ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.355 by root, Fri Oct 22 10:09:12 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
62# else 82# else
83# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
65# endif 94# endif
66 95
96# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 99# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 100# else
101# undef EV_USE_POLL
79# define EV_USE_POLL 0 102# define EV_USE_POLL 0
80# endif
81# endif 103# endif
82 104
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
86# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
89# endif 112# endif
90 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
97# endif 121# endif
98 122
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
102# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
105# endif 130# endif
106 131
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
113# endif 139# endif
114 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
115#endif 159#endif
116 160
117#include <math.h> 161#include <math.h>
118#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
119#include <fcntl.h> 164#include <fcntl.h>
120#include <stddef.h> 165#include <stddef.h>
121 166
122#include <stdio.h> 167#include <stdio.h>
123 168
124#include <assert.h> 169#include <assert.h>
125#include <errno.h> 170#include <errno.h>
126#include <sys/types.h> 171#include <sys/types.h>
127#include <time.h> 172#include <time.h>
173#include <limits.h>
128 174
129#include <signal.h> 175#include <signal.h>
130 176
131#ifdef EV_H 177#ifdef EV_H
132# include EV_H 178# include EV_H
133#else 179#else
134# include "ev.h" 180# include "ev.h"
135#endif 181#endif
182
183EV_CPP(extern "C" {)
136 184
137#ifndef _WIN32 185#ifndef _WIN32
138# include <sys/time.h> 186# include <sys/time.h>
139# include <sys/wait.h> 187# include <sys/wait.h>
140# include <unistd.h> 188# include <unistd.h>
141#else 189#else
190# include <io.h>
142# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 192# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
146# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
147#endif 242# endif
148 243#endif
149/**/
150 244
151#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
152# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
153#endif 251#endif
154 252
155#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 255#endif
158 256
159#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
160# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
161#endif 263#endif
162 264
163#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 267#endif
166 268
167#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
168# ifdef _WIN32 270# ifdef _WIN32
169# define EV_USE_POLL 0 271# define EV_USE_POLL 0
170# else 272# else
171# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 274# endif
173#endif 275#endif
174 276
175#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
176# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
177#endif 283#endif
178 284
179#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
181#endif 287#endif
183#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 290# define EV_USE_PORT 0
185#endif 291#endif
186 292
187#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
188# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
189#endif 299#endif
190 300
191#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 312# else
195# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
196# endif 314# endif
197#endif 315#endif
198 316
199#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 320# else
203# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
204# endif 322# endif
205#endif 323#endif
206 324
207/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
208 364
209#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
212#endif 368#endif
226# include <sys/select.h> 382# include <sys/select.h>
227# endif 383# endif
228#endif 384#endif
229 385
230#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/utsname.h>
388# include <sys/statfs.h>
231# include <sys/inotify.h> 389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
232#endif 395#endif
233 396
234#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 398# include <winsock.h>
236#endif 399#endif
237 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
238/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
239 446
240/* 447/*
241 * This is used to avoid floating point rounding problems. 448 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 449 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 450 * to ensure progress, time-wise, even when rounding
247 */ 454 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 456
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
253 462
254#if __GNUC__ >= 4 463#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
257#else 466#else
258# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
259# define noinline 468# define noinline
260# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 470# define inline
262# endif 471# endif
263#endif 472#endif
264 473
265#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 476#define inline_size static inline
268 477
269#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
270# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
271#else 488#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
277 491
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
280 494
281typedef ev_watcher *W; 495typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
284 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
288 521
289#ifdef _WIN32 522#ifdef _WIN32
290# include "ev_win32.c" 523# include "ev_win32.c"
291#endif 524#endif
292 525
293/*****************************************************************************/ 526/*****************************************************************************/
294 527
528static unsigned int noinline
529ev_linux_version (void)
530{
531#ifdef __linux
532 struct utsname buf;
533 unsigned int v;
534 int i;
535 char *p = buf.release;
536
537 if (uname (&buf))
538 return 0;
539
540 for (i = 3+1; --i; )
541 {
542 unsigned int c = 0;
543
544 for (;;)
545 {
546 if (*p >= '0' && *p <= '9')
547 c = c * 10 + *p++ - '0';
548 else
549 {
550 p += *p == '.';
551 break;
552 }
553 }
554
555 v = (v << 8) | c;
556 }
557
558 return v;
559#else
560 return 0;
561#endif
562}
563
564/*****************************************************************************/
565
566#if EV_AVOID_STDIO
567static void noinline
568ev_printerr (const char *msg)
569{
570 write (STDERR_FILENO, msg, strlen (msg));
571}
572#endif
573
295static void (*syserr_cb)(const char *msg); 574static void (*syserr_cb)(const char *msg);
296 575
297void 576void
298ev_set_syserr_cb (void (*cb)(const char *msg)) 577ev_set_syserr_cb (void (*cb)(const char *msg))
299{ 578{
300 syserr_cb = cb; 579 syserr_cb = cb;
301} 580}
302 581
303static void noinline 582static void noinline
304syserr (const char *msg) 583ev_syserr (const char *msg)
305{ 584{
306 if (!msg) 585 if (!msg)
307 msg = "(libev) system error"; 586 msg = "(libev) system error";
308 587
309 if (syserr_cb) 588 if (syserr_cb)
310 syserr_cb (msg); 589 syserr_cb (msg);
311 else 590 else
312 { 591 {
592#if EV_AVOID_STDIO
593 const char *err = strerror (errno);
594
595 ev_printerr (msg);
596 ev_printerr (": ");
597 ev_printerr (err);
598 ev_printerr ("\n");
599#else
313 perror (msg); 600 perror (msg);
601#endif
314 abort (); 602 abort ();
315 } 603 }
316} 604}
317 605
606static void *
607ev_realloc_emul (void *ptr, long size)
608{
609#if __GLIBC__
610 return realloc (ptr, size);
611#else
612 /* some systems, notably openbsd and darwin, fail to properly
613 * implement realloc (x, 0) (as required by both ansi c-89 and
614 * the single unix specification, so work around them here.
615 */
616
617 if (size)
618 return realloc (ptr, size);
619
620 free (ptr);
621 return 0;
622#endif
623}
624
318static void *(*alloc)(void *ptr, long size); 625static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 626
320void 627void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 628ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 629{
323 alloc = cb; 630 alloc = cb;
324} 631}
325 632
326inline_speed void * 633inline_speed void *
327ev_realloc (void *ptr, long size) 634ev_realloc (void *ptr, long size)
328{ 635{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 636 ptr = alloc (ptr, size);
330 637
331 if (!ptr && size) 638 if (!ptr && size)
332 { 639 {
640#if EV_AVOID_STDIO
641 ev_printerr ("libev: memory allocation failed, aborting.\n");
642#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 643 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
644#endif
334 abort (); 645 abort ();
335 } 646 }
336 647
337 return ptr; 648 return ptr;
338} 649}
340#define ev_malloc(size) ev_realloc (0, (size)) 651#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 652#define ev_free(ptr) ev_realloc ((ptr), 0)
342 653
343/*****************************************************************************/ 654/*****************************************************************************/
344 655
656/* set in reify when reification needed */
657#define EV_ANFD_REIFY 1
658
659/* file descriptor info structure */
345typedef struct 660typedef struct
346{ 661{
347 WL head; 662 WL head;
348 unsigned char events; 663 unsigned char events; /* the events watched for */
664 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
665 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 666 unsigned char unused;
667#if EV_USE_EPOLL
668 unsigned int egen; /* generation counter to counter epoll bugs */
669#endif
350#if EV_SELECT_IS_WINSOCKET 670#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 671 SOCKET handle;
352#endif 672#endif
353} ANFD; 673} ANFD;
354 674
675/* stores the pending event set for a given watcher */
355typedef struct 676typedef struct
356{ 677{
357 W w; 678 W w;
358 int events; 679 int events; /* the pending event set for the given watcher */
359} ANPENDING; 680} ANPENDING;
360 681
361#if EV_USE_INOTIFY 682#if EV_USE_INOTIFY
683/* hash table entry per inotify-id */
362typedef struct 684typedef struct
363{ 685{
364 WL head; 686 WL head;
365} ANFS; 687} ANFS;
688#endif
689
690/* Heap Entry */
691#if EV_HEAP_CACHE_AT
692 /* a heap element */
693 typedef struct {
694 ev_tstamp at;
695 WT w;
696 } ANHE;
697
698 #define ANHE_w(he) (he).w /* access watcher, read-write */
699 #define ANHE_at(he) (he).at /* access cached at, read-only */
700 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
701#else
702 /* a heap element */
703 typedef WT ANHE;
704
705 #define ANHE_w(he) (he)
706 #define ANHE_at(he) (he)->at
707 #define ANHE_at_cache(he)
366#endif 708#endif
367 709
368#if EV_MULTIPLICITY 710#if EV_MULTIPLICITY
369 711
370 struct ev_loop 712 struct ev_loop
389 731
390 static int ev_default_loop_ptr; 732 static int ev_default_loop_ptr;
391 733
392#endif 734#endif
393 735
736#if EV_FEATURE_API
737# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
738# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
739# define EV_INVOKE_PENDING invoke_cb (EV_A)
740#else
741# define EV_RELEASE_CB (void)0
742# define EV_ACQUIRE_CB (void)0
743# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
744#endif
745
746#define EVBREAK_RECURSE 0x80
747
394/*****************************************************************************/ 748/*****************************************************************************/
395 749
750#ifndef EV_HAVE_EV_TIME
396ev_tstamp 751ev_tstamp
397ev_time (void) 752ev_time (void)
398{ 753{
399#if EV_USE_REALTIME 754#if EV_USE_REALTIME
755 if (expect_true (have_realtime))
756 {
400 struct timespec ts; 757 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 758 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 759 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 760 }
761#endif
762
404 struct timeval tv; 763 struct timeval tv;
405 gettimeofday (&tv, 0); 764 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 765 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 766}
767#endif
409 768
410ev_tstamp inline_size 769inline_size ev_tstamp
411get_clock (void) 770get_clock (void)
412{ 771{
413#if EV_USE_MONOTONIC 772#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 773 if (expect_true (have_monotonic))
415 { 774 {
436 if (delay > 0.) 795 if (delay > 0.)
437 { 796 {
438#if EV_USE_NANOSLEEP 797#if EV_USE_NANOSLEEP
439 struct timespec ts; 798 struct timespec ts;
440 799
441 ts.tv_sec = (time_t)delay; 800 EV_TS_SET (ts, delay);
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0); 801 nanosleep (&ts, 0);
445#elif defined(_WIN32) 802#elif defined(_WIN32)
446 Sleep (delay * 1e3); 803 Sleep ((unsigned long)(delay * 1e3));
447#else 804#else
448 struct timeval tv; 805 struct timeval tv;
449 806
450 tv.tv_sec = (time_t)delay; 807 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 808 /* something not guaranteed by newer posix versions, but guaranteed */
452 809 /* by older ones */
810 EV_TV_SET (tv, delay);
453 select (0, 0, 0, 0, &tv); 811 select (0, 0, 0, 0, &tv);
454#endif 812#endif
455 } 813 }
456} 814}
457 815
458/*****************************************************************************/ 816/*****************************************************************************/
459 817
460int inline_size 818#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
819
820/* find a suitable new size for the given array, */
821/* hopefully by rounding to a nice-to-malloc size */
822inline_size int
461array_nextsize (int elem, int cur, int cnt) 823array_nextsize (int elem, int cur, int cnt)
462{ 824{
463 int ncur = cur + 1; 825 int ncur = cur + 1;
464 826
465 do 827 do
466 ncur <<= 1; 828 ncur <<= 1;
467 while (cnt > ncur); 829 while (cnt > ncur);
468 830
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 831 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 832 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 833 {
472 ncur *= elem; 834 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 835 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 836 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 837 ncur /= elem;
476 } 838 }
477 839
478 return ncur; 840 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 844array_realloc (int elem, void *base, int *cur, int cnt)
483{ 845{
484 *cur = array_nextsize (elem, *cur, cnt); 846 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 847 return ev_realloc (base, elem * *cur);
486} 848}
849
850#define array_init_zero(base,count) \
851 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 852
488#define array_needsize(type,base,cur,cnt,init) \ 853#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 854 if (expect_false ((cnt) > (cur))) \
490 { \ 855 { \
491 int ocur_ = (cur); \ 856 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 868 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 869 }
505#endif 870#endif
506 871
507#define array_free(stem, idx) \ 872#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 873 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 874
510/*****************************************************************************/ 875/*****************************************************************************/
876
877/* dummy callback for pending events */
878static void noinline
879pendingcb (EV_P_ ev_prepare *w, int revents)
880{
881}
511 882
512void noinline 883void noinline
513ev_feed_event (EV_P_ void *w, int revents) 884ev_feed_event (EV_P_ void *w, int revents)
514{ 885{
515 W w_ = (W)w; 886 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 895 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 896 pendings [pri][w_->pending - 1].events = revents;
526 } 897 }
527} 898}
528 899
529void inline_speed 900inline_speed void
901feed_reverse (EV_P_ W w)
902{
903 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
904 rfeeds [rfeedcnt++] = w;
905}
906
907inline_size void
908feed_reverse_done (EV_P_ int revents)
909{
910 do
911 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
912 while (rfeedcnt);
913}
914
915inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 916queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 917{
532 int i; 918 int i;
533 919
534 for (i = 0; i < eventcnt; ++i) 920 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 921 ev_feed_event (EV_A_ events [i], type);
536} 922}
537 923
538/*****************************************************************************/ 924/*****************************************************************************/
539 925
540void inline_size 926inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 927fd_event_nocheck (EV_P_ int fd, int revents)
555{ 928{
556 ANFD *anfd = anfds + fd; 929 ANFD *anfd = anfds + fd;
557 ev_io *w; 930 ev_io *w;
558 931
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 932 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 936 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 937 ev_feed_event (EV_A_ (W)w, ev);
565 } 938 }
566} 939}
567 940
941/* do not submit kernel events for fds that have reify set */
942/* because that means they changed while we were polling for new events */
943inline_speed void
944fd_event (EV_P_ int fd, int revents)
945{
946 ANFD *anfd = anfds + fd;
947
948 if (expect_true (!anfd->reify))
949 fd_event_nocheck (EV_A_ fd, revents);
950}
951
568void 952void
569ev_feed_fd_event (EV_P_ int fd, int revents) 953ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 954{
571 if (fd >= 0 && fd < anfdmax) 955 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 956 fd_event_nocheck (EV_A_ fd, revents);
573} 957}
574 958
575void inline_size 959/* make sure the external fd watch events are in-sync */
960/* with the kernel/libev internal state */
961inline_size void
576fd_reify (EV_P) 962fd_reify (EV_P)
577{ 963{
578 int i; 964 int i;
579 965
580 for (i = 0; i < fdchangecnt; ++i) 966 for (i = 0; i < fdchangecnt; ++i)
581 { 967 {
582 int fd = fdchanges [i]; 968 int fd = fdchanges [i];
583 ANFD *anfd = anfds + fd; 969 ANFD *anfd = anfds + fd;
584 ev_io *w; 970 ev_io *w;
585 971
586 unsigned char events = 0; 972 unsigned char o_events = anfd->events;
973 unsigned char o_reify = anfd->reify;
587 974
588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 975 anfd->reify = 0;
589 events |= (unsigned char)w->events;
590 976
591#if EV_SELECT_IS_WINSOCKET 977#if EV_SELECT_IS_WINSOCKET
592 if (events) 978 if (o_reify & EV__IOFDSET)
593 { 979 {
594 unsigned long argp; 980 unsigned long arg;
595 anfd->handle = _get_osfhandle (fd); 981 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 982 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 983 }
598#endif 984#endif
599 985
986 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
600 { 987 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
604 anfd->reify = 0;
605 anfd->events = events; 988 anfd->events = 0;
606 989
607 if (o_events != events || o_reify & EV_IOFDSET) 990 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
991 anfd->events |= (unsigned char)w->events;
992
993 if (o_events != anfd->events)
994 o_reify = EV__IOFDSET; /* actually |= */
995 }
996
997 if (o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 998 backend_modify (EV_A_ fd, o_events, anfd->events);
609 }
610 } 999 }
611 1000
612 fdchangecnt = 0; 1001 fdchangecnt = 0;
613} 1002}
614 1003
615void inline_size 1004/* something about the given fd changed */
1005inline_size void
616fd_change (EV_P_ int fd, int flags) 1006fd_change (EV_P_ int fd, int flags)
617{ 1007{
618 unsigned char reify = anfds [fd].reify; 1008 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 1009 anfds [fd].reify |= flags;
620 1010
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1014 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 1015 fdchanges [fdchangecnt - 1] = fd;
626 } 1016 }
627} 1017}
628 1018
629void inline_speed 1019/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1020inline_speed void
630fd_kill (EV_P_ int fd) 1021fd_kill (EV_P_ int fd)
631{ 1022{
632 ev_io *w; 1023 ev_io *w;
633 1024
634 while ((w = (ev_io *)anfds [fd].head)) 1025 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 1027 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1028 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 1029 }
639} 1030}
640 1031
641int inline_size 1032/* check whether the given fd is actually valid, for error recovery */
1033inline_size int
642fd_valid (int fd) 1034fd_valid (int fd)
643{ 1035{
644#ifdef _WIN32 1036#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1037 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1038#else
647 return fcntl (fd, F_GETFD) != -1; 1039 return fcntl (fd, F_GETFD) != -1;
648#endif 1040#endif
649} 1041}
650 1042
654{ 1046{
655 int fd; 1047 int fd;
656 1048
657 for (fd = 0; fd < anfdmax; ++fd) 1049 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 1050 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 1051 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 1052 fd_kill (EV_A_ fd);
661} 1053}
662 1054
663/* called on ENOMEM in select/poll to kill some fds and retry */ 1055/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 1056static void noinline
668 1060
669 for (fd = anfdmax; fd--; ) 1061 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1062 if (anfds [fd].events)
671 { 1063 {
672 fd_kill (EV_A_ fd); 1064 fd_kill (EV_A_ fd);
673 return; 1065 break;
674 } 1066 }
675} 1067}
676 1068
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1069/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1070static void noinline
682 1074
683 for (fd = 0; fd < anfdmax; ++fd) 1075 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1076 if (anfds [fd].events)
685 { 1077 {
686 anfds [fd].events = 0; 1078 anfds [fd].events = 0;
1079 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1080 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1081 }
689} 1082}
690 1083
691/*****************************************************************************/ 1084/* used to prepare libev internal fd's */
692 1085/* this is not fork-safe */
693void inline_speed 1086inline_speed void
694upheap (WT *heap, int k)
695{
696 WT w = heap [k];
697
698 while (k)
699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
705 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1;
707 k = p;
708 }
709
710 heap [k] = w;
711 ((W)heap [k])->active = k + 1;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
747}
748
749/*****************************************************************************/
750
751typedef struct
752{
753 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG;
756
757static ANSIG *signals;
758static int signalmax;
759
760static int sigpipe [2];
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763
764void inline_size
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1087fd_intern (int fd)
829{ 1088{
830#ifdef _WIN32 1089#ifdef _WIN32
831 int arg = 1; 1090 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1091 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1092#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1093 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1094 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1095#endif
837} 1096}
838 1097
1098/*****************************************************************************/
1099
1100/*
1101 * the heap functions want a real array index. array index 0 is guaranteed to not
1102 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1103 * the branching factor of the d-tree.
1104 */
1105
1106/*
1107 * at the moment we allow libev the luxury of two heaps,
1108 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1109 * which is more cache-efficient.
1110 * the difference is about 5% with 50000+ watchers.
1111 */
1112#if EV_USE_4HEAP
1113
1114#define DHEAP 4
1115#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1116#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1117#define UPHEAP_DONE(p,k) ((p) == (k))
1118
1119/* away from the root */
1120inline_speed void
1121downheap (ANHE *heap, int N, int k)
1122{
1123 ANHE he = heap [k];
1124 ANHE *E = heap + N + HEAP0;
1125
1126 for (;;)
1127 {
1128 ev_tstamp minat;
1129 ANHE *minpos;
1130 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1131
1132 /* find minimum child */
1133 if (expect_true (pos + DHEAP - 1 < E))
1134 {
1135 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1136 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1137 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1138 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1139 }
1140 else if (pos < E)
1141 {
1142 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else
1148 break;
1149
1150 if (ANHE_at (he) <= minat)
1151 break;
1152
1153 heap [k] = *minpos;
1154 ev_active (ANHE_w (*minpos)) = k;
1155
1156 k = minpos - heap;
1157 }
1158
1159 heap [k] = he;
1160 ev_active (ANHE_w (he)) = k;
1161}
1162
1163#else /* 4HEAP */
1164
1165#define HEAP0 1
1166#define HPARENT(k) ((k) >> 1)
1167#define UPHEAP_DONE(p,k) (!(p))
1168
1169/* away from the root */
1170inline_speed void
1171downheap (ANHE *heap, int N, int k)
1172{
1173 ANHE he = heap [k];
1174
1175 for (;;)
1176 {
1177 int c = k << 1;
1178
1179 if (c >= N + HEAP0)
1180 break;
1181
1182 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1183 ? 1 : 0;
1184
1185 if (ANHE_at (he) <= ANHE_at (heap [c]))
1186 break;
1187
1188 heap [k] = heap [c];
1189 ev_active (ANHE_w (heap [k])) = k;
1190
1191 k = c;
1192 }
1193
1194 heap [k] = he;
1195 ev_active (ANHE_w (he)) = k;
1196}
1197#endif
1198
1199/* towards the root */
1200inline_speed void
1201upheap (ANHE *heap, int k)
1202{
1203 ANHE he = heap [k];
1204
1205 for (;;)
1206 {
1207 int p = HPARENT (k);
1208
1209 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1210 break;
1211
1212 heap [k] = heap [p];
1213 ev_active (ANHE_w (heap [k])) = k;
1214 k = p;
1215 }
1216
1217 heap [k] = he;
1218 ev_active (ANHE_w (he)) = k;
1219}
1220
1221/* move an element suitably so it is in a correct place */
1222inline_size void
1223adjustheap (ANHE *heap, int N, int k)
1224{
1225 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1226 upheap (heap, k);
1227 else
1228 downheap (heap, N, k);
1229}
1230
1231/* rebuild the heap: this function is used only once and executed rarely */
1232inline_size void
1233reheap (ANHE *heap, int N)
1234{
1235 int i;
1236
1237 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1238 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1239 for (i = 0; i < N; ++i)
1240 upheap (heap, i + HEAP0);
1241}
1242
1243/*****************************************************************************/
1244
1245/* associate signal watchers to a signal signal */
1246typedef struct
1247{
1248 EV_ATOMIC_T pending;
1249#if EV_MULTIPLICITY
1250 EV_P;
1251#endif
1252 WL head;
1253} ANSIG;
1254
1255static ANSIG signals [EV_NSIG - 1];
1256
1257/*****************************************************************************/
1258
1259#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1260
839static void noinline 1261static void noinline
840siginit (EV_P) 1262evpipe_init (EV_P)
841{ 1263{
1264 if (!ev_is_active (&pipe_w))
1265 {
1266# if EV_USE_EVENTFD
1267 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1268 if (evfd < 0 && errno == EINVAL)
1269 evfd = eventfd (0, 0);
1270
1271 if (evfd >= 0)
1272 {
1273 evpipe [0] = -1;
1274 fd_intern (evfd); /* doing it twice doesn't hurt */
1275 ev_io_set (&pipe_w, evfd, EV_READ);
1276 }
1277 else
1278# endif
1279 {
1280 while (pipe (evpipe))
1281 ev_syserr ("(libev) error creating signal/async pipe");
1282
842 fd_intern (sigpipe [0]); 1283 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1284 fd_intern (evpipe [1]);
1285 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1286 }
844 1287
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1288 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1289 ev_unref (EV_A); /* watcher should not keep loop alive */
1290 }
1291}
1292
1293inline_size void
1294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1295{
1296 if (!*flag)
1297 {
1298 int old_errno = errno; /* save errno because write might clobber it */
1299 char dummy;
1300
1301 *flag = 1;
1302
1303#if EV_USE_EVENTFD
1304 if (evfd >= 0)
1305 {
1306 uint64_t counter = 1;
1307 write (evfd, &counter, sizeof (uint64_t));
1308 }
1309 else
1310#endif
1311 /* win32 people keep sending patches that change this write() to send() */
1312 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1313 /* so when you think this write should be a send instead, please find out */
1314 /* where your send() is from - it's definitely not the microsoft send, and */
1315 /* tell me. thank you. */
1316 write (evpipe [1], &dummy, 1);
1317
1318 errno = old_errno;
1319 }
1320}
1321
1322/* called whenever the libev signal pipe */
1323/* got some events (signal, async) */
1324static void
1325pipecb (EV_P_ ev_io *iow, int revents)
1326{
1327 int i;
1328
1329#if EV_USE_EVENTFD
1330 if (evfd >= 0)
1331 {
1332 uint64_t counter;
1333 read (evfd, &counter, sizeof (uint64_t));
1334 }
1335 else
1336#endif
1337 {
1338 char dummy;
1339 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1340 read (evpipe [0], &dummy, 1);
1341 }
1342
1343 if (sig_pending)
1344 {
1345 sig_pending = 0;
1346
1347 for (i = EV_NSIG - 1; i--; )
1348 if (expect_false (signals [i].pending))
1349 ev_feed_signal_event (EV_A_ i + 1);
1350 }
1351
1352#if EV_ASYNC_ENABLE
1353 if (async_pending)
1354 {
1355 async_pending = 0;
1356
1357 for (i = asynccnt; i--; )
1358 if (asyncs [i]->sent)
1359 {
1360 asyncs [i]->sent = 0;
1361 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1362 }
1363 }
1364#endif
848} 1365}
849 1366
850/*****************************************************************************/ 1367/*****************************************************************************/
851 1368
1369static void
1370ev_sighandler (int signum)
1371{
1372#if EV_MULTIPLICITY
1373 EV_P = signals [signum - 1].loop;
1374#endif
1375
1376#ifdef _WIN32
1377 signal (signum, ev_sighandler);
1378#endif
1379
1380 signals [signum - 1].pending = 1;
1381 evpipe_write (EV_A_ &sig_pending);
1382}
1383
1384void noinline
1385ev_feed_signal_event (EV_P_ int signum)
1386{
1387 WL w;
1388
1389 if (expect_false (signum <= 0 || signum > EV_NSIG))
1390 return;
1391
1392 --signum;
1393
1394#if EV_MULTIPLICITY
1395 /* it is permissible to try to feed a signal to the wrong loop */
1396 /* or, likely more useful, feeding a signal nobody is waiting for */
1397
1398 if (expect_false (signals [signum].loop != EV_A))
1399 return;
1400#endif
1401
1402 signals [signum].pending = 0;
1403
1404 for (w = signals [signum].head; w; w = w->next)
1405 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1406}
1407
1408#if EV_USE_SIGNALFD
1409static void
1410sigfdcb (EV_P_ ev_io *iow, int revents)
1411{
1412 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1413
1414 for (;;)
1415 {
1416 ssize_t res = read (sigfd, si, sizeof (si));
1417
1418 /* not ISO-C, as res might be -1, but works with SuS */
1419 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1420 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1421
1422 if (res < (ssize_t)sizeof (si))
1423 break;
1424 }
1425}
1426#endif
1427
1428#endif
1429
1430/*****************************************************************************/
1431
1432#if EV_CHILD_ENABLE
852static WL childs [EV_PID_HASHSIZE]; 1433static WL childs [EV_PID_HASHSIZE];
853 1434
854#ifndef _WIN32
855
856static ev_signal childev; 1435static ev_signal childev;
857 1436
858void inline_speed 1437#ifndef WIFCONTINUED
1438# define WIFCONTINUED(status) 0
1439#endif
1440
1441/* handle a single child status event */
1442inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1443child_reap (EV_P_ int chain, int pid, int status)
860{ 1444{
861 ev_child *w; 1445 ev_child *w;
1446 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1447
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1448 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1449 {
864 if (w->pid == pid || !w->pid) 1450 if ((w->pid == pid || !w->pid)
1451 && (!traced || (w->flags & 1)))
865 { 1452 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1453 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1454 w->rpid = pid;
868 w->rstatus = status; 1455 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1456 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1457 }
1458 }
871} 1459}
872 1460
873#ifndef WCONTINUED 1461#ifndef WCONTINUED
874# define WCONTINUED 0 1462# define WCONTINUED 0
875#endif 1463#endif
876 1464
1465/* called on sigchld etc., calls waitpid */
877static void 1466static void
878childcb (EV_P_ ev_signal *sw, int revents) 1467childcb (EV_P_ ev_signal *sw, int revents)
879{ 1468{
880 int pid, status; 1469 int pid, status;
881 1470
884 if (!WCONTINUED 1473 if (!WCONTINUED
885 || errno != EINVAL 1474 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1475 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1476 return;
888 1477
889 /* make sure we are called again until all childs have been reaped */ 1478 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1479 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1480 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1481
893 child_reap (EV_A_ sw, pid, pid, status); 1482 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1483 if ((EV_PID_HASHSIZE) > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1484 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1485}
897 1486
898#endif 1487#endif
899 1488
900/*****************************************************************************/ 1489/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1551 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1552 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1553 flags &= ~EVBACKEND_KQUEUE;
965#endif 1554#endif
966#ifdef __APPLE__ 1555#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1556 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1557 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1558 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1559#endif
1560#ifdef __FreeBSD__
1561 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
969#endif 1562#endif
970 1563
971 return flags; 1564 return flags;
972} 1565}
973 1566
975ev_embeddable_backends (void) 1568ev_embeddable_backends (void)
976{ 1569{
977 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1570 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
978 1571
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1572 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */ 1573 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
981 flags &= ~EVBACKEND_EPOLL; 1574 flags &= ~EVBACKEND_EPOLL;
982 1575
983 return flags; 1576 return flags;
984} 1577}
985 1578
986unsigned int 1579unsigned int
987ev_backend (EV_P) 1580ev_backend (EV_P)
988{ 1581{
989 return backend; 1582 return backend;
990} 1583}
991 1584
1585#if EV_FEATURE_API
992unsigned int 1586unsigned int
993ev_loop_count (EV_P) 1587ev_iteration (EV_P)
994{ 1588{
995 return loop_count; 1589 return loop_count;
996} 1590}
997 1591
1592unsigned int
1593ev_depth (EV_P)
1594{
1595 return loop_depth;
1596}
1597
998void 1598void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1599ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1600{
1001 io_blocktime = interval; 1601 io_blocktime = interval;
1002} 1602}
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1605ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{ 1606{
1007 timeout_blocktime = interval; 1607 timeout_blocktime = interval;
1008} 1608}
1009 1609
1610void
1611ev_set_userdata (EV_P_ void *data)
1612{
1613 userdata = data;
1614}
1615
1616void *
1617ev_userdata (EV_P)
1618{
1619 return userdata;
1620}
1621
1622void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1623{
1624 invoke_cb = invoke_pending_cb;
1625}
1626
1627void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1628{
1629 release_cb = release;
1630 acquire_cb = acquire;
1631}
1632#endif
1633
1634/* initialise a loop structure, must be zero-initialised */
1010static void noinline 1635static void noinline
1011loop_init (EV_P_ unsigned int flags) 1636loop_init (EV_P_ unsigned int flags)
1012{ 1637{
1013 if (!backend) 1638 if (!backend)
1014 { 1639 {
1640#if EV_USE_REALTIME
1641 if (!have_realtime)
1642 {
1643 struct timespec ts;
1644
1645 if (!clock_gettime (CLOCK_REALTIME, &ts))
1646 have_realtime = 1;
1647 }
1648#endif
1649
1015#if EV_USE_MONOTONIC 1650#if EV_USE_MONOTONIC
1651 if (!have_monotonic)
1016 { 1652 {
1017 struct timespec ts; 1653 struct timespec ts;
1654
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1655 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1656 have_monotonic = 1;
1020 } 1657 }
1021#endif 1658#endif
1022
1023 ev_rt_now = ev_time ();
1024 mn_now = get_clock ();
1025 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now;
1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030 1659
1031 /* pid check not overridable via env */ 1660 /* pid check not overridable via env */
1032#ifndef _WIN32 1661#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1662 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1663 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1666 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1667 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1668 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1669 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1670
1671 ev_rt_now = ev_time ();
1672 mn_now = get_clock ();
1673 now_floor = mn_now;
1674 rtmn_diff = ev_rt_now - mn_now;
1675#if EV_FEATURE_API
1676 invoke_cb = ev_invoke_pending;
1677#endif
1678
1679 io_blocktime = 0.;
1680 timeout_blocktime = 0.;
1681 backend = 0;
1682 backend_fd = -1;
1683 sig_pending = 0;
1684#if EV_ASYNC_ENABLE
1685 async_pending = 0;
1686#endif
1687#if EV_USE_INOTIFY
1688 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1689#endif
1690#if EV_USE_SIGNALFD
1691 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1692#endif
1693
1042 if (!(flags & 0x0000ffffUL)) 1694 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1695 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1696
1051#if EV_USE_PORT 1697#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1699#endif
1054#if EV_USE_KQUEUE 1700#if EV_USE_KQUEUE
1062#endif 1708#endif
1063#if EV_USE_SELECT 1709#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1711#endif
1066 1712
1713 ev_prepare_init (&pending_w, pendingcb);
1714
1715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1067 ev_init (&sigev, sigcb); 1716 ev_init (&pipe_w, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1717 ev_set_priority (&pipe_w, EV_MAXPRI);
1718#endif
1069 } 1719 }
1070} 1720}
1071 1721
1722/* free up a loop structure */
1072static void noinline 1723static void noinline
1073loop_destroy (EV_P) 1724loop_destroy (EV_P)
1074{ 1725{
1075 int i; 1726 int i;
1727
1728 if (ev_is_active (&pipe_w))
1729 {
1730 /*ev_ref (EV_A);*/
1731 /*ev_io_stop (EV_A_ &pipe_w);*/
1732
1733#if EV_USE_EVENTFD
1734 if (evfd >= 0)
1735 close (evfd);
1736#endif
1737
1738 if (evpipe [0] >= 0)
1739 {
1740 EV_WIN32_CLOSE_FD (evpipe [0]);
1741 EV_WIN32_CLOSE_FD (evpipe [1]);
1742 }
1743 }
1744
1745#if EV_USE_SIGNALFD
1746 if (ev_is_active (&sigfd_w))
1747 close (sigfd);
1748#endif
1076 1749
1077#if EV_USE_INOTIFY 1750#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1751 if (fs_fd >= 0)
1079 close (fs_fd); 1752 close (fs_fd);
1080#endif 1753#endif
1104#if EV_IDLE_ENABLE 1777#if EV_IDLE_ENABLE
1105 array_free (idle, [i]); 1778 array_free (idle, [i]);
1106#endif 1779#endif
1107 } 1780 }
1108 1781
1109 ev_free (anfds); anfdmax = 0; 1782 ev_free (anfds); anfds = 0; anfdmax = 0;
1110 1783
1111 /* have to use the microsoft-never-gets-it-right macro */ 1784 /* have to use the microsoft-never-gets-it-right macro */
1785 array_free (rfeed, EMPTY);
1112 array_free (fdchange, EMPTY); 1786 array_free (fdchange, EMPTY);
1113 array_free (timer, EMPTY); 1787 array_free (timer, EMPTY);
1114#if EV_PERIODIC_ENABLE 1788#if EV_PERIODIC_ENABLE
1115 array_free (periodic, EMPTY); 1789 array_free (periodic, EMPTY);
1116#endif 1790#endif
1117#if EV_FORK_ENABLE 1791#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1792 array_free (fork, EMPTY);
1119#endif 1793#endif
1120 array_free (prepare, EMPTY); 1794 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1795 array_free (check, EMPTY);
1796#if EV_ASYNC_ENABLE
1797 array_free (async, EMPTY);
1798#endif
1122 1799
1123 backend = 0; 1800 backend = 0;
1124} 1801}
1125 1802
1803#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1804inline_size void infy_fork (EV_P);
1805#endif
1127 1806
1128void inline_size 1807inline_size void
1129loop_fork (EV_P) 1808loop_fork (EV_P)
1130{ 1809{
1131#if EV_USE_PORT 1810#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1811 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif 1812#endif
1139#endif 1818#endif
1140#if EV_USE_INOTIFY 1819#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1820 infy_fork (EV_A);
1142#endif 1821#endif
1143 1822
1144 if (ev_is_active (&sigev)) 1823 if (ev_is_active (&pipe_w))
1145 { 1824 {
1146 /* default loop */ 1825 /* this "locks" the handlers against writing to the pipe */
1826 /* while we modify the fd vars */
1827 sig_pending = 1;
1828#if EV_ASYNC_ENABLE
1829 async_pending = 1;
1830#endif
1147 1831
1148 ev_ref (EV_A); 1832 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1833 ev_io_stop (EV_A_ &pipe_w);
1150 close (sigpipe [0]);
1151 close (sigpipe [1]);
1152 1834
1153 while (pipe (sigpipe)) 1835#if EV_USE_EVENTFD
1154 syserr ("(libev) error creating pipe"); 1836 if (evfd >= 0)
1837 close (evfd);
1838#endif
1155 1839
1840 if (evpipe [0] >= 0)
1841 {
1842 EV_WIN32_CLOSE_FD (evpipe [0]);
1843 EV_WIN32_CLOSE_FD (evpipe [1]);
1844 }
1845
1846#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1156 siginit (EV_A); 1847 evpipe_init (EV_A);
1848 /* now iterate over everything, in case we missed something */
1849 pipecb (EV_A_ &pipe_w, EV_READ);
1850#endif
1157 } 1851 }
1158 1852
1159 postfork = 0; 1853 postfork = 0;
1160} 1854}
1161 1855
1162#if EV_MULTIPLICITY 1856#if EV_MULTIPLICITY
1857
1163struct ev_loop * 1858struct ev_loop *
1164ev_loop_new (unsigned int flags) 1859ev_loop_new (unsigned int flags)
1165{ 1860{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1861 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1862
1168 memset (loop, 0, sizeof (struct ev_loop)); 1863 memset (EV_A, 0, sizeof (struct ev_loop));
1169
1170 loop_init (EV_A_ flags); 1864 loop_init (EV_A_ flags);
1171 1865
1172 if (ev_backend (EV_A)) 1866 if (ev_backend (EV_A))
1173 return loop; 1867 return EV_A;
1174 1868
1175 return 0; 1869 return 0;
1176} 1870}
1177 1871
1178void 1872void
1183} 1877}
1184 1878
1185void 1879void
1186ev_loop_fork (EV_P) 1880ev_loop_fork (EV_P)
1187{ 1881{
1188 postfork = 1; 1882 postfork = 1; /* must be in line with ev_default_fork */
1189} 1883}
1884#endif /* multiplicity */
1190 1885
1886#if EV_VERIFY
1887static void noinline
1888verify_watcher (EV_P_ W w)
1889{
1890 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1891
1892 if (w->pending)
1893 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1894}
1895
1896static void noinline
1897verify_heap (EV_P_ ANHE *heap, int N)
1898{
1899 int i;
1900
1901 for (i = HEAP0; i < N + HEAP0; ++i)
1902 {
1903 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1904 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1905 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1906
1907 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1908 }
1909}
1910
1911static void noinline
1912array_verify (EV_P_ W *ws, int cnt)
1913{
1914 while (cnt--)
1915 {
1916 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1917 verify_watcher (EV_A_ ws [cnt]);
1918 }
1919}
1920#endif
1921
1922#if EV_FEATURE_API
1923void
1924ev_verify (EV_P)
1925{
1926#if EV_VERIFY
1927 int i;
1928 WL w;
1929
1930 assert (activecnt >= -1);
1931
1932 assert (fdchangemax >= fdchangecnt);
1933 for (i = 0; i < fdchangecnt; ++i)
1934 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1935
1936 assert (anfdmax >= 0);
1937 for (i = 0; i < anfdmax; ++i)
1938 for (w = anfds [i].head; w; w = w->next)
1939 {
1940 verify_watcher (EV_A_ (W)w);
1941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1943 }
1944
1945 assert (timermax >= timercnt);
1946 verify_heap (EV_A_ timers, timercnt);
1947
1948#if EV_PERIODIC_ENABLE
1949 assert (periodicmax >= periodiccnt);
1950 verify_heap (EV_A_ periodics, periodiccnt);
1951#endif
1952
1953 for (i = NUMPRI; i--; )
1954 {
1955 assert (pendingmax [i] >= pendingcnt [i]);
1956#if EV_IDLE_ENABLE
1957 assert (idleall >= 0);
1958 assert (idlemax [i] >= idlecnt [i]);
1959 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1960#endif
1961 }
1962
1963#if EV_FORK_ENABLE
1964 assert (forkmax >= forkcnt);
1965 array_verify (EV_A_ (W *)forks, forkcnt);
1966#endif
1967
1968#if EV_ASYNC_ENABLE
1969 assert (asyncmax >= asynccnt);
1970 array_verify (EV_A_ (W *)asyncs, asynccnt);
1971#endif
1972
1973#if EV_PREPARE_ENABLE
1974 assert (preparemax >= preparecnt);
1975 array_verify (EV_A_ (W *)prepares, preparecnt);
1976#endif
1977
1978#if EV_CHECK_ENABLE
1979 assert (checkmax >= checkcnt);
1980 array_verify (EV_A_ (W *)checks, checkcnt);
1981#endif
1982
1983# if 0
1984#if EV_CHILD_ENABLE
1985 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1986 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1987#endif
1988# endif
1989#endif
1990}
1191#endif 1991#endif
1192 1992
1193#if EV_MULTIPLICITY 1993#if EV_MULTIPLICITY
1194struct ev_loop * 1994struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1995ev_default_loop_init (unsigned int flags)
1196#else 1996#else
1197int 1997int
1198ev_default_loop (unsigned int flags) 1998ev_default_loop (unsigned int flags)
1199#endif 1999#endif
1200{ 2000{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 2001 if (!ev_default_loop_ptr)
1206 { 2002 {
1207#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2004 EV_P = ev_default_loop_ptr = &default_loop_struct;
1209#else 2005#else
1210 ev_default_loop_ptr = 1; 2006 ev_default_loop_ptr = 1;
1211#endif 2007#endif
1212 2008
1213 loop_init (EV_A_ flags); 2009 loop_init (EV_A_ flags);
1214 2010
1215 if (ev_backend (EV_A)) 2011 if (ev_backend (EV_A))
1216 { 2012 {
1217 siginit (EV_A); 2013#if EV_CHILD_ENABLE
1218
1219#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 2014 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 2015 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 2016 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2017 ev_unref (EV_A); /* child watcher should not keep loop alive */
1224#endif 2018#endif
1232 2026
1233void 2027void
1234ev_default_destroy (void) 2028ev_default_destroy (void)
1235{ 2029{
1236#if EV_MULTIPLICITY 2030#if EV_MULTIPLICITY
1237 struct ev_loop *loop = ev_default_loop_ptr; 2031 EV_P = ev_default_loop_ptr;
1238#endif 2032#endif
1239 2033
1240#ifndef _WIN32 2034 ev_default_loop_ptr = 0;
2035
2036#if EV_CHILD_ENABLE
1241 ev_ref (EV_A); /* child watcher */ 2037 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 2038 ev_signal_stop (EV_A_ &childev);
1243#endif 2039#endif
1244 2040
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 2041 loop_destroy (EV_A);
1252} 2042}
1253 2043
1254void 2044void
1255ev_default_fork (void) 2045ev_default_fork (void)
1256{ 2046{
1257#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 2048 EV_P = ev_default_loop_ptr;
1259#endif 2049#endif
1260 2050
1261 if (backend) 2051 postfork = 1; /* must be in line with ev_loop_fork */
1262 postfork = 1;
1263} 2052}
1264 2053
1265/*****************************************************************************/ 2054/*****************************************************************************/
1266 2055
1267void 2056void
1268ev_invoke (EV_P_ void *w, int revents) 2057ev_invoke (EV_P_ void *w, int revents)
1269{ 2058{
1270 EV_CB_INVOKE ((W)w, revents); 2059 EV_CB_INVOKE ((W)w, revents);
1271} 2060}
1272 2061
1273void inline_speed 2062unsigned int
1274call_pending (EV_P) 2063ev_pending_count (EV_P)
2064{
2065 int pri;
2066 unsigned int count = 0;
2067
2068 for (pri = NUMPRI; pri--; )
2069 count += pendingcnt [pri];
2070
2071 return count;
2072}
2073
2074void noinline
2075ev_invoke_pending (EV_P)
1275{ 2076{
1276 int pri; 2077 int pri;
1277 2078
1278 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1279 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1280 { 2081 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1282 2083
1283 if (expect_true (p->w))
1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1286 2086
1287 p->w->pending = 0; 2087 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1289 } 2089 EV_FREQUENT_CHECK;
1290 } 2090 }
1291} 2091}
1292 2092
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372
1373#if EV_IDLE_ENABLE 2093#if EV_IDLE_ENABLE
1374void inline_size 2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
1375idle_reify (EV_P) 2097idle_reify (EV_P)
1376{ 2098{
1377 if (expect_false (idleall)) 2099 if (expect_false (idleall))
1378 { 2100 {
1379 int pri; 2101 int pri;
1391 } 2113 }
1392 } 2114 }
1393} 2115}
1394#endif 2116#endif
1395 2117
1396void inline_speed 2118/* make timers pending */
2119inline_size void
2120timers_reify (EV_P)
2121{
2122 EV_FREQUENT_CHECK;
2123
2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2125 {
2126 do
2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2140
2141 ANHE_at_cache (timers [HEAP0]);
2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2151
2152 feed_reverse_done (EV_A_ EV_TIMER);
2153 }
2154}
2155
2156#if EV_PERIODIC_ENABLE
2157/* make periodics pending */
2158inline_size void
2159periodics_reify (EV_P)
2160{
2161 EV_FREQUENT_CHECK;
2162
2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2164 {
2165 int feed_count = 0;
2166
2167 do
2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
2207 }
2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2209
2210 feed_reverse_done (EV_A_ EV_PERIODIC);
2211 }
2212}
2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
2216static void noinline
2217periodics_reschedule (EV_P)
2218{
2219 int i;
2220
2221 /* adjust periodics after time jump */
2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2223 {
2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2225
2226 if (w->reschedule_cb)
2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2228 else if (w->interval)
2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
1397time_update (EV_P_ ev_tstamp max_block) 2255time_update (EV_P_ ev_tstamp max_block)
1398{ 2256{
1399 int i;
1400
1401#if EV_USE_MONOTONIC 2257#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic)) 2258 if (expect_true (have_monotonic))
1403 { 2259 {
2260 int i;
1404 ev_tstamp odiff = rtmn_diff; 2261 ev_tstamp odiff = rtmn_diff;
1405 2262
1406 mn_now = get_clock (); 2263 mn_now = get_clock ();
1407 2264
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1426 */ 2283 */
1427 for (i = 4; --i; ) 2284 for (i = 4; --i; )
1428 { 2285 {
1429 rtmn_diff = ev_rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1430 2287
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 2289 return; /* all is well */
1433 2290
1434 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 2292 mn_now = get_clock ();
1436 now_floor = mn_now; 2293 now_floor = mn_now;
1437 } 2294 }
1438 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1439# if EV_PERIODIC_ENABLE 2298# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A); 2299 periodics_reschedule (EV_A);
1441# endif 2300# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 } 2301 }
1445 else 2302 else
1446#endif 2303#endif
1447 { 2304 {
1448 ev_rt_now = ev_time (); 2305 ev_rt_now = ev_time ();
1449 2306
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 { 2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1452#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1454#endif 2313#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1458 } 2314 }
1459 2315
1460 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1461 } 2317 }
1462} 2318}
1463 2319
1464void 2320void
1465ev_ref (EV_P)
1466{
1467 ++activecnt;
1468}
1469
1470void
1471ev_unref (EV_P)
1472{
1473 --activecnt;
1474}
1475
1476static int loop_done;
1477
1478void
1479ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1480{ 2322{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2323#if EV_FEATURE_API
1482 ? EVUNLOOP_ONE 2324 ++loop_depth;
1483 : EVUNLOOP_CANCEL; 2325#endif
1484 2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
2329 loop_done = EVBREAK_CANCEL;
2330
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1486 2332
1487 do 2333 do
1488 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
1489#ifndef _WIN32 2339#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 2340 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 2341 if (expect_false (getpid () != curpid))
1492 { 2342 {
1493 curpid = getpid (); 2343 curpid = getpid ();
1499 /* we might have forked, so queue fork handlers */ 2349 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork)) 2350 if (expect_false (postfork))
1501 if (forkcnt) 2351 if (forkcnt)
1502 { 2352 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A); 2354 EV_INVOKE_PENDING;
1505 } 2355 }
1506#endif 2356#endif
1507 2357
2358#if EV_PREPARE_ENABLE
1508 /* queue prepare watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1509 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1510 { 2361 {
1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1512 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1513 } 2364 }
2365#endif
1514 2366
1515 if (expect_false (!activecnt)) 2367 if (expect_false (loop_done))
1516 break; 2368 break;
1517 2369
1518 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1519 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1520 loop_fork (EV_A); 2372 loop_fork (EV_A);
1525 /* calculate blocking time */ 2377 /* calculate blocking time */
1526 { 2378 {
1527 ev_tstamp waittime = 0.; 2379 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.; 2380 ev_tstamp sleeptime = 0.;
1529 2381
2382 /* remember old timestamp for io_blocktime calculation */
2383 ev_tstamp prev_mn_now = mn_now;
2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1531 { 2389 {
1532 /* update time to cancel out callback processing overhead */
1533 time_update (EV_A_ 1e100);
1534
1535 waittime = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1536 2391
1537 if (timercnt) 2392 if (timercnt)
1538 { 2393 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 2395 if (waittime > to) waittime = to;
1541 } 2396 }
1542 2397
1543#if EV_PERIODIC_ENABLE 2398#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 2399 if (periodiccnt)
1545 { 2400 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 2402 if (waittime > to) waittime = to;
1548 } 2403 }
1549#endif 2404#endif
1550 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
1551 if (expect_false (waittime < timeout_blocktime)) 2407 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime; 2408 waittime = timeout_blocktime;
1553 2409
1554 sleeptime = waittime - backend_fudge; 2410 /* extra check because io_blocktime is commonly 0 */
1555
1556 if (expect_true (sleeptime > io_blocktime)) 2411 if (expect_false (io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 { 2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
1561 ev_sleep (sleeptime); 2420 ev_sleep (sleeptime);
1562 waittime -= sleeptime; 2421 waittime -= sleeptime;
2422 }
1563 } 2423 }
1564 } 2424 }
1565 2425
2426#if EV_FEATURE_API
1566 ++loop_count; 2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1567 backend_poll (EV_A_ waittime); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1568 2432
1569 /* update ev_rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1570 time_update (EV_A_ waittime + sleeptime); 2434 time_update (EV_A_ waittime + sleeptime);
1571 } 2435 }
1572 2436
1579#if EV_IDLE_ENABLE 2443#if EV_IDLE_ENABLE
1580 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
1581 idle_reify (EV_A); 2445 idle_reify (EV_A);
1582#endif 2446#endif
1583 2447
2448#if EV_CHECK_ENABLE
1584 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1587 2453
1588 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1589
1590 } 2455 }
1591 while (expect_true (activecnt && !loop_done)); 2456 while (expect_true (
2457 activecnt
2458 && !loop_done
2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2460 ));
1592 2461
1593 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
1595}
1596 2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
2468}
2469
1597void 2470void
1598ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1599{ 2472{
1600 loop_done = how; 2473 loop_done = how;
1601} 2474}
1602 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1603/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1604 2515
1605void inline_size 2516inline_size void
1606wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1607{ 2518{
1608 elem->next = *head; 2519 elem->next = *head;
1609 *head = elem; 2520 *head = elem;
1610} 2521}
1611 2522
1612void inline_size 2523inline_size void
1613wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1614{ 2525{
1615 while (*head) 2526 while (*head)
1616 { 2527 {
1617 if (*head == elem) 2528 if (expect_true (*head == elem))
1618 { 2529 {
1619 *head = elem->next; 2530 *head = elem->next;
1620 return; 2531 break;
1621 } 2532 }
1622 2533
1623 head = &(*head)->next; 2534 head = &(*head)->next;
1624 } 2535 }
1625} 2536}
1626 2537
1627void inline_speed 2538/* internal, faster, version of ev_clear_pending */
2539inline_speed void
1628clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1629{ 2541{
1630 if (w->pending) 2542 if (w->pending)
1631 { 2543 {
1632 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1633 w->pending = 0; 2545 w->pending = 0;
1634 } 2546 }
1635} 2547}
1636 2548
1637int 2549int
1641 int pending = w_->pending; 2553 int pending = w_->pending;
1642 2554
1643 if (expect_true (pending)) 2555 if (expect_true (pending))
1644 { 2556 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
1646 w_->pending = 0; 2559 w_->pending = 0;
1647 p->w = 0;
1648 return p->events; 2560 return p->events;
1649 } 2561 }
1650 else 2562 else
1651 return 0; 2563 return 0;
1652} 2564}
1653 2565
1654void inline_size 2566inline_size void
1655pri_adjust (EV_P_ W w) 2567pri_adjust (EV_P_ W w)
1656{ 2568{
1657 int pri = w->priority; 2569 int pri = ev_priority (w);
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri; 2572 ev_set_priority (w, pri);
1661} 2573}
1662 2574
1663void inline_speed 2575inline_speed void
1664ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1665{ 2577{
1666 pri_adjust (EV_A_ w); 2578 pri_adjust (EV_A_ w);
1667 w->active = active; 2579 w->active = active;
1668 ev_ref (EV_A); 2580 ev_ref (EV_A);
1669} 2581}
1670 2582
1671void inline_size 2583inline_size void
1672ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1673{ 2585{
1674 ev_unref (EV_A); 2586 ev_unref (EV_A);
1675 w->active = 0; 2587 w->active = 0;
1676} 2588}
1683 int fd = w->fd; 2595 int fd = w->fd;
1684 2596
1685 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1686 return; 2598 return;
1687 2599
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1689 2604
1690 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1692 wlist_add (&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1693 2608
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1695 w->events &= ~EV_IOFDSET; 2610 w->events &= ~EV__IOFDSET;
2611
2612 EV_FREQUENT_CHECK;
1696} 2613}
1697 2614
1698void noinline 2615void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1700{ 2617{
1701 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1703 return; 2620 return;
1704 2621
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2623
2624 EV_FREQUENT_CHECK;
1706 2625
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1709 2628
1710 fd_change (EV_A_ w->fd, 1); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2630
2631 EV_FREQUENT_CHECK;
1711} 2632}
1712 2633
1713void noinline 2634void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1715{ 2636{
1716 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1717 return; 2638 return;
1718 2639
1719 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1720 2641
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1727 2652
2653 EV_FREQUENT_CHECK;
2654
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2656}
1730 2657
1731void noinline 2658void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2660{
1734 clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
1736 return; 2663 return;
1737 2664
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2665 EV_FREQUENT_CHECK;
1739 2666
1740 { 2667 {
1741 int active = ((W)w)->active; 2668 int active = ev_active (w);
1742 2669
2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2671
2672 --timercnt;
2673
1743 if (expect_true (--active < --timercnt)) 2674 if (expect_true (active < timercnt + HEAP0))
1744 { 2675 {
1745 timers [active] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2677 adjustheap (timers, timercnt, active);
1747 } 2678 }
1748 } 2679 }
1749 2680
1750 ((WT)w)->at -= mn_now; 2681 ev_at (w) -= mn_now;
1751 2682
1752 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
1753} 2686}
1754 2687
1755void noinline 2688void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1757{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1758 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1759 { 2694 {
1760 if (w->repeat) 2695 if (w->repeat)
1761 { 2696 {
1762 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2698 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2699 adjustheap (timers, timercnt, ev_active (w));
1764 } 2700 }
1765 else 2701 else
1766 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1767 } 2703 }
1768 else if (w->repeat) 2704 else if (w->repeat)
1769 { 2705 {
1770 w->at = w->repeat; 2706 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1772 } 2708 }
2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1773} 2717}
1774 2718
1775#if EV_PERIODIC_ENABLE 2719#if EV_PERIODIC_ENABLE
1776void noinline 2720void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2722{
1779 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
1780 return; 2724 return;
1781 2725
1782 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2728 else if (w->interval)
1785 { 2729 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2733 }
1790 else 2734 else
1791 ((WT)w)->at = w->offset; 2735 ev_at (w) = w->offset;
1792 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1797 2745
2746 EV_FREQUENT_CHECK;
2747
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2749}
1800 2750
1801void noinline 2751void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2753{
1804 clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
1806 return; 2756 return;
1807 2757
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2758 EV_FREQUENT_CHECK;
1809 2759
1810 { 2760 {
1811 int active = ((W)w)->active; 2761 int active = ev_active (w);
1812 2762
2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2764
2765 --periodiccnt;
2766
1813 if (expect_true (--active < --periodiccnt)) 2767 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2768 {
1815 periodics [active] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2770 adjustheap (periodics, periodiccnt, active);
1817 } 2771 }
1818 } 2772 }
1819 2773
1820 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
1821} 2777}
1822 2778
1823void noinline 2779void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1825{ 2781{
1831 2787
1832#ifndef SA_RESTART 2788#ifndef SA_RESTART
1833# define SA_RESTART 0 2789# define SA_RESTART 0
1834#endif 2790#endif
1835 2791
2792#if EV_SIGNAL_ENABLE
2793
1836void noinline 2794void noinline
1837ev_signal_start (EV_P_ ev_signal *w) 2795ev_signal_start (EV_P_ ev_signal *w)
1838{ 2796{
1839#if EV_MULTIPLICITY
1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1841#endif
1842 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
1843 return; 2798 return;
1844 2799
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1846 2801
2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
1847 { 2813 {
1848#ifndef _WIN32 2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1849 sigset_t full, prev; 2815 if (sigfd < 0 && errno == EINVAL)
1850 sigfillset (&full); 2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853 2817
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
1855 2821
1856#ifndef _WIN32 2822 sigemptyset (&sigfd_set);
1857 sigprocmask (SIG_SETMASK, &prev, 0); 2823
1858#endif 2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
1859 } 2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
1860 2840
1861 ev_start (EV_A_ (W)w, 1); 2841 ev_start (EV_A_ (W)w, 1);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2843
1864 if (!((WL)w)->next) 2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
1865 { 2848 {
1866#if _WIN32 2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
1867 signal (w->signum, sighandler); 2852 signal (w->signum, ev_sighandler);
1868#else 2853# else
1869 struct sigaction sa; 2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
1870 sa.sa_handler = sighandler; 2858 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2859 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1874#endif 2866#endif
1875 } 2867 }
2868
2869 EV_FREQUENT_CHECK;
1876} 2870}
1877 2871
1878void noinline 2872void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2873ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2874{
1881 clear_pending (EV_A_ (W)w); 2875 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2876 if (expect_false (!ev_is_active (w)))
1883 return; 2877 return;
1884 2878
2879 EV_FREQUENT_CHECK;
2880
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
1887 2883
1888 if (!signals [w->signum - 1].head) 2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
1889 signal (w->signum, SIG_DFL); 2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
1890} 2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
1891 2912
1892void 2913void
1893ev_child_start (EV_P_ ev_child *w) 2914ev_child_start (EV_P_ ev_child *w)
1894{ 2915{
1895#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2918#endif
1898 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
1899 return; 2920 return;
1900 2921
2922 EV_FREQUENT_CHECK;
2923
1901 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2926
2927 EV_FREQUENT_CHECK;
1903} 2928}
1904 2929
1905void 2930void
1906ev_child_stop (EV_P_ ev_child *w) 2931ev_child_stop (EV_P_ ev_child *w)
1907{ 2932{
1908 clear_pending (EV_A_ (W)w); 2933 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
1910 return; 2935 return;
1911 2936
2937 EV_FREQUENT_CHECK;
2938
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
1914} 2943}
2944
2945#endif
1915 2946
1916#if EV_STAT_ENABLE 2947#if EV_STAT_ENABLE
1917 2948
1918# ifdef _WIN32 2949# ifdef _WIN32
1919# undef lstat 2950# undef lstat
1920# define lstat(a,b) _stati64 (a,b) 2951# define lstat(a,b) _stati64 (a,b)
1921# endif 2952# endif
1922 2953
1923#define DEF_STAT_INTERVAL 5.0074891 2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1924#define MIN_STAT_INTERVAL 0.1074891 2956#define MIN_STAT_INTERVAL 0.1074891
1925 2957
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927 2959
1928#if EV_USE_INOTIFY 2960#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192 2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1930 2964
1931static void noinline 2965static void noinline
1932infy_add (EV_P_ ev_stat *w) 2966infy_add (EV_P_ ev_stat *w)
1933{ 2967{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935 2969
1936 if (w->wd < 0) 2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1937 { 2990 }
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1939 2995
1940 /* monitor some parent directory for speedup hints */ 2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 3000 {
1943 char path [4096]; 3001 char path [4096];
1944 strcpy (path, w->path); 3002 strcpy (path, w->path);
1945 3003
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950 3008
1951 char *pend = strrchr (path, '/'); 3009 char *pend = strrchr (path, '/');
1952 3010
1953 if (!pend) 3011 if (!pend || pend == path)
1954 break; /* whoops, no '/', complain to your admin */ 3012 break;
1955 3013
1956 *pend = 0; 3014 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask); 3015 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 } 3016 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 } 3018 }
1961 } 3019 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964 3020
1965 if (w->wd >= 0) 3021 if (w->wd >= 0)
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1967} 3028}
1968 3029
1969static void noinline 3030static void noinline
1970infy_del (EV_P_ ev_stat *w) 3031infy_del (EV_P_ ev_stat *w)
1971{ 3032{
1974 3035
1975 if (wd < 0) 3036 if (wd < 0)
1976 return; 3037 return;
1977 3038
1978 w->wd = -2; 3039 w->wd = -2;
1979 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1980 wlist_del (&fs_hash [slot].head, (WL)w); 3041 wlist_del (&fs_hash [slot].head, (WL)w);
1981 3042
1982 /* remove this watcher, if others are watching it, they will rearm */ 3043 /* remove this watcher, if others are watching it, they will rearm */
1983 inotify_rm_watch (fs_fd, wd); 3044 inotify_rm_watch (fs_fd, wd);
1984} 3045}
1985 3046
1986static void noinline 3047static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{ 3049{
1989 if (slot < 0) 3050 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */ 3051 /* overflow, need to check for all hash slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1992 infy_wd (EV_A_ slot, wd, ev); 3053 infy_wd (EV_A_ slot, wd, ev);
1993 else 3054 else
1994 { 3055 {
1995 WL w_; 3056 WL w_;
1996 3057
1997 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1998 { 3059 {
1999 ev_stat *w = (ev_stat *)w_; 3060 ev_stat *w = (ev_stat *)w_;
2000 w_ = w_->next; /* lets us remove this watcher and all before it */ 3061 w_ = w_->next; /* lets us remove this watcher and all before it */
2001 3062
2002 if (w->wd == wd || wd == -1) 3063 if (w->wd == wd || wd == -1)
2003 { 3064 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 { 3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2006 w->wd = -1; 3068 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */ 3069 infy_add (EV_A_ w); /* re-add, no matter what */
2008 } 3070 }
2009 3071
2010 stat_timer_cb (EV_A_ &w->timer, 0); 3072 stat_timer_cb (EV_A_ &w->timer, 0);
2015 3077
2016static void 3078static void
2017infy_cb (EV_P_ ev_io *w, int revents) 3079infy_cb (EV_P_ ev_io *w, int revents)
2018{ 3080{
2019 char buf [EV_INOTIFY_BUFSIZE]; 3081 char buf [EV_INOTIFY_BUFSIZE];
2020 struct inotify_event *ev = (struct inotify_event *)buf;
2021 int ofs; 3082 int ofs;
2022 int len = read (fs_fd, buf, sizeof (buf)); 3083 int len = read (fs_fd, buf, sizeof (buf));
2023 3084
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
2026} 3091}
2027 3092
2028void inline_size 3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
2029infy_init (EV_P) 3117infy_init (EV_P)
2030{ 3118{
2031 if (fs_fd != -2) 3119 if (fs_fd != -2)
2032 return; 3120 return;
2033 3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
2034 fs_fd = inotify_init (); 3126 fs_fd = infy_newfd ();
2035 3127
2036 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2037 { 3129 {
3130 fd_intern (fs_fd);
2038 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2039 ev_set_priority (&fs_w, EV_MAXPRI); 3132 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w); 3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
2041 } 3135 }
2042} 3136}
2043 3137
2044void inline_size 3138inline_size void
2045infy_fork (EV_P) 3139infy_fork (EV_P)
2046{ 3140{
2047 int slot; 3141 int slot;
2048 3142
2049 if (fs_fd < 0) 3143 if (fs_fd < 0)
2050 return; 3144 return;
2051 3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
2052 close (fs_fd); 3148 close (fs_fd);
2053 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2054 3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
2055 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2056 { 3160 {
2057 WL w_ = fs_hash [slot].head; 3161 WL w_ = fs_hash [slot].head;
2058 fs_hash [slot].head = 0; 3162 fs_hash [slot].head = 0;
2059 3163
2060 while (w_) 3164 while (w_)
2065 w->wd = -1; 3169 w->wd = -1;
2066 3170
2067 if (fs_fd >= 0) 3171 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */ 3172 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else 3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2070 ev_timer_start (EV_A_ &w->timer); 3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
2071 } 3180 }
2072
2073 } 3181 }
2074} 3182}
2075 3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 3190#endif
2077 3191
2078void 3192void
2079ev_stat_stat (EV_P_ ev_stat *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
2080{ 3194{
2087static void noinline 3201static void noinline
2088stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2089{ 3203{
2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2091 3205
2092 /* we copy this here each the time so that */ 3206 ev_statdata prev = w->attr;
2093 /* prev has the old value when the callback gets invoked */
2094 w->prev = w->attr;
2095 ev_stat_stat (EV_A_ w); 3207 ev_stat_stat (EV_A_ w);
2096 3208
2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if ( 3210 if (
2099 w->prev.st_dev != w->attr.st_dev 3211 prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino 3212 || prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode 3213 || prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink 3214 || prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid 3215 || prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid 3216 || prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev 3217 || prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size 3218 || prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime 3219 || prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime 3220 || prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime 3221 || prev.st_ctime != w->attr.st_ctime
2110 ) { 3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
2111 #if EV_USE_INOTIFY 3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
2112 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w); 3232 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */ 3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
2115 #endif 3235 #endif
2116 3236
2117 ev_feed_event (EV_A_ w, EV_STAT); 3237 ev_feed_event (EV_A_ w, EV_STAT);
2118 } 3238 }
2119} 3239}
2122ev_stat_start (EV_P_ ev_stat *w) 3242ev_stat_start (EV_P_ ev_stat *w)
2123{ 3243{
2124 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2125 return; 3245 return;
2126 3246
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2132 3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2133 if (w->interval < MIN_STAT_INTERVAL) 3250 w->interval = MIN_STAT_INTERVAL;
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135 3251
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2137 ev_set_priority (&w->timer, ev_priority (w)); 3253 ev_set_priority (&w->timer, ev_priority (w));
2138 3254
2139#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
2140 infy_init (EV_A); 3256 infy_init (EV_A);
2141 3257
2142 if (fs_fd >= 0) 3258 if (fs_fd >= 0)
2143 infy_add (EV_A_ w); 3259 infy_add (EV_A_ w);
2144 else 3260 else
2145#endif 3261#endif
3262 {
2146 ev_timer_start (EV_A_ &w->timer); 3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
2147 3266
2148 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
2149} 3270}
2150 3271
2151void 3272void
2152ev_stat_stop (EV_P_ ev_stat *w) 3273ev_stat_stop (EV_P_ ev_stat *w)
2153{ 3274{
2154 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2156 return; 3277 return;
2157 3278
3279 EV_FREQUENT_CHECK;
3280
2158#if EV_USE_INOTIFY 3281#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 3282 infy_del (EV_A_ w);
2160#endif 3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
2161 ev_timer_stop (EV_A_ &w->timer); 3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
2162 3290
2163 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
3292
3293 EV_FREQUENT_CHECK;
2164} 3294}
2165#endif 3295#endif
2166 3296
2167#if EV_IDLE_ENABLE 3297#if EV_IDLE_ENABLE
2168void 3298void
2170{ 3300{
2171 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
2172 return; 3302 return;
2173 3303
2174 pri_adjust (EV_A_ (W)w); 3304 pri_adjust (EV_A_ (W)w);
3305
3306 EV_FREQUENT_CHECK;
2175 3307
2176 { 3308 {
2177 int active = ++idlecnt [ABSPRI (w)]; 3309 int active = ++idlecnt [ABSPRI (w)];
2178 3310
2179 ++idleall; 3311 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 3312 ev_start (EV_A_ (W)w, active);
2181 3313
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 3315 idles [ABSPRI (w)][active - 1] = w;
2184 } 3316 }
3317
3318 EV_FREQUENT_CHECK;
2185} 3319}
2186 3320
2187void 3321void
2188ev_idle_stop (EV_P_ ev_idle *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
2189{ 3323{
2190 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2192 return; 3326 return;
2193 3327
3328 EV_FREQUENT_CHECK;
3329
2194 { 3330 {
2195 int active = ((W)w)->active; 3331 int active = ev_active (w);
2196 3332
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 3335
2200 ev_stop (EV_A_ (W)w); 3336 ev_stop (EV_A_ (W)w);
2201 --idleall; 3337 --idleall;
2202 } 3338 }
2203}
2204#endif
2205 3339
3340 EV_FREQUENT_CHECK;
3341}
3342#endif
3343
3344#if EV_PREPARE_ENABLE
2206void 3345void
2207ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 3347{
2209 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2210 return; 3349 return;
3350
3351 EV_FREQUENT_CHECK;
2211 3352
2212 ev_start (EV_A_ (W)w, ++preparecnt); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
2215} 3358}
2216 3359
2217void 3360void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 3362{
2220 clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
2222 return; 3365 return;
2223 3366
3367 EV_FREQUENT_CHECK;
3368
2224 { 3369 {
2225 int active = ((W)w)->active; 3370 int active = ev_active (w);
3371
2226 prepares [active - 1] = prepares [--preparecnt]; 3372 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 3373 ev_active (prepares [active - 1]) = active;
2228 } 3374 }
2229 3375
2230 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2231}
2232 3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
2233void 3383void
2234ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
2235{ 3385{
2236 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
2237 return; 3387 return;
3388
3389 EV_FREQUENT_CHECK;
2238 3390
2239 ev_start (EV_A_ (W)w, ++checkcnt); 3391 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
2242} 3396}
2243 3397
2244void 3398void
2245ev_check_stop (EV_P_ ev_check *w) 3399ev_check_stop (EV_P_ ev_check *w)
2246{ 3400{
2247 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2249 return; 3403 return;
2250 3404
3405 EV_FREQUENT_CHECK;
3406
2251 { 3407 {
2252 int active = ((W)w)->active; 3408 int active = ev_active (w);
3409
2253 checks [active - 1] = checks [--checkcnt]; 3410 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 3411 ev_active (checks [active - 1]) = active;
2255 } 3412 }
2256 3413
2257 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
2258} 3417}
3418#endif
2259 3419
2260#if EV_EMBED_ENABLE 3420#if EV_EMBED_ENABLE
2261void noinline 3421void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
2263{ 3423{
2264 ev_loop (w->other, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
2265} 3425}
2266 3426
2267static void 3427static void
2268embed_io_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
2269{ 3429{
2270 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2271 3431
2272 if (ev_cb (w)) 3432 if (ev_cb (w))
2273 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2274 else 3434 else
2275 ev_loop (w->other, EVLOOP_NONBLOCK); 3435 ev_run (w->other, EVRUN_NOWAIT);
2276} 3436}
2277 3437
2278static void 3438static void
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{ 3440{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282 3442
2283 { 3443 {
2284 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2285 3445
2286 while (fdchangecnt) 3446 while (fdchangecnt)
2287 { 3447 {
2288 fd_reify (EV_A); 3448 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3449 ev_run (EV_A_ EVRUN_NOWAIT);
2290 } 3450 }
2291 } 3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
2292} 3469}
2293 3470
2294#if 0 3471#if 0
2295static void 3472static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2304{ 3481{
2305 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2306 return; 3483 return;
2307 3484
2308 { 3485 {
2309 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 3489 }
3490
3491 EV_FREQUENT_CHECK;
2313 3492
2314 ev_set_priority (&w->io, ev_priority (w)); 3493 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 3494 ev_io_start (EV_A_ &w->io);
2316 3495
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 3497 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 3498 ev_prepare_start (EV_A_ &w->prepare);
2320 3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 3504
2323 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
2324} 3508}
2325 3509
2326void 3510void
2327ev_embed_stop (EV_P_ ev_embed *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
2328{ 3512{
2329 clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
2331 return; 3515 return;
2332 3516
3517 EV_FREQUENT_CHECK;
3518
2333 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
2335 3522
2336 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
2337} 3526}
2338#endif 3527#endif
2339 3528
2340#if EV_FORK_ENABLE 3529#if EV_FORK_ENABLE
2341void 3530void
2342ev_fork_start (EV_P_ ev_fork *w) 3531ev_fork_start (EV_P_ ev_fork *w)
2343{ 3532{
2344 if (expect_false (ev_is_active (w))) 3533 if (expect_false (ev_is_active (w)))
2345 return; 3534 return;
3535
3536 EV_FREQUENT_CHECK;
2346 3537
2347 ev_start (EV_A_ (W)w, ++forkcnt); 3538 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
2350} 3543}
2351 3544
2352void 3545void
2353ev_fork_stop (EV_P_ ev_fork *w) 3546ev_fork_stop (EV_P_ ev_fork *w)
2354{ 3547{
2355 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2357 return; 3550 return;
2358 3551
3552 EV_FREQUENT_CHECK;
3553
2359 { 3554 {
2360 int active = ((W)w)->active; 3555 int active = ev_active (w);
3556
2361 forks [active - 1] = forks [--forkcnt]; 3557 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 3558 ev_active (forks [active - 1]) = active;
2363 } 3559 }
2364 3560
2365 ev_stop (EV_A_ (W)w); 3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
3564}
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568void
3569ev_async_start (EV_P_ ev_async *w)
3570{
3571 if (expect_false (ev_is_active (w)))
3572 return;
3573
3574 w->sent = 0;
3575
3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
3579
3580 ev_start (EV_A_ (W)w, ++asynccnt);
3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_stop (EV_P_ ev_async *w)
3589{
3590 clear_pending (EV_A_ (W)w);
3591 if (expect_false (!ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 {
3597 int active = ev_active (w);
3598
3599 asyncs [active - 1] = asyncs [--asynccnt];
3600 ev_active (asyncs [active - 1]) = active;
3601 }
3602
3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_async_send (EV_P_ ev_async *w)
3610{
3611 w->sent = 1;
3612 evpipe_write (EV_A_ &async_pending);
2366} 3613}
2367#endif 3614#endif
2368 3615
2369/*****************************************************************************/ 3616/*****************************************************************************/
2370 3617
2380once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
2381{ 3628{
2382 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
2383 void *arg = once->arg; 3630 void *arg = once->arg;
2384 3631
2385 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
2386 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
2387 ev_free (once); 3634 ev_free (once);
2388 3635
2389 cb (revents, arg); 3636 cb (revents, arg);
2390} 3637}
2391 3638
2392static void 3639static void
2393once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
2394{ 3641{
2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2396} 3645}
2397 3646
2398static void 3647static void
2399once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
2400{ 3649{
2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2402} 3653}
2403 3654
2404void 3655void
2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2406{ 3657{
2407 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2408 3659
2409 if (expect_false (!once)) 3660 if (expect_false (!once))
2410 { 3661 {
2411 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2412 return; 3663 return;
2413 } 3664 }
2414 3665
2415 once->cb = cb; 3666 once->cb = cb;
2416 once->arg = arg; 3667 once->arg = arg;
2428 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
2429 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
2430 } 3681 }
2431} 3682}
2432 3683
3684/*****************************************************************************/
3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
2433#if EV_MULTIPLICITY 3800#if EV_MULTIPLICITY
2434 #include "ev_wrap.h" 3801 #include "ev_wrap.h"
2435#endif 3802#endif
2436 3803
2437#ifdef __cplusplus 3804EV_CPP(})
2438}
2439#endif
2440 3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines