule (EV_A);
1195# endif 1454#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1456 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1458 }
1215 1459
1216 mn_now = ev_rt_now; 1460 mn_now = ev_rt_now;
1232static int loop_done; 1476static int loop_done;
1233 1477
1234void 1478void
1235ev_loop (EV_P_ int flags) 1479ev_loop (EV_P_ int flags)
1236{ 1480{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1482 ? EVUNLOOP_ONE
1483 : EVUNLOOP_CANCEL;
1239 1484
1240 while (activecnt) 1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1486
1487 do
1241 { 1488 {
1489#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid))
1492 {
1493 curpid = getpid ();
1494 postfork = 1;
1495 }
1496#endif
1497
1498#if EV_FORK_ENABLE
1499 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork))
1501 if (forkcnt)
1502 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A);
1505 }
1506#endif
1507
1242 /* queue check watchers (and execute them) */ 1508 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1509 if (expect_false (preparecnt))
1244 { 1510 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1512 call_pending (EV_A);
1247 } 1513 }
1248 1514
1515 if (expect_false (!activecnt))
1516 break;
1517
1249 /* we might have forked, so reify kernel state if necessary */ 1518 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1519 if (expect_false (postfork))
1251 loop_fork (EV_A); 1520 loop_fork (EV_A);
1252 1521
1253 /* update fd-related kernel structures */ 1522 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1523 fd_reify (EV_A);
1255 1524
1256 /* calculate blocking time */ 1525 /* calculate blocking time */
1526 {
1527 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.;
1257 1529
1258 /* we only need this for !monotonic clock or timers, but as we basically 1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1531 {
1266 ev_rt_now = ev_time (); 1532 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1533 time_update (EV_A_ 1e100);
1268 }
1269 1534
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1535 waittime = MAX_BLOCKTIME;
1275 1536
1276 if (timercnt) 1537 if (timercnt)
1277 { 1538 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1540 if (waittime > to) waittime = to;
1280 } 1541 }
1281 1542
1282#if EV_PERIODICS 1543#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1544 if (periodiccnt)
1284 { 1545 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1547 if (waittime > to) waittime = to;
1287 } 1548 }
1288#endif 1549#endif
1289 1550
1290 if (expect_false (block < 0.)) block = 0.; 1551 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime;
1553
1554 sleeptime = waittime - backend_fudge;
1555
1556 if (expect_true (sleeptime > io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 {
1561 ev_sleep (sleeptime);
1562 waittime -= sleeptime;
1563 }
1291 } 1564 }
1292 1565
1566 ++loop_count;
1293 backend_poll (EV_A_ block); 1567 backend_poll (EV_A_ waittime);
1294 1568
1295 /* update ev_rt_now, do magic */ 1569 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1570 time_update (EV_A_ waittime + sleeptime);
1571 }
1297 1572
1298 /* queue pending timers and reschedule them */ 1573 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1574 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1575#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1576 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1577#endif
1303 1578
1579#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1580 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1581 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1582#endif
1307 1583
1308 /* queue check watchers, to be executed first */ 1584 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1585 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1587
1312 call_pending (EV_A); 1588 call_pending (EV_A);
1313 1589
1314 if (expect_false (loop_done))
1315 break;
1316 } 1590 }
1591 while (expect_true (activecnt && !loop_done));
1317 1592
1318 if (loop_done != 2) 1593 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1594 loop_done = EVUNLOOP_CANCEL;
1320} 1595}
1321 1596
1322void 1597void
1323ev_unloop (EV_P_ int how) 1598ev_unloop (EV_P_ int how)
1324{ 1599{
1325 loop_done = how; 1600 loop_done = how;
1326} 1601}
1327 1602
1328/*****************************************************************************/ 1603/*****************************************************************************/
1329 1604
1330inline void 1605void inline_size
1331wlist_add (WL *head, WL elem) 1606wlist_add (WL *head, WL elem)
1332{ 1607{
1333 elem->next = *head; 1608 elem->next = *head;
1334 *head = elem; 1609 *head = elem;
1335} 1610}
1336 1611
1337inline void 1612void inline_size
1338wlist_del (WL *head, WL elem) 1613wlist_del (WL *head, WL elem)
1339{ 1614{
1340 while (*head) 1615 while (*head)
1341 { 1616 {
1342 if (*head == elem) 1617 if (*head == elem)
1347 1622
1348 head = &(*head)->next; 1623 head = &(*head)->next;
1349 } 1624 }
1350} 1625}
1351 1626
1352inline void 1627void inline_speed
1353ev_clear_pending (EV_P_ W w) 1628clear_pending (EV_P_ W w)
1354{ 1629{
1355 if (w->pending) 1630 if (w->pending)
1356 { 1631 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1632 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1633 w->pending = 0;
1359 } 1634 }
1360} 1635}
1361 1636
1362inline void 1637int
1638ev_clear_pending (EV_P_ void *w)
1639{
1640 W w_ = (W)w;
1641 int pending = w_->pending;
1642
1643 if (expect_true (pending))
1644 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1646 w_->pending = 0;
1647 p->w = 0;
1648 return p->events;
1649 }
1650 else
1651 return 0;
1652}
1653
1654void inline_size
1655pri_adjust (EV_P_ W w)
1656{
1657 int pri = w->priority;
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri;
1661}
1662
1663void inline_speed
1363ev_start (EV_P_ W w, int active) 1664ev_start (EV_P_ W w, int active)
1364{ 1665{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1666 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1667 w->active = active;
1369 ev_ref (EV_A); 1668 ev_ref (EV_A);
1370} 1669}
1371 1670
1372inline void 1671void inline_size
1373ev_stop (EV_P_ W w) 1672ev_stop (EV_P_ W w)
1374{ 1673{
1375 ev_unref (EV_A); 1674 ev_unref (EV_A);
1376 w->active = 0; 1675 w->active = 0;
1377} 1676}
1378 1677
1379/*****************************************************************************/ 1678/*****************************************************************************/
1380 1679
1381void 1680void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1681ev_io_start (EV_P_ ev_io *w)
1383{ 1682{
1384 int fd = w->fd; 1683 int fd = w->fd;
1385 1684
1386 if (expect_false (ev_is_active (w))) 1685 if (expect_false (ev_is_active (w)))
1387 return; 1686 return;
1388 1687
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1688 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1689
1391 ev_start (EV_A_ (W)w, 1); 1690 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1692 wlist_add (&anfds[fd].head, (WL)w);
1394 1693
1395 fd_change (EV_A_ fd); 1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1695 w->events &= ~EV_IOFDSET;
1396} 1696}
1397 1697
1398void 1698void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1699ev_io_stop (EV_P_ ev_io *w)
1400{ 1700{
1401 ev_clear_pending (EV_A_ (W)w); 1701 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1702 if (expect_false (!ev_is_active (w)))
1403 return; 1703 return;
1404 1704
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1706
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1707 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1409 1709
1410 fd_change (EV_A_ w->fd); 1710 fd_change (EV_A_ w->fd, 1);
1411} 1711}
1412 1712
1413void 1713void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1714ev_timer_start (EV_P_ ev_timer *w)
1415{ 1715{
1416 if (expect_false (ev_is_active (w))) 1716 if (expect_false (ev_is_active (w)))
1417 return; 1717 return;
1418 1718
1419 ((WT)w)->at += mn_now; 1719 ((WT)w)->at += mn_now;
1420 1720
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1722
1423 ev_start (EV_A_ (W)w, ++timercnt); 1723 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1725 timers [timercnt - 1] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1726 upheap (timers, timercnt - 1);
1427 1727
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1729}
1430 1730
1431void 1731void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1732ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1733{
1434 ev_clear_pending (EV_A_ (W)w); 1734 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1735 if (expect_false (!ev_is_active (w)))
1436 return; 1736 return;
1437 1737
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1439 1739
1740 {
1741 int active = ((W)w)->active;
1742
1440 if (expect_true (((W)w)->active < timercnt--)) 1743 if (expect_true (--active < --timercnt))
1441 { 1744 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1745 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1746 adjustheap (timers, timercnt, active);
1444 } 1747 }
1748 }
1445 1749
1446 ((WT)w)->at -= mn_now; 1750 ((WT)w)->at -= mn_now;
1447 1751
1448 ev_stop (EV_A_ (W)w); 1752 ev_stop (EV_A_ (W)w);
1449} 1753}
1450 1754
1451void 1755void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1756ev_timer_again (EV_P_ ev_timer *w)
1453{ 1757{
1454 if (ev_is_active (w)) 1758 if (ev_is_active (w))
1455 { 1759 {
1456 if (w->repeat) 1760 if (w->repeat)
1457 { 1761 {
1458 ((WT)w)->at = mn_now + w->repeat; 1762 ((WT)w)->at = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1763 adjustheap (timers, timercnt, ((W)w)->active - 1);
1460 } 1764 }
1461 else 1765 else
1462 ev_timer_stop (EV_A_ w); 1766 ev_timer_stop (EV_A_ w);
1463 } 1767 }
1464 else if (w->repeat) 1768 else if (w->repeat)
1466 w->at = w->repeat; 1770 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1771 ev_timer_start (EV_A_ w);
1468 } 1772 }
1469} 1773}
1470 1774
1471#if EV_PERIODICS 1775#if EV_PERIODIC_ENABLE
1472void 1776void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1777ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1778{
1475 if (expect_false (ev_is_active (w))) 1779 if (expect_false (ev_is_active (w)))
1476 return; 1780 return;
1477 1781
1478 if (w->reschedule_cb) 1782 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1784 else if (w->interval)
1481 { 1785 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1787 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1789 }
1790 else
1791 ((WT)w)->at = w->offset;
1486 1792
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1793 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1795 periodics [periodiccnt - 1] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1796 upheap (periodics, periodiccnt - 1);
1491 1797
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1799}
1494 1800
1495void 1801void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1802ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1803{
1498 ev_clear_pending (EV_A_ (W)w); 1804 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1805 if (expect_false (!ev_is_active (w)))
1500 return; 1806 return;
1501 1807
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1503 1809
1810 {
1811 int active = ((W)w)->active;
1812
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1813 if (expect_true (--active < --periodiccnt))
1505 { 1814 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1815 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1816 adjustheap (periodics, periodiccnt, active);
1508 } 1817 }
1818 }
1509 1819
1510 ev_stop (EV_A_ (W)w); 1820 ev_stop (EV_A_ (W)w);
1511} 1821}
1512 1822
1513void 1823void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1824ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1825{
1516 /* TODO: use adjustheap and recalculation */ 1826 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1827 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1828 ev_periodic_start (EV_A_ w);
1519} 1829}
1520#endif 1830#endif
1521 1831
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1832#ifndef SA_RESTART
1589# define SA_RESTART 0 1833# define SA_RESTART 0
1590#endif 1834#endif
1591 1835
1592void 1836void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1837ev_signal_start (EV_P_ ev_signal *w)
1594{ 1838{
1595#if EV_MULTIPLICITY 1839#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1841#endif
1598 if (expect_false (ev_is_active (w))) 1842 if (expect_false (ev_is_active (w)))
1599 return; 1843 return;
1600 1844
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 1846
1847 {
1848#ifndef _WIN32
1849 sigset_t full, prev;
1850 sigfillset (&full);
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1855
1856#ifndef _WIN32
1857 sigprocmask (SIG_SETMASK, &prev, 0);
1858#endif
1859 }
1860
1603 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1862 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 1863
1607 if (!((WL)w)->next) 1864 if (!((WL)w)->next)
1608 { 1865 {
1609#if _WIN32 1866#if _WIN32
1610 signal (w->signum, sighandler); 1867 signal (w->signum, sighandler);
1616 sigaction (w->signum, &sa, 0); 1873 sigaction (w->signum, &sa, 0);
1617#endif 1874#endif
1618 } 1875 }
1619} 1876}
1620 1877
1621void 1878void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1879ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1880{
1624 ev_clear_pending (EV_A_ (W)w); 1881 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1882 if (expect_false (!ev_is_active (w)))
1626 return; 1883 return;
1627 1884
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1630 1887
1631 if (!signals [w->signum - 1].head) 1888 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1889 signal (w->signum, SIG_DFL);
1633} 1890}
1634 1891
1635void 1892void
1636ev_child_start (EV_P_ struct ev_child *w) 1893ev_child_start (EV_P_ ev_child *w)
1637{ 1894{
1638#if EV_MULTIPLICITY 1895#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1897#endif
1641 if (expect_false (ev_is_active (w))) 1898 if (expect_false (ev_is_active (w)))
1642 return; 1899 return;
1643 1900
1644 ev_start (EV_A_ (W)w, 1); 1901 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1903}
1647 1904
1648void 1905void
1649ev_child_stop (EV_P_ struct ev_child *w) 1906ev_child_stop (EV_P_ ev_child *w)
1650{ 1907{
1651 ev_clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1909 if (expect_false (!ev_is_active (w)))
1653 return; 1910 return;
1654 1911
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1913 ev_stop (EV_A_ (W)w);
1657} 1914}
1658 1915
1916#if EV_STAT_ENABLE
1917
1918# ifdef _WIN32
1919# undef lstat
1920# define lstat(a,b) _stati64 (a,b)
1921# endif
1922
1923#define DEF_STAT_INTERVAL 5.0074891
1924#define MIN_STAT_INTERVAL 0.1074891
1925
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927
1928#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192
1930
1931static void noinline
1932infy_add (EV_P_ ev_stat *w)
1933{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935
1936 if (w->wd < 0)
1937 {
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939
1940 /* monitor some parent directory for speedup hints */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 {
1943 char path [4096];
1944 strcpy (path, w->path);
1945
1946 do
1947 {
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950
1951 char *pend = strrchr (path, '/');
1952
1953 if (!pend)
1954 break; /* whoops, no '/', complain to your admin */
1955
1956 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 }
1961 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964
1965 if (w->wd >= 0)
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1967}
1968
1969static void noinline
1970infy_del (EV_P_ ev_stat *w)
1971{
1972 int slot;
1973 int wd = w->wd;
1974
1975 if (wd < 0)
1976 return;
1977
1978 w->wd = -2;
1979 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1980 wlist_del (&fs_hash [slot].head, (WL)w);
1981
1982 /* remove this watcher, if others are watching it, they will rearm */
1983 inotify_rm_watch (fs_fd, wd);
1984}
1985
1986static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{
1989 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1992 infy_wd (EV_A_ slot, wd, ev);
1993 else
1994 {
1995 WL w_;
1996
1997 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1998 {
1999 ev_stat *w = (ev_stat *)w_;
2000 w_ = w_->next; /* lets us remove this watcher and all before it */
2001
2002 if (w->wd == wd || wd == -1)
2003 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 {
2006 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */
2008 }
2009
2010 stat_timer_cb (EV_A_ &w->timer, 0);
2011 }
2012 }
2013 }
2014}
2015
2016static void
2017infy_cb (EV_P_ ev_io *w, int revents)
2018{
2019 char buf [EV_INOTIFY_BUFSIZE];
2020 struct inotify_event *ev = (struct inotify_event *)buf;
2021 int ofs;
2022 int len = read (fs_fd, buf, sizeof (buf));
2023
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2026}
2027
2028void inline_size
2029infy_init (EV_P)
2030{
2031 if (fs_fd != -2)
2032 return;
2033
2034 fs_fd = inotify_init ();
2035
2036 if (fs_fd >= 0)
2037 {
2038 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2039 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w);
2041 }
2042}
2043
2044void inline_size
2045infy_fork (EV_P)
2046{
2047 int slot;
2048
2049 if (fs_fd < 0)
2050 return;
2051
2052 close (fs_fd);
2053 fs_fd = inotify_init ();
2054
2055 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2056 {
2057 WL w_ = fs_hash [slot].head;
2058 fs_hash [slot].head = 0;
2059
2060 while (w_)
2061 {
2062 ev_stat *w = (ev_stat *)w_;
2063 w_ = w_->next; /* lets us add this watcher */
2064
2065 w->wd = -1;
2066
2067 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else
2070 ev_timer_start (EV_A_ &w->timer);
2071 }
2072
2073 }
2074}
2075
2076#endif
2077
2078void
2079ev_stat_stat (EV_P_ ev_stat *w)
2080{
2081 if (lstat (w->path, &w->attr) < 0)
2082 w->attr.st_nlink = 0;
2083 else if (!w->attr.st_nlink)
2084 w->attr.st_nlink = 1;
2085}
2086
2087static void noinline
2088stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2089{
2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2091
2092 /* we copy this here each the time so that */
2093 /* prev has the old value when the callback gets invoked */
2094 w->prev = w->attr;
2095 ev_stat_stat (EV_A_ w);
2096
2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if (
2099 w->prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime
2110 ) {
2111 #if EV_USE_INOTIFY
2112 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */
2115 #endif
2116
2117 ev_feed_event (EV_A_ w, EV_STAT);
2118 }
2119}
2120
2121void
2122ev_stat_start (EV_P_ ev_stat *w)
2123{
2124 if (expect_false (ev_is_active (w)))
2125 return;
2126
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w);
2132
2133 if (w->interval < MIN_STAT_INTERVAL)
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2137 ev_set_priority (&w->timer, ev_priority (w));
2138
2139#if EV_USE_INOTIFY
2140 infy_init (EV_A);
2141
2142 if (fs_fd >= 0)
2143 infy_add (EV_A_ w);
2144 else
2145#endif
2146 ev_timer_start (EV_A_ &w->timer);
2147
2148 ev_start (EV_A_ (W)w, 1);
2149}
2150
2151void
2152ev_stat_stop (EV_P_ ev_stat *w)
2153{
2154 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w)))
2156 return;
2157
2158#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w);
2160#endif
2161 ev_timer_stop (EV_A_ &w->timer);
2162
2163 ev_stop (EV_A_ (W)w);
2164}
2165#endif
2166
2167#if EV_IDLE_ENABLE
2168void
2169ev_idle_start (EV_P_ ev_idle *w)
2170{
2171 if (expect_false (ev_is_active (w)))
2172 return;
2173
2174 pri_adjust (EV_A_ (W)w);
2175
2176 {
2177 int active = ++idlecnt [ABSPRI (w)];
2178
2179 ++idleall;
2180 ev_start (EV_A_ (W)w, active);
2181
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w;
2184 }
2185}
2186
2187void
2188ev_idle_stop (EV_P_ ev_idle *w)
2189{
2190 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w)))
2192 return;
2193
2194 {
2195 int active = ((W)w)->active;
2196
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2199
2200 ev_stop (EV_A_ (W)w);
2201 --idleall;
2202 }
2203}
2204#endif
2205
2206void
2207ev_prepare_start (EV_P_ ev_prepare *w)
2208{
2209 if (expect_false (ev_is_active (w)))
2210 return;
2211
2212 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w;
2215}
2216
2217void
2218ev_prepare_stop (EV_P_ ev_prepare *w)
2219{
2220 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w)))
2222 return;
2223
2224 {
2225 int active = ((W)w)->active;
2226 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active;
2228 }
2229
2230 ev_stop (EV_A_ (W)w);
2231}
2232
2233void
2234ev_check_start (EV_P_ ev_check *w)
2235{
2236 if (expect_false (ev_is_active (w)))
2237 return;
2238
2239 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w;
2242}
2243
2244void
2245ev_check_stop (EV_P_ ev_check *w)
2246{
2247 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w)))
2249 return;
2250
2251 {
2252 int active = ((W)w)->active;
2253 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active;
2255 }
2256
2257 ev_stop (EV_A_ (W)w);
2258}
2259
2260#if EV_EMBED_ENABLE
2261void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w)
2263{
2264 ev_loop (w->other, EVLOOP_NONBLOCK);
2265}
2266
2267static void
2268embed_io_cb (EV_P_ ev_io *io, int revents)
2269{
2270 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2271
2272 if (ev_cb (w))
2273 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2274 else
2275 ev_loop (w->other, EVLOOP_NONBLOCK);
2276}
2277
2278static void
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282
2283 {
2284 struct ev_loop *loop = w->other;
2285
2286 while (fdchangecnt)
2287 {
2288 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 }
2291 }
2292}
2293
2294#if 0
2295static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{
2298 ev_idle_stop (EV_A_ idle);
2299}
2300#endif
2301
2302void
2303ev_embed_start (EV_P_ ev_embed *w)
2304{
2305 if (expect_false (ev_is_active (w)))
2306 return;
2307
2308 {
2309 struct ev_loop *loop = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 }
2313
2314 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io);
2316
2317 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare);
2320
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322
2323 ev_start (EV_A_ (W)w, 1);
2324}
2325
2326void
2327ev_embed_stop (EV_P_ ev_embed *w)
2328{
2329 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w)))
2331 return;
2332
2333 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare);
2335
2336 ev_stop (EV_A_ (W)w);
2337}
2338#endif
2339
2340#if EV_FORK_ENABLE
2341void
2342ev_fork_start (EV_P_ ev_fork *w)
2343{
2344 if (expect_false (ev_is_active (w)))
2345 return;
2346
2347 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w;
2350}
2351
2352void
2353ev_fork_stop (EV_P_ ev_fork *w)
2354{
2355 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w)))
2357 return;
2358
2359 {
2360 int active = ((W)w)->active;
2361 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active;
2363 }
2364
2365 ev_stop (EV_A_ (W)w);
2366}
2367#endif
2368
1659/*****************************************************************************/ 2369/*****************************************************************************/
1660 2370
1661struct ev_once 2371struct ev_once
1662{ 2372{
1663 struct ev_io io; 2373 ev_io io;
1664 struct ev_timer to; 2374 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2375 void (*cb)(int revents, void *arg);
1666 void *arg; 2376 void *arg;
1667}; 2377};
1668 2378
1669static void 2379static void
1678 2388
1679 cb (revents, arg); 2389 cb (revents, arg);
1680} 2390}
1681 2391
1682static void 2392static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2393once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2394{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2396}
1687 2397
1688static void 2398static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2399once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2400{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2402}
1693 2403
1694void 2404void
1718 ev_timer_set (&once->to, timeout, 0.); 2428 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 2429 ev_timer_start (EV_A_ &once->to);
1720 } 2430 }
1721} 2431}
1722 2432
2433#if EV_MULTIPLICITY
2434 #include "ev_wrap.h"
2435#endif
2436
1723#ifdef __cplusplus 2437#ifdef __cplusplus
1724} 2438}
1725#endif 2439#endif
1726 2440

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines