ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.309 by root, Sun Jul 26 04:24:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
119#include <fcntl.h> 158#include <fcntl.h>
137#ifndef _WIN32 176#ifndef _WIN32
138# include <sys/time.h> 177# include <sys/time.h>
139# include <sys/wait.h> 178# include <sys/wait.h>
140# include <unistd.h> 179# include <unistd.h>
141#else 180#else
181# include <io.h>
142# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 183# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
146# endif 186# endif
147#endif 187#endif
148 188
149/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
150 225
151#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
152# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
153#endif 232#endif
154 233
155#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 236#endif
158 237
159#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
160# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
161#endif 244#endif
162 245
163#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
165#endif 248#endif
171# define EV_USE_POLL 1 254# define EV_USE_POLL 1
172# endif 255# endif
173#endif 256#endif
174 257
175#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
176# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
177#endif 264#endif
178 265
179#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
181#endif 268#endif
183#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 271# define EV_USE_PORT 0
185#endif 272#endif
186 273
187#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
188# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
189#endif 280#endif
190 281
191#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 283# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
202# else 293# else
203# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
204# endif 295# endif
205#endif 296#endif
206 297
207/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 347
209#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
212#endif 351#endif
226# include <sys/select.h> 365# include <sys/select.h>
227# endif 366# endif
228#endif 367#endif
229 368
230#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
231# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
232#endif 378#endif
233 379
234#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 381# include <winsock.h>
236#endif 382#endif
237 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
393# ifdef __cplusplus
394extern "C" {
395# endif
396int eventfd (unsigned int initval, int flags);
397# ifdef __cplusplus
398}
399# endif
400#endif
401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
404#endif
405
238/**/ 406/**/
407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
239 413
240/* 414/*
241 * This is used to avoid floating point rounding problems. 415 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 416 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 417 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 429# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 430# define noinline __attribute__ ((noinline))
257#else 431#else
258# define expect(expr,value) (expr) 432# define expect(expr,value) (expr)
259# define noinline 433# define noinline
260# if __STDC_VERSION__ < 199901L 434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 435# define inline
262# endif 436# endif
263#endif 437#endif
264 438
265#define expect_false(expr) expect ((expr) != 0, 0) 439#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 444# define inline_speed static noinline
271#else 445#else
272# define inline_speed static inline 446# define inline_speed static inline
273#endif 447#endif
274 448
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
277 456
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
280 459
281typedef ev_watcher *W; 460typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 461typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
284 463
464#define ev_active(w) ((W)(w))->active
465#define ev_at(w) ((WT)(w))->at
466
467#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
475#endif
288 476
289#ifdef _WIN32 477#ifdef _WIN32
290# include "ev_win32.c" 478# include "ev_win32.c"
291#endif 479#endif
292 480
299{ 487{
300 syserr_cb = cb; 488 syserr_cb = cb;
301} 489}
302 490
303static void noinline 491static void noinline
304syserr (const char *msg) 492ev_syserr (const char *msg)
305{ 493{
306 if (!msg) 494 if (!msg)
307 msg = "(libev) system error"; 495 msg = "(libev) system error";
308 496
309 if (syserr_cb) 497 if (syserr_cb)
313 perror (msg); 501 perror (msg);
314 abort (); 502 abort ();
315 } 503 }
316} 504}
317 505
506static void *
507ev_realloc_emul (void *ptr, long size)
508{
509 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and
511 * the single unix specification, so work around them here.
512 */
513
514 if (size)
515 return realloc (ptr, size);
516
517 free (ptr);
518 return 0;
519}
520
318static void *(*alloc)(void *ptr, long size); 521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 522
320void 523void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 524ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 525{
323 alloc = cb; 526 alloc = cb;
324} 527}
325 528
326inline_speed void * 529inline_speed void *
327ev_realloc (void *ptr, long size) 530ev_realloc (void *ptr, long size)
328{ 531{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 532 ptr = alloc (ptr, size);
330 533
331 if (!ptr && size) 534 if (!ptr && size)
332 { 535 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 537 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
342 545
343/*****************************************************************************/ 546/*****************************************************************************/
344 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
345typedef struct 552typedef struct
346{ 553{
347 WL head; 554 WL head;
348 unsigned char events; 555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
350#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 563 SOCKET handle;
352#endif 564#endif
353} ANFD; 565} ANFD;
354 566
567/* stores the pending event set for a given watcher */
355typedef struct 568typedef struct
356{ 569{
357 W w; 570 W w;
358 int events; 571 int events; /* the pending event set for the given watcher */
359} ANPENDING; 572} ANPENDING;
360 573
361#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
362typedef struct 576typedef struct
363{ 577{
364 WL head; 578 WL head;
365} ANFS; 579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
366#endif 600#endif
367 601
368#if EV_MULTIPLICITY 602#if EV_MULTIPLICITY
369 603
370 struct ev_loop 604 struct ev_loop
389 623
390 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
391 625
392#endif 626#endif
393 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
394/*****************************************************************************/ 640/*****************************************************************************/
395 641
642#ifndef EV_HAVE_EV_TIME
396ev_tstamp 643ev_tstamp
397ev_time (void) 644ev_time (void)
398{ 645{
399#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
400 struct timespec ts; 649 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 652 }
653#endif
654
404 struct timeval tv; 655 struct timeval tv;
405 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 658}
659#endif
409 660
410ev_tstamp inline_size 661inline_size ev_tstamp
411get_clock (void) 662get_clock (void)
412{ 663{
413#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
415 { 666 {
441 ts.tv_sec = (time_t)delay; 692 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 694
444 nanosleep (&ts, 0); 695 nanosleep (&ts, 0);
445#elif defined(_WIN32) 696#elif defined(_WIN32)
446 Sleep (delay * 1e3); 697 Sleep ((unsigned long)(delay * 1e3));
447#else 698#else
448 struct timeval tv; 699 struct timeval tv;
449 700
450 tv.tv_sec = (time_t)delay; 701 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
453 select (0, 0, 0, 0, &tv); 707 select (0, 0, 0, 0, &tv);
454#endif 708#endif
455 } 709 }
456} 710}
457 711
458/*****************************************************************************/ 712/*****************************************************************************/
459 713
460int inline_size 714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
715
716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
461array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
462{ 720{
463 int ncur = cur + 1; 721 int ncur = cur + 1;
464 722
465 do 723 do
466 ncur <<= 1; 724 ncur <<= 1;
467 while (cnt > ncur); 725 while (cnt > ncur);
468 726
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 729 {
472 ncur *= elem; 730 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 732 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 733 ncur /= elem;
476 } 734 }
477 735
478 return ncur; 736 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 740array_realloc (int elem, void *base, int *cur, int cnt)
483{ 741{
484 *cur = array_nextsize (elem, *cur, cnt); 742 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 743 return ev_realloc (base, elem * *cur);
486} 744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 748
488#define array_needsize(type,base,cur,cnt,init) \ 749#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 750 if (expect_false ((cnt) > (cur))) \
490 { \ 751 { \
491 int ocur_ = (cur); \ 752 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 765 }
505#endif 766#endif
506 767
507#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 770
510/*****************************************************************************/ 771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
511 778
512void noinline 779void noinline
513ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
514{ 781{
515 W w_ = (W)w; 782 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 791 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 792 pendings [pri][w_->pending - 1].events = revents;
526 } 793 }
527} 794}
528 795
529void inline_speed 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 813{
532 int i; 814 int i;
533 815
534 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
536} 818}
537 819
538/*****************************************************************************/ 820/*****************************************************************************/
539 821
540void inline_size 822inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
555{ 824{
556 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
557 ev_io *w; 826 ev_io *w;
558 827
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 832 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
565 } 834 }
566} 835}
567 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
568void 848void
569ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 850{
571 if (fd >= 0 && fd < anfdmax) 851 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
573} 853}
574 854
575void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
576fd_reify (EV_P) 858fd_reify (EV_P)
577{ 859{
578 int i; 860 int i;
579 861
580 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 871 events |= (unsigned char)w->events;
590 872
591#if EV_SELECT_IS_WINSOCKET 873#if EV_SELECT_IS_WINSOCKET
592 if (events) 874 if (events)
593 { 875 {
594 unsigned long argp; 876 unsigned long arg;
877 #ifdef EV_FD_TO_WIN32_HANDLE
878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
879 #else
595 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
881 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 883 }
598#endif 884#endif
599 885
600 { 886 {
601 unsigned char o_events = anfd->events; 887 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 888 unsigned char o_reify = anfd->reify;
603 889
604 anfd->reify = 0; 890 anfd->reify = 0;
605 anfd->events = events; 891 anfd->events = events;
606 892
607 if (o_events != events || o_reify & EV_IOFDSET) 893 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 894 backend_modify (EV_A_ fd, o_events, events);
609 } 895 }
610 } 896 }
611 897
612 fdchangecnt = 0; 898 fdchangecnt = 0;
613} 899}
614 900
615void inline_size 901/* something about the given fd changed */
902inline_size void
616fd_change (EV_P_ int fd, int flags) 903fd_change (EV_P_ int fd, int flags)
617{ 904{
618 unsigned char reify = anfds [fd].reify; 905 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 906 anfds [fd].reify |= flags;
620 907
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
626 } 913 }
627} 914}
628 915
629void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
630fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
631{ 919{
632 ev_io *w; 920 ev_io *w;
633 921
634 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 926 }
639} 927}
640 928
641int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
642fd_valid (int fd) 931fd_valid (int fd)
643{ 932{
644#ifdef _WIN32 933#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
646#else 935#else
654{ 943{
655 int fd; 944 int fd;
656 945
657 for (fd = 0; fd < anfdmax; ++fd) 946 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 947 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 948 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 949 fd_kill (EV_A_ fd);
661} 950}
662 951
663/* called on ENOMEM in select/poll to kill some fds and retry */ 952/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 953static void noinline
668 957
669 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 959 if (anfds [fd].events)
671 { 960 {
672 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
673 return; 962 break;
674 } 963 }
675} 964}
676 965
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 967static void noinline
682 971
683 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 973 if (anfds [fd].events)
685 { 974 {
686 anfds [fd].events = 0; 975 anfds [fd].events = 0;
976 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 978 }
689} 979}
690 980
691/*****************************************************************************/ 981/*****************************************************************************/
692 982
693void inline_speed 983/*
694upheap (WT *heap, int k) 984 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 986 * the branching factor of the d-tree.
987 */
697 988
698 while (k) 989/*
699 { 990 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
992 * which is more cache-efficient.
993 * the difference is about 5% with 50000+ watchers.
994 */
995#if EV_USE_4HEAP
701 996
702 if (heap [p]->at <= w->at) 997#define DHEAP 4
998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
1001
1002/* away from the root */
1003inline_speed void
1004downheap (ANHE *heap, int N, int k)
1005{
1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
1008
1009 for (;;)
1010 {
1011 ev_tstamp minat;
1012 ANHE *minpos;
1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1014
1015 /* find minimum child */
1016 if (expect_true (pos + DHEAP - 1 < E))
1017 {
1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else
703 break; 1031 break;
704 1032
1033 if (ANHE_at (he) <= minat)
1034 break;
1035
1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
1038
1039 k = minpos - heap;
1040 }
1041
1042 heap [k] = he;
1043 ev_active (ANHE_w (he)) = k;
1044}
1045
1046#else /* 4HEAP */
1047
1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
1051
1052/* away from the root */
1053inline_speed void
1054downheap (ANHE *heap, int N, int k)
1055{
1056 ANHE he = heap [k];
1057
1058 for (;;)
1059 {
1060 int c = k << 1;
1061
1062 if (c >= N + HEAP0)
1063 break;
1064
1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1066 ? 1 : 0;
1067
1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
1069 break;
1070
1071 heap [k] = heap [c];
1072 ev_active (ANHE_w (heap [k])) = k;
1073
1074 k = c;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080#endif
1081
1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
705 heap [k] = heap [p]; 1095 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1096 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1097 k = p;
708 } 1098 }
709 1099
710 heap [k] = w; 1100 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1101 ev_active (ANHE_w (he)) = k;
712} 1102}
713 1103
714void inline_speed 1104/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1105inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
744{ 1107{
1108 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 1109 upheap (heap, k);
1110 else
746 downheap (heap, N, k); 1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
747} 1124}
748 1125
749/*****************************************************************************/ 1126/*****************************************************************************/
750 1127
1128/* associate signal watchers to a signal signal */
751typedef struct 1129typedef struct
752{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
753 WL head; 1135 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG; 1136} ANSIG;
756 1137
757static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
758static int signalmax;
759 1139
760static int sigpipe [2]; 1140/*****************************************************************************/
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1141
764void inline_size 1142/* used to prepare libev internal fd's */
765signals_init (ANSIG *base, int count) 1143/* this is not fork-safe */
766{ 1144inline_speed void
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1145fd_intern (int fd)
829{ 1146{
830#ifdef _WIN32 1147#ifdef _WIN32
831 int arg = 1; 1148 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1150#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1152 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1153#endif
837} 1154}
838 1155
839static void noinline 1156static void noinline
840siginit (EV_P) 1157evpipe_init (EV_P)
841{ 1158{
1159 if (!ev_is_active (&pipe_w))
1160 {
1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 {
1168 evpipe [0] = -1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 }
1172 else
1173#endif
1174 {
1175 while (pipe (evpipe))
1176 ev_syserr ("(libev) error creating signal/async pipe");
1177
842 fd_intern (sigpipe [0]); 1178 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1179 fd_intern (evpipe [1]);
1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1181 }
844 1182
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1183 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1185 }
1186}
1187
1188inline_size void
1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1190{
1191 if (!*flag)
1192 {
1193 int old_errno = errno; /* save errno because write might clobber it */
1194
1195 *flag = 1;
1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
1205 write (evpipe [1], &old_errno, 1);
1206
1207 errno = old_errno;
1208 }
1209}
1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
1213static void
1214pipecb (EV_P_ ev_io *iow, int revents)
1215{
1216 int i;
1217
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (sig_pending)
1232 {
1233 sig_pending = 0;
1234
1235 for (i = EV_NSIG - 1; i--; )
1236 if (expect_false (signals [i].pending))
1237 ev_feed_signal_event (EV_A_ i + 1);
1238 }
1239
1240#if EV_ASYNC_ENABLE
1241 if (async_pending)
1242 {
1243 async_pending = 0;
1244
1245 for (i = asynccnt; i--; )
1246 if (asyncs [i]->sent)
1247 {
1248 asyncs [i]->sent = 0;
1249 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1250 }
1251 }
1252#endif
848} 1253}
849 1254
850/*****************************************************************************/ 1255/*****************************************************************************/
851 1256
1257static void
1258ev_sighandler (int signum)
1259{
1260#if EV_MULTIPLICITY
1261 EV_P = signals [signum - 1].loop;
1262#endif
1263
1264#if _WIN32
1265 signal (signum, ev_sighandler);
1266#endif
1267
1268 signals [signum - 1].pending = 1;
1269 evpipe_write (EV_A_ &sig_pending);
1270}
1271
1272void noinline
1273ev_feed_signal_event (EV_P_ int signum)
1274{
1275 WL w;
1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1282#if EV_MULTIPLICITY
1283 /* it is permissible to try to feed a signal to the wrong loop */
1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1285
1286 if (expect_false (signals [signum].loop != EV_A))
1287 return;
1288#endif
1289
1290 signals [signum].pending = 0;
1291
1292 for (w = signals [signum].head; w; w = w->next)
1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1294}
1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1316/*****************************************************************************/
1317
852static WL childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
853 1319
854#ifndef _WIN32 1320#ifndef _WIN32
855 1321
856static ev_signal childev; 1322static ev_signal childev;
857 1323
858void inline_speed 1324#ifndef WIFCONTINUED
1325# define WIFCONTINUED(status) 0
1326#endif
1327
1328/* handle a single child status event */
1329inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
860{ 1331{
861 ev_child *w; 1332 ev_child *w;
1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1334
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1336 {
864 if (w->pid == pid || !w->pid) 1337 if ((w->pid == pid || !w->pid)
1338 && (!traced || (w->flags & 1)))
865 { 1339 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1341 w->rpid = pid;
868 w->rstatus = status; 1342 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1343 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1344 }
1345 }
871} 1346}
872 1347
873#ifndef WCONTINUED 1348#ifndef WCONTINUED
874# define WCONTINUED 0 1349# define WCONTINUED 0
875#endif 1350#endif
876 1351
1352/* called on sigchld etc., calls waitpid */
877static void 1353static void
878childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
879{ 1355{
880 int pid, status; 1356 int pid, status;
881 1357
884 if (!WCONTINUED 1360 if (!WCONTINUED
885 || errno != EINVAL 1361 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1362 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1363 return;
888 1364
889 /* make sure we are called again until all childs have been reaped */ 1365 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1366 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1368
893 child_reap (EV_A_ sw, pid, pid, status); 1369 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1370 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1372}
897 1373
898#endif 1374#endif
899 1375
900/*****************************************************************************/ 1376/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1438 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1439 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1440 flags &= ~EVBACKEND_KQUEUE;
965#endif 1441#endif
966#ifdef __APPLE__ 1442#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1443 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1446#endif
970 1447
971 return flags; 1448 return flags;
972} 1449}
973 1450
987ev_backend (EV_P) 1464ev_backend (EV_P)
988{ 1465{
989 return backend; 1466 return backend;
990} 1467}
991 1468
1469#if EV_MINIMAL < 2
992unsigned int 1470unsigned int
993ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
994{ 1472{
995 return loop_count; 1473 return loop_count;
996} 1474}
997 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
998void 1482void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1484{
1001 io_blocktime = interval; 1485 io_blocktime = interval;
1002} 1486}
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{ 1490{
1007 timeout_blocktime = interval; 1491 timeout_blocktime = interval;
1008} 1492}
1009 1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1010static void noinline 1519static void noinline
1011loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
1012{ 1521{
1013 if (!backend) 1522 if (!backend)
1014 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
1015#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
1016 { 1536 {
1017 struct timespec ts; 1537 struct timespec ts;
1538
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1540 have_monotonic = 1;
1020 } 1541 }
1021#endif 1542#endif
1022
1023 ev_rt_now = ev_time ();
1024 mn_now = get_clock ();
1025 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now;
1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030 1543
1031 /* pid check not overridable via env */ 1544 /* pid check not overridable via env */
1032#ifndef _WIN32 1545#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1546 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1547 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1550 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1551 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1552 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1553 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1554
1555 ev_rt_now = ev_time ();
1556 mn_now = get_clock ();
1557 now_floor = mn_now;
1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1562
1563 io_blocktime = 0.;
1564 timeout_blocktime = 0.;
1565 backend = 0;
1566 backend_fd = -1;
1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1571#if EV_USE_INOTIFY
1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1573#endif
1574#if EV_USE_SIGNALFD
1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1576#endif
1577
1042 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1580
1051#if EV_USE_PORT 1581#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1583#endif
1054#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
1062#endif 1592#endif
1063#if EV_USE_SELECT 1593#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1595#endif
1066 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1067 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1069 } 1601 }
1070} 1602}
1071 1603
1604/* free up a loop structure */
1072static void noinline 1605static void noinline
1073loop_destroy (EV_P) 1606loop_destroy (EV_P)
1074{ 1607{
1075 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1076 1636
1077#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1079 close (fs_fd); 1639 close (fs_fd);
1080#endif 1640#endif
1104#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1105 array_free (idle, [i]); 1665 array_free (idle, [i]);
1106#endif 1666#endif
1107 } 1667 }
1108 1668
1109 ev_free (anfds); anfdmax = 0; 1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1110 1670
1111 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1112 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1113 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1114#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1115 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1116#endif 1677#endif
1117#if EV_FORK_ENABLE 1678#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1679 array_free (fork, EMPTY);
1119#endif 1680#endif
1120 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1122 1686
1123 backend = 0; 1687 backend = 0;
1124} 1688}
1125 1689
1690#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1127 1693
1128void inline_size 1694inline_size void
1129loop_fork (EV_P) 1695loop_fork (EV_P)
1130{ 1696{
1131#if EV_USE_PORT 1697#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif 1699#endif
1139#endif 1705#endif
1140#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1707 infy_fork (EV_A);
1142#endif 1708#endif
1143 1709
1144 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
1145 { 1711 {
1146 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 sig_pending = 1;
1715#if EV_ASYNC_ENABLE
1716 async_pending = 1;
1717#endif
1147 1718
1148 ev_ref (EV_A); 1719 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1150 close (sigpipe [0]); 1729 close (evpipe [0]);
1151 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
1152 1732
1153 while (pipe (sigpipe))
1154 syserr ("(libev) error creating pipe");
1155
1156 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1157 } 1736 }
1158 1737
1159 postfork = 0; 1738 postfork = 0;
1160} 1739}
1161 1740
1162#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1163struct ev_loop * 1743struct ev_loop *
1164ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1165{ 1745{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1747
1168 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1169
1170 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1171 1750
1172 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1173 return loop; 1752 return EV_A;
1174 1753
1175 return 0; 1754 return 0;
1176} 1755}
1177 1756
1178void 1757void
1183} 1762}
1184 1763
1185void 1764void
1186ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1187{ 1766{
1188 postfork = 1; 1767 postfork = 1; /* must be in line with ev_default_fork */
1189} 1768}
1769#endif /* multiplicity */
1190 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1869}
1191#endif 1870#endif
1192 1871
1193#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1194struct ev_loop * 1873struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1196#else 1875#else
1197int 1876int
1198ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
1199#endif 1878#endif
1200{ 1879{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1206 { 1881 {
1207#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1209#else 1884#else
1210 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1211#endif 1886#endif
1212 1887
1213 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1214 1889
1215 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
1216 { 1891 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1892#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1232 1905
1233void 1906void
1234ev_default_destroy (void) 1907ev_default_destroy (void)
1235{ 1908{
1236#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1237 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1238#endif 1911#endif
1912
1913 ev_default_loop_ptr = 0;
1239 1914
1240#ifndef _WIN32 1915#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1243#endif 1918#endif
1244 1919
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1252} 1921}
1253 1922
1254void 1923void
1255ev_default_fork (void) 1924ev_default_fork (void)
1256{ 1925{
1257#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1259#endif 1928#endif
1260 1929
1261 if (backend) 1930 postfork = 1; /* must be in line with ev_loop_fork */
1262 postfork = 1;
1263} 1931}
1264 1932
1265/*****************************************************************************/ 1933/*****************************************************************************/
1266 1934
1267void 1935void
1268ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1269{ 1937{
1270 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1271} 1939}
1272 1940
1273void inline_speed 1941unsigned int
1274call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1275{ 1955{
1276 int pri; 1956 int pri;
1277 1957
1278 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1279 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1280 { 1960 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1282 1962
1283 if (expect_true (p->w))
1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1286 1965
1287 p->w->pending = 0; 1966 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1289 } 1968 EV_FREQUENT_CHECK;
1290 } 1969 }
1291} 1970}
1292 1971
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372
1373#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1374void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1375idle_reify (EV_P) 1976idle_reify (EV_P)
1376{ 1977{
1377 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1378 { 1979 {
1379 int pri; 1980 int pri;
1391 } 1992 }
1392 } 1993 }
1393} 1994}
1394#endif 1995#endif
1395 1996
1396void inline_speed 1997/* make timers pending */
1998inline_size void
1999timers_reify (EV_P)
2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1397time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1398{ 2135{
1399 int i;
1400
1401#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1403 { 2138 {
2139 int i;
1404 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1405 2141
1406 mn_now = get_clock (); 2142 mn_now = get_clock ();
1407 2143
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1426 */ 2162 */
1427 for (i = 4; --i; ) 2163 for (i = 4; --i; )
1428 { 2164 {
1429 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1430 2166
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 2168 return; /* all is well */
1433 2169
1434 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 2171 mn_now = get_clock ();
1436 now_floor = mn_now; 2172 now_floor = mn_now;
1437 } 2173 }
1438 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1439# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1441# endif 2179# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 } 2180 }
1445 else 2181 else
1446#endif 2182#endif
1447 { 2183 {
1448 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1449 2185
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1452#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1454#endif 2192#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1458 } 2193 }
1459 2194
1460 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1461 } 2196 }
1462} 2197}
1463 2198
1464void 2199void
1465ev_ref (EV_P)
1466{
1467 ++activecnt;
1468}
1469
1470void
1471ev_unref (EV_P)
1472{
1473 --activecnt;
1474}
1475
1476static int loop_done;
1477
1478void
1479ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1480{ 2201{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1482 ? EVUNLOOP_ONE 2203 ++loop_depth;
1483 : EVUNLOOP_CANCEL; 2204#endif
1484 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1486 2211
1487 do 2212 do
1488 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1489#ifndef _WIN32 2218#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1492 { 2221 {
1493 curpid = getpid (); 2222 curpid = getpid ();
1499 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1501 if (forkcnt) 2230 if (forkcnt)
1502 { 2231 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1505 } 2234 }
1506#endif 2235#endif
1507 2236
1508 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1509 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1510 { 2239 {
1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1512 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1513 } 2242 }
1514 2243
1515 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1516 break; 2245 break;
1517 2246
1518 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1519 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1520 loop_fork (EV_A); 2249 loop_fork (EV_A);
1527 ev_tstamp waittime = 0.; 2256 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.; 2257 ev_tstamp sleeptime = 0.;
1529 2258
1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1531 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1532 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1533 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
1534 2266
1535 waittime = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1536 2268
1537 if (timercnt) 2269 if (timercnt)
1538 { 2270 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 2272 if (waittime > to) waittime = to;
1541 } 2273 }
1542 2274
1543#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 2276 if (periodiccnt)
1545 { 2277 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 2279 if (waittime > to) waittime = to;
1548 } 2280 }
1549#endif 2281#endif
1550 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
1551 if (expect_false (waittime < timeout_blocktime)) 2284 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime; 2285 waittime = timeout_blocktime;
1553 2286
1554 sleeptime = waittime - backend_fudge; 2287 /* extra check because io_blocktime is commonly 0 */
1555
1556 if (expect_true (sleeptime > io_blocktime)) 2288 if (expect_false (io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 { 2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
1561 ev_sleep (sleeptime); 2297 ev_sleep (sleeptime);
1562 waittime -= sleeptime; 2298 waittime -= sleeptime;
2299 }
1563 } 2300 }
1564 } 2301 }
1565 2302
2303#if EV_MINIMAL < 2
1566 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1567 backend_poll (EV_A_ waittime); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1568 2309
1569 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1570 time_update (EV_A_ waittime + sleeptime); 2311 time_update (EV_A_ waittime + sleeptime);
1571 } 2312 }
1572 2313
1583 2324
1584 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 2328
1588 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1589
1590 } 2330 }
1591 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1592 2336
1593 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1595} 2343}
1596 2344
1597void 2345void
1598ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1599{ 2347{
1600 loop_done = how; 2348 loop_done = how;
1601} 2349}
1602 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1603/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1604 2390
1605void inline_size 2391inline_size void
1606wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1607{ 2393{
1608 elem->next = *head; 2394 elem->next = *head;
1609 *head = elem; 2395 *head = elem;
1610} 2396}
1611 2397
1612void inline_size 2398inline_size void
1613wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1614{ 2400{
1615 while (*head) 2401 while (*head)
1616 { 2402 {
1617 if (*head == elem) 2403 if (expect_true (*head == elem))
1618 { 2404 {
1619 *head = elem->next; 2405 *head = elem->next;
1620 return; 2406 break;
1621 } 2407 }
1622 2408
1623 head = &(*head)->next; 2409 head = &(*head)->next;
1624 } 2410 }
1625} 2411}
1626 2412
1627void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1628clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1629{ 2416{
1630 if (w->pending) 2417 if (w->pending)
1631 { 2418 {
1632 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1633 w->pending = 0; 2420 w->pending = 0;
1634 } 2421 }
1635} 2422}
1636 2423
1637int 2424int
1641 int pending = w_->pending; 2428 int pending = w_->pending;
1642 2429
1643 if (expect_true (pending)) 2430 if (expect_true (pending))
1644 { 2431 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
1646 w_->pending = 0; 2434 w_->pending = 0;
1647 p->w = 0;
1648 return p->events; 2435 return p->events;
1649 } 2436 }
1650 else 2437 else
1651 return 0; 2438 return 0;
1652} 2439}
1653 2440
1654void inline_size 2441inline_size void
1655pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1656{ 2443{
1657 int pri = w->priority; 2444 int pri = ev_priority (w);
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri; 2447 ev_set_priority (w, pri);
1661} 2448}
1662 2449
1663void inline_speed 2450inline_speed void
1664ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1665{ 2452{
1666 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1667 w->active = active; 2454 w->active = active;
1668 ev_ref (EV_A); 2455 ev_ref (EV_A);
1669} 2456}
1670 2457
1671void inline_size 2458inline_size void
1672ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1673{ 2460{
1674 ev_unref (EV_A); 2461 ev_unref (EV_A);
1675 w->active = 0; 2462 w->active = 0;
1676} 2463}
1683 int fd = w->fd; 2470 int fd = w->fd;
1684 2471
1685 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1686 return; 2473 return;
1687 2474
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1689 2479
1690 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1692 wlist_add (&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1693 2483
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1695 w->events &= ~EV_IOFDSET; 2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
1696} 2488}
1697 2489
1698void noinline 2490void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1700{ 2492{
1701 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1703 return; 2495 return;
1704 2496
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
1706 2500
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1709 2503
1710 fd_change (EV_A_ w->fd, 1); 2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
1711} 2507}
1712 2508
1713void noinline 2509void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1715{ 2511{
1716 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1717 return; 2513 return;
1718 2514
1719 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1720 2516
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1727 2527
2528 EV_FREQUENT_CHECK;
2529
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2531}
1730 2532
1731void noinline 2533void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2535{
1734 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1736 return; 2538 return;
1737 2539
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2540 EV_FREQUENT_CHECK;
1739 2541
1740 { 2542 {
1741 int active = ((W)w)->active; 2543 int active = ev_active (w);
1742 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1743 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1744 { 2550 {
1745 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1747 } 2553 }
1748 } 2554 }
1749 2555
1750 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1751 2559
1752 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1753} 2561}
1754 2562
1755void noinline 2563void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1757{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1758 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1759 { 2569 {
1760 if (w->repeat) 2570 if (w->repeat)
1761 { 2571 {
1762 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1764 } 2575 }
1765 else 2576 else
1766 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1767 } 2578 }
1768 else if (w->repeat) 2579 else if (w->repeat)
1769 { 2580 {
1770 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1772 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1773} 2592}
1774 2593
1775#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1776void noinline 2595void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2597{
1779 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1780 return; 2599 return;
1781 2600
1782 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2603 else if (w->interval)
1785 { 2604 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2608 }
1790 else 2609 else
1791 ((WT)w)->at = w->offset; 2610 ev_at (w) = w->offset;
1792 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1797 2620
2621 EV_FREQUENT_CHECK;
2622
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2624}
1800 2625
1801void noinline 2626void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2628{
1804 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1806 return; 2631 return;
1807 2632
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2633 EV_FREQUENT_CHECK;
1809 2634
1810 { 2635 {
1811 int active = ((W)w)->active; 2636 int active = ev_active (w);
1812 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1813 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2643 {
1815 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1817 } 2646 }
1818 } 2647 }
1819 2648
2649 EV_FREQUENT_CHECK;
2650
1820 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1821} 2652}
1822 2653
1823void noinline 2654void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1834#endif 2665#endif
1835 2666
1836void noinline 2667void noinline
1837ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1838{ 2669{
1839#if EV_MULTIPLICITY
1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1841#endif
1842 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
1843 return; 2671 return;
1844 2672
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1846 2674
2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
1847 { 2686 {
1848#ifndef _WIN32 2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1849 sigset_t full, prev; 2688 if (sigfd < 0 && errno == EINVAL)
1850 sigfillset (&full); 2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853 2690
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
1855 2694
1856#ifndef _WIN32 2695 sigemptyset (&sigfd_set);
1857 sigprocmask (SIG_SETMASK, &prev, 0); 2696
1858#endif 2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
1859 } 2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
1860 2713
1861 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2716
1864 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
1865 { 2721 {
1866#if _WIN32 2722# if _WIN32
1867 signal (w->signum, sighandler); 2723 signal (w->signum, ev_sighandler);
1868#else 2724# else
1869 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
1870 sa.sa_handler = sighandler; 2729 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1874#endif 2737#endif
1875 } 2738 }
2739
2740 EV_FREQUENT_CHECK;
1876} 2741}
1877 2742
1878void noinline 2743void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2744ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2745{
1881 clear_pending (EV_A_ (W)w); 2746 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2747 if (expect_false (!ev_is_active (w)))
1883 return; 2748 return;
1884 2749
2750 EV_FREQUENT_CHECK;
2751
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
1887 2754
1888 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
1889 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2773
2774 EV_FREQUENT_CHECK;
1890} 2775}
1891 2776
1892void 2777void
1893ev_child_start (EV_P_ ev_child *w) 2778ev_child_start (EV_P_ ev_child *w)
1894{ 2779{
1895#if EV_MULTIPLICITY 2780#if EV_MULTIPLICITY
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2782#endif
1898 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
1899 return; 2784 return;
1900 2785
2786 EV_FREQUENT_CHECK;
2787
1901 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2790
2791 EV_FREQUENT_CHECK;
1903} 2792}
1904 2793
1905void 2794void
1906ev_child_stop (EV_P_ ev_child *w) 2795ev_child_stop (EV_P_ ev_child *w)
1907{ 2796{
1908 clear_pending (EV_A_ (W)w); 2797 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2798 if (expect_false (!ev_is_active (w)))
1910 return; 2799 return;
1911 2800
2801 EV_FREQUENT_CHECK;
2802
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
1914} 2807}
1915 2808
1916#if EV_STAT_ENABLE 2809#if EV_STAT_ENABLE
1917 2810
1918# ifdef _WIN32 2811# ifdef _WIN32
1919# undef lstat 2812# undef lstat
1920# define lstat(a,b) _stati64 (a,b) 2813# define lstat(a,b) _stati64 (a,b)
1921# endif 2814# endif
1922 2815
1923#define DEF_STAT_INTERVAL 5.0074891 2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1924#define MIN_STAT_INTERVAL 0.1074891 2818#define MIN_STAT_INTERVAL 0.1074891
1925 2819
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927 2821
1928#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192 2823# define EV_INOTIFY_BUFSIZE 8192
1933{ 2827{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935 2829
1936 if (w->wd < 0) 2830 if (w->wd < 0)
1937 { 2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939 2834
1940 /* monitor some parent directory for speedup hints */ 2835 /* monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2839 {
1943 char path [4096]; 2840 char path [4096];
1944 strcpy (path, w->path); 2841 strcpy (path, w->path);
1945 2842
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950 2847
1951 char *pend = strrchr (path, '/'); 2848 char *pend = strrchr (path, '/');
1952 2849
1953 if (!pend) 2850 if (!pend || pend == path)
1954 break; /* whoops, no '/', complain to your admin */ 2851 break;
1955 2852
1956 *pend = 0; 2853 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask); 2854 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 } 2855 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 } 2857 }
1961 } 2858 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964 2859
1965 if (w->wd >= 0) 2860 if (w->wd >= 0)
2861 {
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
1967} 2881}
1968 2882
1969static void noinline 2883static void noinline
1970infy_del (EV_P_ ev_stat *w) 2884infy_del (EV_P_ ev_stat *w)
1971{ 2885{
1985 2899
1986static void noinline 2900static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{ 2902{
1989 if (slot < 0) 2903 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */ 2904 /* overflow, need to check for all hash slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1992 infy_wd (EV_A_ slot, wd, ev); 2906 infy_wd (EV_A_ slot, wd, ev);
1993 else 2907 else
1994 { 2908 {
1995 WL w_; 2909 WL w_;
2001 2915
2002 if (w->wd == wd || wd == -1) 2916 if (w->wd == wd || wd == -1)
2003 { 2917 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 { 2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2006 w->wd = -1; 2921 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */ 2922 infy_add (EV_A_ w); /* re-add, no matter what */
2008 } 2923 }
2009 2924
2010 stat_timer_cb (EV_A_ &w->timer, 0); 2925 stat_timer_cb (EV_A_ &w->timer, 0);
2023 2938
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2026} 2941}
2027 2942
2028void inline_size 2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
2029infy_init (EV_P) 2967infy_init (EV_P)
2030{ 2968{
2031 if (fs_fd != -2) 2969 if (fs_fd != -2)
2032 return; 2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
2033 2975
2034 fs_fd = inotify_init (); 2976 fs_fd = inotify_init ();
2035 2977
2036 if (fs_fd >= 0) 2978 if (fs_fd >= 0)
2037 { 2979 {
2039 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
2041 } 2983 }
2042} 2984}
2043 2985
2044void inline_size 2986inline_size void
2045infy_fork (EV_P) 2987infy_fork (EV_P)
2046{ 2988{
2047 int slot; 2989 int slot;
2048 2990
2049 if (fs_fd < 0) 2991 if (fs_fd < 0)
2065 w->wd = -1; 3007 w->wd = -1;
2066 3008
2067 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */ 3010 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else 3011 else
2070 ev_timer_start (EV_A_ &w->timer); 3012 ev_timer_again (EV_A_ &w->timer);
2071 } 3013 }
2072
2073 } 3014 }
2074} 3015}
2075 3016
3017#endif
3018
3019#ifdef _WIN32
3020# define EV_LSTAT(p,b) _stati64 (p, b)
3021#else
3022# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 3023#endif
2077 3024
2078void 3025void
2079ev_stat_stat (EV_P_ ev_stat *w) 3026ev_stat_stat (EV_P_ ev_stat *w)
2080{ 3027{
2107 || w->prev.st_atime != w->attr.st_atime 3054 || w->prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime 3055 || w->prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime 3056 || w->prev.st_ctime != w->attr.st_ctime
2110 ) { 3057 ) {
2111 #if EV_USE_INOTIFY 3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
2112 infy_del (EV_A_ w); 3061 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w); 3062 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */ 3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
2115 #endif 3065 #endif
2116 3066
2117 ev_feed_event (EV_A_ w, EV_STAT); 3067 ev_feed_event (EV_A_ w, EV_STAT);
2118 } 3068 }
2119} 3069}
2122ev_stat_start (EV_P_ ev_stat *w) 3072ev_stat_start (EV_P_ ev_stat *w)
2123{ 3073{
2124 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2125 return; 3075 return;
2126 3076
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w); 3077 ev_stat_stat (EV_A_ w);
2132 3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2133 if (w->interval < MIN_STAT_INTERVAL) 3080 w->interval = MIN_STAT_INTERVAL;
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135 3081
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2137 ev_set_priority (&w->timer, ev_priority (w)); 3083 ev_set_priority (&w->timer, ev_priority (w));
2138 3084
2139#if EV_USE_INOTIFY 3085#if EV_USE_INOTIFY
2140 infy_init (EV_A); 3086 infy_init (EV_A);
2141 3087
2142 if (fs_fd >= 0) 3088 if (fs_fd >= 0)
2143 infy_add (EV_A_ w); 3089 infy_add (EV_A_ w);
2144 else 3090 else
2145#endif 3091#endif
2146 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
2147 3093
2148 ev_start (EV_A_ (W)w, 1); 3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
2149} 3097}
2150 3098
2151void 3099void
2152ev_stat_stop (EV_P_ ev_stat *w) 3100ev_stat_stop (EV_P_ ev_stat *w)
2153{ 3101{
2154 clear_pending (EV_A_ (W)w); 3102 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3103 if (expect_false (!ev_is_active (w)))
2156 return; 3104 return;
2157 3105
3106 EV_FREQUENT_CHECK;
3107
2158#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 3109 infy_del (EV_A_ w);
2160#endif 3110#endif
2161 ev_timer_stop (EV_A_ &w->timer); 3111 ev_timer_stop (EV_A_ &w->timer);
2162 3112
2163 ev_stop (EV_A_ (W)w); 3113 ev_stop (EV_A_ (W)w);
3114
3115 EV_FREQUENT_CHECK;
2164} 3116}
2165#endif 3117#endif
2166 3118
2167#if EV_IDLE_ENABLE 3119#if EV_IDLE_ENABLE
2168void 3120void
2170{ 3122{
2171 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2172 return; 3124 return;
2173 3125
2174 pri_adjust (EV_A_ (W)w); 3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
2175 3129
2176 { 3130 {
2177 int active = ++idlecnt [ABSPRI (w)]; 3131 int active = ++idlecnt [ABSPRI (w)];
2178 3132
2179 ++idleall; 3133 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 3134 ev_start (EV_A_ (W)w, active);
2181 3135
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 3137 idles [ABSPRI (w)][active - 1] = w;
2184 } 3138 }
3139
3140 EV_FREQUENT_CHECK;
2185} 3141}
2186 3142
2187void 3143void
2188ev_idle_stop (EV_P_ ev_idle *w) 3144ev_idle_stop (EV_P_ ev_idle *w)
2189{ 3145{
2190 clear_pending (EV_A_ (W)w); 3146 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3147 if (expect_false (!ev_is_active (w)))
2192 return; 3148 return;
2193 3149
3150 EV_FREQUENT_CHECK;
3151
2194 { 3152 {
2195 int active = ((W)w)->active; 3153 int active = ev_active (w);
2196 3154
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 3157
2200 ev_stop (EV_A_ (W)w); 3158 ev_stop (EV_A_ (W)w);
2201 --idleall; 3159 --idleall;
2202 } 3160 }
3161
3162 EV_FREQUENT_CHECK;
2203} 3163}
2204#endif 3164#endif
2205 3165
2206void 3166void
2207ev_prepare_start (EV_P_ ev_prepare *w) 3167ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 3168{
2209 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
2210 return; 3170 return;
3171
3172 EV_FREQUENT_CHECK;
2211 3173
2212 ev_start (EV_A_ (W)w, ++preparecnt); 3174 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
2215} 3179}
2216 3180
2217void 3181void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 3182ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 3183{
2220 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2222 return; 3186 return;
2223 3187
3188 EV_FREQUENT_CHECK;
3189
2224 { 3190 {
2225 int active = ((W)w)->active; 3191 int active = ev_active (w);
3192
2226 prepares [active - 1] = prepares [--preparecnt]; 3193 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 3194 ev_active (prepares [active - 1]) = active;
2228 } 3195 }
2229 3196
2230 ev_stop (EV_A_ (W)w); 3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
2231} 3200}
2232 3201
2233void 3202void
2234ev_check_start (EV_P_ ev_check *w) 3203ev_check_start (EV_P_ ev_check *w)
2235{ 3204{
2236 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
2237 return; 3206 return;
3207
3208 EV_FREQUENT_CHECK;
2238 3209
2239 ev_start (EV_A_ (W)w, ++checkcnt); 3210 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
2242} 3215}
2243 3216
2244void 3217void
2245ev_check_stop (EV_P_ ev_check *w) 3218ev_check_stop (EV_P_ ev_check *w)
2246{ 3219{
2247 clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2249 return; 3222 return;
2250 3223
3224 EV_FREQUENT_CHECK;
3225
2251 { 3226 {
2252 int active = ((W)w)->active; 3227 int active = ev_active (w);
3228
2253 checks [active - 1] = checks [--checkcnt]; 3229 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 3230 ev_active (checks [active - 1]) = active;
2255 } 3231 }
2256 3232
2257 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
2258} 3236}
2259 3237
2260#if EV_EMBED_ENABLE 3238#if EV_EMBED_ENABLE
2261void noinline 3239void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 3240ev_embed_sweep (EV_P_ ev_embed *w)
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{ 3258{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282 3260
2283 { 3261 {
2284 struct ev_loop *loop = w->other; 3262 EV_P = w->other;
2285 3263
2286 while (fdchangecnt) 3264 while (fdchangecnt)
2287 { 3265 {
2288 fd_reify (EV_A); 3266 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 } 3268 }
2291 } 3269 }
2292} 3270}
2293 3271
3272static void
3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3274{
3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3276
3277 ev_embed_stop (EV_A_ w);
3278
3279 {
3280 EV_P = w->other;
3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3284 }
3285
3286 ev_embed_start (EV_A_ w);
3287}
3288
2294#if 0 3289#if 0
2295static void 3290static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{ 3292{
2298 ev_idle_stop (EV_A_ idle); 3293 ev_idle_stop (EV_A_ idle);
2304{ 3299{
2305 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2306 return; 3301 return;
2307 3302
2308 { 3303 {
2309 struct ev_loop *loop = w->other; 3304 EV_P = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 3307 }
3308
3309 EV_FREQUENT_CHECK;
2313 3310
2314 ev_set_priority (&w->io, ev_priority (w)); 3311 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 3312 ev_io_start (EV_A_ &w->io);
2316 3313
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 3315 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 3316 ev_prepare_start (EV_A_ &w->prepare);
2320 3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 3322
2323 ev_start (EV_A_ (W)w, 1); 3323 ev_start (EV_A_ (W)w, 1);
3324
3325 EV_FREQUENT_CHECK;
2324} 3326}
2325 3327
2326void 3328void
2327ev_embed_stop (EV_P_ ev_embed *w) 3329ev_embed_stop (EV_P_ ev_embed *w)
2328{ 3330{
2329 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2331 return; 3333 return;
2332 3334
3335 EV_FREQUENT_CHECK;
3336
2333 ev_io_stop (EV_A_ &w->io); 3337 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
2335 3340
2336 ev_stop (EV_A_ (W)w); 3341 EV_FREQUENT_CHECK;
2337} 3342}
2338#endif 3343#endif
2339 3344
2340#if EV_FORK_ENABLE 3345#if EV_FORK_ENABLE
2341void 3346void
2342ev_fork_start (EV_P_ ev_fork *w) 3347ev_fork_start (EV_P_ ev_fork *w)
2343{ 3348{
2344 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2345 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2346 3353
2347 ev_start (EV_A_ (W)w, ++forkcnt); 3354 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2350} 3359}
2351 3360
2352void 3361void
2353ev_fork_stop (EV_P_ ev_fork *w) 3362ev_fork_stop (EV_P_ ev_fork *w)
2354{ 3363{
2355 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2357 return; 3366 return;
2358 3367
3368 EV_FREQUENT_CHECK;
3369
2359 { 3370 {
2360 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
2361 forks [active - 1] = forks [--forkcnt]; 3373 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 3374 ev_active (forks [active - 1]) = active;
2363 } 3375 }
2364 3376
2365 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_ASYNC_ENABLE
3384void
3385ev_async_start (EV_P_ ev_async *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++asynccnt);
3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_async_stop (EV_P_ ev_async *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 asyncs [active - 1] = asyncs [--asynccnt];
3414 ev_active (asyncs [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421
3422void
3423ev_async_send (EV_P_ ev_async *w)
3424{
3425 w->sent = 1;
3426 evpipe_write (EV_A_ &async_pending);
2366} 3427}
2367#endif 3428#endif
2368 3429
2369/*****************************************************************************/ 3430/*****************************************************************************/
2370 3431
2380once_cb (EV_P_ struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
2381{ 3442{
2382 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
2383 void *arg = once->arg; 3444 void *arg = once->arg;
2384 3445
2385 ev_io_stop (EV_A_ &once->io); 3446 ev_io_stop (EV_A_ &once->io);
2386 ev_timer_stop (EV_A_ &once->to); 3447 ev_timer_stop (EV_A_ &once->to);
2387 ev_free (once); 3448 ev_free (once);
2388 3449
2389 cb (revents, arg); 3450 cb (revents, arg);
2390} 3451}
2391 3452
2392static void 3453static void
2393once_cb_io (EV_P_ ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
2394{ 3455{
2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2396} 3459}
2397 3460
2398static void 3461static void
2399once_cb_to (EV_P_ ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
2400{ 3463{
2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2402} 3467}
2403 3468
2404void 3469void
2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2406{ 3471{
2428 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
2429 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
2430 } 3495 }
2431} 3496}
2432 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
2433#if EV_MULTIPLICITY 3606#if EV_MULTIPLICITY
2434 #include "ev_wrap.h" 3607 #include "ev_wrap.h"
2435#endif 3608#endif
2436 3609
2437#ifdef __cplusplus 3610#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines