ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
144# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
146# endif 163# endif
147#endif 164#endif
148 165
149/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
150 167
151#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
152# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
153#endif 174#endif
154 175
155#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
157#endif 178#endif
158 179
159#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
160# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
161#endif 186#endif
162 187
163#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
165#endif 190#endif
171# define EV_USE_POLL 1 196# define EV_USE_POLL 1
172# endif 197# endif
173#endif 198#endif
174 199
175#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
176# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
177#endif 206#endif
178 207
179#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
181#endif 210#endif
183#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 213# define EV_USE_PORT 0
185#endif 214#endif
186 215
187#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
188# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
189#endif 222#endif
190 223
191#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 225# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
202# else 235# else
203# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
204# endif 237# endif
205#endif 238#endif
206 239
207/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 267
209#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
212#endif 271#endif
233 292
234#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 294# include <winsock.h>
236#endif 295#endif
237 296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
238/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
239 316
240/* 317/*
241 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
257#else 334#else
258# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
259# define noinline 336# define noinline
260# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 338# define inline
262# endif 339# endif
263#endif 340#endif
264 341
265#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
280 357
281typedef ev_watcher *W; 358typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
284 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 367/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
288 370
289#ifdef _WIN32 371#ifdef _WIN32
290# include "ev_win32.c" 372# include "ev_win32.c"
291#endif 373#endif
292 374
313 perror (msg); 395 perror (msg);
314 abort (); 396 abort ();
315 } 397 }
316} 398}
317 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
318static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 416
320void 417void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 419{
323 alloc = cb; 420 alloc = cb;
324} 421}
325 422
326inline_speed void * 423inline_speed void *
327ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
328{ 425{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
330 427
331 if (!ptr && size) 428 if (!ptr && size)
332 { 429 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 431 abort ();
357 W w; 454 W w;
358 int events; 455 int events;
359} ANPENDING; 456} ANPENDING;
360 457
361#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
362typedef struct 460typedef struct
363{ 461{
364 WL head; 462 WL head;
365} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
366#endif 482#endif
367 483
368#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
369 485
370 struct ev_loop 486 struct ev_loop
441 ts.tv_sec = (time_t)delay; 557 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 559
444 nanosleep (&ts, 0); 560 nanosleep (&ts, 0);
445#elif defined(_WIN32) 561#elif defined(_WIN32)
446 Sleep (delay * 1e3); 562 Sleep ((unsigned long)(delay * 1e3));
447#else 563#else
448 struct timeval tv; 564 struct timeval tv;
449 565
450 tv.tv_sec = (time_t)delay; 566 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454#endif 570#endif
455 } 571 }
456} 572}
457 573
458/*****************************************************************************/ 574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 577
460int inline_size 578int inline_size
461array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
462{ 580{
463 int ncur = cur + 1; 581 int ncur = cur + 1;
464 582
465 do 583 do
466 ncur <<= 1; 584 ncur <<= 1;
467 while (cnt > ncur); 585 while (cnt > ncur);
468 586
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 589 {
472 ncur *= elem; 590 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 593 ncur /= elem;
476 } 594 }
477 595
478 return ncur; 596 return ncur;
589 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
590 708
591#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
592 if (events) 710 if (events)
593 { 711 {
594 unsigned long argp; 712 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
595 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 719 }
598#endif 720#endif
599 721
600 { 722 {
601 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
654{ 776{
655 int fd; 777 int fd;
656 778
657 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 780 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
661} 783}
662 784
663/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 786static void noinline
688 } 810 }
689} 811}
690 812
691/*****************************************************************************/ 813/*****************************************************************************/
692 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
693void inline_speed 835void inline_speed
694upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
695{ 837{
696 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
697 840
698 while (k) 841 for (;;)
699 { 842 {
700 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
701 846
702 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
703 break; 863 break;
704 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
705 heap [k] = heap [p]; 927 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 929 k = p;
708 } 930 }
709 931
710 heap [k] = w; 932 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740} 934}
741 935
742void inline_size 936void inline_size
743adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
744{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 940 upheap (heap, k);
941 else
746 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
747} 955}
748 956
749/*****************************************************************************/ 957/*****************************************************************************/
750 958
751typedef struct 959typedef struct
752{ 960{
753 WL head; 961 WL head;
754 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
755} ANSIG; 963} ANSIG;
756 964
757static ANSIG *signals; 965static ANSIG *signals;
758static int signalmax; 966static int signalmax;
759 967
760static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 969
764void inline_size 970void inline_size
765signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
766{ 972{
767 while (count--) 973 while (count--)
771 977
772 ++base; 978 ++base;
773 } 979 }
774} 980}
775 981
776static void 982/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 983
827void inline_speed 984void inline_speed
828fd_intern (int fd) 985fd_intern (int fd)
829{ 986{
830#ifdef _WIN32 987#ifdef _WIN32
831 int arg = 1; 988 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 990#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 993#endif
837} 994}
838 995
839static void noinline 996static void noinline
840siginit (EV_P) 997evpipe_init (EV_P)
841{ 998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
842 fd_intern (sigpipe [0]); 1014 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
844 1018
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1019 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
848} 1087}
849 1088
850/*****************************************************************************/ 1089/*****************************************************************************/
851 1090
1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
852static WL childs [EV_PID_HASHSIZE]; 1128static WL childs [EV_PID_HASHSIZE];
853 1129
854#ifndef _WIN32 1130#ifndef _WIN32
855 1131
856static ev_signal childev; 1132static ev_signal childev;
857 1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
858void inline_speed 1138void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1139child_reap (EV_P_ int chain, int pid, int status)
860{ 1140{
861 ev_child *w; 1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1143
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
864 if (w->pid == pid || !w->pid) 1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
865 { 1148 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1150 w->rpid = pid;
868 w->rstatus = status; 1151 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1153 }
1154 }
871} 1155}
872 1156
873#ifndef WCONTINUED 1157#ifndef WCONTINUED
874# define WCONTINUED 0 1158# define WCONTINUED 0
875#endif 1159#endif
884 if (!WCONTINUED 1168 if (!WCONTINUED
885 || errno != EINVAL 1169 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1171 return;
888 1172
889 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1174 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1176
893 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1178 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1180}
897 1181
898#endif 1182#endif
899 1183
900/*****************************************************************************/ 1184/*****************************************************************************/
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1303 have_monotonic = 1;
1020 } 1304 }
1021#endif 1305#endif
1022 1306
1023 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
1024 mn_now = get_clock (); 1308 mn_now = get_clock ();
1025 now_floor = mn_now; 1309 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
1027 1311
1028 io_blocktime = 0.; 1312 io_blocktime = 0.;
1029 timeout_blocktime = 0.; 1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1030 1320
1031 /* pid check not overridable via env */ 1321 /* pid check not overridable via env */
1032#ifndef _WIN32 1322#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1323 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1324 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1328 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1331
1042 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1334
1051#if EV_USE_PORT 1335#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1337#endif
1054#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
1062#endif 1346#endif
1063#if EV_USE_SELECT 1347#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1349#endif
1066 1350
1067 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
1069 } 1353 }
1070} 1354}
1071 1355
1072static void noinline 1356static void noinline
1073loop_destroy (EV_P) 1357loop_destroy (EV_P)
1074{ 1358{
1075 int i; 1359 int i;
1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1076 1377
1077#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
1079 close (fs_fd); 1380 close (fs_fd);
1080#endif 1381#endif
1117#if EV_FORK_ENABLE 1418#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1419 array_free (fork, EMPTY);
1119#endif 1420#endif
1120 array_free (prepare, EMPTY); 1421 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
1122 1426
1123 backend = 0; 1427 backend = 0;
1124} 1428}
1125 1429
1430#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1127 1433
1128void inline_size 1434void inline_size
1129loop_fork (EV_P) 1435loop_fork (EV_P)
1130{ 1436{
1131#if EV_USE_PORT 1437#if EV_USE_PORT
1139#endif 1445#endif
1140#if EV_USE_INOTIFY 1446#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1447 infy_fork (EV_A);
1142#endif 1448#endif
1143 1449
1144 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
1145 { 1451 {
1146 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1147 1458
1148 ev_ref (EV_A); 1459 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1150 close (sigpipe [0]); 1469 close (evpipe [0]);
1151 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
1152 1472
1153 while (pipe (sigpipe))
1154 syserr ("(libev) error creating pipe");
1155
1156 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
1157 } 1476 }
1158 1477
1159 postfork = 0; 1478 postfork = 0;
1160} 1479}
1161 1480
1162#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1163struct ev_loop * 1483struct ev_loop *
1164ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1165{ 1485{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1487
1183} 1503}
1184 1504
1185void 1505void
1186ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1187{ 1507{
1188 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1189} 1509}
1190 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1191#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1192 1611
1193#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1194struct ev_loop * 1613struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1196#else 1615#else
1197int 1616int
1198ev_default_loop (unsigned int flags) 1617ev_default_loop (unsigned int flags)
1199#endif 1618#endif
1200{ 1619{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1620 if (!ev_default_loop_ptr)
1206 { 1621 {
1207#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1209#else 1624#else
1212 1627
1213 loop_init (EV_A_ flags); 1628 loop_init (EV_A_ flags);
1214 1629
1215 if (ev_backend (EV_A)) 1630 if (ev_backend (EV_A))
1216 { 1631 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1632#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240#ifndef _WIN32 1653#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
1243#endif 1656#endif
1244 1657
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
1252} 1659}
1253 1660
1254void 1661void
1255ev_default_fork (void) 1662ev_default_fork (void)
1257#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1665 struct ev_loop *loop = ev_default_loop_ptr;
1259#endif 1666#endif
1260 1667
1261 if (backend) 1668 if (backend)
1262 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
1263} 1670}
1264 1671
1265/*****************************************************************************/ 1672/*****************************************************************************/
1266 1673
1267void 1674void
1284 { 1691 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1286 1693
1287 p->w->pending = 0; 1694 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1289 } 1697 }
1290 } 1698 }
1291} 1699}
1292
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372 1700
1373#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1374void inline_size 1702void inline_size
1375idle_reify (EV_P) 1703idle_reify (EV_P)
1376{ 1704{
1388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1389 break; 1717 break;
1390 } 1718 }
1391 } 1719 }
1392 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1393} 1823}
1394#endif 1824#endif
1395 1825
1396void inline_speed 1826void inline_speed
1397time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1426 */ 1856 */
1427 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1428 { 1858 {
1429 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1430 1860
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 1862 return; /* all is well */
1433 1863
1434 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 1865 mn_now = get_clock ();
1436 now_floor = mn_now; 1866 now_floor = mn_now;
1452#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1454#endif 1884#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1457 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1458 } 1892 }
1459 1893
1460 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1461 } 1895 }
1462} 1896}
1476static int loop_done; 1910static int loop_done;
1477 1911
1478void 1912void
1479ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1480{ 1914{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1482 ? EVUNLOOP_ONE
1483 : EVUNLOOP_CANCEL;
1484 1916
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1486 1918
1487 do 1919 do
1488 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1489#ifndef _WIN32 1925#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1492 { 1928 {
1493 curpid = getpid (); 1929 curpid = getpid ();
1534 1970
1535 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1536 1972
1537 if (timercnt) 1973 if (timercnt)
1538 { 1974 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1541 } 1977 }
1542 1978
1543#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 1980 if (periodiccnt)
1545 { 1981 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1548 } 1984 }
1549#endif 1985#endif
1550 1986
1551 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1584 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 2023
1588 call_pending (EV_A); 2024 call_pending (EV_A);
1589
1590 } 2025 }
1591 while (expect_true (activecnt && !loop_done)); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1592 2031
1593 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1595} 2034}
1596 2035
1685 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1686 return; 2125 return;
1687 2126
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1689 2128
2129 EV_FREQUENT_CHECK;
2130
1690 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1692 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1693 2134
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1695 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1696} 2139}
1697 2140
1698void noinline 2141void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1700{ 2143{
1701 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1703 return; 2146 return;
1704 2147
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1706 2151
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1709 2154
1710 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1711} 2158}
1712 2159
1713void noinline 2160void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1715{ 2162{
1716 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1717 return; 2164 return;
1718 2165
1719 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1720 2167
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1727 2178
2179 EV_FREQUENT_CHECK;
2180
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2182}
1730 2183
1731void noinline 2184void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2186{
1734 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1736 return; 2189 return;
1737 2190
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2191 EV_FREQUENT_CHECK;
1739 2192
1740 { 2193 {
1741 int active = ((W)w)->active; 2194 int active = ev_active (w);
1742 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1743 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1744 { 2201 {
1745 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1747 } 2204 }
1748 } 2205 }
1749 2206
1750 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1751 2210
1752 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1753} 2212}
1754 2213
1755void noinline 2214void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1757{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1758 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1759 { 2220 {
1760 if (w->repeat) 2221 if (w->repeat)
1761 { 2222 {
1762 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1764 } 2226 }
1765 else 2227 else
1766 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1767 } 2229 }
1768 else if (w->repeat) 2230 else if (w->repeat)
1769 { 2231 {
1770 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1772 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1773} 2237}
1774 2238
1775#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1776void noinline 2240void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2242{
1779 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1780 return; 2244 return;
1781 2245
1782 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2248 else if (w->interval)
1785 { 2249 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2253 }
1790 else 2254 else
1791 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1792 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1797 2265
2266 EV_FREQUENT_CHECK;
2267
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2269}
1800 2270
1801void noinline 2271void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2273{
1804 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1806 return; 2276 return;
1807 2277
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2278 EV_FREQUENT_CHECK;
1809 2279
1810 { 2280 {
1811 int active = ((W)w)->active; 2281 int active = ev_active (w);
1812 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1813 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2288 {
1815 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1817 } 2291 }
1818 } 2292 }
1819 2293
2294 EV_FREQUENT_CHECK;
2295
1820 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1821} 2297}
1822 2298
1823void noinline 2299void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1841#endif 2317#endif
1842 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1843 return; 2319 return;
1844 2320
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1846 2326
1847 { 2327 {
1848#ifndef _WIN32 2328#ifndef _WIN32
1849 sigset_t full, prev; 2329 sigset_t full, prev;
1850 sigfillset (&full); 2330 sigfillset (&full);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2343
1864 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1865 { 2345 {
1866#if _WIN32 2346#if _WIN32
1867 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1868#else 2348#else
1869 struct sigaction sa; 2349 struct sigaction sa;
1870 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1874#endif 2354#endif
1875 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1876} 2358}
1877 2359
1878void noinline 2360void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2362{
1881 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1883 return; 2365 return;
1884 2366
2367 EV_FREQUENT_CHECK;
2368
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1887 2371
1888 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1889 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1890} 2376}
1891 2377
1892void 2378void
1893ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1894{ 2380{
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2383#endif
1898 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1899 return; 2385 return;
1900 2386
2387 EV_FREQUENT_CHECK;
2388
1901 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1903} 2393}
1904 2394
1905void 2395void
1906ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1907{ 2397{
1908 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1910 return; 2400 return;
1911 2401
2402 EV_FREQUENT_CHECK;
2403
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1914} 2408}
1915 2409
1916#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1917 2411
1918# ifdef _WIN32 2412# ifdef _WIN32
1936 if (w->wd < 0) 2430 if (w->wd < 0)
1937 { 2431 {
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939 2433
1940 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2438 {
1943 char path [4096]; 2439 char path [4096];
1944 strcpy (path, w->path); 2440 strcpy (path, w->path);
1945 2441
2071 } 2567 }
2072 2568
2073 } 2569 }
2074} 2570}
2075 2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 2578#endif
2077 2579
2078void 2580void
2079ev_stat_stat (EV_P_ ev_stat *w) 2581ev_stat_stat (EV_P_ ev_stat *w)
2080{ 2582{
2144 else 2646 else
2145#endif 2647#endif
2146 ev_timer_start (EV_A_ &w->timer); 2648 ev_timer_start (EV_A_ &w->timer);
2147 2649
2148 ev_start (EV_A_ (W)w, 1); 2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2149} 2653}
2150 2654
2151void 2655void
2152ev_stat_stop (EV_P_ ev_stat *w) 2656ev_stat_stop (EV_P_ ev_stat *w)
2153{ 2657{
2154 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2156 return; 2660 return;
2157 2661
2662 EV_FREQUENT_CHECK;
2663
2158#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 2665 infy_del (EV_A_ w);
2160#endif 2666#endif
2161 ev_timer_stop (EV_A_ &w->timer); 2667 ev_timer_stop (EV_A_ &w->timer);
2162 2668
2163 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2164} 2672}
2165#endif 2673#endif
2166 2674
2167#if EV_IDLE_ENABLE 2675#if EV_IDLE_ENABLE
2168void 2676void
2170{ 2678{
2171 if (expect_false (ev_is_active (w))) 2679 if (expect_false (ev_is_active (w)))
2172 return; 2680 return;
2173 2681
2174 pri_adjust (EV_A_ (W)w); 2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2175 2685
2176 { 2686 {
2177 int active = ++idlecnt [ABSPRI (w)]; 2687 int active = ++idlecnt [ABSPRI (w)];
2178 2688
2179 ++idleall; 2689 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 2690 ev_start (EV_A_ (W)w, active);
2181 2691
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 2693 idles [ABSPRI (w)][active - 1] = w;
2184 } 2694 }
2695
2696 EV_FREQUENT_CHECK;
2185} 2697}
2186 2698
2187void 2699void
2188ev_idle_stop (EV_P_ ev_idle *w) 2700ev_idle_stop (EV_P_ ev_idle *w)
2189{ 2701{
2190 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2192 return; 2704 return;
2193 2705
2706 EV_FREQUENT_CHECK;
2707
2194 { 2708 {
2195 int active = ((W)w)->active; 2709 int active = ev_active (w);
2196 2710
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 2713
2200 ev_stop (EV_A_ (W)w); 2714 ev_stop (EV_A_ (W)w);
2201 --idleall; 2715 --idleall;
2202 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2203} 2719}
2204#endif 2720#endif
2205 2721
2206void 2722void
2207ev_prepare_start (EV_P_ ev_prepare *w) 2723ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 2724{
2209 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2210 return; 2726 return;
2727
2728 EV_FREQUENT_CHECK;
2211 2729
2212 ev_start (EV_A_ (W)w, ++preparecnt); 2730 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2215} 2735}
2216 2736
2217void 2737void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 2738ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 2739{
2220 clear_pending (EV_A_ (W)w); 2740 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2741 if (expect_false (!ev_is_active (w)))
2222 return; 2742 return;
2223 2743
2744 EV_FREQUENT_CHECK;
2745
2224 { 2746 {
2225 int active = ((W)w)->active; 2747 int active = ev_active (w);
2748
2226 prepares [active - 1] = prepares [--preparecnt]; 2749 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 2750 ev_active (prepares [active - 1]) = active;
2228 } 2751 }
2229 2752
2230 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2231} 2756}
2232 2757
2233void 2758void
2234ev_check_start (EV_P_ ev_check *w) 2759ev_check_start (EV_P_ ev_check *w)
2235{ 2760{
2236 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
2237 return; 2762 return;
2763
2764 EV_FREQUENT_CHECK;
2238 2765
2239 ev_start (EV_A_ (W)w, ++checkcnt); 2766 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2242} 2771}
2243 2772
2244void 2773void
2245ev_check_stop (EV_P_ ev_check *w) 2774ev_check_stop (EV_P_ ev_check *w)
2246{ 2775{
2247 clear_pending (EV_A_ (W)w); 2776 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 2777 if (expect_false (!ev_is_active (w)))
2249 return; 2778 return;
2250 2779
2780 EV_FREQUENT_CHECK;
2781
2251 { 2782 {
2252 int active = ((W)w)->active; 2783 int active = ev_active (w);
2784
2253 checks [active - 1] = checks [--checkcnt]; 2785 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 2786 ev_active (checks [active - 1]) = active;
2255 } 2787 }
2256 2788
2257 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2258} 2792}
2259 2793
2260#if EV_EMBED_ENABLE 2794#if EV_EMBED_ENABLE
2261void noinline 2795void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 2796ev_embed_sweep (EV_P_ ev_embed *w)
2309 struct ev_loop *loop = w->other; 2843 struct ev_loop *loop = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 2846 }
2313 2847
2848 EV_FREQUENT_CHECK;
2849
2314 ev_set_priority (&w->io, ev_priority (w)); 2850 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 2851 ev_io_start (EV_A_ &w->io);
2316 2852
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 2854 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 2855 ev_prepare_start (EV_A_ &w->prepare);
2320 2856
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 2858
2323 ev_start (EV_A_ (W)w, 1); 2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2324} 2862}
2325 2863
2326void 2864void
2327ev_embed_stop (EV_P_ ev_embed *w) 2865ev_embed_stop (EV_P_ ev_embed *w)
2328{ 2866{
2329 clear_pending (EV_A_ (W)w); 2867 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 2868 if (expect_false (!ev_is_active (w)))
2331 return; 2869 return;
2332 2870
2871 EV_FREQUENT_CHECK;
2872
2333 ev_io_stop (EV_A_ &w->io); 2873 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 2874 ev_prepare_stop (EV_A_ &w->prepare);
2335 2875
2336 ev_stop (EV_A_ (W)w); 2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2337} 2879}
2338#endif 2880#endif
2339 2881
2340#if EV_FORK_ENABLE 2882#if EV_FORK_ENABLE
2341void 2883void
2342ev_fork_start (EV_P_ ev_fork *w) 2884ev_fork_start (EV_P_ ev_fork *w)
2343{ 2885{
2344 if (expect_false (ev_is_active (w))) 2886 if (expect_false (ev_is_active (w)))
2345 return; 2887 return;
2888
2889 EV_FREQUENT_CHECK;
2346 2890
2347 ev_start (EV_A_ (W)w, ++forkcnt); 2891 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2350} 2896}
2351 2897
2352void 2898void
2353ev_fork_stop (EV_P_ ev_fork *w) 2899ev_fork_stop (EV_P_ ev_fork *w)
2354{ 2900{
2355 clear_pending (EV_A_ (W)w); 2901 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 2902 if (expect_false (!ev_is_active (w)))
2357 return; 2903 return;
2358 2904
2905 EV_FREQUENT_CHECK;
2906
2359 { 2907 {
2360 int active = ((W)w)->active; 2908 int active = ev_active (w);
2909
2361 forks [active - 1] = forks [--forkcnt]; 2910 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 2911 ev_active (forks [active - 1]) = active;
2363 } 2912 }
2364 2913
2365 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2917}
2918#endif
2919
2920#if EV_ASYNC_ENABLE
2921void
2922ev_async_start (EV_P_ ev_async *w)
2923{
2924 if (expect_false (ev_is_active (w)))
2925 return;
2926
2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2930
2931 ev_start (EV_A_ (W)w, ++asynccnt);
2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2936}
2937
2938void
2939ev_async_stop (EV_P_ ev_async *w)
2940{
2941 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
2946
2947 {
2948 int active = ev_active (w);
2949
2950 asyncs [active - 1] = asyncs [--asynccnt];
2951 ev_active (asyncs [active - 1]) = active;
2952 }
2953
2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_async_send (EV_P_ ev_async *w)
2961{
2962 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync);
2366} 2964}
2367#endif 2965#endif
2368 2966
2369/*****************************************************************************/ 2967/*****************************************************************************/
2370 2968

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines