ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
137#ifndef _WIN32 177#ifndef _WIN32
138# include <sys/time.h> 178# include <sys/time.h>
139# include <sys/wait.h> 179# include <sys/wait.h>
140# include <unistd.h> 180# include <unistd.h>
141#else 181#else
182# include <io.h>
142# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 184# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
146# endif 187# endif
147#endif 188#endif
148 189
149/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
150 226
151#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
152# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
153#endif 233#endif
154 234
155#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 237#endif
158 238
159#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
160# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
161#endif 245#endif
162 246
163#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
165#endif 249#endif
171# define EV_USE_POLL 1 255# define EV_USE_POLL 1
172# endif 256# endif
173#endif 257#endif
174 258
175#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
176# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
177#endif 265#endif
178 266
179#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
181#endif 269#endif
183#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 272# define EV_USE_PORT 0
185#endif 273#endif
186 274
187#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
188# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
189#endif 281#endif
190 282
191#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 284# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
202# else 294# else
203# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
204# endif 296# endif
205#endif 297#endif
206 298
207/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
208 354
209#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
212#endif 358#endif
226# include <sys/select.h> 372# include <sys/select.h>
227# endif 373# endif
228#endif 374#endif
229 375
230#if EV_USE_INOTIFY 376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
231# include <sys/inotify.h> 379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
232#endif 385#endif
233 386
234#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 388# include <winsock.h>
236#endif 389#endif
237 390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# ifdef O_CLOEXEC
399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
403# endif
404# ifdef __cplusplus
405extern "C" {
406# endif
407int eventfd (unsigned int initval, int flags);
408# ifdef __cplusplus
409}
410# endif
411#endif
412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
441
238/**/ 442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
239 449
240/* 450/*
241 * This is used to avoid floating point rounding problems. 451 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 452 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 453 * to ensure progress, time-wise, even when rounding
247 */ 457 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 459
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 462
254#if __GNUC__ >= 4 463#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
257#else 466#else
258# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
259# define noinline 468# define noinline
260# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 470# define inline
262# endif 471# endif
263#endif 472#endif
264 473
265#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 479# define inline_speed static noinline
271#else 480#else
272# define inline_speed static inline 481# define inline_speed static inline
273#endif 482#endif
274 483
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
277 491
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
280 494
281typedef ev_watcher *W; 495typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
284 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
288 521
289#ifdef _WIN32 522#ifdef _WIN32
290# include "ev_win32.c" 523# include "ev_win32.c"
291#endif 524#endif
292 525
299{ 532{
300 syserr_cb = cb; 533 syserr_cb = cb;
301} 534}
302 535
303static void noinline 536static void noinline
304syserr (const char *msg) 537ev_syserr (const char *msg)
305{ 538{
306 if (!msg) 539 if (!msg)
307 msg = "(libev) system error"; 540 msg = "(libev) system error";
308 541
309 if (syserr_cb) 542 if (syserr_cb)
313 perror (msg); 546 perror (msg);
314 abort (); 547 abort ();
315 } 548 }
316} 549}
317 550
551static void *
552ev_realloc_emul (void *ptr, long size)
553{
554 /* some systems, notably openbsd and darwin, fail to properly
555 * implement realloc (x, 0) (as required by both ansi c-98 and
556 * the single unix specification, so work around them here.
557 */
558
559 if (size)
560 return realloc (ptr, size);
561
562 free (ptr);
563 return 0;
564}
565
318static void *(*alloc)(void *ptr, long size); 566static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 567
320void 568void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 569ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 570{
323 alloc = cb; 571 alloc = cb;
324} 572}
325 573
326inline_speed void * 574inline_speed void *
327ev_realloc (void *ptr, long size) 575ev_realloc (void *ptr, long size)
328{ 576{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 577 ptr = alloc (ptr, size);
330 578
331 if (!ptr && size) 579 if (!ptr && size)
332 { 580 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 581 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 582 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
342 590
343/*****************************************************************************/ 591/*****************************************************************************/
344 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
345typedef struct 597typedef struct
346{ 598{
347 WL head; 599 WL head;
348 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
350#if EV_SELECT_IS_WINSOCKET 607#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 608 SOCKET handle;
352#endif 609#endif
353} ANFD; 610} ANFD;
354 611
612/* stores the pending event set for a given watcher */
355typedef struct 613typedef struct
356{ 614{
357 W w; 615 W w;
358 int events; 616 int events; /* the pending event set for the given watcher */
359} ANPENDING; 617} ANPENDING;
360 618
361#if EV_USE_INOTIFY 619#if EV_USE_INOTIFY
620/* hash table entry per inotify-id */
362typedef struct 621typedef struct
363{ 622{
364 WL head; 623 WL head;
365} ANFS; 624} ANFS;
625#endif
626
627/* Heap Entry */
628#if EV_HEAP_CACHE_AT
629 /* a heap element */
630 typedef struct {
631 ev_tstamp at;
632 WT w;
633 } ANHE;
634
635 #define ANHE_w(he) (he).w /* access watcher, read-write */
636 #define ANHE_at(he) (he).at /* access cached at, read-only */
637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
638#else
639 /* a heap element */
640 typedef WT ANHE;
641
642 #define ANHE_w(he) (he)
643 #define ANHE_at(he) (he)->at
644 #define ANHE_at_cache(he)
366#endif 645#endif
367 646
368#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
369 648
370 struct ev_loop 649 struct ev_loop
389 668
390 static int ev_default_loop_ptr; 669 static int ev_default_loop_ptr;
391 670
392#endif 671#endif
393 672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
684
394/*****************************************************************************/ 685/*****************************************************************************/
395 686
687#ifndef EV_HAVE_EV_TIME
396ev_tstamp 688ev_tstamp
397ev_time (void) 689ev_time (void)
398{ 690{
399#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
400 struct timespec ts; 694 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 697 }
698#endif
699
404 struct timeval tv; 700 struct timeval tv;
405 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 703}
704#endif
409 705
410ev_tstamp inline_size 706inline_size ev_tstamp
411get_clock (void) 707get_clock (void)
412{ 708{
413#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
415 { 711 {
441 ts.tv_sec = (time_t)delay; 737 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 738 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 739
444 nanosleep (&ts, 0); 740 nanosleep (&ts, 0);
445#elif defined(_WIN32) 741#elif defined(_WIN32)
446 Sleep (delay * 1e3); 742 Sleep ((unsigned long)(delay * 1e3));
447#else 743#else
448 struct timeval tv; 744 struct timeval tv;
449 745
450 tv.tv_sec = (time_t)delay; 746 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
453 select (0, 0, 0, 0, &tv); 752 select (0, 0, 0, 0, &tv);
454#endif 753#endif
455 } 754 }
456} 755}
457 756
458/*****************************************************************************/ 757/*****************************************************************************/
459 758
460int inline_size 759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
760
761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
461array_nextsize (int elem, int cur, int cnt) 764array_nextsize (int elem, int cur, int cnt)
462{ 765{
463 int ncur = cur + 1; 766 int ncur = cur + 1;
464 767
465 do 768 do
466 ncur <<= 1; 769 ncur <<= 1;
467 while (cnt > ncur); 770 while (cnt > ncur);
468 771
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 772 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 773 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 774 {
472 ncur *= elem; 775 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 776 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 777 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 778 ncur /= elem;
476 } 779 }
477 780
478 return ncur; 781 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 785array_realloc (int elem, void *base, int *cur, int cnt)
483{ 786{
484 *cur = array_nextsize (elem, *cur, cnt); 787 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 788 return ev_realloc (base, elem * *cur);
486} 789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 793
488#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 795 if (expect_false ((cnt) > (cur))) \
490 { \ 796 { \
491 int ocur_ = (cur); \ 797 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 810 }
505#endif 811#endif
506 812
507#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 815
510/*****************************************************************************/ 816/*****************************************************************************/
817
818/* dummy callback for pending events */
819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
821{
822}
511 823
512void noinline 824void noinline
513ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
514{ 826{
515 W w_ = (W)w; 827 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 836 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 837 pendings [pri][w_->pending - 1].events = revents;
526 } 838 }
527} 839}
528 840
529void inline_speed 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 858{
532 int i; 859 int i;
533 860
534 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
536} 863}
537 864
538/*****************************************************************************/ 865/*****************************************************************************/
539 866
540void inline_size 867inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
555{ 869{
556 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
557 ev_io *w; 871 ev_io *w;
558 872
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 877 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
565 } 879 }
566} 880}
567 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
568void 893void
569ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 895{
571 if (fd >= 0 && fd < anfdmax) 896 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
573} 898}
574 899
575void inline_size 900/* make sure the external fd watch events are in-sync */
901/* with the kernel/libev internal state */
902inline_size void
576fd_reify (EV_P) 903fd_reify (EV_P)
577{ 904{
578 int i; 905 int i;
579 906
580 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 916 events |= (unsigned char)w->events;
590 917
591#if EV_SELECT_IS_WINSOCKET 918#if EV_SELECT_IS_WINSOCKET
592 if (events) 919 if (events)
593 { 920 {
594 unsigned long argp; 921 unsigned long arg;
595 anfd->handle = _get_osfhandle (fd); 922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 924 }
598#endif 925#endif
599 926
600 { 927 {
601 unsigned char o_events = anfd->events; 928 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 929 unsigned char o_reify = anfd->reify;
603 930
604 anfd->reify = 0; 931 anfd->reify = 0;
605 anfd->events = events; 932 anfd->events = events;
606 933
607 if (o_events != events || o_reify & EV_IOFDSET) 934 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 935 backend_modify (EV_A_ fd, o_events, events);
609 } 936 }
610 } 937 }
611 938
612 fdchangecnt = 0; 939 fdchangecnt = 0;
613} 940}
614 941
615void inline_size 942/* something about the given fd changed */
943inline_size void
616fd_change (EV_P_ int fd, int flags) 944fd_change (EV_P_ int fd, int flags)
617{ 945{
618 unsigned char reify = anfds [fd].reify; 946 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 947 anfds [fd].reify |= flags;
620 948
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
626 } 954 }
627} 955}
628 956
629void inline_speed 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
630fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
631{ 960{
632 ev_io *w; 961 ev_io *w;
633 962
634 while ((w = (ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 967 }
639} 968}
640 969
641int inline_size 970/* check whether the given fd is atcually valid, for error recovery */
971inline_size int
642fd_valid (int fd) 972fd_valid (int fd)
643{ 973{
644#ifdef _WIN32 974#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 976#else
647 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
648#endif 978#endif
649} 979}
650 980
654{ 984{
655 int fd; 985 int fd;
656 986
657 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 988 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
661} 991}
662 992
663/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 994static void noinline
668 998
669 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1000 if (anfds [fd].events)
671 { 1001 {
672 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
673 return; 1003 break;
674 } 1004 }
675} 1005}
676 1006
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1008static void noinline
682 1012
683 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1014 if (anfds [fd].events)
685 { 1015 {
686 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
1017 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1019 }
689} 1020}
690 1021
691/*****************************************************************************/ 1022/*****************************************************************************/
692 1023
693void inline_speed 1024/*
694upheap (WT *heap, int k) 1025 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 1026 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 1027 * the branching factor of the d-tree.
1028 */
697 1029
698 while (k) 1030/*
699 { 1031 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1033 * which is more cache-efficient.
1034 * the difference is about 5% with 50000+ watchers.
1035 */
1036#if EV_USE_4HEAP
701 1037
702 if (heap [p]->at <= w->at) 1038#define DHEAP 4
1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1041#define UPHEAP_DONE(p,k) ((p) == (k))
1042
1043/* away from the root */
1044inline_speed void
1045downheap (ANHE *heap, int N, int k)
1046{
1047 ANHE he = heap [k];
1048 ANHE *E = heap + N + HEAP0;
1049
1050 for (;;)
1051 {
1052 ev_tstamp minat;
1053 ANHE *minpos;
1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1055
1056 /* find minimum child */
1057 if (expect_true (pos + DHEAP - 1 < E))
1058 {
1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else if (pos < E)
1065 {
1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1068 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1069 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1070 }
1071 else
703 break; 1072 break;
704 1073
1074 if (ANHE_at (he) <= minat)
1075 break;
1076
1077 heap [k] = *minpos;
1078 ev_active (ANHE_w (*minpos)) = k;
1079
1080 k = minpos - heap;
1081 }
1082
1083 heap [k] = he;
1084 ev_active (ANHE_w (he)) = k;
1085}
1086
1087#else /* 4HEAP */
1088
1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
1092
1093/* away from the root */
1094inline_speed void
1095downheap (ANHE *heap, int N, int k)
1096{
1097 ANHE he = heap [k];
1098
1099 for (;;)
1100 {
1101 int c = k << 1;
1102
1103 if (c >= N + HEAP0)
1104 break;
1105
1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1107 ? 1 : 0;
1108
1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
1110 break;
1111
1112 heap [k] = heap [c];
1113 ev_active (ANHE_w (heap [k])) = k;
1114
1115 k = c;
1116 }
1117
1118 heap [k] = he;
1119 ev_active (ANHE_w (he)) = k;
1120}
1121#endif
1122
1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
705 heap [k] = heap [p]; 1136 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1137 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1138 k = p;
708 } 1139 }
709 1140
710 heap [k] = w; 1141 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1142 ev_active (ANHE_w (he)) = k;
712} 1143}
713 1144
714void inline_speed 1145/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1146inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1147adjustheap (ANHE *heap, int N, int k)
744{ 1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
745 upheap (heap, k); 1150 upheap (heap, k);
1151 else
746 downheap (heap, N, k); 1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
747} 1165}
748 1166
749/*****************************************************************************/ 1167/*****************************************************************************/
750 1168
1169/* associate signal watchers to a signal signal */
751typedef struct 1170typedef struct
752{ 1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
753 WL head; 1176 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG; 1177} ANSIG;
756 1178
757static ANSIG *signals; 1179static ANSIG signals [EV_NSIG - 1];
758static int signalmax;
759 1180
760static int sigpipe [2]; 1181/*****************************************************************************/
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1182
764void inline_size 1183/* used to prepare libev internal fd's */
765signals_init (ANSIG *base, int count) 1184/* this is not fork-safe */
766{ 1185inline_speed void
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1186fd_intern (int fd)
829{ 1187{
830#ifdef _WIN32 1188#ifdef _WIN32
831 int arg = 1; 1189 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1191#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1193 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1194#endif
837} 1195}
838 1196
839static void noinline 1197static void noinline
840siginit (EV_P) 1198evpipe_init (EV_P)
841{ 1199{
1200 if (!ev_is_active (&pipe_w))
1201 {
1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
1208 {
1209 evpipe [0] = -1;
1210 fd_intern (evfd); /* doing it twice doesn't hurt */
1211 ev_io_set (&pipe_w, evfd, EV_READ);
1212 }
1213 else
1214#endif
1215 {
1216 while (pipe (evpipe))
1217 ev_syserr ("(libev) error creating signal/async pipe");
1218
842 fd_intern (sigpipe [0]); 1219 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1220 fd_intern (evpipe [1]);
1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1222 }
844 1223
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1224 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1225 ev_unref (EV_A); /* watcher should not keep loop alive */
1226 }
1227}
1228
1229inline_size void
1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1231{
1232 if (!*flag)
1233 {
1234 int old_errno = errno; /* save errno because write might clobber it */
1235
1236 *flag = 1;
1237
1238#if EV_USE_EVENTFD
1239 if (evfd >= 0)
1240 {
1241 uint64_t counter = 1;
1242 write (evfd, &counter, sizeof (uint64_t));
1243 }
1244 else
1245#endif
1246 write (evpipe [1], &old_errno, 1);
1247
1248 errno = old_errno;
1249 }
1250}
1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
1254static void
1255pipecb (EV_P_ ev_io *iow, int revents)
1256{
1257 int i;
1258
1259#if EV_USE_EVENTFD
1260 if (evfd >= 0)
1261 {
1262 uint64_t counter;
1263 read (evfd, &counter, sizeof (uint64_t));
1264 }
1265 else
1266#endif
1267 {
1268 char dummy;
1269 read (evpipe [0], &dummy, 1);
1270 }
1271
1272 if (sig_pending)
1273 {
1274 sig_pending = 0;
1275
1276 for (i = EV_NSIG - 1; i--; )
1277 if (expect_false (signals [i].pending))
1278 ev_feed_signal_event (EV_A_ i + 1);
1279 }
1280
1281#if EV_ASYNC_ENABLE
1282 if (async_pending)
1283 {
1284 async_pending = 0;
1285
1286 for (i = asynccnt; i--; )
1287 if (asyncs [i]->sent)
1288 {
1289 asyncs [i]->sent = 0;
1290 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1291 }
1292 }
1293#endif
848} 1294}
849 1295
850/*****************************************************************************/ 1296/*****************************************************************************/
851 1297
1298static void
1299ev_sighandler (int signum)
1300{
1301#if EV_MULTIPLICITY
1302 EV_P = signals [signum - 1].loop;
1303#endif
1304
1305#ifdef _WIN32
1306 signal (signum, ev_sighandler);
1307#endif
1308
1309 signals [signum - 1].pending = 1;
1310 evpipe_write (EV_A_ &sig_pending);
1311}
1312
1313void noinline
1314ev_feed_signal_event (EV_P_ int signum)
1315{
1316 WL w;
1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
1323#if EV_MULTIPLICITY
1324 /* it is permissible to try to feed a signal to the wrong loop */
1325 /* or, likely more useful, feeding a signal nobody is waiting for */
1326
1327 if (expect_false (signals [signum].loop != EV_A))
1328 return;
1329#endif
1330
1331 signals [signum].pending = 0;
1332
1333 for (w = signals [signum].head; w; w = w->next)
1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1335}
1336
1337#if EV_USE_SIGNALFD
1338static void
1339sigfdcb (EV_P_ ev_io *iow, int revents)
1340{
1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1342
1343 for (;;)
1344 {
1345 ssize_t res = read (sigfd, si, sizeof (si));
1346
1347 /* not ISO-C, as res might be -1, but works with SuS */
1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1350
1351 if (res < (ssize_t)sizeof (si))
1352 break;
1353 }
1354}
1355#endif
1356
1357/*****************************************************************************/
1358
852static WL childs [EV_PID_HASHSIZE]; 1359static WL childs [EV_PID_HASHSIZE];
853 1360
854#ifndef _WIN32 1361#ifndef _WIN32
855 1362
856static ev_signal childev; 1363static ev_signal childev;
857 1364
858void inline_speed 1365#ifndef WIFCONTINUED
1366# define WIFCONTINUED(status) 0
1367#endif
1368
1369/* handle a single child status event */
1370inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1371child_reap (EV_P_ int chain, int pid, int status)
860{ 1372{
861 ev_child *w; 1373 ev_child *w;
1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1375
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1376 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1377 {
864 if (w->pid == pid || !w->pid) 1378 if ((w->pid == pid || !w->pid)
1379 && (!traced || (w->flags & 1)))
865 { 1380 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1381 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1382 w->rpid = pid;
868 w->rstatus = status; 1383 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1384 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1385 }
1386 }
871} 1387}
872 1388
873#ifndef WCONTINUED 1389#ifndef WCONTINUED
874# define WCONTINUED 0 1390# define WCONTINUED 0
875#endif 1391#endif
876 1392
1393/* called on sigchld etc., calls waitpid */
877static void 1394static void
878childcb (EV_P_ ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
879{ 1396{
880 int pid, status; 1397 int pid, status;
881 1398
884 if (!WCONTINUED 1401 if (!WCONTINUED
885 || errno != EINVAL 1402 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1403 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1404 return;
888 1405
889 /* make sure we are called again until all childs have been reaped */ 1406 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1407 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1409
893 child_reap (EV_A_ sw, pid, pid, status); 1410 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1411 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1412 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1413}
897 1414
898#endif 1415#endif
899 1416
900/*****************************************************************************/ 1417/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1479 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1480 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1481 flags &= ~EVBACKEND_KQUEUE;
965#endif 1482#endif
966#ifdef __APPLE__ 1483#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1484 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1487#endif
970 1488
971 return flags; 1489 return flags;
972} 1490}
973 1491
987ev_backend (EV_P) 1505ev_backend (EV_P)
988{ 1506{
989 return backend; 1507 return backend;
990} 1508}
991 1509
1510#if EV_MINIMAL < 2
992unsigned int 1511unsigned int
993ev_loop_count (EV_P) 1512ev_loop_count (EV_P)
994{ 1513{
995 return loop_count; 1514 return loop_count;
996} 1515}
997 1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
998void 1523void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1525{
1001 io_blocktime = interval; 1526 io_blocktime = interval;
1002} 1527}
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{ 1531{
1007 timeout_blocktime = interval; 1532 timeout_blocktime = interval;
1008} 1533}
1009 1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
1010static void noinline 1560static void noinline
1011loop_init (EV_P_ unsigned int flags) 1561loop_init (EV_P_ unsigned int flags)
1012{ 1562{
1013 if (!backend) 1563 if (!backend)
1014 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
1015#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
1016 { 1577 {
1017 struct timespec ts; 1578 struct timespec ts;
1579
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1581 have_monotonic = 1;
1020 } 1582 }
1021#endif 1583#endif
1022
1023 ev_rt_now = ev_time ();
1024 mn_now = get_clock ();
1025 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now;
1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030 1584
1031 /* pid check not overridable via env */ 1585 /* pid check not overridable via env */
1032#ifndef _WIN32 1586#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1587 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1588 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1591 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1592 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1593 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1594 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1595
1596 ev_rt_now = ev_time ();
1597 mn_now = get_clock ();
1598 now_floor = mn_now;
1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1603
1604 io_blocktime = 0.;
1605 timeout_blocktime = 0.;
1606 backend = 0;
1607 backend_fd = -1;
1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1612#if EV_USE_INOTIFY
1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1614#endif
1615#if EV_USE_SIGNALFD
1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1617#endif
1618
1042 if (!(flags & 0x0000ffffUL)) 1619 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1620 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1621
1051#if EV_USE_PORT 1622#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1623 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1624#endif
1054#if EV_USE_KQUEUE 1625#if EV_USE_KQUEUE
1062#endif 1633#endif
1063#if EV_USE_SELECT 1634#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1636#endif
1066 1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
1067 ev_init (&sigev, sigcb); 1640 ev_init (&pipe_w, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1641 ev_set_priority (&pipe_w, EV_MAXPRI);
1069 } 1642 }
1070} 1643}
1071 1644
1645/* free up a loop structure */
1072static void noinline 1646static void noinline
1073loop_destroy (EV_P) 1647loop_destroy (EV_P)
1074{ 1648{
1075 int i; 1649 int i;
1650
1651 if (ev_is_active (&pipe_w))
1652 {
1653 /*ev_ref (EV_A);*/
1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1655
1656#if EV_USE_EVENTFD
1657 if (evfd >= 0)
1658 close (evfd);
1659#endif
1660
1661 if (evpipe [0] >= 0)
1662 {
1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1665 }
1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
1076 1672
1077#if EV_USE_INOTIFY 1673#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1674 if (fs_fd >= 0)
1079 close (fs_fd); 1675 close (fs_fd);
1080#endif 1676#endif
1104#if EV_IDLE_ENABLE 1700#if EV_IDLE_ENABLE
1105 array_free (idle, [i]); 1701 array_free (idle, [i]);
1106#endif 1702#endif
1107 } 1703 }
1108 1704
1109 ev_free (anfds); anfdmax = 0; 1705 ev_free (anfds); anfds = 0; anfdmax = 0;
1110 1706
1111 /* have to use the microsoft-never-gets-it-right macro */ 1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
1112 array_free (fdchange, EMPTY); 1709 array_free (fdchange, EMPTY);
1113 array_free (timer, EMPTY); 1710 array_free (timer, EMPTY);
1114#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1115 array_free (periodic, EMPTY); 1712 array_free (periodic, EMPTY);
1116#endif 1713#endif
1117#if EV_FORK_ENABLE 1714#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1715 array_free (fork, EMPTY);
1119#endif 1716#endif
1120 array_free (prepare, EMPTY); 1717 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1718 array_free (check, EMPTY);
1719#if EV_ASYNC_ENABLE
1720 array_free (async, EMPTY);
1721#endif
1122 1722
1123 backend = 0; 1723 backend = 0;
1124} 1724}
1125 1725
1726#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1727inline_size void infy_fork (EV_P);
1728#endif
1127 1729
1128void inline_size 1730inline_size void
1129loop_fork (EV_P) 1731loop_fork (EV_P)
1130{ 1732{
1131#if EV_USE_PORT 1733#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif 1735#endif
1139#endif 1741#endif
1140#if EV_USE_INOTIFY 1742#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1743 infy_fork (EV_A);
1142#endif 1744#endif
1143 1745
1144 if (ev_is_active (&sigev)) 1746 if (ev_is_active (&pipe_w))
1145 { 1747 {
1146 /* default loop */ 1748 /* this "locks" the handlers against writing to the pipe */
1749 /* while we modify the fd vars */
1750 sig_pending = 1;
1751#if EV_ASYNC_ENABLE
1752 async_pending = 1;
1753#endif
1147 1754
1148 ev_ref (EV_A); 1755 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1756 ev_io_stop (EV_A_ &pipe_w);
1150 close (sigpipe [0]);
1151 close (sigpipe [1]);
1152 1757
1153 while (pipe (sigpipe)) 1758#if EV_USE_EVENTFD
1154 syserr ("(libev) error creating pipe"); 1759 if (evfd >= 0)
1760 close (evfd);
1761#endif
1155 1762
1763 if (evpipe [0] >= 0)
1764 {
1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1767 }
1768
1156 siginit (EV_A); 1769 evpipe_init (EV_A);
1770 /* now iterate over everything, in case we missed something */
1771 pipecb (EV_A_ &pipe_w, EV_READ);
1157 } 1772 }
1158 1773
1159 postfork = 0; 1774 postfork = 0;
1160} 1775}
1161 1776
1162#if EV_MULTIPLICITY 1777#if EV_MULTIPLICITY
1778
1163struct ev_loop * 1779struct ev_loop *
1164ev_loop_new (unsigned int flags) 1780ev_loop_new (unsigned int flags)
1165{ 1781{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1783
1168 memset (loop, 0, sizeof (struct ev_loop)); 1784 memset (EV_A, 0, sizeof (struct ev_loop));
1169
1170 loop_init (EV_A_ flags); 1785 loop_init (EV_A_ flags);
1171 1786
1172 if (ev_backend (EV_A)) 1787 if (ev_backend (EV_A))
1173 return loop; 1788 return EV_A;
1174 1789
1175 return 0; 1790 return 0;
1176} 1791}
1177 1792
1178void 1793void
1183} 1798}
1184 1799
1185void 1800void
1186ev_loop_fork (EV_P) 1801ev_loop_fork (EV_P)
1187{ 1802{
1188 postfork = 1; 1803 postfork = 1; /* must be in line with ev_default_fork */
1189} 1804}
1805#endif /* multiplicity */
1190 1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
1860 {
1861 verify_watcher (EV_A_ (W)w);
1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1864 }
1865
1866 assert (timermax >= timercnt);
1867 verify_heap (EV_A_ timers, timercnt);
1868
1869#if EV_PERIODIC_ENABLE
1870 assert (periodicmax >= periodiccnt);
1871 verify_heap (EV_A_ periodics, periodiccnt);
1872#endif
1873
1874 for (i = NUMPRI; i--; )
1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
1883
1884#if EV_FORK_ENABLE
1885 assert (forkmax >= forkcnt);
1886 array_verify (EV_A_ (W *)forks, forkcnt);
1887#endif
1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1903# endif
1904#endif
1905}
1191#endif 1906#endif
1192 1907
1193#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
1194struct ev_loop * 1909struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1910ev_default_loop_init (unsigned int flags)
1196#else 1911#else
1197int 1912int
1198ev_default_loop (unsigned int flags) 1913ev_default_loop (unsigned int flags)
1199#endif 1914#endif
1200{ 1915{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1916 if (!ev_default_loop_ptr)
1206 { 1917 {
1207#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
1209#else 1920#else
1210 ev_default_loop_ptr = 1; 1921 ev_default_loop_ptr = 1;
1211#endif 1922#endif
1212 1923
1213 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
1214 1925
1215 if (ev_backend (EV_A)) 1926 if (ev_backend (EV_A))
1216 { 1927 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1928#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1929 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1930 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1931 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1932 ev_unref (EV_A); /* child watcher should not keep loop alive */
1232 1941
1233void 1942void
1234ev_default_destroy (void) 1943ev_default_destroy (void)
1235{ 1944{
1236#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1237 struct ev_loop *loop = ev_default_loop_ptr; 1946 EV_P = ev_default_loop_ptr;
1238#endif 1947#endif
1948
1949 ev_default_loop_ptr = 0;
1239 1950
1240#ifndef _WIN32 1951#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
1243#endif 1954#endif
1244 1955
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1956 loop_destroy (EV_A);
1252} 1957}
1253 1958
1254void 1959void
1255ev_default_fork (void) 1960ev_default_fork (void)
1256{ 1961{
1257#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1963 EV_P = ev_default_loop_ptr;
1259#endif 1964#endif
1260 1965
1261 if (backend) 1966 postfork = 1; /* must be in line with ev_loop_fork */
1262 postfork = 1;
1263} 1967}
1264 1968
1265/*****************************************************************************/ 1969/*****************************************************************************/
1266 1970
1267void 1971void
1268ev_invoke (EV_P_ void *w, int revents) 1972ev_invoke (EV_P_ void *w, int revents)
1269{ 1973{
1270 EV_CB_INVOKE ((W)w, revents); 1974 EV_CB_INVOKE ((W)w, revents);
1271} 1975}
1272 1976
1273void inline_speed 1977unsigned int
1274call_pending (EV_P) 1978ev_pending_count (EV_P)
1979{
1980 int pri;
1981 unsigned int count = 0;
1982
1983 for (pri = NUMPRI; pri--; )
1984 count += pendingcnt [pri];
1985
1986 return count;
1987}
1988
1989void noinline
1990ev_invoke_pending (EV_P)
1275{ 1991{
1276 int pri; 1992 int pri;
1277 1993
1278 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
1279 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
1280 { 1996 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1282 1998
1283 if (expect_true (p->w))
1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2000 /* ^ this is no longer true, as pending_w could be here */
1286 2001
1287 p->w->pending = 0; 2002 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
1289 } 2004 EV_FREQUENT_CHECK;
1290 } 2005 }
1291} 2006}
1292 2007
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372
1373#if EV_IDLE_ENABLE 2008#if EV_IDLE_ENABLE
1374void inline_size 2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
2011inline_size void
1375idle_reify (EV_P) 2012idle_reify (EV_P)
1376{ 2013{
1377 if (expect_false (idleall)) 2014 if (expect_false (idleall))
1378 { 2015 {
1379 int pri; 2016 int pri;
1391 } 2028 }
1392 } 2029 }
1393} 2030}
1394#endif 2031#endif
1395 2032
1396void inline_speed 2033/* make timers pending */
2034inline_size void
2035timers_reify (EV_P)
2036{
2037 EV_FREQUENT_CHECK;
2038
2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2040 {
2041 do
2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2055
2056 ANHE_at_cache (timers [HEAP0]);
2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
2064 }
2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2066
2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
2068 }
2069}
2070
2071#if EV_PERIODIC_ENABLE
2072/* make periodics pending */
2073inline_size void
2074periodics_reify (EV_P)
2075{
2076 EV_FREQUENT_CHECK;
2077
2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2079 {
2080 int feed_count = 0;
2081
2082 do
2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2087
2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
2095 ANHE_at_cache (periodics [HEAP0]);
2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2124
2125 feed_reverse_done (EV_A_ EV_PERIODIC);
2126 }
2127}
2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2131static void noinline
2132periodics_reschedule (EV_P)
2133{
2134 int i;
2135
2136 /* adjust periodics after time jump */
2137 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2138 {
2139 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2140
2141 if (w->reschedule_cb)
2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2143 else if (w->interval)
2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2145
2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
2160 {
2161 ANHE *he = timers + i + HEAP0;
2162 ANHE_w (*he)->at += adjust;
2163 ANHE_at_cache (*he);
2164 }
2165}
2166
2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
1397time_update (EV_P_ ev_tstamp max_block) 2170time_update (EV_P_ ev_tstamp max_block)
1398{ 2171{
1399 int i;
1400
1401#if EV_USE_MONOTONIC 2172#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic)) 2173 if (expect_true (have_monotonic))
1403 { 2174 {
2175 int i;
1404 ev_tstamp odiff = rtmn_diff; 2176 ev_tstamp odiff = rtmn_diff;
1405 2177
1406 mn_now = get_clock (); 2178 mn_now = get_clock ();
1407 2179
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1426 */ 2198 */
1427 for (i = 4; --i; ) 2199 for (i = 4; --i; )
1428 { 2200 {
1429 rtmn_diff = ev_rt_now - mn_now; 2201 rtmn_diff = ev_rt_now - mn_now;
1430 2202
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2203 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 2204 return; /* all is well */
1433 2205
1434 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 2207 mn_now = get_clock ();
1436 now_floor = mn_now; 2208 now_floor = mn_now;
1437 } 2209 }
1438 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1439# if EV_PERIODIC_ENABLE 2213# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A); 2214 periodics_reschedule (EV_A);
1441# endif 2215# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 } 2216 }
1445 else 2217 else
1446#endif 2218#endif
1447 { 2219 {
1448 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1449 2221
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 { 2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1452#if EV_PERIODIC_ENABLE 2226#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1454#endif 2228#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1458 } 2229 }
1459 2230
1460 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1461 } 2232 }
1462} 2233}
1463 2234
1464void 2235void
1465ev_ref (EV_P)
1466{
1467 ++activecnt;
1468}
1469
1470void
1471ev_unref (EV_P)
1472{
1473 --activecnt;
1474}
1475
1476static int loop_done;
1477
1478void
1479ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1480{ 2237{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2238#if EV_MINIMAL < 2
1482 ? EVUNLOOP_ONE 2239 ++loop_depth;
1483 : EVUNLOOP_CANCEL; 2240#endif
1484 2241
2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
2244 loop_done = EVUNLOOP_CANCEL;
2245
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1486 2247
1487 do 2248 do
1488 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
1489#ifndef _WIN32 2254#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 2255 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 2256 if (expect_false (getpid () != curpid))
1492 { 2257 {
1493 curpid = getpid (); 2258 curpid = getpid ();
1499 /* we might have forked, so queue fork handlers */ 2264 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork)) 2265 if (expect_false (postfork))
1501 if (forkcnt) 2266 if (forkcnt)
1502 { 2267 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A); 2269 EV_INVOKE_PENDING;
1505 } 2270 }
1506#endif 2271#endif
1507 2272
1508 /* queue prepare watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1509 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1510 { 2275 {
1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1512 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1513 } 2278 }
1514 2279
1515 if (expect_false (!activecnt)) 2280 if (expect_false (loop_done))
1516 break; 2281 break;
1517 2282
1518 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1519 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1520 loop_fork (EV_A); 2285 loop_fork (EV_A);
1527 ev_tstamp waittime = 0.; 2292 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.; 2293 ev_tstamp sleeptime = 0.;
1529 2294
1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1531 { 2296 {
2297 /* remember old timestamp for io_blocktime calculation */
2298 ev_tstamp prev_mn_now = mn_now;
2299
1532 /* update time to cancel out callback processing overhead */ 2300 /* update time to cancel out callback processing overhead */
1533 time_update (EV_A_ 1e100); 2301 time_update (EV_A_ 1e100);
1534 2302
1535 waittime = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1536 2304
1537 if (timercnt) 2305 if (timercnt)
1538 { 2306 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1541 } 2309 }
1542 2310
1543#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 2312 if (periodiccnt)
1545 { 2313 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 2315 if (waittime > to) waittime = to;
1548 } 2316 }
1549#endif 2317#endif
1550 2318
2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
1551 if (expect_false (waittime < timeout_blocktime)) 2320 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime; 2321 waittime = timeout_blocktime;
1553 2322
1554 sleeptime = waittime - backend_fudge; 2323 /* extra check because io_blocktime is commonly 0 */
1555
1556 if (expect_true (sleeptime > io_blocktime)) 2324 if (expect_false (io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 { 2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
1561 ev_sleep (sleeptime); 2333 ev_sleep (sleeptime);
1562 waittime -= sleeptime; 2334 waittime -= sleeptime;
2335 }
1563 } 2336 }
1564 } 2337 }
1565 2338
2339#if EV_MINIMAL < 2
1566 ++loop_count; 2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1567 backend_poll (EV_A_ waittime); 2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1568 2345
1569 /* update ev_rt_now, do magic */ 2346 /* update ev_rt_now, do magic */
1570 time_update (EV_A_ waittime + sleeptime); 2347 time_update (EV_A_ waittime + sleeptime);
1571 } 2348 }
1572 2349
1583 2360
1584 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2362 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 2364
1588 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1589
1590 } 2366 }
1591 while (expect_true (activecnt && !loop_done)); 2367 while (expect_true (
2368 activecnt
2369 && !loop_done
2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2371 ));
1592 2372
1593 if (loop_done == EVUNLOOP_ONE) 2373 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1595} 2379}
1596 2380
1597void 2381void
1598ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1599{ 2383{
1600 loop_done = how; 2384 loop_done = how;
1601} 2385}
1602 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1603/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1604 2426
1605void inline_size 2427inline_size void
1606wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1607{ 2429{
1608 elem->next = *head; 2430 elem->next = *head;
1609 *head = elem; 2431 *head = elem;
1610} 2432}
1611 2433
1612void inline_size 2434inline_size void
1613wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1614{ 2436{
1615 while (*head) 2437 while (*head)
1616 { 2438 {
1617 if (*head == elem) 2439 if (expect_true (*head == elem))
1618 { 2440 {
1619 *head = elem->next; 2441 *head = elem->next;
1620 return; 2442 break;
1621 } 2443 }
1622 2444
1623 head = &(*head)->next; 2445 head = &(*head)->next;
1624 } 2446 }
1625} 2447}
1626 2448
1627void inline_speed 2449/* internal, faster, version of ev_clear_pending */
2450inline_speed void
1628clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1629{ 2452{
1630 if (w->pending) 2453 if (w->pending)
1631 { 2454 {
1632 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1633 w->pending = 0; 2456 w->pending = 0;
1634 } 2457 }
1635} 2458}
1636 2459
1637int 2460int
1641 int pending = w_->pending; 2464 int pending = w_->pending;
1642 2465
1643 if (expect_true (pending)) 2466 if (expect_true (pending))
1644 { 2467 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
1646 w_->pending = 0; 2470 w_->pending = 0;
1647 p->w = 0;
1648 return p->events; 2471 return p->events;
1649 } 2472 }
1650 else 2473 else
1651 return 0; 2474 return 0;
1652} 2475}
1653 2476
1654void inline_size 2477inline_size void
1655pri_adjust (EV_P_ W w) 2478pri_adjust (EV_P_ W w)
1656{ 2479{
1657 int pri = w->priority; 2480 int pri = ev_priority (w);
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri; 2483 ev_set_priority (w, pri);
1661} 2484}
1662 2485
1663void inline_speed 2486inline_speed void
1664ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1665{ 2488{
1666 pri_adjust (EV_A_ w); 2489 pri_adjust (EV_A_ w);
1667 w->active = active; 2490 w->active = active;
1668 ev_ref (EV_A); 2491 ev_ref (EV_A);
1669} 2492}
1670 2493
1671void inline_size 2494inline_size void
1672ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1673{ 2496{
1674 ev_unref (EV_A); 2497 ev_unref (EV_A);
1675 w->active = 0; 2498 w->active = 0;
1676} 2499}
1683 int fd = w->fd; 2506 int fd = w->fd;
1684 2507
1685 if (expect_false (ev_is_active (w))) 2508 if (expect_false (ev_is_active (w)))
1686 return; 2509 return;
1687 2510
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1689 2515
1690 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1692 wlist_add (&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1693 2519
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1695 w->events &= ~EV_IOFDSET; 2521 w->events &= ~EV__IOFDSET;
2522
2523 EV_FREQUENT_CHECK;
1696} 2524}
1697 2525
1698void noinline 2526void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1700{ 2528{
1701 clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2530 if (expect_false (!ev_is_active (w)))
1703 return; 2531 return;
1704 2532
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2534
2535 EV_FREQUENT_CHECK;
1706 2536
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1709 2539
1710 fd_change (EV_A_ w->fd, 1); 2540 fd_change (EV_A_ w->fd, 1);
2541
2542 EV_FREQUENT_CHECK;
1711} 2543}
1712 2544
1713void noinline 2545void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
1715{ 2547{
1716 if (expect_false (ev_is_active (w))) 2548 if (expect_false (ev_is_active (w)))
1717 return; 2549 return;
1718 2550
1719 ((WT)w)->at += mn_now; 2551 ev_at (w) += mn_now;
1720 2552
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2561 ANHE_at_cache (timers [ev_active (w)]);
2562 upheap (timers, ev_active (w));
1727 2563
2564 EV_FREQUENT_CHECK;
2565
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2567}
1730 2568
1731void noinline 2569void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2571{
1734 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1736 return; 2574 return;
1737 2575
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2576 EV_FREQUENT_CHECK;
1739 2577
1740 { 2578 {
1741 int active = ((W)w)->active; 2579 int active = ev_active (w);
1742 2580
2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2582
2583 --timercnt;
2584
1743 if (expect_true (--active < --timercnt)) 2585 if (expect_true (active < timercnt + HEAP0))
1744 { 2586 {
1745 timers [active] = timers [timercnt]; 2587 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2588 adjustheap (timers, timercnt, active);
1747 } 2589 }
1748 } 2590 }
1749 2591
1750 ((WT)w)->at -= mn_now; 2592 EV_FREQUENT_CHECK;
2593
2594 ev_at (w) -= mn_now;
1751 2595
1752 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1753} 2597}
1754 2598
1755void noinline 2599void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
1757{ 2601{
2602 EV_FREQUENT_CHECK;
2603
1758 if (ev_is_active (w)) 2604 if (ev_is_active (w))
1759 { 2605 {
1760 if (w->repeat) 2606 if (w->repeat)
1761 { 2607 {
1762 ((WT)w)->at = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2609 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, ev_active (w));
1764 } 2611 }
1765 else 2612 else
1766 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
1767 } 2614 }
1768 else if (w->repeat) 2615 else if (w->repeat)
1769 { 2616 {
1770 w->at = w->repeat; 2617 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
1772 } 2619 }
2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1773} 2628}
1774 2629
1775#if EV_PERIODIC_ENABLE 2630#if EV_PERIODIC_ENABLE
1776void noinline 2631void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2633{
1779 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1780 return; 2635 return;
1781 2636
1782 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2639 else if (w->interval)
1785 { 2640 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2644 }
1790 else 2645 else
1791 ((WT)w)->at = w->offset; 2646 ev_at (w) = w->offset;
1792 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2654 ANHE_at_cache (periodics [ev_active (w)]);
2655 upheap (periodics, ev_active (w));
1797 2656
2657 EV_FREQUENT_CHECK;
2658
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2660}
1800 2661
1801void noinline 2662void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2664{
1804 clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2666 if (expect_false (!ev_is_active (w)))
1806 return; 2667 return;
1807 2668
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2669 EV_FREQUENT_CHECK;
1809 2670
1810 { 2671 {
1811 int active = ((W)w)->active; 2672 int active = ev_active (w);
1812 2673
2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2675
2676 --periodiccnt;
2677
1813 if (expect_true (--active < --periodiccnt)) 2678 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2679 {
1815 periodics [active] = periodics [periodiccnt]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2681 adjustheap (periodics, periodiccnt, active);
1817 } 2682 }
1818 } 2683 }
1819 2684
2685 EV_FREQUENT_CHECK;
2686
1820 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
1821} 2688}
1822 2689
1823void noinline 2690void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2691ev_periodic_again (EV_P_ ev_periodic *w)
1834#endif 2701#endif
1835 2702
1836void noinline 2703void noinline
1837ev_signal_start (EV_P_ ev_signal *w) 2704ev_signal_start (EV_P_ ev_signal *w)
1838{ 2705{
1839#if EV_MULTIPLICITY
1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1841#endif
1842 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
1843 return; 2707 return;
1844 2708
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1846 2710
2711#if EV_MULTIPLICITY
2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
1847 { 2722 {
1848#ifndef _WIN32 2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1849 sigset_t full, prev; 2724 if (sigfd < 0 && errno == EINVAL)
1850 sigfillset (&full); 2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853 2726
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
1855 2730
1856#ifndef _WIN32 2731 sigemptyset (&sigfd_set);
1857 sigprocmask (SIG_SETMASK, &prev, 0); 2732
1858#endif 2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
1859 } 2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
1860 2749
1861 ev_start (EV_A_ (W)w, 1); 2750 ev_start (EV_A_ (W)w, 1);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2752
1864 if (!((WL)w)->next) 2753 if (!((WL)w)->next)
2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
2756# endif
1865 { 2757 {
1866#if _WIN32 2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
1867 signal (w->signum, sighandler); 2761 signal (w->signum, ev_sighandler);
1868#else 2762# else
1869 struct sigaction sa; 2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
1870 sa.sa_handler = sighandler; 2767 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2768 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1874#endif 2775#endif
1875 } 2776 }
2777
2778 EV_FREQUENT_CHECK;
1876} 2779}
1877 2780
1878void noinline 2781void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2782ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2783{
1881 clear_pending (EV_A_ (W)w); 2784 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2785 if (expect_false (!ev_is_active (w)))
1883 return; 2786 return;
1884 2787
2788 EV_FREQUENT_CHECK;
2789
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1887 2792
1888 if (!signals [w->signum - 1].head) 2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
1889 signal (w->signum, SIG_DFL); 2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
1890} 2816}
1891 2817
1892void 2818void
1893ev_child_start (EV_P_ ev_child *w) 2819ev_child_start (EV_P_ ev_child *w)
1894{ 2820{
1895#if EV_MULTIPLICITY 2821#if EV_MULTIPLICITY
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2823#endif
1898 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
1899 return; 2825 return;
1900 2826
2827 EV_FREQUENT_CHECK;
2828
1901 ev_start (EV_A_ (W)w, 1); 2829 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2831
2832 EV_FREQUENT_CHECK;
1903} 2833}
1904 2834
1905void 2835void
1906ev_child_stop (EV_P_ ev_child *w) 2836ev_child_stop (EV_P_ ev_child *w)
1907{ 2837{
1908 clear_pending (EV_A_ (W)w); 2838 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2839 if (expect_false (!ev_is_active (w)))
1910 return; 2840 return;
1911 2841
2842 EV_FREQUENT_CHECK;
2843
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2845 ev_stop (EV_A_ (W)w);
2846
2847 EV_FREQUENT_CHECK;
1914} 2848}
1915 2849
1916#if EV_STAT_ENABLE 2850#if EV_STAT_ENABLE
1917 2851
1918# ifdef _WIN32 2852# ifdef _WIN32
1919# undef lstat 2853# undef lstat
1920# define lstat(a,b) _stati64 (a,b) 2854# define lstat(a,b) _stati64 (a,b)
1921# endif 2855# endif
1922 2856
1923#define DEF_STAT_INTERVAL 5.0074891 2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1924#define MIN_STAT_INTERVAL 0.1074891 2859#define MIN_STAT_INTERVAL 0.1074891
1925 2860
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927 2862
1928#if EV_USE_INOTIFY 2863#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192 2864# define EV_INOTIFY_BUFSIZE 8192
1931static void noinline 2866static void noinline
1932infy_add (EV_P_ ev_stat *w) 2867infy_add (EV_P_ ev_stat *w)
1933{ 2868{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935 2870
1936 if (w->wd < 0) 2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1937 { 2891 }
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2892 else
2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1939 2896
1940 /* monitor some parent directory for speedup hints */ 2897 /* if path is not there, monitor some parent directory for speedup hints */
2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2899 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2901 {
1943 char path [4096]; 2902 char path [4096];
1944 strcpy (path, w->path); 2903 strcpy (path, w->path);
1945 2904
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950 2909
1951 char *pend = strrchr (path, '/'); 2910 char *pend = strrchr (path, '/');
1952 2911
1953 if (!pend) 2912 if (!pend || pend == path)
1954 break; /* whoops, no '/', complain to your admin */ 2913 break;
1955 2914
1956 *pend = 0; 2915 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask); 2916 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 } 2917 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 } 2919 }
1961 } 2920 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964 2921
1965 if (w->wd >= 0) 2922 if (w->wd >= 0)
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1967} 2929}
1968 2930
1969static void noinline 2931static void noinline
1970infy_del (EV_P_ ev_stat *w) 2932infy_del (EV_P_ ev_stat *w)
1971{ 2933{
1985 2947
1986static void noinline 2948static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{ 2950{
1989 if (slot < 0) 2951 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */ 2952 /* overflow, need to check for all hash slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1992 infy_wd (EV_A_ slot, wd, ev); 2954 infy_wd (EV_A_ slot, wd, ev);
1993 else 2955 else
1994 { 2956 {
1995 WL w_; 2957 WL w_;
2001 2963
2002 if (w->wd == wd || wd == -1) 2964 if (w->wd == wd || wd == -1)
2003 { 2965 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 { 2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2006 w->wd = -1; 2969 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */ 2970 infy_add (EV_A_ w); /* re-add, no matter what */
2008 } 2971 }
2009 2972
2010 stat_timer_cb (EV_A_ &w->timer, 0); 2973 stat_timer_cb (EV_A_ &w->timer, 0);
2023 2986
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2026} 2989}
2027 2990
2028void inline_size 2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
2029infy_init (EV_P) 3026infy_init (EV_P)
2030{ 3027{
2031 if (fs_fd != -2) 3028 if (fs_fd != -2)
2032 return; 3029 return;
2033 3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
2034 fs_fd = inotify_init (); 3035 fs_fd = infy_newfd ();
2035 3036
2036 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
2037 { 3038 {
3039 fd_intern (fs_fd);
2038 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2039 ev_set_priority (&fs_w, EV_MAXPRI); 3041 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w); 3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
2041 } 3044 }
2042} 3045}
2043 3046
2044void inline_size 3047inline_size void
2045infy_fork (EV_P) 3048infy_fork (EV_P)
2046{ 3049{
2047 int slot; 3050 int slot;
2048 3051
2049 if (fs_fd < 0) 3052 if (fs_fd < 0)
2050 return; 3053 return;
2051 3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
2052 close (fs_fd); 3057 close (fs_fd);
2053 fs_fd = inotify_init (); 3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
2054 3067
2055 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2056 { 3069 {
2057 WL w_ = fs_hash [slot].head; 3070 WL w_ = fs_hash [slot].head;
2058 fs_hash [slot].head = 0; 3071 fs_hash [slot].head = 0;
2065 w->wd = -1; 3078 w->wd = -1;
2066 3079
2067 if (fs_fd >= 0) 3080 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */ 3081 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else 3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2070 ev_timer_start (EV_A_ &w->timer); 3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
2071 } 3089 }
2072
2073 } 3090 }
2074} 3091}
2075 3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
3097#else
3098# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 3099#endif
2077 3100
2078void 3101void
2079ev_stat_stat (EV_P_ ev_stat *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
2080{ 3103{
2087static void noinline 3110static void noinline
2088stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2089{ 3112{
2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2091 3114
2092 /* we copy this here each the time so that */ 3115 ev_statdata prev = w->attr;
2093 /* prev has the old value when the callback gets invoked */
2094 w->prev = w->attr;
2095 ev_stat_stat (EV_A_ w); 3116 ev_stat_stat (EV_A_ w);
2096 3117
2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if ( 3119 if (
2099 w->prev.st_dev != w->attr.st_dev 3120 prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino 3121 || prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode 3122 || prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink 3123 || prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid 3124 || prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid 3125 || prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev 3126 || prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size 3127 || prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime 3128 || prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime 3129 || prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime 3130 || prev.st_ctime != w->attr.st_ctime
2110 ) { 3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
2111 #if EV_USE_INOTIFY 3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
2112 infy_del (EV_A_ w); 3140 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w); 3141 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */ 3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
2115 #endif 3144 #endif
2116 3145
2117 ev_feed_event (EV_A_ w, EV_STAT); 3146 ev_feed_event (EV_A_ w, EV_STAT);
2118 } 3147 }
2119} 3148}
2122ev_stat_start (EV_P_ ev_stat *w) 3151ev_stat_start (EV_P_ ev_stat *w)
2123{ 3152{
2124 if (expect_false (ev_is_active (w))) 3153 if (expect_false (ev_is_active (w)))
2125 return; 3154 return;
2126 3155
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2132 3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2133 if (w->interval < MIN_STAT_INTERVAL) 3159 w->interval = MIN_STAT_INTERVAL;
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135 3160
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2137 ev_set_priority (&w->timer, ev_priority (w)); 3162 ev_set_priority (&w->timer, ev_priority (w));
2138 3163
2139#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
2140 infy_init (EV_A); 3165 infy_init (EV_A);
2141 3166
2142 if (fs_fd >= 0) 3167 if (fs_fd >= 0)
2143 infy_add (EV_A_ w); 3168 infy_add (EV_A_ w);
2144 else 3169 else
2145#endif 3170#endif
3171 {
2146 ev_timer_start (EV_A_ &w->timer); 3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
2147 3175
2148 ev_start (EV_A_ (W)w, 1); 3176 ev_start (EV_A_ (W)w, 1);
3177
3178 EV_FREQUENT_CHECK;
2149} 3179}
2150 3180
2151void 3181void
2152ev_stat_stop (EV_P_ ev_stat *w) 3182ev_stat_stop (EV_P_ ev_stat *w)
2153{ 3183{
2154 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2156 return; 3186 return;
2157 3187
3188 EV_FREQUENT_CHECK;
3189
2158#if EV_USE_INOTIFY 3190#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 3191 infy_del (EV_A_ w);
2160#endif 3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
2161 ev_timer_stop (EV_A_ &w->timer); 3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
2162 3199
2163 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2164} 3203}
2165#endif 3204#endif
2166 3205
2167#if EV_IDLE_ENABLE 3206#if EV_IDLE_ENABLE
2168void 3207void
2170{ 3209{
2171 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2172 return; 3211 return;
2173 3212
2174 pri_adjust (EV_A_ (W)w); 3213 pri_adjust (EV_A_ (W)w);
3214
3215 EV_FREQUENT_CHECK;
2175 3216
2176 { 3217 {
2177 int active = ++idlecnt [ABSPRI (w)]; 3218 int active = ++idlecnt [ABSPRI (w)];
2178 3219
2179 ++idleall; 3220 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 3221 ev_start (EV_A_ (W)w, active);
2181 3222
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 3224 idles [ABSPRI (w)][active - 1] = w;
2184 } 3225 }
3226
3227 EV_FREQUENT_CHECK;
2185} 3228}
2186 3229
2187void 3230void
2188ev_idle_stop (EV_P_ ev_idle *w) 3231ev_idle_stop (EV_P_ ev_idle *w)
2189{ 3232{
2190 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2192 return; 3235 return;
2193 3236
3237 EV_FREQUENT_CHECK;
3238
2194 { 3239 {
2195 int active = ((W)w)->active; 3240 int active = ev_active (w);
2196 3241
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 3244
2200 ev_stop (EV_A_ (W)w); 3245 ev_stop (EV_A_ (W)w);
2201 --idleall; 3246 --idleall;
2202 } 3247 }
3248
3249 EV_FREQUENT_CHECK;
2203} 3250}
2204#endif 3251#endif
2205 3252
2206void 3253void
2207ev_prepare_start (EV_P_ ev_prepare *w) 3254ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 3255{
2209 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2210 return; 3257 return;
3258
3259 EV_FREQUENT_CHECK;
2211 3260
2212 ev_start (EV_A_ (W)w, ++preparecnt); 3261 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 3263 prepares [preparecnt - 1] = w;
3264
3265 EV_FREQUENT_CHECK;
2215} 3266}
2216 3267
2217void 3268void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 3269ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 3270{
2220 clear_pending (EV_A_ (W)w); 3271 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3272 if (expect_false (!ev_is_active (w)))
2222 return; 3273 return;
2223 3274
3275 EV_FREQUENT_CHECK;
3276
2224 { 3277 {
2225 int active = ((W)w)->active; 3278 int active = ev_active (w);
3279
2226 prepares [active - 1] = prepares [--preparecnt]; 3280 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 3281 ev_active (prepares [active - 1]) = active;
2228 } 3282 }
2229 3283
2230 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2231} 3287}
2232 3288
2233void 3289void
2234ev_check_start (EV_P_ ev_check *w) 3290ev_check_start (EV_P_ ev_check *w)
2235{ 3291{
2236 if (expect_false (ev_is_active (w))) 3292 if (expect_false (ev_is_active (w)))
2237 return; 3293 return;
3294
3295 EV_FREQUENT_CHECK;
2238 3296
2239 ev_start (EV_A_ (W)w, ++checkcnt); 3297 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
2242} 3302}
2243 3303
2244void 3304void
2245ev_check_stop (EV_P_ ev_check *w) 3305ev_check_stop (EV_P_ ev_check *w)
2246{ 3306{
2247 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2249 return; 3309 return;
2250 3310
3311 EV_FREQUENT_CHECK;
3312
2251 { 3313 {
2252 int active = ((W)w)->active; 3314 int active = ev_active (w);
3315
2253 checks [active - 1] = checks [--checkcnt]; 3316 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 3317 ev_active (checks [active - 1]) = active;
2255 } 3318 }
2256 3319
2257 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2258} 3323}
2259 3324
2260#if EV_EMBED_ENABLE 3325#if EV_EMBED_ENABLE
2261void noinline 3326void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 3327ev_embed_sweep (EV_P_ ev_embed *w)
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{ 3345{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282 3347
2283 { 3348 {
2284 struct ev_loop *loop = w->other; 3349 EV_P = w->other;
2285 3350
2286 while (fdchangecnt) 3351 while (fdchangecnt)
2287 { 3352 {
2288 fd_reify (EV_A); 3353 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 } 3355 }
2291 } 3356 }
2292} 3357}
2293 3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
2294#if 0 3376#if 0
2295static void 3377static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{ 3379{
2298 ev_idle_stop (EV_A_ idle); 3380 ev_idle_stop (EV_A_ idle);
2304{ 3386{
2305 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2306 return; 3388 return;
2307 3389
2308 { 3390 {
2309 struct ev_loop *loop = w->other; 3391 EV_P = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 3394 }
3395
3396 EV_FREQUENT_CHECK;
2313 3397
2314 ev_set_priority (&w->io, ev_priority (w)); 3398 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 3399 ev_io_start (EV_A_ &w->io);
2316 3400
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 3402 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 3403 ev_prepare_start (EV_A_ &w->prepare);
2320 3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 3409
2323 ev_start (EV_A_ (W)w, 1); 3410 ev_start (EV_A_ (W)w, 1);
3411
3412 EV_FREQUENT_CHECK;
2324} 3413}
2325 3414
2326void 3415void
2327ev_embed_stop (EV_P_ ev_embed *w) 3416ev_embed_stop (EV_P_ ev_embed *w)
2328{ 3417{
2329 clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 3419 if (expect_false (!ev_is_active (w)))
2331 return; 3420 return;
2332 3421
3422 EV_FREQUENT_CHECK;
3423
2333 ev_io_stop (EV_A_ &w->io); 3424 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
2335 3427
2336 ev_stop (EV_A_ (W)w); 3428 EV_FREQUENT_CHECK;
2337} 3429}
2338#endif 3430#endif
2339 3431
2340#if EV_FORK_ENABLE 3432#if EV_FORK_ENABLE
2341void 3433void
2342ev_fork_start (EV_P_ ev_fork *w) 3434ev_fork_start (EV_P_ ev_fork *w)
2343{ 3435{
2344 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2345 return; 3437 return;
3438
3439 EV_FREQUENT_CHECK;
2346 3440
2347 ev_start (EV_A_ (W)w, ++forkcnt); 3441 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
2350} 3446}
2351 3447
2352void 3448void
2353ev_fork_stop (EV_P_ ev_fork *w) 3449ev_fork_stop (EV_P_ ev_fork *w)
2354{ 3450{
2355 clear_pending (EV_A_ (W)w); 3451 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3452 if (expect_false (!ev_is_active (w)))
2357 return; 3453 return;
2358 3454
3455 EV_FREQUENT_CHECK;
3456
2359 { 3457 {
2360 int active = ((W)w)->active; 3458 int active = ev_active (w);
3459
2361 forks [active - 1] = forks [--forkcnt]; 3460 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 3461 ev_active (forks [active - 1]) = active;
2363 } 3462 }
2364 3463
2365 ev_stop (EV_A_ (W)w); 3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_ASYNC_ENABLE
3471void
3472ev_async_start (EV_P_ ev_async *w)
3473{
3474 if (expect_false (ev_is_active (w)))
3475 return;
3476
3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
3480
3481 ev_start (EV_A_ (W)w, ++asynccnt);
3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
3486}
3487
3488void
3489ev_async_stop (EV_P_ ev_async *w)
3490{
3491 clear_pending (EV_A_ (W)w);
3492 if (expect_false (!ev_is_active (w)))
3493 return;
3494
3495 EV_FREQUENT_CHECK;
3496
3497 {
3498 int active = ev_active (w);
3499
3500 asyncs [active - 1] = asyncs [--asynccnt];
3501 ev_active (asyncs [active - 1]) = active;
3502 }
3503
3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
3507}
3508
3509void
3510ev_async_send (EV_P_ ev_async *w)
3511{
3512 w->sent = 1;
3513 evpipe_write (EV_A_ &async_pending);
2366} 3514}
2367#endif 3515#endif
2368 3516
2369/*****************************************************************************/ 3517/*****************************************************************************/
2370 3518
2380once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
2381{ 3529{
2382 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
2383 void *arg = once->arg; 3531 void *arg = once->arg;
2384 3532
2385 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
2386 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
2387 ev_free (once); 3535 ev_free (once);
2388 3536
2389 cb (revents, arg); 3537 cb (revents, arg);
2390} 3538}
2391 3539
2392static void 3540static void
2393once_cb_io (EV_P_ ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
2394{ 3542{
2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2396} 3546}
2397 3547
2398static void 3548static void
2399once_cb_to (EV_P_ ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
2400{ 3550{
2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2402} 3554}
2403 3555
2404void 3556void
2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2406{ 3558{
2428 ev_timer_set (&once->to, timeout, 0.); 3580 ev_timer_set (&once->to, timeout, 0.);
2429 ev_timer_start (EV_A_ &once->to); 3581 ev_timer_start (EV_A_ &once->to);
2430 } 3582 }
2431} 3583}
2432 3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
3597 {
3598 wn = wl->next;
3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
3618 }
3619
3620 if (types & (EV_TIMER | EV_STAT))
3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3625 {
3626 if (types & EV_STAT)
3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3628 }
3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3690}
3691#endif
3692
2433#if EV_MULTIPLICITY 3693#if EV_MULTIPLICITY
2434 #include "ev_wrap.h" 3694 #include "ev_wrap.h"
2435#endif 3695#endif
2436 3696
2437#ifdef __cplusplus 3697#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines