ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 257#else
236# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
240#endif 263#endif
241 264
242#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
244 274
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 277
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
250 280
251typedef ev_watcher *W; 281typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
254 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
256 288
257#ifdef _WIN32 289#ifdef _WIN32
258# include "ev_win32.c" 290# include "ev_win32.c"
259#endif 291#endif
260 292
281 perror (msg); 313 perror (msg);
282 abort (); 314 abort ();
283 } 315 }
284} 316}
285 317
286static void *(*alloc)(void *ptr, size_t size) = realloc; 318static void *(*alloc)(void *ptr, long size);
287 319
288void 320void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 322{
291 alloc = cb; 323 alloc = cb;
292} 324}
293 325
294inline_speed void * 326inline_speed void *
295ev_realloc (void *ptr, size_t size) 327ev_realloc (void *ptr, long size)
296{ 328{
297 ptr = alloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 330
299 if (!ptr && size) 331 if (!ptr && size)
300 { 332 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 334 abort ();
303 } 335 }
304 336
305 return ptr; 337 return ptr;
306} 338}
324{ 356{
325 W w; 357 W w;
326 int events; 358 int events;
327} ANPENDING; 359} ANPENDING;
328 360
361#if EV_USE_INOTIFY
329typedef struct 362typedef struct
330{ 363{
331#if EV_USE_INOTIFY
332 WL head; 364 WL head;
333#endif
334} ANFS; 365} ANFS;
366#endif
335 367
336#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
337 369
338 struct ev_loop 370 struct ev_loop
339 { 371 {
396{ 428{
397 return ev_rt_now; 429 return ev_rt_now;
398} 430}
399#endif 431#endif
400 432
401#define array_roundsize(type,n) (((n) | 4) & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
402 487
403#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
405 { \ 490 { \
406 int newcnt = cur; \ 491 int ocur_ = (cur); \
407 do \ 492 (base) = (type *)array_realloc \
408 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 495 }
417 496
497#if 0
418#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 500 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 504 }
505#endif
425 506
426#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 509
429/*****************************************************************************/ 510/*****************************************************************************/
430 511
431void noinline 512void noinline
432ev_feed_event (EV_P_ void *w, int revents) 513ev_feed_event (EV_P_ void *w, int revents)
433{ 514{
434 W w_ = (W)w; 515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
435 517
436 if (expect_false (w_->pending)) 518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
437 { 521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 525 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 526 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 527}
447 528
448void inline_size 529void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 530queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 531{
451 int i; 532 int i;
452 533
453 for (i = 0; i < eventcnt; ++i) 534 for (i = 0; i < eventcnt; ++i)
485} 566}
486 567
487void 568void
488ev_feed_fd_event (EV_P_ int fd, int revents) 569ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 570{
571 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 572 fd_event (EV_A_ fd, revents);
491} 573}
492 574
493void inline_size 575void inline_size
494fd_reify (EV_P) 576fd_reify (EV_P)
495{ 577{
499 { 581 {
500 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
502 ev_io *w; 584 ev_io *w;
503 585
504 int events = 0; 586 unsigned char events = 0;
505 587
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 589 events |= (unsigned char)w->events;
508 590
509#if EV_SELECT_IS_WINSOCKET 591#if EV_SELECT_IS_WINSOCKET
510 if (events) 592 if (events)
511 { 593 {
512 unsigned long argp; 594 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 595 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 597 }
516#endif 598#endif
517 599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
518 anfd->reify = 0; 604 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
522 } 610 }
523 611
524 fdchangecnt = 0; 612 fdchangecnt = 0;
525} 613}
526 614
527void inline_size 615void inline_size
528fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
529{ 617{
530 if (expect_false (anfds [fd].reify)) 618 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
534 620
621 if (expect_true (!reify))
622 {
535 ++fdchangecnt; 623 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
538} 627}
539 628
540void inline_speed 629void inline_speed
541fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
542{ 631{
589static void noinline 678static void noinline
590fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
591{ 680{
592 int fd; 681 int fd;
593 682
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 684 if (anfds [fd].events)
597 { 685 {
598 anfds [fd].events = 0; 686 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 688 }
601} 689}
602 690
603/*****************************************************************************/ 691/*****************************************************************************/
604 692
605void inline_speed 693void inline_speed
606upheap (WT *heap, int k) 694upheap (WT *heap, int k)
607{ 695{
608 WT w = heap [k]; 696 WT w = heap [k];
609 697
610 while (k && heap [k >> 1]->at > w->at) 698 while (k)
611 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
612 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
614 k >>= 1; 707 k = p;
615 } 708 }
616 709
617 heap [k] = w; 710 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
619
620} 712}
621 713
622void inline_speed 714void inline_speed
623downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
624{ 716{
625 WT w = heap [k]; 717 WT w = heap [k];
626 718
627 while (k < (N >> 1)) 719 for (;;)
628 { 720 {
629 int j = k << 1; 721 int c = (k << 1) + 1;
630 722
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 724 break;
636 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
637 heap [k] = heap [j]; 732 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
639 k = j; 735 k = c;
640 } 736 }
641 737
642 heap [k] = w; 738 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
644} 740}
726 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 824 ev_feed_signal_event (EV_A_ signum + 1);
729} 825}
730 826
731void inline_size 827void inline_speed
732fd_intern (int fd) 828fd_intern (int fd)
733{ 829{
734#ifdef _WIN32 830#ifdef _WIN32
735 int arg = 1; 831 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
752} 848}
753 849
754/*****************************************************************************/ 850/*****************************************************************************/
755 851
756static ev_child *childs [EV_PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
757 853
758#ifndef _WIN32 854#ifndef _WIN32
759 855
760static ev_signal childev; 856static ev_signal childev;
761 857
765 ev_child *w; 861 ev_child *w;
766 862
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 864 if (w->pid == pid || !w->pid)
769 { 865 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 867 w->rpid = pid;
772 w->rstatus = status; 868 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 870 }
775} 871}
776 872
777#ifndef WCONTINUED 873#ifndef WCONTINUED
876} 972}
877 973
878unsigned int 974unsigned int
879ev_embeddable_backends (void) 975ev_embeddable_backends (void)
880{ 976{
881 return EVBACKEND_EPOLL 977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 978
883 | EVBACKEND_PORT; 979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL;
982
983 return flags;
884} 984}
885 985
886unsigned int 986unsigned int
887ev_backend (EV_P) 987ev_backend (EV_P)
888{ 988{
889 return backend; 989 return backend;
990}
991
992unsigned int
993ev_loop_count (EV_P)
994{
995 return loop_count;
996}
997
998void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 io_blocktime = interval;
1002}
1003
1004void
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{
1007 timeout_blocktime = interval;
890} 1008}
891 1009
892static void noinline 1010static void noinline
893loop_init (EV_P_ unsigned int flags) 1011loop_init (EV_P_ unsigned int flags)
894{ 1012{
905 ev_rt_now = ev_time (); 1023 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1024 mn_now = get_clock ();
907 now_floor = mn_now; 1025 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1026 rtmn_diff = ev_rt_now - mn_now;
909 1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030
1031 /* pid check not overridable via env */
1032#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid ();
1035#endif
1036
910 if (!(flags & EVFLAG_NOENV) 1037 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1038 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1039 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1040 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1041
970#if EV_USE_SELECT 1097#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1098 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1099#endif
973 1100
974 for (i = NUMPRI; i--; ) 1101 for (i = NUMPRI; i--; )
1102 {
975 array_free (pending, [i]); 1103 array_free (pending, [i]);
1104#if EV_IDLE_ENABLE
1105 array_free (idle, [i]);
1106#endif
1107 }
1108
1109 ev_free (anfds); anfdmax = 0;
976 1110
977 /* have to use the microsoft-never-gets-it-right macro */ 1111 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1112 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1113 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1114#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1115 array_free (periodic, EMPTY);
982#endif 1116#endif
1117#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1118 array_free (fork, EMPTY);
1119#endif
984 array_free (prepare, EMPTY0); 1120 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1121 array_free (check, EMPTY);
986 1122
987 backend = 0; 1123 backend = 0;
988} 1124}
989 1125
990void inline_size infy_fork (EV_P); 1126void inline_size infy_fork (EV_P);
1126 postfork = 1; 1262 postfork = 1;
1127} 1263}
1128 1264
1129/*****************************************************************************/ 1265/*****************************************************************************/
1130 1266
1131int inline_size 1267void
1132any_pending (EV_P) 1268ev_invoke (EV_P_ void *w, int revents)
1133{ 1269{
1134 int pri; 1270 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1271}
1142 1272
1143void inline_speed 1273void inline_speed
1144call_pending (EV_P) 1274call_pending (EV_P)
1145{ 1275{
1163void inline_size 1293void inline_size
1164timers_reify (EV_P) 1294timers_reify (EV_P)
1165{ 1295{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1167 { 1297 {
1168 ev_timer *w = timers [0]; 1298 ev_timer *w = (ev_timer *)timers [0];
1169 1299
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1301
1172 /* first reschedule or stop timer */ 1302 /* first reschedule or stop timer */
1173 if (w->repeat) 1303 if (w->repeat)
1176 1306
1177 ((WT)w)->at += w->repeat; 1307 ((WT)w)->at += w->repeat;
1178 if (((WT)w)->at < mn_now) 1308 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now; 1309 ((WT)w)->at = mn_now;
1180 1310
1181 downheap ((WT *)timers, timercnt, 0); 1311 downheap (timers, timercnt, 0);
1182 } 1312 }
1183 else 1313 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1315
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1191void inline_size 1321void inline_size
1192periodics_reify (EV_P) 1322periodics_reify (EV_P)
1193{ 1323{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1195 { 1325 {
1196 ev_periodic *w = periodics [0]; 1326 ev_periodic *w = (ev_periodic *)periodics [0];
1197 1327
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1329
1200 /* first reschedule or stop timer */ 1330 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1331 if (w->reschedule_cb)
1202 { 1332 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1335 downheap (periodics, periodiccnt, 0);
1206 } 1336 }
1207 else if (w->interval) 1337 else if (w->interval)
1208 { 1338 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1342 downheap (periodics, periodiccnt, 0);
1212 } 1343 }
1213 else 1344 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1346
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1223 int i; 1354 int i;
1224 1355
1225 /* adjust periodics after time jump */ 1356 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1357 for (i = 0; i < periodiccnt; ++i)
1227 { 1358 {
1228 ev_periodic *w = periodics [i]; 1359 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1360
1230 if (w->reschedule_cb) 1361 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1363 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1365 }
1235 1366
1236 /* now rebuild the heap */ 1367 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1368 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1369 downheap (periodics, periodiccnt, i);
1239} 1370}
1240#endif 1371#endif
1241 1372
1373#if EV_IDLE_ENABLE
1242int inline_size 1374void inline_size
1243time_update_monotonic (EV_P) 1375idle_reify (EV_P)
1244{ 1376{
1377 if (expect_false (idleall))
1378 {
1379 int pri;
1380
1381 for (pri = NUMPRI; pri--; )
1382 {
1383 if (pendingcnt [pri])
1384 break;
1385
1386 if (idlecnt [pri])
1387 {
1388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1389 break;
1390 }
1391 }
1392 }
1393}
1394#endif
1395
1396void inline_speed
1397time_update (EV_P_ ev_tstamp max_block)
1398{
1399 int i;
1400
1401#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic))
1403 {
1404 ev_tstamp odiff = rtmn_diff;
1405
1245 mn_now = get_clock (); 1406 mn_now = get_clock ();
1246 1407
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1409 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1410 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1411 {
1249 ev_rt_now = rtmn_diff + mn_now; 1412 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1413 return;
1251 } 1414 }
1252 else 1415
1253 {
1254 now_floor = mn_now; 1416 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1417 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1418
1260void inline_size 1419 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1420 * on the choice of "4": one iteration isn't enough,
1262{ 1421 * in case we get preempted during the calls to
1263 int i; 1422 * ev_time and get_clock. a second call is almost guaranteed
1264 1423 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1424 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1425 * in the unlikely event of having been preempted here.
1267 { 1426 */
1268 if (time_update_monotonic (EV_A)) 1427 for (i = 4; --i; )
1269 { 1428 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1429 rtmn_diff = ev_rt_now - mn_now;
1283 1430
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1432 return; /* all is well */
1286 1433
1287 ev_rt_now = ev_time (); 1434 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1435 mn_now = get_clock ();
1289 now_floor = mn_now; 1436 now_floor = mn_now;
1290 } 1437 }
1291 1438
1292# if EV_PERIODIC_ENABLE 1439# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1440 periodics_reschedule (EV_A);
1294# endif 1441# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1444 }
1299 else 1445 else
1300#endif 1446#endif
1301 { 1447 {
1302 ev_rt_now = ev_time (); 1448 ev_rt_now = ev_time ();
1303 1449
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1451 {
1306#if EV_PERIODIC_ENABLE 1452#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1453 periodics_reschedule (EV_A);
1308#endif 1454#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1456 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1458 }
1314 1459
1315 mn_now = ev_rt_now; 1460 mn_now = ev_rt_now;
1335{ 1480{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1482 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1483 : EVUNLOOP_CANCEL;
1339 1484
1340 while (activecnt) 1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1486
1487 do
1341 { 1488 {
1342 /* we might have forked, so reify kernel state if necessary */ 1489#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid))
1492 {
1493 curpid = getpid ();
1494 postfork = 1;
1495 }
1496#endif
1497
1343 #if EV_FORK_ENABLE 1498#if EV_FORK_ENABLE
1499 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1500 if (expect_false (postfork))
1345 if (forkcnt) 1501 if (forkcnt)
1346 { 1502 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1504 call_pending (EV_A);
1349 } 1505 }
1350 #endif 1506#endif
1351 1507
1352 /* queue check watchers (and execute them) */ 1508 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1509 if (expect_false (preparecnt))
1354 { 1510 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1512 call_pending (EV_A);
1357 } 1513 }
1358 1514
1515 if (expect_false (!activecnt))
1516 break;
1517
1359 /* we might have forked, so reify kernel state if necessary */ 1518 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1519 if (expect_false (postfork))
1361 loop_fork (EV_A); 1520 loop_fork (EV_A);
1362 1521
1363 /* update fd-related kernel structures */ 1522 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1523 fd_reify (EV_A);
1365 1524
1366 /* calculate blocking time */ 1525 /* calculate blocking time */
1367 { 1526 {
1368 double block; 1527 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.;
1369 1529
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1531 {
1374 /* update time to cancel out callback processing overhead */ 1532 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1533 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1534
1385 block = MAX_BLOCKTIME; 1535 waittime = MAX_BLOCKTIME;
1386 1536
1387 if (timercnt) 1537 if (timercnt)
1388 { 1538 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1390 if (block > to) block = to; 1540 if (waittime > to) waittime = to;
1391 } 1541 }
1392 1542
1393#if EV_PERIODIC_ENABLE 1543#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1544 if (periodiccnt)
1395 { 1545 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1547 if (waittime > to) waittime = to;
1398 } 1548 }
1399#endif 1549#endif
1400 1550
1401 if (expect_false (block < 0.)) block = 0.; 1551 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime;
1553
1554 sleeptime = waittime - backend_fudge;
1555
1556 if (expect_true (sleeptime > io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 {
1561 ev_sleep (sleeptime);
1562 waittime -= sleeptime;
1563 }
1402 } 1564 }
1403 1565
1566 ++loop_count;
1404 backend_poll (EV_A_ block); 1567 backend_poll (EV_A_ waittime);
1568
1569 /* update ev_rt_now, do magic */
1570 time_update (EV_A_ waittime + sleeptime);
1405 } 1571 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1572
1410 /* queue pending timers and reschedule them */ 1573 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1574 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1575#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1576 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1577#endif
1415 1578
1579#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1580 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1581 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1582#endif
1419 1583
1420 /* queue check watchers, to be executed first */ 1584 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1585 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1587
1424 call_pending (EV_A); 1588 call_pending (EV_A);
1425 1589
1426 if (expect_false (loop_done))
1427 break;
1428 } 1590 }
1591 while (expect_true (activecnt && !loop_done));
1429 1592
1430 if (loop_done == EVUNLOOP_ONE) 1593 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1594 loop_done = EVUNLOOP_CANCEL;
1432} 1595}
1433 1596
1460 head = &(*head)->next; 1623 head = &(*head)->next;
1461 } 1624 }
1462} 1625}
1463 1626
1464void inline_speed 1627void inline_speed
1465ev_clear_pending (EV_P_ W w) 1628clear_pending (EV_P_ W w)
1466{ 1629{
1467 if (w->pending) 1630 if (w->pending)
1468 { 1631 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1632 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1633 w->pending = 0;
1471 } 1634 }
1472} 1635}
1473 1636
1637int
1638ev_clear_pending (EV_P_ void *w)
1639{
1640 W w_ = (W)w;
1641 int pending = w_->pending;
1642
1643 if (expect_true (pending))
1644 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1646 w_->pending = 0;
1647 p->w = 0;
1648 return p->events;
1649 }
1650 else
1651 return 0;
1652}
1653
1654void inline_size
1655pri_adjust (EV_P_ W w)
1656{
1657 int pri = w->priority;
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri;
1661}
1662
1474void inline_speed 1663void inline_speed
1475ev_start (EV_P_ W w, int active) 1664ev_start (EV_P_ W w, int active)
1476{ 1665{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1666 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1667 w->active = active;
1481 ev_ref (EV_A); 1668 ev_ref (EV_A);
1482} 1669}
1483 1670
1484void inline_size 1671void inline_size
1488 w->active = 0; 1675 w->active = 0;
1489} 1676}
1490 1677
1491/*****************************************************************************/ 1678/*****************************************************************************/
1492 1679
1493void 1680void noinline
1494ev_io_start (EV_P_ ev_io *w) 1681ev_io_start (EV_P_ ev_io *w)
1495{ 1682{
1496 int fd = w->fd; 1683 int fd = w->fd;
1497 1684
1498 if (expect_false (ev_is_active (w))) 1685 if (expect_false (ev_is_active (w)))
1500 1687
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1688 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1689
1503 ev_start (EV_A_ (W)w, 1); 1690 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1692 wlist_add (&anfds[fd].head, (WL)w);
1506 1693
1507 fd_change (EV_A_ fd); 1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1695 w->events &= ~EV_IOFDSET;
1508} 1696}
1509 1697
1510void 1698void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1699ev_io_stop (EV_P_ ev_io *w)
1512{ 1700{
1513 ev_clear_pending (EV_A_ (W)w); 1701 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1702 if (expect_false (!ev_is_active (w)))
1515 return; 1703 return;
1516 1704
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1706
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1707 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1521 1709
1522 fd_change (EV_A_ w->fd); 1710 fd_change (EV_A_ w->fd, 1);
1523} 1711}
1524 1712
1525void 1713void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1714ev_timer_start (EV_P_ ev_timer *w)
1527{ 1715{
1528 if (expect_false (ev_is_active (w))) 1716 if (expect_false (ev_is_active (w)))
1529 return; 1717 return;
1530 1718
1531 ((WT)w)->at += mn_now; 1719 ((WT)w)->at += mn_now;
1532 1720
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1722
1535 ev_start (EV_A_ (W)w, ++timercnt); 1723 ev_start (EV_A_ (W)w, ++timercnt);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1537 timers [timercnt - 1] = w; 1725 timers [timercnt - 1] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1726 upheap (timers, timercnt - 1);
1539 1727
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1729}
1542 1730
1543void 1731void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1732ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1733{
1546 ev_clear_pending (EV_A_ (W)w); 1734 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1735 if (expect_false (!ev_is_active (w)))
1548 return; 1736 return;
1549 1737
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1551 1739
1552 { 1740 {
1553 int active = ((W)w)->active; 1741 int active = ((W)w)->active;
1554 1742
1555 if (expect_true (--active < --timercnt)) 1743 if (expect_true (--active < --timercnt))
1556 { 1744 {
1557 timers [active] = timers [timercnt]; 1745 timers [active] = timers [timercnt];
1558 adjustheap ((WT *)timers, timercnt, active); 1746 adjustheap (timers, timercnt, active);
1559 } 1747 }
1560 } 1748 }
1561 1749
1562 ((WT)w)->at -= mn_now; 1750 ((WT)w)->at -= mn_now;
1563 1751
1564 ev_stop (EV_A_ (W)w); 1752 ev_stop (EV_A_ (W)w);
1565} 1753}
1566 1754
1567void 1755void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1756ev_timer_again (EV_P_ ev_timer *w)
1569{ 1757{
1570 if (ev_is_active (w)) 1758 if (ev_is_active (w))
1571 { 1759 {
1572 if (w->repeat) 1760 if (w->repeat)
1573 { 1761 {
1574 ((WT)w)->at = mn_now + w->repeat; 1762 ((WT)w)->at = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1763 adjustheap (timers, timercnt, ((W)w)->active - 1);
1576 } 1764 }
1577 else 1765 else
1578 ev_timer_stop (EV_A_ w); 1766 ev_timer_stop (EV_A_ w);
1579 } 1767 }
1580 else if (w->repeat) 1768 else if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1771 ev_timer_start (EV_A_ w);
1584 } 1772 }
1585} 1773}
1586 1774
1587#if EV_PERIODIC_ENABLE 1775#if EV_PERIODIC_ENABLE
1588void 1776void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1777ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1778{
1591 if (expect_false (ev_is_active (w))) 1779 if (expect_false (ev_is_active (w)))
1592 return; 1780 return;
1593 1781
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1784 else if (w->interval)
1597 { 1785 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1787 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1789 }
1790 else
1791 ((WT)w)->at = w->offset;
1602 1792
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1793 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1795 periodics [periodiccnt - 1] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1796 upheap (periodics, periodiccnt - 1);
1607 1797
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1799}
1610 1800
1611void 1801void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1802ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1803{
1614 ev_clear_pending (EV_A_ (W)w); 1804 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1805 if (expect_false (!ev_is_active (w)))
1616 return; 1806 return;
1617 1807
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1619 1809
1620 { 1810 {
1621 int active = ((W)w)->active; 1811 int active = ((W)w)->active;
1622 1812
1623 if (expect_true (--active < --periodiccnt)) 1813 if (expect_true (--active < --periodiccnt))
1624 { 1814 {
1625 periodics [active] = periodics [periodiccnt]; 1815 periodics [active] = periodics [periodiccnt];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 1816 adjustheap (periodics, periodiccnt, active);
1627 } 1817 }
1628 } 1818 }
1629 1819
1630 ev_stop (EV_A_ (W)w); 1820 ev_stop (EV_A_ (W)w);
1631} 1821}
1632 1822
1633void 1823void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1824ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1825{
1636 /* TODO: use adjustheap and recalculation */ 1826 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1827 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1828 ev_periodic_start (EV_A_ w);
1641 1831
1642#ifndef SA_RESTART 1832#ifndef SA_RESTART
1643# define SA_RESTART 0 1833# define SA_RESTART 0
1644#endif 1834#endif
1645 1835
1646void 1836void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1837ev_signal_start (EV_P_ ev_signal *w)
1648{ 1838{
1649#if EV_MULTIPLICITY 1839#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1841#endif
1652 if (expect_false (ev_is_active (w))) 1842 if (expect_false (ev_is_active (w)))
1653 return; 1843 return;
1654 1844
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 1846
1847 {
1848#ifndef _WIN32
1849 sigset_t full, prev;
1850 sigfillset (&full);
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1855
1856#ifndef _WIN32
1857 sigprocmask (SIG_SETMASK, &prev, 0);
1858#endif
1859 }
1860
1657 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1862 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 1863
1661 if (!((WL)w)->next) 1864 if (!((WL)w)->next)
1662 { 1865 {
1663#if _WIN32 1866#if _WIN32
1664 signal (w->signum, sighandler); 1867 signal (w->signum, sighandler);
1670 sigaction (w->signum, &sa, 0); 1873 sigaction (w->signum, &sa, 0);
1671#endif 1874#endif
1672 } 1875 }
1673} 1876}
1674 1877
1675void 1878void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1879ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1880{
1678 ev_clear_pending (EV_A_ (W)w); 1881 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1882 if (expect_false (!ev_is_active (w)))
1680 return; 1883 return;
1681 1884
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1684 1887
1685 if (!signals [w->signum - 1].head) 1888 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 1889 signal (w->signum, SIG_DFL);
1687} 1890}
1694#endif 1897#endif
1695 if (expect_false (ev_is_active (w))) 1898 if (expect_false (ev_is_active (w)))
1696 return; 1899 return;
1697 1900
1698 ev_start (EV_A_ (W)w, 1); 1901 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 1903}
1701 1904
1702void 1905void
1703ev_child_stop (EV_P_ ev_child *w) 1906ev_child_stop (EV_P_ ev_child *w)
1704{ 1907{
1705 ev_clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1909 if (expect_false (!ev_is_active (w)))
1707 return; 1910 return;
1708 1911
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1913 ev_stop (EV_A_ (W)w);
1711} 1914}
1712 1915
1713#if EV_STAT_ENABLE 1916#if EV_STAT_ENABLE
1714 1917
1718# endif 1921# endif
1719 1922
1720#define DEF_STAT_INTERVAL 5.0074891 1923#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1924#define MIN_STAT_INTERVAL 0.1074891
1722 1925
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1927
1725#if EV_USE_INOTIFY 1928#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1929# define EV_INOTIFY_BUFSIZE 8192
1727 1930
1728static void noinline 1931static void noinline
1879 w->attr.st_nlink = 0; 2082 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2083 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2084 w->attr.st_nlink = 1;
1882} 2085}
1883 2086
1884void noinline 2087static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2088stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2089{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2091
1889 /* we copy this here each the time so that */ 2092 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2093 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2094 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2095 ev_stat_stat (EV_A_ w);
1893 2096
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if (
2099 w->prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2110 ) {
1896 #if EV_USE_INOTIFY 2111 #if EV_USE_INOTIFY
1897 infy_del (EV_A_ w); 2112 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2113 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2114 ev_stat_stat (EV_A_ w); /* avoid race... */
1900 #endif 2115 #endif
1934} 2149}
1935 2150
1936void 2151void
1937ev_stat_stop (EV_P_ ev_stat *w) 2152ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2153{
1939 ev_clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1941 return; 2156 return;
1942 2157
1943#if EV_USE_INOTIFY 2158#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2159 infy_del (EV_A_ w);
1947 2162
1948 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1949} 2164}
1950#endif 2165#endif
1951 2166
2167#if EV_IDLE_ENABLE
1952void 2168void
1953ev_idle_start (EV_P_ ev_idle *w) 2169ev_idle_start (EV_P_ ev_idle *w)
1954{ 2170{
1955 if (expect_false (ev_is_active (w))) 2171 if (expect_false (ev_is_active (w)))
1956 return; 2172 return;
1957 2173
2174 pri_adjust (EV_A_ (W)w);
2175
2176 {
2177 int active = ++idlecnt [ABSPRI (w)];
2178
2179 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2180 ev_start (EV_A_ (W)w, active);
2181
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2183 idles [ABSPRI (w)][active - 1] = w;
2184 }
1961} 2185}
1962 2186
1963void 2187void
1964ev_idle_stop (EV_P_ ev_idle *w) 2188ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2189{
1966 ev_clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1968 return; 2192 return;
1969 2193
1970 { 2194 {
1971 int active = ((W)w)->active; 2195 int active = ((W)w)->active;
1972 idles [active - 1] = idles [--idlecnt]; 2196
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1973 ((W)idles [active - 1])->active = active; 2198 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2199
2200 ev_stop (EV_A_ (W)w);
2201 --idleall;
1974 } 2202 }
1975
1976 ev_stop (EV_A_ (W)w);
1977} 2203}
2204#endif
1978 2205
1979void 2206void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2207ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2208{
1982 if (expect_false (ev_is_active (w))) 2209 if (expect_false (ev_is_active (w)))
1988} 2215}
1989 2216
1990void 2217void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2218ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2219{
1993 ev_clear_pending (EV_A_ (W)w); 2220 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2221 if (expect_false (!ev_is_active (w)))
1995 return; 2222 return;
1996 2223
1997 { 2224 {
1998 int active = ((W)w)->active; 2225 int active = ((W)w)->active;
2015} 2242}
2016 2243
2017void 2244void
2018ev_check_stop (EV_P_ ev_check *w) 2245ev_check_stop (EV_P_ ev_check *w)
2019{ 2246{
2020 ev_clear_pending (EV_A_ (W)w); 2247 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2248 if (expect_false (!ev_is_active (w)))
2022 return; 2249 return;
2023 2250
2024 { 2251 {
2025 int active = ((W)w)->active; 2252 int active = ((W)w)->active;
2032 2259
2033#if EV_EMBED_ENABLE 2260#if EV_EMBED_ENABLE
2034void noinline 2261void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2262ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2263{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2264 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2265}
2039 2266
2040static void 2267static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2268embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2269{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2270 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2271
2045 if (ev_cb (w)) 2272 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2273 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2274 else
2048 ev_embed_sweep (loop, w); 2275 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2276}
2277
2278static void
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282
2283 {
2284 struct ev_loop *loop = w->other;
2285
2286 while (fdchangecnt)
2287 {
2288 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 }
2291 }
2292}
2293
2294#if 0
2295static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{
2298 ev_idle_stop (EV_A_ idle);
2299}
2300#endif
2050 2301
2051void 2302void
2052ev_embed_start (EV_P_ ev_embed *w) 2303ev_embed_start (EV_P_ ev_embed *w)
2053{ 2304{
2054 if (expect_false (ev_is_active (w))) 2305 if (expect_false (ev_is_active (w)))
2055 return; 2306 return;
2056 2307
2057 { 2308 {
2058 struct ev_loop *loop = w->loop; 2309 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2312 }
2062 2313
2063 ev_set_priority (&w->io, ev_priority (w)); 2314 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2315 ev_io_start (EV_A_ &w->io);
2065 2316
2317 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare);
2320
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322
2066 ev_start (EV_A_ (W)w, 1); 2323 ev_start (EV_A_ (W)w, 1);
2067} 2324}
2068 2325
2069void 2326void
2070ev_embed_stop (EV_P_ ev_embed *w) 2327ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2328{
2072 ev_clear_pending (EV_A_ (W)w); 2329 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2330 if (expect_false (!ev_is_active (w)))
2074 return; 2331 return;
2075 2332
2076 ev_io_stop (EV_A_ &w->io); 2333 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare);
2077 2335
2078 ev_stop (EV_A_ (W)w); 2336 ev_stop (EV_A_ (W)w);
2079} 2337}
2080#endif 2338#endif
2081 2339
2092} 2350}
2093 2351
2094void 2352void
2095ev_fork_stop (EV_P_ ev_fork *w) 2353ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2354{
2097 ev_clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2099 return; 2357 return;
2100 2358
2101 { 2359 {
2102 int active = ((W)w)->active; 2360 int active = ((W)w)->active;
2170 ev_timer_set (&once->to, timeout, 0.); 2428 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 2429 ev_timer_start (EV_A_ &once->to);
2172 } 2430 }
2173} 2431}
2174 2432
2433#if EV_MULTIPLICITY
2434 #include "ev_wrap.h"
2435#endif
2436
2175#ifdef __cplusplus 2437#ifdef __cplusplus
2176} 2438}
2177#endif 2439#endif
2178 2440

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines